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Mathematische Statistik und Tarifwesen I
Von Ch. Morel, Feldmeilen. 519.24 : 621.317.

In diesem Aufsatz werden die Grundbegriffe der
mathematischen Statistik, Mittelwerte, Streuung, Abhängigkeit und
Verteilung, erläutert und ihre Zusammenhänge an Hand eines
numerischen Beispiels aus dem Tarifwesen anschaulich und
allgemein verständlich dargestellt. Diese Studie ist vor allem
für diejenigen Leute aus dem Betriebe bestimmt, die ihre
Kenntnisse über dieses Gebiet vertiefen möchten, ohne allzu
sehr auf die rein mathematische Seite des Problems
einzutreten. Die Mannigfaltigkeit der Anwendungen der mathematischen

Statistik ist jedoch so gross, dass noch manch anderer
an diesen Ausführungen Interesse finden dürfte.

Einleitung
Wohl kaum eines der die Elektrizitätswerke

interessierenden Gebiete bedarf zu seiner gründlichen
Erfassung so sehr der modernen statistischen
Methoden wie dasjenige des Tarifwesens.

Unter einer Statistik stellt man sich heute
landläufig ein Aneinanderreihen von Zahlenreihen vor,
z. B. die regelmässige Aufzeichnung der
Energieerzeugung, des Energieverbrauches, der Einnahmen,
der Abonnentenzahl, der angeschlossenen Apparate
usw., und die Veranschaulichung der Ergebnisse
durch graphische Darstellungen. Von diesen
einfachen Anfängen hat sich aber die moderne Statistik
zu einem wohl abgerundeten, selbständigen Zweig
der mathematischen Wissenschaften entwickelt, dessen

Methoden, lehren, aus Reihen von oft scheinbar

zusammenhanglosen Erfahrungszahlen eine
Gesetzmässigkeit herauszufinden, diese Gesetzmässigkeit

zu formulieren und sie für die praktischen
Bedürfnisse nutzbringend zu deuten.

Allein, die Statistik darf niemals Selbstzweck werden.

Sie ist ein unentbehrliches Hilfsmittel und muss
es bleiben. Wie dieses wertvolle Hilfsmittel praktisch

gehandhabt werden kann, soll das Folgende
an Hand von aus der Praxis herausgegriffenen
Beispielen zeigen.

Untersucht man z. B. den jährlichen Energieverbrauch

einer grossen Wohnkolonie, bestehend aus
lauter gleichen Einfamilienhäusern, deren Bewohner

alle in den gleichen sozialen Verhältnissen
leben, was z. B. bei der Wohnsiedlung eines grossen
Industrieunternehmens vorkommen kann, so stellt
man fest, dass selbst unter diesen Voraussetzungen
der Verbrauch der einzelnen Abnehmer starke
Schwankungen aufweist, die durch verschiedene

8

L'auteur explique tout d'abord les notions fondamentales
de la statistique tnathématique : moyennes, dispersion, régression,

corrélation et répartition, et en fait ressortir les
relations à l'aide d'un exemple numérique du domaine des traifs
d'électricité. Cette étude est destinée en premier lieu aux
praticiens de l'exploitation qui désirent approfondir leurs
connaissances en cette matière, sans trop faire appel aux
mathématiques supérieures. Les possibilités d'application
pratique de la statistique mathématique sont toutefois si
nombreuses dans tous les domaines, que cette étude réveillera
certainement l'intérêt d'un cercle plus étendu de lecteurs.

Faktoren, z.B. die Lebensgewohnheiten, die Per-
sonenzahl, die Art, die Zahl und die
Verwendungshäufigkeit der vorhandenen Kleinapparate
usw., bedingt sein mögen. Diese Schwankungen sind
eine natürliche Erscheinung, die auch bei andern
Verbrauchsgütern, z. B. beim Wasser oder heim
Heizmaterial, auftritt. Allein mit dieser Vielfalt von
verschiedenen Einzelwerten lässt sich nicht viel
anfangen. Es bedarf hier repräsentativer Werte, die
sich aus den Einzelwerten ableiten lassen und mit
denen man in einfacher Weise operieren kann.

Um die Entwicklung des Energieverbrauches
einer bestimmten Abnehmergruppe im Laufe der
Jahre zu verfolgen, genügen meistens die über ein
Jahr sich erstreckenden Summen der Einzelverbrauche.

Sollen dagegen verschiedene Gruppen
miteinander verglichen werden, so müssen in der Regel
Mittelwerte gebildet werden. Charakteristisch für
die Schwankungen der Einzelwerte innerhalb einer
Gruppe sind die Streuungsmasse.

Jede Gruppe von Einzelwerten heisst eine
Statistik. Oft besteht eine Abhängigkeit zwischen zwei
Statistiken, so z. B. zwischen dem Energieverbrauch
für Beleuchtung und der Wohnungsgrösse; in
solchen Fällen sind die gegenseitigen Beziehungen
durch die Abhängigkeitsmasse gekennzeichnet. Bei
Abhängigkeit pflegt man die Einzelwerte der einen
Statistik als Variable und die Einzelwerte der
anderen Statistik, auf die sich die erste bezieht, als
Parameter zu bezeichnen. Im erwähnten Beispiel
ist der Energieverbrauch für Beleuchtung die
Variable und die Wohnungsgrösse der Parameter.

Mittelwerte, Streuungsmasse und Abhängigkeitsmasse

bilden zusammen die statistischen Masszahlen.
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Da in der Regel mit Stichproben operiert wird,
weil die statistische Bearbeitung von. Grundgesamtheiten

sehr umständlich und zeitraubend ist, müssen

die aus diesen Stichproben gewonnenen statistischen

Masszahlen auf ihre Stichhaltigkeit geprüft
werden. Die hier anzuwendenden Prüfverfahren und
vor allem ihre mathematische Begründung sind sehr
kompliziert. Näher auf diese Verfahren einzugehen,
würde nicht in den Rahmen dieser einfachen Studie
hineinpassen. Für die Praxis genügt es vorläufig, zu
wissen, dass der Umfang der Stichproben im
Verhältnis zur Grundgesamtheit nicht zu klein sein
darf. Statistische Berechnungen müssen im Minimum

einige hundert Abnehmer umfassen, wenn sie
einigermassen allgemein gültige Schlussfolgerungen
zulassen sollen.

1. Summen und Mittelwerte
Bezeichnen wir den Jahresenergieverbrauch (z. B.

für Beleuchtung) eines einzelnen Abnehmers mit t>,-,

so können wir für die Summe V der Einzelwerte vt
(Gesamtverbrauch) der zu untersuchenden, N
Abnehmer umfassenden, Gruppe schreiben:

V Z vt ') (1)
i= 1

Der einfachste und gebräuchlichste Mittelwert ist
der Durchschnitt (oder das arithmetische Mittel).
Er ergibt sich aus der Summe der Einzelwerte geteilt
durch ihre Zahl

- 1 N

v — X>' (2)
N i=i

In den Fällen, wo die Zahl N der Einzelwerte
sehr gross ist, kann man die Rechnung mit sehr
guter Annäherung vereinfachen. Man teilt die
Einzelwerte in M Grössenklassen ein und ermittelt für
jede Klasse die Häufigkeit «y der Einzelwerte. Es
ergibt sich dann

M

N £ n,
i=1

Entspricht Vj der Klassenmitte, so wird

v S vi ni (la)
J=1

und

_ 1 m

v — £ v, n, (3)
IS =i

Beispiel:
Jahresenergieverbrauch für Beleuchtung und
Kleinapparate in einer Stadt (Stichprobe, 225 Abnehmer
umfassend)

Anzahl Abnehmer N 225
Klassenbreite u> 20

Die tabellarische Zusammenstellung ergibt:

*) Grundsätzlich werden hier die Summenwerte mit
grossen, die Einzelwerte und Mittelwerte mit kleinen
lateinischen Buchstaben geschrieben.

Tabelle I

Klassenbreite
(20 kWh)

kWh

Klassenmitte
Vi

kWh

Häufigkeit
«l

Verbrauch jeder
Klasse

(angenähert)
v\ m
kWh

20... 39
40... 59
60... 79
80... 99

100 ...119
120 ...139
140 ...159
160 ...179
180 ...199
200 ...219
220 ...239
240 ...259
260 ...279
280 ...299
300 ...312
320 ...339
340 ...359
360 ...379
380 ...399
400 ...419
420 ...439
440 ...459
460 ...479
480 ...499
500 ...519

30
50
70
90

110
130
150
170
190
210
230
250
270
290
310
330
350
370
390
410
430
450
470
490
510

6
7
4

23
14
33
25
28
31
11
16
6
7
4
2
2
3
1

0
1

0
0
0
0
1

180
350
280

2070
1540
4290
3750
4760
5890
2310
3680
1500
1890
1160
620
660

1050
370

410

510

A =225 V=2v n, 37270

V= 225
• 37270 — 165,64 kWh/Abnehmer

Es stellt sich nun die Frage, wie genau diese
vereinfachte Durchschnittsbildung nach Formel (3) ist.

Um dies festzustellen, wurde dieses Zahlenbeispiel
auch nach Formel (2) durchgerechnet. Es ergab sich
dabei

V £ vi 37 293 kWh
i=i

und
— V 37 293
v - 165,75 kWh/Abnehmer.

N 225

Die Differenz der Summen beträgt 23 kWh oder
0,062 % des Sollwertes. Der angenäherte Durchschnitt

nach Formel (3) ist somit für praktische
Zwecke hinreichend genau.

Ist der Umfang der Statistik, bzw. der Stichprobe,
gross, so kann ohne Einbusse der Genauigkeit die
Klassenbreite noch vergrössert werden.

Sind die Daten jedes Abnehmers auf Karten
eingetragen, so nimmt das Sortieren in Klassen, das
Abzählen der Karten auf jedem Häuflein und das
Ausrechnen nach Tabelle I wesentlich weniger Zeit
in Anspruch, als das Zusammenzählen aller Einzelwerte,

auch mit Hilfe einer Rechenmaschine.
Trägt man nun die Werte der Tabelle I graphisch

auf (Fig. 1), den Verbrauch v als Abszisse und die
Häufigkeit n als Ordinate, so erhält man ein Bild
der Verteilung der Einzelwerte, bzw. ihrer Häufigkeit

innerhalb der Statistik. Die sich ergebende Ver-
teilungskurve ist als Treppenkurve gezeichnet, um
zu dokumentieren, dass jede der eingetragenen
Häufigkeiten jeweilen einer ganzen Klasse, nicht einem
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einzelnen Werte, zugeordnet ist. Vergleiehshalber
ist als stetige Kurve die für diese Statistik
ausgerechnete Verteilung eingetragen, d. h. diejenige, die
der Gaußschen Fehlerfunktion entspricht. Die
normale Verteilung ist diejenige, die sich bei einer sehr

/ Px

n
Fig. 1

grossen Zahl von rein zufälligen Einzelergehnissen
einstellen würde. Wie die tatsächliche mit der
normalen Verteilung verglichen werden kann, soll
später gezeigt werden.

Man kann auch die Einzelwerte der Statistik der
Grösse nach ordnen, den kleinsten zuvorderst, den
grössten zuhinterst, oder umgekehrt. In der Mitte
dieser Reihe wird es einen Wert geben, der gleich
viele Einzelwerte vor, wie hinter sich hat. Dieser
Mittelwert heisst mittelster Wert oder Medianwert

m. In unserem Beispiel ist es der 113. in der
Reihe, und sein Wert beträgt m 160 kWh.

Man kann aber auch aus der Statistik denjenigen
Wert herausgreifen, der die grösste Häufigkeit
aufweist. Dieser Wert heisst häufigster Wert. Medianwert

und häufigster Wert haben keine grosse
praktische Bedeutung. In einer normalen Verteilung sind
sie einander und dem Durchschnitt numerisch
gleich.

2. Streuungsmasse
Im Abschnitt 1 wurde festgestellt, dass in einer

Statistik (z.B. in einer Abnehmergruppe) die
Einzelwerte (Energieverbrauchszahlen) nicht identisch
sind, sondern mehr oder weniger von einem
Mittelwert abweichen. Zur Erfassung dieser Abweichungen

bedient man sich der Streuungsmasse.
Das einfachste Streuungsmass ist die Variationsbreite,

d. i. der Unterschied zwischen dem grössten
und dem kleinsten Einzelwert der Statistik. In
unserem Beispiel beträgt der grösste Jahresenergieverbrauch

510 kWh und der kleinste 24 kWh. Die
Variationsbreite beträgt demnach 510— 24 486 kWh
oder, auf den Durchschnitt bezogen:

486

165,75
3,54

d. h. sie ist rund dreieinhalbmal so gross wie der
Durchschnitt. Die Variationsbreite ist aber grossen
Zufälligkeiten unterworfen. Zuverlässiger als diese
ist die durchschnittliche Abweichung d. Diese ist
gleich dem arithmetischen Mittel aus den absoluten
Werten der Differenzen zwischen den Einzelwerten

und einem der Mittelwerte, in der Regel dem
Durchschnitt. Ihre Formel lautet

1 N -
-TT £/*-•/ («)

Für die voRe Charakterisierung der Abweichungen
ist jedoch der mittleren quadratischen Abweichung

s der Vorzug zu gehen. Sie bietet den Vorteil,
dass infolge der Quadrierung der Einzelabweichungen

alle zu summierenden Werte positiv werden, die
Vorzeichenfrage also wegfällt. Ferner spielt sie bei
den Abhängigkeitsmassen, bei der normalen
Verteilung und bei den Prüfverfahren eine so
hervorragende Rolle, dass sich ihre Berechnung, wenn auch
etwas kompliziert, immer lohnt. Die Formel schreibt
sich

-1u T £ (vi — v)2
J- i=l

(5)

Es ist hier nicht möglich, auf den Grund einzugehen,

warum der Radikand durch (N — 1) statt durch
N geteilt werden muss. Es genügt, darauf hinzuweisen,

dass dies der neueren Praxis entspricht.
Viel häufiger wird der Quadratwert von s, also

s2, verwendet, der kurzweg Streuung genannt wird.

N—1 ,=i
2 (vi — v)2 (6)

Um das Ausrechnen zu erleichtern, kann man diese
Formel in eine praktische Form überführen. Man
rechnet den quadratischen Ausdruck aus

(vt — v)2 — ff — 2 VjV -]- f2

und setzt die Entwicklung in Formel (6) ein.

«2 —(2 vf-2v £ vt + Nv2)
N— 1 i=! i=!

Nach Formel (2) ist aber

v —

somit

und

Nv2 Nv
1

~N

1 N

N

2 ^ :

i= 1

N

i=i

„2 __
1 y _ y

—— (2 »?—v t vi)
N 1 i=l i=l

Wie heim Durchschnitt kann man hier die Rechnung

wesentlich vereinfachen, indem man die
Einzelwerte in M Klassen mit Klassenmitte v; einreiht
und für jede Klasse die Häufigkeit ermittelt. Die
Formel für die Streuung lautet alsdann

S2

N—l ,=x
2 ni (v, — vf (8)

In Anleimung an die Ableitung von Formel (7) aus
Formel (6) findet man leicht

s2 (^ n, ff—f XI nivi) (9)
N—l "i y=i
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Für das gewählte praktische Beispiel ist die
Ausrechnung in Tabelle II dargestellt.

Tabelle II
Klassen-

mitte
»j

Quadrat
der

Klassenmitte

2
«1

Häufigkeit

"1

Verbrauch
jeder Klasse

Bj DJ

Quadratverbrauch

jeder Klasse
2

Bj Vj

30 900 6 180 5 400
50 2 500 7 350 17 500
70 4 900 4 280 19 600
90 8100 23 2 070 186 300

110 12 100 14 1 540 169 400
130 16 900 33 4 290 557 700
150 22 500 25 3 750 562 500
170 28 900 28 4 760 809 200
190 36 100 31 5 890 1 119 100
210 44 100 11 2 310 485 100
230 52 900 16 3 680 846 400
250 62 500 6 1 500 375 000
270 72 900 7 1 890 510 300
290 84 100 4 1160 336 400
310 46 100 2 620 192 200
330 108 900 2 • 660 217 800
350 122 500 3 1050 367 500
370 136 900 1 370 136 900
390 152 100 0 — —
410 168 100 1 410 168 100
430 184 900 0 — —
450 202 500 0 — —
470 220 900 0 — —
490 240 100 0 — —
510 260 100 1 510 260 100

N=225
M

2 nj vj 37270

M

2 nj v] 7342500

1 1 169 097
s2 (7 342 500 — 6 173 403) —224 224 -5219

s 5219 72,2

Zur Kontrolle wurde auch die Ausrechnung nach
Formel (7) durchgeführt. Sie ergibt:

7 346 243
i=l

v £ 17, 165,75-37 293 6 181 315
i=i

s2

221
(7 346 243 — 6181315) 5201

s y 5201 72

Für die Streuung nach Formel (9) beträgt der
Fehler gegenüber Formel (7) 5219 — 5201 18
oder 0,346 % des Sollwertes, und für die mittlere
quadratische Abweichung 72,2 — 72 0,2 oder
0,28 % dès Sollwertes. Bezogen auf den Durchschnitt

beträgt die mittlere quadratische Abwei-
72 -chung 0,435 v.

165,75
Je kleiner der Wert s ist, um so kleiner ist die

Streuung, d. h. um so enger scharen sich die Einzelwerte

um den Durchschnitt v. Im Idealfalle der
Streuung null würden alle Einzelwerte einander und
dem Durchschnitt gleich sein, also mit diesem
zusammenfallen.

3. Abhängigkeiten
Sehr oft kommt man in der Praxis dazu, sich zu

fragen, ob zwischen zwei statistisch erfassbaren

Grössen eine Abhängigkeit besteht. Ein Problem,
das sich im Tarifwesen stellt, ist z. B., zu wissen,
ob der Energieverbrauch der Haushaltungen für
Beleuchtung und Kleinapparate zu irgendeiner für
jeden Abonnenten charakteristischen Grösse in
Beziehung steht, z. B. zu der durch die Zahl oder die
Bodenfläche der Haupträume dargestellten Woh-
nungsgrösse.

\\

h
/J ;

\\ / J l

0 1

sevt*2>*
4 5"

Fig. 2

Trägt man für die Abnehmergrappe des gewählten

praktischen Beispiels den Energieverbrauch für
Beleuchtung in Funktion der Anzahl Haupträume
graphisch auf, so ergeben sich die in Fig. 2 dargestellten

Punktschwärme, die zunächst keine strenge
Gesetzmässigkeit erkennen lassen, ausser dass mit
zunehmender Raumzahl die Schwerpunkte der
Schwärme sich nach oben verschieben.

Um Ordnung in die Sache zu bringen, bildet man
für jede Gruppe der die gleiche Raumzahl aufweisenden

Abnehmer den Durchschnitt der zugehörigen

einzelnen Verbrauchswerte, trägt die
entsprechenden Punkte in Fig. 2 ein und verbindet sie
miteinander durch gerade Striche. Der entstehende
gebrochene Linienzug stört, denn er lässt noch keine
strenge lineare Abhängigkeit erkennen. Immerhin
verdeutlicht er schon die Tendenz des Energieverbrauches,

mit der Raumzahl zuzunehmen. Um eine
eindeutige und einfache Abhängigkeit zwischen dem
Energieverbrauch v und der als Parameter dienenden

Zahl p der Haupträume (Schlafräume,
Wohnräume, Küche, Badzimmer) zu finden, sucht man nun
in erster Annäherung nach der linearen Funktion
(Geraden), die sich dem Punkteschwarm, bzw. dem
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gebrochenen Linienzug am besten anpasst. Genügt
diese Gerade, so spricht man von linearer Regression
(Abhängigkeit) zwischen den beiden erfassten
Statistiken; genügt sie nicht, was nur durch ein kompliziertes

Prüfverfahren festgestellt werden kann, muss
irgend eine stetige Kurve gesucht werden — nicht
lineare Regression. Erfahrungsgemäss genügt in den
meisten Fällen die lineare Regression, so dass sie
allein liier berücksichtigt sei.

Die Gleichung der Regressionsgeraden lautet:

v o-f b (p — p) (10)

Nun bestimmt man die Konstanten a und b so, dass
die die Einzelwerte darstellenden Punkte (Fig. 3)
möglichst wenig um die Regressionsgerade herum
streuen.

ruî
{

yYy
Vf-Wf'- 1 /i /1 /1

V
1

1

1

1

1

i k___
Fig. 3

Der Punkt mit den Koordinaten p und v ist der
Schwerpunkt des Schwarmes; die Gerade muss folglich

durch diesen Punkt gehen. Infolgedessen wird

a v

und die Gleichung (7)

V v + b (p — p) (11)

Die Streuung ist am kleinsten, wenn die Summe
der quadratischen Abweichungen von der Geraden
ein Minimum ist.

Die Summe der quadratischen Abweichungen
schreibt sich

2 (Vi — Vi')2
i=1

Nach Gleichung (11) ist aber

v{ v b (pi — p)
So wird

2 (vi — v/)2 2 [(*>; — v) — b (Pi — P)]2
i=l i=l

2 (vi — v)2 — 2 6 2 (vi — v) (Pt—p) + h22(P(-p)2
i=l i=l i=l
Um den Wert von b zu ermitteln, für welchen die

Summe ein Minimum wird, setzt man ihre erste
Ableitung nach b gleich Null.

-jr 12 («!-«)'] 0
db i=i

oder

— 2 2! (Vi — v) (Pi — p) +26 2 (p—p)2 0
i=i i=i

so dass

2 (pi—P) (vi—v)
b

2 (P/-P)2
i=l

(12)

In Anlehnung an die Transformation von Formel (6)
in Formel (7) kann man für die Formel (12)
schreiben

N _ N N _ N

2 Pivi—p 2 vt 2 Pivi~v 2 Pi
b i-1 i=1

N _ N
r»22 Pt—p 2 Pt 2 pf—p 2 Pt

N _ N
2

(13)

Der Richtungskoeffizient oder das Steigungs-
mass b der durch Gleichung (11) charakterisierten
Geraden heisst Regressionskoeffizient.

Der Regressionskoeffizient gibt an, um wieviel v
im Mittel zunimmt, wenn p um eine Einheit wächst.

1
Wenn man die Formel (12) mit N—l erweitert,

so erhält man

b

1
2 (Pi — P) (vi — v)N-1

1 N -2 (Pi-pr
(12a)

Der Nenner ist nichts anderes als die Streuung sf

N—l £i
hts andere

der Parameterwerte. In Analogie bezeichnet man
1l/f

1

den Zähler mit spl>, so dass

N-1 "i
Man kann aber auch schreiben

2 (Pi — P)(vi — V) (14)

oder nocĥ

=-jTï iv,ip,--p)
(14a)

\ N N

(2 Pivi~v 2 Pi)
JM — 1 i=1 j=i

1 N — N,

rr—- (2 Pivi — P 2 vt)
N—l i=i j=i

(14b)

Für den Regressionskoeffizienten 6 ergibt sich die
einfache Formel

b pv

sl
(15)

Hätten wir die Variabeln vertauscht, d. h. die
Variationen des Parameters p in Funktion der
Variabeln v untersucht, so hätten wir für die
Regressionsgerade folgende Gleichung erhalten:
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P P + bp (v — v)

und für b„ in der erweiterten Form von (12a)

bP
N-1 ti£ (Pi — P) («/ — «)

N

I (yi-
i=i

vy
N— 1

oder, in der vereinfachten Schreibweise von (15),

bP=^f- (16)

Mit dem Index p soll hier präzisiert werden, dass
die Rollen vertauscht wurden, so dass p zur
Variahein wurde. Dementsprechend müsste man für
den Normalfall bv schreiben. Wenn keine
Verwechslung möglich ist, lässt man jedoch den Index v
weg.

Nachdem die Gleichung der Regressionsgeraden
feststeht, interessiert es, zu wissen, wie stark die
Einzelwerte von dieser Geraden streuen, d. h. in
welchem Masse diese Gerade im Verhältnis zum
Punkteschwarm bestimmt ist. Als Bestimmtheitsmass

definiert man das Verhältnis der Streuung s2'
der einzelnen Punkte v\ der Regressionsgeraden zur
Gesamtstreuung sj; der einzelnen Verbrauchswerte Vj.
Dieses Verhältnis gibt an, welchen Anteil die
Veränderung des Parameters p (Raumzahl) an der
Veränderung der Variabein v (Energieverbrauch) hat.

Nach Formel (6) schreibt sich die Streuung der
Punkte der Regressionsgeraden

und diejenige der Einzelwerte
1 N

£ (vr
i=lIV—1

So wird das Bestimmtheitsmass

1

s2 H
B —

- v)2

IV-1
N

E (t
i=i

V)2

N (17)

IV-1 Ei
Nach Gleichung (11) ist aber

vi' —v=b (pt — p)

so dass sich für B ergibt:

nE S

£ (Vi — v)''

B b2

h iiv'-'r sl
(17a)

Setzt man hier den Wert von b aus Formel (12) ein,
erhält man

12

B

1 " - - l2-VE (Pi-p)(Vi-v)\
IV-1 i=i J

IV-1 El

N

E (Pr p)2
IV—1 El

£ (Vi — v)2
(18)

oder nach Vereinfachung in Anlehnung an den
Uebergang von Formel (6) auf Formel (7)

B
[E Pivi—P E »<P

i=1 .=1
N _ N N _ JV

(E PÏ—P E Pi) (E fl? - A E fl<)

i=i i=i i=i i=i

(19)

In Formel (18) ist der Nenner gleich dem Produkt
der Streuungen von p und v und der Zähler gleich
dem Quadrat von spv [Formel (14)]

s2
B pv

s2 s2Ap "v
(20)

Nach den Formehi (15) und (16) kann man auch
schreiben

B =bv bp (21)

Das Bestimmtheitsmass B ist also gleich dem
Produkte aus den beiden Regressionskoeffizienten
bv und bp.

Wenn alle Einzelwerte vt des Punkteschwarmes
auf der Regressionsgeraden liegen, so wird ihre
Streuung s2 gleich der Streuung s2' der Punkte v{
der Regressionslinie. Man hat dann

und

B 1

Ist also die Linearität zwischen v und p streng, so
wird das Bestimmtheitsmass gleich 1.

Sind dagegen alle Werte von v untereinander
gleich, also auch gleich ihrem Durchschnitt v, so
besteht keine Abhängigkeit zwischen v und p. Die
Einzelwerte liegen alle auf einer Geraden, die
parallel zur p-Axe im Abstand v von dieser verläuft, und
deren Richtungskoeffizient b gleich 0 ist. Aus Formel

(17a) sieht man, dass in diesem Falle auch B
gleich 0 ist.

Das Bestimmtheitsmass kann also nur zwischen
0 und 1 variieren. Ist es gleich 0, so besteht keine
Abhängigkeit; ist es gleich 1, so ist die Abhängigkeit

streng linear.
Bekannter als das Bestimmtheitsmass, obwohl

nicht so praktisch deutbar, ist der Korrelationskoeffizient

r, dessen Beziehung zu B durch die
einfache Formel

r J/B (22)

gegeben ist. Nach Formel (20) kann man schreiben

(22a)r "pv

oder nach Formel (17)

r (22b)

Demnach ist der Korrelationskoeffizient r gleich
dem Verhältnis der mittleren quadratischen Abweichung

s„> der Punkte der Regressionsgeraden zur
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mittleren quadratischen Abweichung sv der Einzelwerte.

Für das gewählte praktische Beispiel lässt 6ich
nun die Berechnung der Abhängigkeitsmasse
vornehmen.

Die Streuung s' der Variabein v (Energieverbrauch)

und deren mittlerer quadratischen Abweichung

s„ sind bereits berechnet worden:

s2v 5201 ; «„ 72

Es müssen also noch die Ausdrücke sp2, sp und
spv ausgerechnet werden, um alsdann b, B und r
ermitteln zu können.

Für sp2 wendet man Formel (9) an, da die Werte
von p sich leicht in Klassen mit der Mitte pj
einteilen lassen.

4 (E niPi—P E niPi)
N—1 i=i <=i

Für spv geht man von der Formel (14b) aus, die
in diesem Falle lautet:

i w _ zv

Spv (E PtV—p t Vl)
N—1 i=i i=i

Ist rij die Häufigkeit der Klasse mit Mitte pj, so
rechnet sich der erste Ausdruck in der Klammer zu

N M n\ M n jt Pt vi E Ê pi vi £ Pi E vi
f=l j—1 FI] 1 7=1 H] 1

Die Verbrauchssummen pro Klasse können dabei
nach Formel (1) oder (la) ermittelt werden.

In Tabelle IH sind die für die Berechnung nötigen

Angaben zusammengestellt.
Tabelle III

Klassen-
mitte

PI

Häufigkeit

nj
m pj PÎ ni pf

"1

"i 1

"J

pi
», 1

2 3 6 4 12 230 460
3 53 159 9 ill 6097 18 291
4 56 224 16 896 8290 33 160
5 63 315 25 1575 11200 56 000
6 36 216 36 1296 7615 45 690
7 5 35 49 245 1233 8 631
8 4 32 64 256 1108 8 864
9 5 45 81 405 1520 13 680

1V=225

M

SniPi
i 1

1032

M

S"j P?

;'= 1

5162

1V

1=1
37293

N

S Pi Vi
i l

184776

=;^7 (5162-1032-4,587)= 1,911

Sp y1,911 U8

Sp "= 2I4 *184 776 _ 37 293 4'587)= 61-22

61.22 61,22 '

l. =5^=^04; ^ ^=0,01177

"=mnlk=K.»4».«11"=Mil
r y0,377 0,613

Nun kann man die Gleichung der Regressionsgeraden

aufstellen. Sie lautet in aufgerundeten
Zahlen

v' 165,8 + 32 (p — 4,6)
oder

v' 32 p + 18,6

Sie besagt, dass jeder Abnehmer im Mittel einen
vom Parameter unabhängigen Grundverbrauch von
18,6 kWh aufweist, wozu im Mittel noch 32 kWh
pro Hauptraum seiner Wohnung hinzugezählt werden

müssen. In Fig. 2 ist die Regressionsgerade fein
eingezeichnet.

Mit welcher Bestimmtheit diese Gesetzmässigkeit

gilt, sagt das Bestimmtheitsmass B aus. Dieses
beträgt 0,377, was soviel heisst, dass die Variation
des Energieverbrauches sich zu 37,7 % durch die
Variation der Zahl der Haupträume erklären lässt.
Für die restlichen 62,3 % sind andere Faktoren
verantwortlich, deren Untersuchung aber aus dem
Rahmen der vorliegenden Studie fällt.

Die hier abgeleiteten Werte und Gesetze gelten
nur für das untersuchte Intervall p 2 bis p 9
und v 24 bis v 510. Sie dürfen nicht auf kleinere

oder grössere Werte von p oder v extrapoliert
werden.

4. Verteilungen
Im Abschnitt 1 wurde bereits angedeutet, dass

auch die Verteilung der Einzelwerte innerhalb einer
Statistik gewissen Gesetzen folgt, und dass die
normale Verteilung auf der Gaußschen Fehlerfunktion
aufgebaut ist.

Die Grundform dieser Funktion lautet

(v—V)2
1 2 S2

~
s ]/2~jr

Sie gibt, bei einer bestimmten Streuung s2, für jeden
Wert der streuenden Variablen v die normal zu
erwartende Häufigkeit f an. Für den Wert v — v
ist die Exponentialfunktion am grössten, was einem
Scheitelpunkt entspricht. Ferner ist die Funktion
symmetrisch in bezug auf den Wert v, da der
Exponent quadratisch ist. Diese Formel abzuleiten,
würde hier zu weit führen. Die Ableitung findet
sich in jedem Mathematiklehrbuch.

Mit Hilfe der Formel (23) lässt sich für jede
Statistik die ihrer Streuung entsprechende normale
Verteilung ausrechnen und graphisch darstellen.
Auf diese Art wurde die stetige Kurve von Fig. 1

ermittelt.
Nun ist eine solche Berechnung lang und

kompliziert. Zudem stehen nicht immer die nötigen
Hilfstafeln zur Verfügung. Es ist deshalb vorzuziehen,

durch Einführen neuer Koordinaten die Funktion

so zu transformieren, dass eine von s und v
unabhängige Funktion und damit eine universeU
brauchbare Normalkurve entsteht. Man setzt zu
diesem Zweck:

y 2 y 2 ji sf und x — ——— (24)
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Damit wird die Gleichung der normalen Fehlerkurvè
zu

y 2 i

xt
2

(25)

und man kann sie als Standardkurve konstruieren
(Fig. 4). Mit Hilfe der gleichen einfachen
Transformationen kann man die Verteilung einer beliebigen

zu prüfenden Statistik auf den Maßstab der
Standardkurve bringen, und sie alsdann mit dieser
vergleichen.

Für diese Prüfung sei die Statistik in gewohnter
Weise in M Klassen, von der Breite w mit der
Klassenmitte Vj eingeteilt und für jede Klasse die
Häufigkeit iij ermittelt. Zu diesem Zwecke wird vorteilhaft

als Klassenbreite ein runderTeil des gleich 1 oder
gleich 100 % gesetzten Durchschnittes verwendet.
Somit werden auch die Klassengrenzen runde Teile
vom Durchschnitt. Die Klassenmitte wird so

gewählt, dass eine davon auf v 100 % oder 1 fällt.
Ist z. B. die Klassenbreite 20 % oder 0,2 v, so liegen
die Klassengrenzen bei 10 %, 30 %, 50 % usw., bzw.
0,1 v, 0,3 v, 0,5 v und die Klassenmitten bei 20 %,
40 %, 60 % bzw. 0,2 v, 0,4 v, 0,6 v

3.0

2.5

20

1.0

0.5

Fig. 4

Die Koordinaten der auf diese Weise entstehenden

Einzelpunkte der tatsächlichen Verteilungskurve

muss man nun transformieren, um ihren Maßstab

auf denjenigen der Normalkurve Fig. 4 zu bringen.

Der Scheitelpunkt der Kurve liegt beim Durchschnitt

v. Indem man von der Variabein v den
Wert v abzieht, verschiebt man den Ursprung nach
dem Fusspunkt v, so dass die y-Axe nun durch
den Scheitel geht. Mit der Division durch s passt
man die n-Werte dem Maßstab der Normalkurve
an. (In der Exponentialfunktion ist auch die
Variable [v — u] durch s geteilt!)

Die neue Abszisse wird also für jede Klassenmitte

Vj

Vi — V
X,

Für den Vergleich mit der Normalkurve kann
nicht die absolute Häufigkeit einer Klasse, sondern
nur die relative Häufigkeit im Vergleich zur
Gesamtzahl der Einzelwerte N, also-^p, in Frage koin-

Ausserdem gilt diese relative Häufigkeit für die
ganze Klassenbreite. Um die jedem Einzelwert von
Vj zustehende Ordinate zu erhalten, muss man noch
die relative Häufigkeit durch die Klassenbreite w
dividieren. Man erhält somit für jeden Wert von rij
den Ausdruck

/ w N

DurchMultiplikation mit demFaktor2 j/2 jt s nimmt
man noch eine Maßstabanpassung vor, so daß man
schliesslich erhält:

2 1/2JTS
y, — n,; wN '

Da aber 2 J/2 jt sehr angenähert gleich 5 ist, kann
man schreiben

5s
y>

wN

Jeder Klassenmitte Vj mit der Häufigkeit tij
entspricht somit im neuen Koordinatensystem der
Normalkurve ein Punkt mit den Koordinaten Xj und y;,
der mit dem entsprechenden Punkte der Normalkurve

verglichen werden kann.

Als numerisches Beispiel nehmen wir die bereits
aus den vorangehenden Abschnitten bekannten Zahlen.

Nach Abschnitt 3 besteht zwischen v und p
eine gewisse Abhängigkeit. Um sich von dieser
Abhängigkeit frei zu machen, betrachtet man diesmal
nicht den absoluten Energieverbrauch vt, sondern
den spezifischen Verbrauch pro Parametereinheit
V •

—= Hj. Da aber die Abhängigkeit zwischen v und p

nicht streng linear ist {B 0,377), so streuen die
einzelnen Werte von q,-.

Da der Einfluss vom Parameter p nun
ausgeschaltet ist, darf erwartet werden, dass. die Streuung
kleiner sein, und dass die Verteilung sich stärker der
Normalverteilung annähern wird. Man berechnet
zunächst die Streuung und nimmt als Klassenbreite
den Wert 0,2 q. Die Werte v und p sind uns aus den
früheren Berechnungen bekannt:

v 167,75 p 4,587

Somit wird q __ ^ g
4,587

und w 0,2-36,5 7,3

Das Ergebnis der Auszählung der Karten in jeder
Klasse ist in Tabelle IV zusammengefasst. Für die
Ausrechnung wurde hier Formel (8) angewendet, da
die entsprechenden Summen bereits vorlagen. Die
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Formel (9) hätte praktisch zu den gleichen Ergebnissen

geführt.
Tabelle IV

Klassenmitte Häufigkeit Summe der Summe der
«l "1 «i "f

7,3 6 50,1 423,43
14,6 12 188,5 2 991,89
21,9 20 447,5 10 119,59
29,2 53 1577,8 47 150,80
36,5 57 2061,7 74 780,29
43,8 30 1296,8 56 207,48
51,1 27 1358,1 68 859,07
58,4 13 744,1 42 620,27
65,7 4 260,6 16 995,18
73,0 1 69,0 4 761,00
80,3 1 78,7 6 193,69
87,6 1 84,0 7 056,00

IV 225 8216,9 338 158,69

s2 ^7 (338 158,69 — 36,5 8216,9) 169,99

s V169,99 13,03

oder, bezogen auf den Durchschnitt

Nun kann man die Transformation vornehmen

îj—36,5 5 13,03 noon/:Xi — ; yj — rij 0,0396 n,' 13,03 ; 7,3 -225

Die Rechnung erfolgt nach Tabelle V.

Tabelle V

Ii
1
er1er

41 ~ Î
"J yi 0,0396 nj

7,3 — 29,2 — 2,24 6 0,24
14,6 — 21,9 — 1,68 12 0,48
21,9 — 14,6 — 1,12 20 0,79
29,2 — 7,3 — 0,56 53 2,10
36,5 0 0 57 2,26
43,8 + 7,3 + 0,56 30 1,19
51,1 + 14,6 + 1,12 27 1,07
58,4 + 21,9 + 1,68 13 0,52
65.7 + 29,2 + 2,24 4 0,16
73,0 + 36,5 + 2,80 1 0,04
80,3 + 43,8 + 3,36 1 0,04
87,6 + 51,1 + 3,92 1 0,04

Zum Vergleich wurden die einzelnen y-Werte
von Tabelle V als Kreise in Fig. 4 eingetragen. Sie

streuen noch erheblich, was darauf hinweist, dass
die untersuchte Statistik den Gesetzen der
Wahrscheinlichkeitsrechnung nicht restlos folgt. Die
Verteilung ist keine rein zufällige, sondern untersteht
gewissen Einflüssen, deren Untersuchung jedoch
nicht hieher gehört. Sie ist immerhin wesentlich
besser als diejenige des absoluten Energieverbrauches
(Fig. 1). Für unsere praktischen Zwecke darf sie als

gut bezeichnet werden.
Die Streuung ist, wie zu erwarten war, kleiner als

beim Energieverbrauch, da einer der die Variationen

verursachenden Faktoren, die Raumzahl, durch
Bildung des spezifischen Verbrauches eliminiert
wurde.

In einem weiteren Aufsatz soll die hier nur
skizzierte Normalverteilung näher untersucht und ihre
praktische Anwendung dargelegt werden.

Adresse des Autors:
Ch. Morel, dipl. Ingenieur, Deyenstrasse, Feldmeilen.

Beitrag zur Frage der Stoßspannungsprüfung an Transformatoren
Von M. Wellauer, Zürich 621.317.333.8 : 621.314.21

Beldi hat in einer Arbeit «Versuche mit Stoßspannungen
an Transformatoren» [I] *) Messungen an einigen Transformatoren

älterer Konstruktion beschrieben, die er gemeinsam
mit Berger auf Wunsch der Elektrizitätswerke des Kantons
Zürich und der Forces Motrices des Lacs de Joux et de
l'Orbe durchgeführt hat. Der vorliegende Artikel diskutiert
einige mit der Stoßspannungsprüfung der Transformatoren
zusammenhängende Fragen, die in der Arbeit von Beldi
aufgeworfen wurden, und es soll vor allem auf eine neuere Arbeit
von Hagenguth [2] hingewiesen werden, in der eine neue
Schaltung zur Fehlerindizierung bei der Stoßspannungsprüfung

angegeben wird.

Dans son rapport sur les essais de transformateurs sous
tensions de choc [I] t), Beldi a décrit les mesures qu'il a
effectuées avec Berger sur quelques transformateurs
d'ancienne construction, à la demande des Entreprises électriques
du Canton de Zurich et des Forces Motrices des Lacs de Joux
et de l'Orbe. Le présent article traite de différentes questions
mentionnées dans le rapport de Beldi et qui sont en relation,
avec les essais de transformateurs sous tensions de choc. L'auteur

attire notamment l'attention sur un nouveau travail de
Hagenguth [2], qui présente un nouveau couplage
permettant d'indiquer les défauts lors des essais sous tensions
de choc.

Die Einführung einer Stoßspannungsprüfung für
Transformatoren ist erwünscht, wenn die folgenden
zwei Fragen bejaht werden können:

a) Kann aus der Stoßspannungsprüfung erkannt werden,
ob bei der Stoßspannungsbeansprucbung ein Fehler in der
Wicklung auftritt? (Fehlerindizierung)

b) Kann gesagt werden, wo sich dieser Fehler befindet?
Fehlerlokalisierung

Zur Fehlerindizierung geben die American
Standards C 57.2 aus dem Jahre 1942 folgende Methoden

J) siehe Literaturverzeichnis am Schluss.

an: Geräusch abhören, Beobachtung von Gas- oder
Rauchblasen, übermässiger Strom oder Spannungsabfall

im Erregerstromkreis, festgestellt durch
Messungen mit dem Schleifenoszillographen,
Zusammenbruch einer Funkenstrecke oder einer
Durchführung, Auftreten von Schwingungen oder eine
andere Aenderung des Kathodenstrahl-Sparenungs-
oszillogrammes. Von diesen Methoden, deren Wert
auch von den amerikanischen Fachleuten z. T.
bezweifelt wird, sagt Beldi mit Recht, dass sie als nicht
genügend sicher und einwandfrei betrachtet werden
können, um ihre Einführung zu rechtfertigen.
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