Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 38 (1947)

Heft: 22

Artikel: Über den Spannungsaufbau im Kaskadengenerator und in ähnlichen

Spannungsvervielfachern

Autor: Gerber, T.

DOI: https://doi.org/10.5169/seals-1056768

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

aussen befindliche Teil aus Mörtelmauerwerk, die innere Füllung aus Trockenmauerwerk. Der Inhalt der kleinen Schutzmauern ist im Durchschnitt etwa 60 m³, derjenige der grossen variiert je nach Geländeverhältnissen zwischen 150 m³ bis 350 m³. Sie sind so geformt, dass sie den Mast von Schnee und Lawinendruck entlasten.

Leitungskosten der Tal- und Gebirgsstrecke

Die prozentuale Aufteilung der Leitungskosten auf Material und Ausführung, getrennt für die beiden Leitungsabschnitte der Tal- und Gebirgsstrecke, zeigt Tabelle I. Ein Vergleich zwischen den beiden Abschnitten ist nicht ohne weiteres möglich, da es sich um Leitungen gänzlich verschiedener Ausführung handelt. Immerhin fällt sofort der viel grössere Arbeitsanteil auf der Gebirgsstrecke auf. Interessant ist ferner, dass der prozentuale Kostenaufwand für die Masten für beide Abschnitte ungefähr der gleiche ist. Die relativ kleinen Spannweiten der Leitung auf der Talstrecke wirken sich im grösseren Prozentsatz der Kosten für die Isolatoren aus.

Die effektiven Kosten pro km der Leitung der Talstrecke verhalten sich zu denjenigen der Gebirgsstrecke ungefähr wie 1:3,5.

Adresse der Autoren:

- M. Preiswerk, Direktor der Aluminium-Industrie-A.-G., Lausanne-Ouchy.
- W. Hauser, Ingenieur der Aluminium-Industrie-A.-G., Lausanne-Ouchy; jetzt: Ingenieur der Aare-Tessin A.-G. für Elektrizität, Olten.

Ueber den Spannungsaufbau im Kaskadengenerator und in ähnlichen Spannungsvervielfachern

Von Th. Gerber, Bern

621.319.52

Es wird eine Reihe von Schaltungen behandelt, die unter alleiniger Verwendung von Ventilen und Kondensatoren die Erzeugung konstanter Gleichspannung aus Wechselstrom unter gleichzeitiger Spannungsvervielfachung bewirken. Zunächst wird die Theorie des Spannungsaufbaus im Kaskadengenerator (Greinacher) für die m-fache unbelastete und ideale Schaltung entwickelt. Es werden sodann die Resultate für die Zwei- bis Sechsfachschaltung mitgeteilt, für letztere überdies die ausführliche Rechnung. Behandelt wird ferner der Kaskadengenerator mit der Greinacher-Verdopplungsschaltung als Grundstufe. Anschliessend folgt die Berechnung für die Pyramidenschaltung (Schenkel) sowie die erweiterte Pyramidenund Kaskadenschaltung, die ebenfalls von der Verdopplung bis zur Versechsfachung durchgeführt wird.

Das letzte Kapitel behandelt experimentelle Untersuchungen an einigen der wichtigsten Schaltungen. Die Messungen ergeben weitgehende Uebereinstimmung mit der Theorie. Als Ergänzung dazu wird noch das Verhalten der Schaltungen bei Belastung geprüft. Gemessen werden sowohl Klemmenspannung als auch Grad der Welligkeit in Abhängigkeit von der Stromentnahme. Beigefügte Oszillogramme lassen die

Form der Welligkeit erkennen.

L'auteur traite de différents couplages, où il n'est fait usage que de soupapes et de condensateurs, pour la production d'une tension continue constante à partir de courant alternatif, avec multiplication simultanée de la tension. Il développe tout d'abord la théorie de la multiplication de tension par générateurs en cascade (Greinacher) pour le couplage idéal, sans charge, à m étages, puis il indique les résultats pour les couplages doubles à sextuples, avec calcul détaillé dans ce dernier cas. M. Gerber traite ensuite des générateurs en cascade avec circuit de doublage de Greinacher servant d'étage initial et donne le calcul du couplage en pyramide, ainsi que d'une extension du couplage en pyramide et en cascade, également du double au sextuple.

Dans le dernier chapitre, il montre les résultats d'expériences faites avec les principaux modes de couplage. Les mesures concordent fort bien avec la théorie. Pour terminer, M. Gerber examine le comportement des couplages affectés d'une charge. La tension aux bornes et le degré d'ondulation ont été relevés en fonction du courant débité. Des oscillo-

grammes indiquent la forme des ondulations.

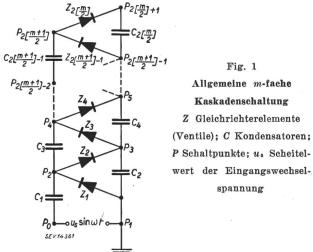
I. Spannungsaufbau in den Kaskadenschaltungen

1. Einschwingungstheorie für die m-fache Kaskadenschaltung

Einleitung

Im Jahre 1920 beschrieb Greinacher eine Spannungsvervielfachungsschaltung [1, 2] 1), die unter der Bezeichnung Kaskadenschaltung bekannt geworden ist (Fig. 1). Sie zeichnet sich vor anderen ähnlichen Schaltungen dadurch aus, dass sie eine gleichmässige Verteilung der erzielten Gleichspannung auf die einzelnen Kondensatoren erreicht. Deshalb ist sie zur Erzeugung von Höchstspannungen geeignet; sie bildet denn auch die Grundlage für die Entwicklung des Kaskadengenerators, wie er in den Jahren 1932...34 von Cockroft und Walton (Cambridge) [3] und Bouwers (Eindhoven) [4] ausgeführt wurde.

Der Spannungsaufbau im Kaskadengenerator wurde seinerzeit von *Greinacher* beschrieben und für spezielle Einschaltbedingungen bis zur Fünffachschaltung berechnet [2, 5]. *Jaggi* stellte sodann die eingehende Theorie für die Zwei- und Vierfachschaltung [6, 7] auf. Im folgenden wird nun die allgemeine Theorie für den m-fachen $^2)$ unbelaste-



2) Eine 2m-fache Schaltung wird auch als m-stufig bezeichnet. In ihr wird die maximale Gleichspannung durch geradzahlige Vervielfachung erzeugt. Da aber allgemein jede Vervielfachung hergestellt werden kann, wird im folgenden stets nur von einer m-fachen Schaltung gesprochen.

¹⁾ siehe Literaturverzeichnis am Schluss.

ten und idealen Kaskadengenerator entwickelt für den Fall, dass alle Kondensatoren gleiche Kapazität besitzen. Die Voraussetzungen sind dann:

- 1. Die Kondensatoren sind verlustlos.
- 2. Der Widerstand der Ventile in Sperrichtung ist unendlich.
- 3. Der Widerstand in Durchlassrichtung und derjenige aller übrigen Leiterelemente ist null.

Der Berechnung wird eine sinusförmige Eingangswechselspannung u_s sin ωt zugrunde gelegt.

Definitionen und Bezeichnungen 3)

Periodenindex k numeriert die Wechselstromperioden, beginnend beim ersten Maximumdurchgang. Das Teilstück vom Moment des Einschaltens an wird als nullte Periode bezeichnet.

Intervalle: Die m-fache Kaskadenschaltung nimmt während des Aufladevorganges in der k-ten Periode m+1 Betriebszustände an. Diese ermöglichen die Unterteilung der Periode in m+2 Intervalle, welche durch den Index λ gezählt werden. Die Zahl m+2 ergibt sich, weil der stromlose Betriebszustand (alle Ventile sperren) zweimal auftritt, nämlich gleich nach dem Maximum- und Minimumdurchgang der Eingangswechselspannung (Figur 2).

Umschaltphasen φ_k^{λ} bestimmen die Grenzen der Intervalle. Das erste Intervall der k-ten Periode beginnt bei

$$arphi_k^1 = rac{4\,k-3}{2}\,\pi$$

und endigt bei φ_k^2 ; das letzte beginnt bei φ_k^{m+2} und endigt bei

$$arphi_{k+1}^1 = rac{4\left(k+1
ight)-3}{2}\pi$$

Potential $u_k^{\tilde{\lambda}}$ am Schaltpunkt P_n während des λ -ten Intervalls der k-ten Periode. Für den Uebergang des λ -ten in das $(\lambda+1)$ -te Invervall wird $u_k^{\tilde{\lambda}}, \lambda+1$ geschrieben.

Einsatzpotential $u_k^0 \equiv u_k^{0,1}$ definiert das Potential beim Maximumdurchgang. Aus der Wirkungsweise des Kaskadengenerators folgt:

$$u_{k}^{0} = u_{s}^{1}, \ u_{k}^{2} = u_{k}^{3}, \dots \ u_{k}^{2} = u_{k}^{2} = u_{k}^{2} = 1$$
 (1)

Einsatzkoeffizient q_k^n gibt den Zusammenhang zwischen Einsatzpotential und Scheitelwert u_s der Eingangswechselspannung an: $u_k^n = q_k^n u_s$

Einschaltpotential u_0^0 : Damit wird das Potential des Schaltpunktes P_n bezeichnet, das er infolge der im allgemeinen schlagartigen Aufladung der Kondensatoren im Moment des Einschaltens annimmt.

Potentialteilungsfaktoren R_n , λ geben das Verhältnis der Potentialänderung von P_n während des

λ-ten Intervalls zur Aenderung der Eingangswechselspannung an:

$$egin{aligned} R_{n,\,\lambda} &= rac{\varDelta u_{k}^{\lambda}}{\varDelta u_{k}^{\lambda}} = rac{u_{k}^{\lambda,\,\lambda+1} - u_{k}^{\lambda-1,\,\lambda}}{u_{s} \left(\sin\,arphi_{k}^{\,\lambda+1} - \sin\,arphi_{k}^{\,\lambda}
ight)} \ n &= 1,2\ldots m+2 \end{aligned}$$

Einschwingungstheorie

Der Potentialverlauf im Schaltpunkt P_n im λ -ten Intervall wird beschrieben durch das bei φ^{λ}_{k} vorhandene Potential plus den durch $R_{n,\lambda}$ bestimmten Bruchteil der Potentialänderung der Eingangswechselspannung:

$$u_k^{\tilde{\lambda}} = u_k^{\tilde{\lambda}-1, \lambda} + R_{n, \lambda} u_s(\sin \varphi - \sin \varphi_k^{\lambda})$$

Werden darin der Reihe nach die vorgängig ermittelten Potentiale

$$u^{\hat{\lambda}-1,\lambda}, u^{\hat{\lambda}-2,\lambda-1} \dots u^{\hat{n},1} \equiv u^{\hat{n}}$$

ersetzt, so erhält man die allgemeine Potentialfunktion:

$$u_{k}^{\tilde{n}} = u_{k}^{\tilde{o}} + u_{s} \left[\sum_{\nu=1}^{\lambda-1} R_{n,\nu} \left(\sin \varphi_{k}^{\nu+1} - \sin \varphi_{k}^{\nu} \right) + R_{n,\lambda} \left(\sin \varphi - \sin \varphi_{k}^{\lambda} \right) \right]$$
 (2)

Sie kann leicht auf die einfachere Form

$$egin{aligned} u_{k}^{\hat{n}} &= u_{k}^{\hat{n}} \; + R_{n,\,\lambda} \; u_{s} \; \sin \; arphi \; + \\ &+ u_{s} \sum\limits_{\nu=1}^{\lambda} \left(R_{n,\,\nu-1} - R_{n,\,\nu} \right) \; \sin \; arphi_{k}^{
u} \end{aligned}$$

gebracht werden. Wird für $R_{n, \nu-1} - R_{n, \nu} = \varrho_{n, \nu}$ gesetzt, mit der naheliegenden Konvention, dass $R_{n,0} = 0$ sei, so folgt unter Verwendung der Indizesrechnung (Summation über doppelt auftretende Indizes, hier über λ):

$$u_k^{\hat{\lambda}} = u_k^{\hat{0}} + R_{n, \lambda} u_s \sin \varphi + \varrho_{n, \lambda} u_s \sin \varphi_k^{\lambda}$$
 (3)

Die Umschaltphasen φ_k^{λ} werden wie folgt bestimmt. Nach Definition ist immer $\varphi_k^1=1$. Daher können alle u_k^1 nach Gl. (3) gefunden werden. φ_k^2 ist dadurch bestimmt, dass die Potentialwerte zweier Schaltpunkte (hier von $P_{2\left[\frac{m+1}{2}\right]-1}$) und $P_{2\left[\frac{m+1}{2}\right]-1}$) gleich geworden sind; die zugehörige Gleichung liefert den Wert von $\operatorname{sin}\varphi_k^2$. Wird so weitergefahren, so erhält man schrittweise alle Umschaltphasen. Für $u_s \sin \varphi_k^{\lambda}$ ergibt sich wegen Gleichung (1):

$$u_{s} \sin \varphi_{k}^{\lambda} = \sum_{\alpha=1}^{\left[\frac{m+3}{2}\right]} \tau_{\alpha, \lambda} u_{k}^{0}$$
(4)

Durch Einsetzen in Gl. (3) folgt:

$$u_{k}^{\tilde{n}} = u_{k}^{\tilde{n}} + R_{n, \lambda} u_{s} \sin \varphi + \sum_{\alpha=1}^{\infty} \varrho_{n, \lambda} \tau_{\alpha, \lambda} u_{k}^{2\alpha-2}$$

³⁾ Im wesentlichen wurden die gleichen Bezeichnungen verwendet wie in der Arbeit von Jaggi [7].

^{4) [...]} ist die Gaußsche Klammer.

Wegen der Beziehung (1) kann weiter zusammengefasst werden:

$$\begin{bmatrix} \frac{m+3}{2} \end{bmatrix} u_k^{\tilde{n}} = R_{n,\lambda} u_s \sin \varphi + \sum_{\alpha=1}^{\infty} [\varrho_{n,\lambda} \tau_{\alpha,\lambda} + \chi(n)] u_k^{2\alpha-2}$$

Die neu eingeführte Funktion $\chi(n)$ ist dabei gegeben durch:

$$\chi(n) \equiv 1 \begin{cases} \text{für } n = 2\alpha - 2 \text{ bei geradem } n \\ \text{für } n - 1 = 2\alpha - 2 \text{ bei ungeradem } n \end{cases}$$
 $\chi(n) \equiv 0 \quad \text{in allen anderen Fällen.}$

In der endgültigen Fassung lautet somit die allgemeine Potentialfunktion:

$$\begin{bmatrix}
\frac{m+3}{2} \\
u_{k}^{\tilde{n}} &= R_{n,\lambda} u_{s} \sin \varphi + \sum_{\alpha=1}^{\infty} \kappa_{n,\lambda}^{\alpha} u_{k}^{2\alpha-2} \\
\kappa_{n,\lambda}^{\alpha} &= \varrho_{n,\lambda} \tau_{\alpha,\lambda} + \chi(n) \\
\chi(n) &= \begin{cases}
1 & \text{für } 2\alpha - 2 \leq n \leq 2\alpha - 1 \\
0 & \text{für } 2\alpha - 1 < n < 2\alpha - 2
\end{cases}$$
(5)

Die Zahlen $R_{n,\lambda}, \varrho_{n,\lambda}$ und $\tau_{\alpha,\lambda}$ werden zweckmässig in Matrizen zusammengestellt. Mit Hilfe der Gl. (6) gestaltet sich dann die Berechnung der $\varkappa_{n,\lambda}^{\alpha}$, die ebenfalls Elemente von Matrizen sind, leicht und übersichtlich.

Ermittlung einer Rekursionsformel: Aus den Potentialfunktionen für das letzte Intervall der k-ten Periode findet man mit $\sin \varphi = \sin \varphi_{k+1}^1 = 1$ die (k+1)-ten Einsatzpotentiale:

$$u_{k+1}^{2} = u_{k+1}^{3} = L_{1}\left(u_{s}; u_{k}^{2}, u_{k}^{4} \dots u_{k}^{2}\right)$$

$$(7a)$$

$$u_{k+1}^{2\left[\frac{m+1}{2}\right]} = L_{\left[\frac{m+1}{2}\right]} \left(u_{s}; u_{k}^{2}, u_{k}^{4} \dots u_{k}^{2\left[\frac{m+1}{2}\right]}\right)$$

Sie sind also Funktionen der k-ten Einsatzpotentiale. Nimmt man zu den Gl. (7 a) bis (7 l) noch die Gleichungen für $k+2,\ldots k+l$, so ist es möglich, aus dem so gewonnenen System von $l^2 = \left(\left[\frac{m+1}{2}\right]\right)^2$

linearen inhomogenen Gleichungen die Rekursionsformel zu erhalten:

$$u_{k+1}^{0} = c_0 u_s + c_1 u_{k+1-1}^{0} + c_2 u_{k+1-2}^{0} + \dots + c_l u_{k}^{0}$$
(8)

Zur geschlossenen Berechnung des ganzen Spannungsaufbaus muss Gl. (8) in eine Funktion mit k als laufenden Parameter übergeführt werden. Die zur Anwendung kommende Methode besteht darin,

dass eine Funktion gesucht wird, deren Taylorkoeffizienten mit den Zahlen der gegebenen rekurrenten Reihe zusammenfallen. Ohne auf die funktionentheoretische Begründung einzugehen, wird hier nur das formale Vorgehen erläutert.

Durch die Transformation

$$u_{k+1}^0 = C + v_{k+1}^0 \tag{9}$$

die für alle l vorgenommen wird, geht Gl. (8) bei passender Wahl von C in eine lineare homogene Gleichung über:

$$v_{k+1}^{0} + a_{1} v_{k+1-1}^{0} + a_{2} v_{k+1-2}^{0} + \ldots + a_{l} v_{k}^{0} = 0 \quad (10)$$

Weil aus physikalischen Gründen $\lim_{k\to\infty}u_k^0$ und $\lim_{k\to\infty}v_k^0$ existieren, sind die Grössen v_k^0 · · · · v_{k*}^0 sicher Glieder einer konvergenten Potenzreihe. Für die gesuchte Lösung ist daher folgender Ansatz statthaft:

$$v_{k+1}^{n} = \omega^{k+l} \tag{11}$$

Damit geht Gl. (10) über in

$$\omega^{k}(\omega^{l} + a_{1} \omega^{l-1} + a_{2} \omega^{l-2} + \ldots + a_{l}) = 0 \quad (12)$$

Die nicht trivialen Lösungen dieser Gleichung sind die Wurzeln ω_1 , ω_2 ,... ω_l des darin enthaltenen Polynoms vom l-ten Grad. Die allgemeine Lösung von Gl. (10) wird durch eine lineare Kombination der l partikulären Lösungen erhalten. Nach erfolgtem Zurücktransformieren erhält man die gesuchte Schlussformel für u_k^0 und damit auch für u_k^0 :

$$\underline{u_{k}^{0}} = C + A_{1} \omega_{1}^{k} + A_{2} \omega_{2}^{k} + \ldots + A_{l} \omega_{l}^{k}$$
 (13)

Die Kombinationskonstanten $A_1, A_2, ...A_l$ werden aus Anfangsbedingungen berechnet. Es gibt ein kleinstes $k=k_0$, für welches die allgemeine Potentialfunktion noch gültig ist (bei der Kaskadenschaltung ist $k_0=1$). Um die k_0 -ten Einsatzpotentiale zu finden, wird der Potentialverlauf von $\beta=\varphi_0^1$ bis $\varphi_{k_0}^1$ nach dem bisher angewendeten Verfahren berechnet. Nur müssen die Gleichungen (4) und (5) etwas modifiziert werden, weil wegen $u_0^0\neq u_s$ die Beziehung (1) nicht mehr voll gültig ist:

$$\begin{bmatrix} \left[\frac{m+3}{2}\right] \\ u_s \sin \varphi_0^2 = \tau_{1, \lambda} u_s + \sum_{\alpha=2} \tau_{\alpha, \lambda} u_0^{2\alpha-2} \end{bmatrix} \tag{4a}$$

$$\begin{bmatrix} u_0^{\frac{n}{2}} = R_{n,\lambda} u_s \sin \varphi + u_{n,\lambda}^1 u_s + \sum_{\alpha=2} u_{n,\lambda}^{\alpha} u_0^{2\alpha-2} \end{bmatrix}$$
(5a)

Diese Berechnungen müssen für vier Einschaltmöglichkeiten durchgeführt werden, die sich je nach der Einschaltphase β auf folgende Viertelsperioden verteilen: Einschaltmöglichkeit I: $0 < \beta \leq \frac{\pi}{2}$

Einschaltmöglichkeit II: $-\frac{\pi}{2} < \beta \leqq 0$

Einschaltmöglichkeit III: $-\pi < \beta \leq -\frac{\pi}{2}$

Einschaltmöglichkeit IV: $-\frac{3\pi}{2} < \beta \leq -\pi$

Die Anfangsbedingungen sind gegeben durch die l Gleichungen:

$$A_{1} \omega_{1}^{k_{0}} + A_{2} \omega_{2}^{k_{0}} + \ldots + A_{l} \omega_{l}^{k_{0}} = q_{k_{0}}^{n} u_{s} - C$$

$$(14 a)$$

$$A_{1}\omega_{1}^{k_{0}+l-1} + A_{2}\omega_{2}^{k_{0}+l-1} + \cdots + A_{l}\omega_{2}^{k_{0}+l-1} = q_{k_{0}+l-1}^{*}u_{s} - C \quad (14 1)$$

Werden darin noch die $q_{k_0+1}^* \dots q_{k_0+l-1}^*$ mittels der Beziehungen (7 a) bis (7 l) auf Funktionen der k_0 -ten Einsatzpotentiale zurückgeführt, so ergeben sich aus diesem System die gesuchten Kombinationskonstanten.

Aus der Schlussformel für ein bestimmtes u_k^0 lassen sich diejenigen für alle übrigen n ohne Aufstellen von weiteren Rekursionsformeln aus den Beziehungen (7 a) bis (7 l) ermitteln.

Zusammenfassend ergibt sich folgende Reihenfolge für die Berechnung einer bestimmten Schaltung:

- a) Aufstellen der Potentialteilungsfaktoren $R_{n,\lambda}$ und daraus der $\varrho_{n,\lambda}$ aus dem Potentialverlauf während der k-ten Periode.
- b) Ermittlung der Umschaltphasen φ_k^{λ} und der Koeffizienten $\kappa_{n,\lambda}^{\alpha}$. Dabei werden mittels der Beziehungen (5) und (6) aus den $\tau_{\alpha,1}$ die $\kappa_{n,1}^{\alpha}$, dann aus den $\tau_{\alpha,2}$ die $\kappa_{n,2}^{\alpha}$ usw. bestimmt. (Es wird also abwechselnd vorgegangen, nicht wie bei der Aufstellung der Theorie, wo zuerst alle $\tau_{\alpha,\lambda}$ für sich allein mit Gl. (3) gesucht wurden.)
- c) Bestimmung der Einsatzkoeffizienten q_1^n bis $q_{k_0}^n$.
- d) Ermittlung der Rekursionsformel.,
- e) Aufstellen der Schlussformeln.

Im folgenden werden für die verschiedenen Schaltungen die Schlussformeln mitgeteilt. Als Beispiel für die Anwendung der Theorie ist ausserdem bei der Sechsfach-Kaskadenschaltung die ausführliche Berechnung wiedergegeben.

2. Die Zweifach-Kaskadenschaltung

Die Schlussformeln zu dieser Schaltung werden nur der Vollständigkeit halber mitgeteilt, da bereits eine ausführliche Berechnung von Jaggi [7] vorliegt (allerdings nicht nach der hier aufgestellten Theorie). Für $k \ge 1$ gilt:

$$u_{k}^{2} = u_{k}^{3} = u_{k}^{3} = 2 u_{k} \left[1 - (2 - q_{1}^{2}) \left(\frac{1}{2} \right)^{k} \right]$$
 (15)

$$u_{k}^{2,3} = 0 (16)$$

Die Werte der q_1^2 sind für die Einschaltmöglichkeiten I, II und III aus Tabelle I mit a = 1 zu entnehmen; für IV ist:

$$q_1^2 = 1 + \frac{1}{4} \sin \beta$$

3. Die Dreifach-Kaskadenschaltung

Bei den Kaskadenschaltungen mit ungerader Vervielfachung tritt die maximale Gleichspannung zwischen P_0 und dem obersten Schaltpunkt der linken Generatorseite auf. Durch die Transformation

$$\overline{u}_{\lambda}^{n} = u_{\lambda}^{n} - u_{\lambda}^{n} \tag{17}$$

erhält man die gesuchten Potentialdifferenzen. Die Schlussformeln, gültig für $k \ge 1$ lauten:

Maximumdurchgang:

$$\overline{u}_{k}^{4} = 3 u_{s} \left[1 - \frac{1}{3} (4 - q_{1}^{4}) \left(\frac{3}{4} \right)^{k-1} \right]$$
 (18)

Minimumdurchgang:

$$\overline{u}_{k}^{4} = 3 u_{s} \left[1 - \frac{1}{6} \left(4 - q_{1}^{4} \right) \left(\frac{3}{4} \right)^{k-1} \right]$$
 (19)

Für die Einschaltmöglichkeiten I, II und III sind die q_1^4 mit $\alpha = 2$ aus Tabelle I zu entnehmen. Für IV ist in Abweichung davon:

$$q_1^4 = 1 + \frac{3}{8} \sin \beta$$

4. Die Vierfach-Kaskadenschaltung

Die Schlussformeln, gültig für $k \ge 1$ lauten 5):

$$u_{k}^{4} = u_{k}^{5} = 4 u_{s} \left[1 - \frac{1}{4} \left(4 - 2 q_{1}^{2} + 2 \sqrt{2} q_{1}^{2} - \sqrt{2} q_{1}^{4} \right) \cdot \left(\frac{2 + \sqrt{2}}{4} \right)^{k} - \frac{1}{4} \left(4 - 2 q_{1}^{2} - 2 \sqrt{2} q_{1}^{2} + \sqrt{2} q_{1}^{4} \right) \cdot \left(\frac{2 - \sqrt{2}}{4} \right)^{k} \right]$$

$$(20)$$

$$u_{\frac{8}{8},4}^{5} = 4 u_{s} \left[1 - \frac{1}{8} \left(4 + 4 \sqrt{2} + 2 q_{1}^{2} - 2 q_{1}^{4} - \sqrt{2} q_{1}^{4} \right) \cdot \left(\frac{2 + \sqrt{2}}{4} \right)^{k} - \frac{1}{8} \left(4 - 4 \sqrt{2} + 2 q_{1}^{2} - 2 q_{1}^{4} + \sqrt{2} q_{1}^{4} \right) \cdot \left(\frac{2 - \sqrt{2}}{4} \right)^{k} \right]$$

$$(21)$$

Alle Werte von q_1^2 und q_1^4 sind aus Tabelle I zu entnehmen.

5. Die Fünffach-Kaskadenschaltung

Die für $k \ge 1$ gültigen Schlussformeln lauten nach der Transformation (17):

⁵) Die Schlussformeln (38) und (39) von Jaggi [7] gelten nicht für Einschaltmöglichkeit IV, wo $q_1^2 \neq q_1^4$ ist.

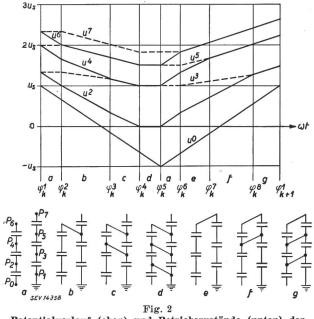
$$\begin{split} \overline{u}_{0}^{6} &= 5 \, u_{s} \left[1 - \frac{2}{25} (6 + 2\sqrt{5} + 5 \, q_{1}^{2} + 3\sqrt{5} \, q_{1}^{2} - 4 \, q_{1}^{4} - \right. \\ &- 2 \, \sqrt{5} \, q_{1}^{4} \right) \left(\frac{5 + \sqrt{5}}{8} \right)^{k} - \frac{2}{25} (6 - 2\sqrt{5} + 5q_{1}^{2} - \right. \\ &- 3 \, \sqrt{5} \, q_{1}^{2} - 4 \, q_{1}^{4} + 2\sqrt{5} \, q_{1}^{4} \right) \left(\frac{5 - \sqrt{5}}{8} \right)^{k} \right] \quad (22) \\ \overline{u}_{k}^{6} &= 5 \, u_{s} \left[1 - \frac{1}{25} (10 + 2\sqrt{5} + 5 \, q_{1}^{2} + 5\sqrt{5} \, q_{1}^{2} - 5 \, q_{1}^{4} - \right. \\ &- 3\sqrt{5} \, q_{1}^{4} \right) \left(\frac{5 + \sqrt{5}}{8} \right)^{k} - \frac{1}{25} (10 - 2 \, \sqrt{5} + 5 \, q_{1}^{2} - 5 \, q_{1}^{4} - 5 \, \sqrt{5} \, q_{1}^{2} \right) \left(\frac{5 - \sqrt{5}}{8} \right)^{k} \right] \quad (23) \end{split}$$

Alle Werte von q_1^2 und q_1^4 sind aus Tabelle I zu entnehmen.

6. Die Sechsfach-Kaskadenschaltung

a) Potentialverlauf während einer Periode

Die Berechnung erfolgt, wie eingangs erwähnt, für eine sinusförmige Eingangswechselspannung. Zur besseren Uebersicht der Potentialbewegungen ist jedoch in Fig. 2 eine dreieckige Wechselspannung angenommen worden.



Potentialverlauf (oben) und Betriebszustände (unten) der sechsfachen Kaskadenschaltung während der k-ten Periode u^0 , $u^2...u^7$ Potentiale an den Schaltpunkten P_0 , $P_2...P_7$. (Zureinfacheren zeichnerischen Darstellung wurde der Spannungsverlauf von u^0 dreieck- statt sinusförmig angenommen); u_s Scheitelwert der Eingangswechselspannung; a...g Bezeichnung der 8 Betriebszustände; $\hat{\varphi}_k^1$... $\hat{\varphi}_{k+1}^1$ Umschaltphasen

Zu Beginn der k-ten Periode, bei φ_k^1 , ist $u_k^2 = u_k^3$, $u_k^4 = u_k^5$, $u_k^6 = u_k^7$. Die acht Intervalle sind folgendermassen charakterisiert:

1. Intervall: Stromloser Betriebszustand a:

$$R_{2,1} = R_{4,1} = R_{6,1} = 1$$

 $R_{3,1} = R_{5,1} = R_{7,1} = 0$

2. Intervall: Betriebszustand b, Fünfteilung der eingangsseitigen Potentialbewegung:

$$R_{2,2} = 4/5, R_{3,2} = 1/5, R_{4,2} = 3/5$$

 $R_{5,2} = R_{6,2} = R_{7,2} = 2/5$

3. Intervall: Betriebszustand c, Dreiteilung der eingangsseitigen Potentialbewegung:

$$R_{2,3} = 2/3$$
 $R_{3,3} = R_{4,3} = R_{5,3} = R_{6,3} = R_{7,3} = 1/3$

4. Intervall: Betriebszustand d, Schaltpunkt P₂ auf Nullpotential, keine Potentialbewegung der höher gelegenen Punkte:

$$R_{2,4} = R_{3,4} = R_{4,4} = R_{5,4} = R_{6,4} = R_{7,4} = 0$$

5. Intervall: Stromloser Betriebszustand a:

$$R_{2,5} = R_{4,5} = R_{6,5} = 1$$

 $R_{3,5} = R_{5,5} = R_{7,5} = 0$

6. Intervall: Betriebszustand e, Sechsteilung der eingangsseitigen Potentialbewegung:

$$R_{2,6} = 5/6$$
, $R_{3,6} = 1/6$, $R_{4,6} = 4/6$
 $R_{5,6} = 2/6$, $R_{6,6} = R_{7,6} = 3/6$

7. Intervall: Betriebszustand f, Vierteilung der eingangsseitigen Potentialbewegung:

$$R_{2,7} = 3/4, R_{3,7} = 1/4$$

 $R_{4,7} = R_{5,7} = R_{6,7} = R_{7,7} = 2/4$

8. Intervall: Betriebszustand g, Halbierung der eingangsseitigen Potentialbewegung:

$$R_{2,8} = R_{3,8} = R_{4,8} = R_{5,8} = R_{6,8} = R_{7,8} = R_{8,8} = 1/2$$

Zusammenstellung der $R_{n,\lambda}$ und $\varrho_{n,\lambda} = R_{n,\lambda-1} - R_{n,\lambda}$:

$R_{n,\lambda}$	R_{n_i}	$R_{n,2}$	$R_{n,3}$	$R_{n,4}$	$R_{n,5}$	$R_{n,6}$	$R_{n,7}$	$R_{n,8}$
$R_{2,\lambda}$	1	4/5	2/3	0	- 1	5/6	3/4	1/2
$R_{3,\lambda}$	0	1/5	1/3	0,	0	1/6	1/4	1/2
$R_{4,\lambda}$	1	3/5	1/3	0	1	2/3	1/2	1/2
$R_{5,\lambda}$	0	2/5	1/3	0	0	1/3	1/2	1/2
$R_{6,\lambda}$	1	2/5	1/3	0	1	1/2	1/2	1/2
$R_{7,\lambda}$	0	2/5	1/3	0	0	1/2	1/2	1/2

$Q_{n,\lambda}$	$Q_{n,1}$	$Q_{n,2}$	$Q_{n,3}$	$Q_{n,4}$	$Q_{n,5}$	$Q_{n,6}$	$Q_{n,7}$	$Q_{n,8}$
$\varrho_{2,\lambda}$	-1	1/5	2/15	2/3	-1	1/6	1/12	1/4
$Q_{3,\lambda}$	0 -	-1/5 -	-2/15	1/3	0	-1/6	-1/12	-1/4
Q_4, λ	-1	2/5	4/15	1/3	-1	1/3	1/6	0
Q_5, λ	0 -	-2/5	1/15	1/3	0	-1/3	-1/6	0
$Q_{6,\lambda}$	-1	3/5	1/15	1/3	-1	1/2	0	0
07. 2	0 -	-2/5	1/15	1/3	0	-1/2	0	0

b) Allgemeine Potentialfunktion

Ermittlung der acht Umschaltphasen:

aus
$$u_k^0 = u_s$$
 folgt: $\sin \varphi_k^1 = 1$
aus $u_k^5 = u_k^6$ folgt: $\sin \varphi_k^2 = \frac{1}{u_s} (u_s + u_0^4 - u_0^8)$

aus $u_{\frac{3}{2}}^{3} = u_{\frac{1}{2}}^{4}$ folgt:

$$\sin arphi_{\,k}^{\,3} = rac{1}{u_{
m s}} igg(u_{
m s} + rac{5}{2} \, u_{\,
m k}^{\,2} - 4 \, u_{\,
m k}^{\,4} + rac{3}{2} \, u_{\,
m k}^{\,6} igg)$$

aus
$$u_{t}^{0} = -u_{s}$$
 folgt: $\sin \varphi_{k}^{5} = -1$

aus
$$u_{_{k}}^{6}=u_{_{k}}^{7}$$
 folgt: $\sin \varphi_{_{k}}^{6}=rac{1}{u_{_{s}}}\left(-u_{_{s}}-u_{_{k}}^{4}+u_{_{k}}^{6}
ight)$

aus $u_{\mathfrak{h}}^4 = u_{\mathfrak{h}}^5$ folgt:

$$\sin arphi_{\,k}^{\,7} = rac{1}{u_{
m s}} igg(-u_{
m s} - rac{3}{2} \, u_{\,
m k}^{\,2} + 2 \, u_{\,
m k}^{\,4} - rac{1}{2} \, u_{\,
m k}^{\,6} igg)$$

aus $u_{7}^{2}=u_{7}^{3}$ folgt:

$$\sin arphi_{k}^{8} = rac{1}{u_{s}} igg(-u_{s} + rac{1}{2} \, u_{k}^{2} + u_{k}^{4} - rac{1}{2} \, u_{k}^{6} igg)$$

Die Gl. (4) lautet für den vorliegenden Fall:

$$u_s \sin \varphi_k^{\lambda} = \sum_{\alpha=1}^4 \tau_{\alpha,\lambda} u_k^{2\alpha-2}$$
 (4')

Für die $\tau_{\alpha,\lambda}$ findet man somit folgende Matrix:

	1			$ au_{\infty,4}$				
$ au_{1,\lambda}$	1	1	1	$1 \\ -2 \\ 1/2 \\ 0$	-1	-1	-1	-1
$ au_{2,\lambda}$	0	0	5/2	-2	0	0	-3/2	1/2
$ au_{3,\lambda}$	0	1	-4	1/2	0	-1	2	1
$ au_{4,\lambda}$	0	-1	3/2	0	0	1	-1/2	-1/2

Mittels der Beziehung (6) folgen die $\kappa_{n,\lambda}^{\alpha}$:

$\kappa^1_{n,\lambda}$	$\kappa_{n,1}^1$	$\kappa_{n,:}^1$	2 K	$n,3$ κ	$x_{n,4}^1$ κ	$\kappa_{n,5}^1$ κ_n^1	$\kappa_{n,5}^1$	$\kappa_{n,8}^1$
$\kappa_{2,\lambda}^{1}$	-1	-4/	5 –	2/3	0	L 5/6	5 3/4	1/2
$\mathcal{H}^1_{3,\lambda}$	0	-1/	5 –	1/3	0 (1/6	5 1/4	1/2
$\kappa_{4,\lambda}^1$	-1	-3/	5 –	1/3	0	1 2/3	3 - 1/2	1/2
$\kappa_{5,\lambda}^{1}$	0	-2/	5 –	1/3	0 () 1/3	1/2	1/2
$\kappa_{6,\lambda}^{1}$	-1	-2/	5 –	1/3	0	1/2	2 1/2	1/2
$\kappa_{7,\lambda}^{1}$	0	_2/	5 –	1/3	0 (0 1/2	2 1/2	1/2
$\kappa_{n,\lambda}^2$	$\kappa_{n,1}^2$	$\kappa_{n,2}^2$	$\kappa_{n,3}^2$	$\kappa_{n,4}^2$	$\mathcal{H}^2_{n,5}$	$\kappa_{n,6}^2$	$\kappa_{n,7}^2$	$\kappa_{n,8}^2$
$\kappa_{2,\lambda}^2$	1	1 4	4/3	0	0	0	-1/8	0 6)
$\kappa_{3,\lambda}^2$	1	1 :	2/3	0	0	0	1/8	0 6)
$\kappa_{4,\lambda}^2$	0	0	2/3	0	0	0	-1/4	-1/4
$\kappa_{5,\lambda}^2$	0	0	l /6 –	-1/2 -	-1/2	-1/2	-1/4	-1/4
$\kappa_{6,\lambda}^2$	0	0	1/6 –	-1/2 ·	-1/2	-1/2	-1/2	-1/2
$\kappa_{7,\lambda}^2$	0	0	1/6 –	-1/2 -	-1/2	-1/2	-1/2	-1/2
$\mathcal{H}^3_{n,\lambda}$	$\kappa_{n,1}^3$	$\kappa_{n,2}^3$	$\kappa_{n,3}^3$	$\kappa_{n,4}^3$	$\kappa_{n_i}^3$	$_{5}$ $\kappa_{n,\epsilon}^{3}$	$\kappa_{n,7}^3$	$\kappa_{n,8}^3$
$\kappa_{2,\lambda}^3$	0	1/5	-1/3	0	0	-1/6	0	1/4
$\kappa_{3,\lambda}^3$	0	-1/5	1/3	1/2	1/2	2/3	1/2	1/4
$\kappa_{4,\lambda}^3$	1	7/5	1/3	1/2	1/2	1/6	1/2	$1/2^{6}$)
$\kappa_{5,\lambda}^3$	1	3/5	1/3	1/2			1/2	$1/2^{6}$)
$\kappa_{6,\lambda}^3$	0	3/5	1/3	1/2	1/2	0	0	0
$\kappa_{7,\lambda}^3$	0	-2/5	-2/3	-1/2	-1/2	0	0	0

6) Für diese Zeilen ist χ (n) = 1.

$\kappa_{n,\lambda}^4$	$\kappa_{n,1}^4$ $\kappa_{n,1}^4$	$\kappa_{n,3}^4$	$\kappa_{n,4}^4$	$\kappa_{n,5}^4$	$\kappa_{n,6}^4$	$\kappa_{n,7}^4$	$\kappa_{n,8}^4$
$\kappa_{2,\lambda}^4$	0 -1/5	0	0	0	1/6	1/8	0
$\kappa_{3,\lambda}^4$	0 1/5	0	0	0	-1/6	-1/8	0
$\mathcal{H}_{4,\lambda}^4$	0 -2/5	0	0	0	1/3	1/4	1/4
$\mathcal{H}_{5,\lambda}^{4}$	0 2/5	1/2	1/2	1/2	1/6	1/4	1/4
$\mathcal{K}_{6,\lambda}^{4}$	1 2/5	1/2	1/2	1/2	1	1	1 6)
$\kappa_{7,\lambda}^4$	1 7/5	3/2	3/2	3/2	1	1	1 6)

Die allgemeine Potentialfunktion (5) ist damit gegeben durch:

$$u_{\lambda}^{n} = R_{n,\lambda} u_{s} \sin \varphi + \sum_{\alpha=1}^{4} u_{n,\lambda}^{\alpha} u_{k}^{2\alpha-2}$$
 (5')

c) Bestimmung der Einsatzkoeffizienten

Die Einsatzkoeffizienten lassen sich aus dem Potentialverlauf von $\beta = \varphi_0^1$ bis φ_1^1 bestimmen. Es genügt, die Berechnungen für die Einschaltmöglichkeiten II und IV vorzunehmen, weil I aus II mit $\sin \beta = 0$, III aus IV mit $\sin \beta = \sin (-\pi) = 0$ folgt.

Zusammenstellung der ersten Einsatzkoeffizienten, gültig für die m-fache Kaskadenschaltung (Ausnahmen bei Einschaltmöglichkeit IV: q_1^2 für Zweifachschaltung, q_1^4 für Dreifachschaltung):

Tabelle I

Einschalt- möglich- keiten	Bereiche der Einschaltphasen	Einsatzkoeffizienten für $1 \le lpha \le \left[rac{m+1}{2} ight]$
I	$0 < \beta \leq \frac{\pi}{2}$	$q_1^{2mlpha}=rac{1}{2}$
II	$-\frac{\pi}{2} < \beta \le 0$	$q_1^{2^{oldsymbol{lpha}}}=rac{1}{2}-rac{1}{2}\sineta$
ш	$-\pi < \beta \leq -\frac{\pi}{2}$	$q_1^{2\mathbf{lpha}}=1$
IV	$-\frac{3\pi}{2} < \beta \le -\pi$	$\left\{egin{array}{ll} q_1^2&=1+rac{1}{8}\sineta \ & \ q_1^{2oldsymbollpha+2}=1+rac{1}{4}\sineta \end{array} ight.$

d) Rekursionsformel

Aus der allgemeinen Potentialfunktion für das achte (letzte) Intervall der k-ten Periode findet man mit $\sin \varphi = \sin \varphi_{k+1}^1 = 1$ die Einsatzpotentiale der (k+1)-ten Periode:

$$u_{k+1}^2 = u_s + \frac{1}{4} u_k^4 \tag{7a'}$$

$$u_{k+1}^4 = u_s - \frac{1}{4} u_k^6 + \frac{1}{2} u_k^6 + \frac{1}{4} u_k^6$$
 (7b')

$$u_{k+1}^6 = u_s - \frac{1}{2} u_k^6 + u_k^6$$
 (7c')

Werden noch die Gleichungen für k+2 und k+3 dazugenommen, so findet man die Rekursionsformel aus dem so erhaltenen System von neum Gleichungen durch Auflösen nach u_{k+3}^{δ} (Grad l=3):

$$u_{k+3}^{2} = \frac{3}{2} u_{k+2}^{2} - \frac{9}{16} u_{k+1}^{2} + \frac{1}{32} u_{k}^{2} + \frac{1}{16} u_{s} \quad (87)$$

e) Schlussformeln

Durch die Transformation (9) mit $C = 2 u_s$ geht Gl. (8') über in die lineare homogene Gleichung:

$$v_{k+3}^2 - \frac{3}{2} v_{k+2}^2 + \frac{9}{16} v_{k+1}^2 - \frac{1}{32} v_k^2 = 0$$
 (10')

Durch den Ansatz (11) folgt weiter:

$$\omega^{k}\left(\omega^{3}-\frac{3}{2}\omega^{2}+\frac{9}{16}\omega-\frac{1}{32}\right)=0$$
 (12')

Die nicht trivialen Lösungen sind:

$$\omega_1 = \frac{1}{2}, \qquad \omega_2 = \frac{2 + \sqrt{3}}{4}, \qquad \omega_3 = \frac{2 - \sqrt{3}}{4}$$

Die allgemeine Lösung nach dem Zurücktransformieren heisst:

$$u_{\kappa}^{2} = 2 u_{s} + A_{1} \left(\frac{1}{2}\right)^{k} + A_{2} \left(\frac{2 + \sqrt{3}}{4}\right)^{k} + A_{3} \left(\frac{2 - \sqrt{3}}{4}\right)^{k}$$
(13')

Die Kombinationskonstanten A_1 , A_2 , A_3 ergeben sich aus den Anfangsbedingungen $(k_0 = 1)$:

$$q_1^2 u_s = 2 u_s + A_1 \frac{1}{2} + A_2 \left(\frac{2 + \sqrt{3}}{4} \right) + A_3 \left(\frac{2 - \sqrt{3}}{4} \right)$$
(14a')

$$q_{2}^{2}u_{s} = 2u_{s} + A_{1}\left(\frac{1}{2}\right)^{2} + A_{2}\left(\frac{2+\sqrt{3}}{4}\right)^{2} + A_{3}\left(\frac{2-\sqrt{3}}{4}\right)^{2}$$

$$+ A_{3}\left(\frac{2-\sqrt{3}}{4}\right)^{2}$$
(14b')

$$q_3^2 u_s = 2 u_s + A_1 \left(\frac{1}{2}\right)^3 + A_2 \left(\frac{2 + \sqrt{3}}{4}\right)^3 + A_3 \left(\frac{2 - \sqrt{3}}{4}\right)^3$$

$$+ A_3 \left(\frac{2 - \sqrt{3}}{4}\right)^3$$
(14c')

Aus Gl. (7 a') folgt:

$$q_2^2 = 1 + \frac{1}{4}q_1^4$$
 mit $k = 1$
 $q_3^2 = 1 + \frac{1}{4}q_2^4$ mit $k = 2$

Darin bedeutet q_2^4 , berechnet aus Gl. (7 b') mit k = 1:

$$q_2^4 = 1 - \frac{1}{4} q_1^2 + \frac{1}{2} q_1^4 + \frac{1}{4} q_1^6$$

Dies ergibt:

$$q_3^2 = \frac{5}{4} - \frac{1}{16}q_1^2 + \frac{1}{8}q_1^4 + \frac{1}{16}q_1^6$$

Durch Einsetzen dieser Werte in die Gl. (14 a') bis (14 c') erhält man das Gleichungssystem

$$\begin{split} &\frac{1}{2}A_{1} + A_{2}\left(\frac{2+\sqrt{3}}{4}\right) + A_{3}\left(\frac{2-\sqrt{3}}{4}\right) = u_{s}\left(q_{1}^{2} - 2\right) \\ &\frac{1}{4}A_{1} + A_{2}\left(\frac{2+\sqrt{3}}{4}\right)^{2} + A_{3}\left(\frac{2-\sqrt{3}}{4}\right)^{2} = \frac{1}{4}u_{s}\left(q_{1}^{4} - 4\right) \\ &\frac{1}{8}A_{1} + A_{2}\left(\frac{2+\sqrt{3}}{4}\right)^{3} + A_{3}\left(\frac{2-\sqrt{3}}{4}\right)^{3} = \\ &= \frac{1}{16}u_{s}\left(q_{1}^{6} + 2q_{1}^{4} - q_{1}^{2} - 12\right) \end{split}$$

und daraus die gesuchten Kombinationskonstanten:

$$\omega_1 = \frac{1}{2}, \qquad \omega_2 = \frac{2 + \sqrt{3}}{4}, \qquad \omega_3 = \frac{2 - \sqrt{3}}{4}$$
 Die allgemeine Lösung nach dem Zurücktransformieren heisst:
$$u_k^2 = 2 \, u_s + A_1 \left(\frac{1}{2}\right)^k + A_2 \left(\frac{2 + \sqrt{3}}{4}\right)^k + A_3 \left(\frac{2 - \sqrt{3}}{4}\right)^k$$

$$\alpha_3 = \frac{2 \, u_s}{3 \, \sqrt{3} \, (2 + \sqrt{3})} \left(\sqrt{3} \, q_1^6 + 3 \, q_1^4 - 2 \, \sqrt{3} \, q_1^4 - 6 \, q_1^2 + 3 \, \sqrt{3} \, q_1^2 - 4 \, \sqrt{3}\right)$$

$$\alpha_3 = \frac{2 \, u_s}{3 \, \sqrt{3} \, (2 - \sqrt{3})} \left(\sqrt{3} \, q_1^6 - 3 \, q_1^4 - 2 \, \sqrt{3} \, q_1^4 + 6 \, q_1^2 + 3 \, \sqrt{3} \, q_1^2 - 4 \, \sqrt{3}\right)$$

$$\alpha_4 = \frac{2 \, u_s}{3 \, \sqrt{3} \, (2 - \sqrt{3})} \left(\sqrt{3} \, q_1^6 - 3 \, q_1^4 - 2 \, \sqrt{3} \, q_1^4 + 6 \, q_1^2 + 3 \, \sqrt{3} \, q_1^2 - 4 \, \sqrt{3}\right)$$

Weil $q_1^4=q_1^6$ ist, folgen die für $k\geqq 1$ gültigen Schlussformeln:

$$\begin{array}{c|c}
\hline \mathbf{4} \\
\hline \mathbf{(14a')} \\
\hline \mathbf{u}_{k}^{2} = \mathbf{u}_{k}^{3} = 2 u_{s} \\
\hline \mathbf{1} - \frac{1}{12} (2 - q_{1}^{4}) \left(\frac{1}{2}\right)^{k-2} - \\
- \frac{1}{48} \left(8 + 4\sqrt{3} + \sqrt{3} q_{1}^{2} - q_{1}^{4} - \sqrt{3} q_{1}^{4}\right) \left(\frac{2 + \sqrt{3}}{4}\right)^{k-2} - \\
- \frac{1}{48} \left(8 - 4\sqrt{3} - \sqrt{3} q_{1}^{2} - q_{1}^{4} + \sqrt{3} q_{1}^{4}\right) \left(\frac{2 - \sqrt{3}}{4}\right)^{k-2} \\
\hline \mathbf{(14b')} \\
\hline \mathbf{(14b')} \\
\hline
\end{array}$$

$$(24)$$

Aus Gl. (7 a') erhält man:

$$u_{k}^{\frac{4}{5}} = u_{k}^{\frac{5}{5}} = 4 \left(u_{k+1}^{\frac{3}{5}} - u_{k} \right)$$

$$u_{k}^{\frac{4}{5}} = u_{k}^{\frac{5}{5}} = 4 u_{k} \left[1 - \frac{1}{6} \left(2 - q_{k}^{4} \right) \left(\frac{1}{2} \right)^{k-1} - \frac{1}{24} \left(8 + 4\sqrt{3} + \sqrt{3} q_{k}^{2} - q_{k}^{4} - \sqrt{3} q_{k}^{4} \right) \left(\frac{2 + \sqrt{3}}{4} \right)^{k-1} - \frac{1}{24} \left(8 - 4\sqrt{3} - \sqrt{3} q_{k}^{2} - q_{k}^{4} + \sqrt{3} q_{k}^{4} \right) \left(\frac{2 - \sqrt{3}}{4} \right)^{k-1} \right]$$

$$(25)$$

Aus Gl. (7 b') erhält man:

$$u_{k}^{6} = u_{k}^{7} = 4 u_{k+1}^{4} - 2 u_{k}^{4} + u_{k}^{2} - 4 u_{s}$$

$$u_{k}^{6} = u_{k}^{7} = 6 u_{s} \left[1 - \frac{1}{9} (2 - q_{1}^{4}) \left(\frac{1}{2} \right)^{k} - \frac{2}{9} (4 - 3 q_{1}^{2} + 2 \sqrt{3} q_{1}^{2} + q_{1}^{4} - \sqrt{3} q_{1}^{4}) \left(\frac{2 + \sqrt{3}}{4} \right)^{k} - \frac{2}{9} (4 - 3 q_{1}^{2} - 2 \sqrt{3} q_{1}^{2} + q_{1}^{4} + \sqrt{3} q_{1}^{4}) \left(\frac{2 - \sqrt{3}}{4} \right)^{k} \right] (26)$$

Für die *Potentialwerte* beim *Minimumdurchgang* ergibt sich aus der Anwendung von Gl. (5'):

$$\begin{split} u_{\mathbf{k}^{4,5}}^{3} &= u_{\mathbf{k}^{4,5}}^{4} = \frac{1}{2} u_{\mathbf{k}}^{4} \\ u_{\mathbf{k}^{4,5}}^{3} &= u_{\mathbf{k}^{4,5}}^{4} = 2 u_{s} \left[1 - \frac{1}{6} (2 - q_{1}^{4}) \left(\frac{1}{2} \right)^{k-1} - \frac{1}{24} (8 + 4 \sqrt{3} + \sqrt{3} q_{1}^{2} - q_{1}^{4} - \sqrt{3} q_{1}^{4}) \left(\frac{2 + \sqrt{3}}{4} \right)^{k-1} - \frac{1}{24} (8 - 4 \sqrt{3} - \sqrt{3} q_{1}^{2} - q_{1}^{4} + \sqrt{3} q_{1}^{4}) \left(\frac{2 - \sqrt{3}}{4} \right)^{k-1} \right] \end{split}$$
(27)
$$u_{\mathbf{k}^{5,5}}^{5} &= u_{\mathbf{k}^{5,5}}^{6} = \frac{1}{2} \left(u_{\mathbf{k}}^{6} + u_{\mathbf{k}}^{6} - u_{\mathbf{k}}^{2} \right) \\ u_{\mathbf{k}^{5,5}}^{5} &= u_{\mathbf{k}^{5,5}}^{6} = 4 u_{s} \left[1 - \frac{1}{6} (2 - q_{1}^{4}) \left(\frac{1}{2} \right)^{k} - \frac{1}{12} (4 + 4 \sqrt{3} + 3 q_{1}^{2} - \sqrt{3} q_{1}^{2} - 2 q_{1}^{4}) \left(\frac{2 + \sqrt{3}}{4} \right)^{k} - \frac{1}{12} (4 - 4 \sqrt{3} + 3 q_{1}^{2} + \sqrt{3} q_{1}^{2} - 2 q_{1}^{4}) \left(\frac{2 - \sqrt{3}}{4} \right)^{k} \right] \\ u_{\mathbf{k}^{5,5}}^{7,5} &= \frac{1}{2} \left(3 u_{\mathbf{k}}^{6} - u_{\mathbf{k}^{5}}^{4} - u_{\mathbf{k}^{5}}^{6} \right) \end{split}$$
(28)

$$\begin{split} u_{k}^{7,5} &= 6 \, u_{s} \left[1 - \frac{1}{18} \left(12 + 4 \sqrt{3} - 3 \, q_{1}^{2} + 3 \, \sqrt{3} \, q_{1}^{2} - \right. \right. \\ & \left. - 2 \, \sqrt{3} \, q_{1}^{4} \right) \left(\frac{2 + \sqrt{3}}{4} \right)^{k} - \\ & \left. - \frac{1}{18} \left(12 - 4 \sqrt{3} - 3 \, q_{1}^{2} - 3 \sqrt{3} \, q_{1}^{2} + 2 \sqrt{3} \, q_{1}^{4} \right) \left(\frac{2 - \sqrt{3}}{4} \right)^{k} \right] \end{split}$$

$$(29)$$

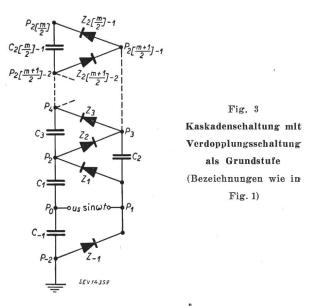
7. Kaskadenschaltungen mit der Greinacher-Verdopplungsschaltung als Grundstufe

Zur Verbesserung der Kaskadenschaltung schlägt Mehlhorn [8] vor, als Grundstufe die Greinacher-Verdopplungsschaltung zu verwenden (Fig. 3). Diese ist begrenzt durch die Schaltpunkte P_{-2} , P_1 und P_2 . Die Schaltung, bestehend aus 2m Kondensatoren und 2m Gleichrichtern, liefert eine konstante Gleichspannung vom 2m-fachen Betrag des Scheitelwertes u_s der Eingangswechselspannung. (Ungeradzahlige Vervielfachung kommt hier nicht in Frage, da sich keine konstante Gleichspannung ergibt.)

Wirkungsweise

In dem an die gewöhnliche Kaskadenschaltung unten angesetzten Stromkreis P_0 , P_1 , P_{-2} schwankt infolge der Sperrwirkung des Ventils Z_{-1} die Spannungsdifferenz an den Punkten P_1 und P_{-2} zwischen 0 und $-2u_s$. Durch das Zusammenwirken mit der (2m-1)-fachen Kaskadenschaltung entsteht somit die konstante Gleichspannung $2mu_s$.

Durch diese Unterteilung der Schaltung wird erreicht, dass die Schnelligkeit des Spannungsaufbaus grösser ist (und damit Klemmenspannung und Welligkeit bei Belastung günstiger liegen) als bei der 2m-fachen Kaskadenschaltung (*Greinacher* [5], *Bouwers* [9]). Nachteilig wirkt sich die Ueberlagerung der Wechselspannung durch die Gleichspannung u_s am Schaltpunkt P_0 aus, was bei der praktischen Ausführung zusätzliche Isolation der Wechselstromquelle erfordert.



Die Spannungsdifferenz $U_k^{\frac{n}{2}}$ zwischen dem dauernd geerdeten Punkt P_{-2} und einem beliebigen Schaltpunkt P_n ist gegeben durch

$$U_{k}^{n} = u_{k}^{n} - u^{-2} = u_{k}^{n} + u_{s} (1 - \sin \varphi)$$
 (30)

Daraus folgt durch Einsetzen in Gl. (5) die allgemeine Potentialfunktion der m-fachen Schaltung:

$$U_{k}^{n} = u_{s} + (R_{n,\lambda} - 1) u_{s} \sin \varphi + \sum_{\alpha=1}^{\left[\frac{m+2}{2}\right]} \kappa_{n,\lambda}^{\alpha} u_{k}^{2\alpha-2}$$

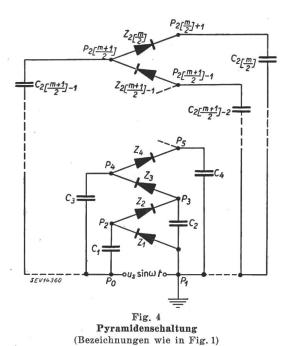
II. Spannungsaufbau in den Pyramidenschaltungen

1. Grundlagen

Bereits 1917 hat Schenkel [10] eine Schaltung (Fig. 4) zum Patent angemeldet und sie dann veröffentlicht, welche unter alleiniger Verwendung von m Kondensatoren und m Gleichrichtern aus einer Wechselspannung eine konstante Gleichspannung $m u_s$ liefert. Greinacher schlug dafür die Bezeichnung Pyramidenschaltung vor [5], welche auch hier verwendet wird.

Wie bei der Kaskadenschaltung oszillieren die Potentiale der Schaltpunkte der linken Seite im stationären Zustand mit $2 u_s$, während die der rechten Seite konstant sind und von unten nach oben je um $2 u_s$ zunehmen. Der oberste Kondensator muss die totale Gleichspannung aushalten, was die Pyramidenschaltung zur Erzeugung von Höchstspannungen unbrauchbar macht. Sie besitzt jedoch gegenüber der Kaskadenschaltung den Vorteil, dass

der Spannungsaufbau rascher vor sich geht, weil nie mehr als zwei Kondensatoren in Serie geschaltet sind. Die Potentialteilungsfaktoren können deswegen nur Null oder nicht kleiner als ½ sein.



Die m-fache Pyramidenschaltung nimmt während jeder Periode m+1 Betriebszustände an. Beim Maximumdurchgang der Eingangswechselspannung gilt auch hier die Beziehung (1). Im ersten Intervall der k-ten Periode herrscht der stromlose Betriebszustand, während im zweiten das Ventil Z_3 leitet. Weiter zünden vor Eintreten des Minimumdurchganges der Reihe nach von unten nach oben Z_5 , Z_7 usw. und als letztes Z_1 . Nach dem Minimumdurchgang tritt zuerst wieder der stromlose Betriebszustand ein. Dann zünden der Reihe nach von unten nach oben Z_2 , Z_4 usw.

Somit wird wie beim Kaskadengenerator die k-te Periode in m+2 Intervalle unterteilt (eine Ausnahme macht die Dreifach-Pyramidenschaltung, wo nur drei Betriebszustände und vier Intervalle vorkommen).

Für die Berechnung finden die gleichen Formeln Verwendung wie bei der Kaskadenschaltung. Weil während der ersten Perioden Betriebszustände auftreten, die in der k-ten nicht mehr vorkommen, ist $k_0 > 1$.

Die Zweifach-Pyramidenschaltung ist identisch mit der Zweifach-Kaskadenschaltung.

2. Die Dreifach-Pyramidenschaltung

Die für $k \ge 2$ gültigen Schlussformeln lauten nach der Transformation (17):

$$\overline{u}_{k}^{\frac{4}{0}} = 3 u_{s} \left[1 - \frac{1}{2} (2 - q_{2}^{2}) \left(\frac{3}{4} \right)^{k-3} \right]$$
 (32)

$$\overline{u}_{k}^{\frac{2}{3}} = 3 u_{s} \left[1 - \frac{1}{2} (2 - q_{2}^{2}) \left(\frac{3}{4} \right)^{k-2} \right]$$
 (33)

Bemerkenswert ist, dass es nur *drei* Einschaltmöglichkeiten gibt, wovon zwei nicht mehr in die Viertelsperioden fallen. Die zweiten Einsatzkoeffizienten sind in folgender Tabelle zusammengestellt:

Tabelle II

		Tabono 11
Einschalt- mögli ch- keiten	Bereiche der Einschaltphasen	Einsatzkoeffizienten
v	$\beta^* < \beta \le \frac{\pi}{2}$	$q_2^2 = 1$
VI	$-\frac{\pi}{2} < \beta \le \beta^*$	$q_2^2 = \frac{7}{8} - \frac{3}{8} \sin \beta$
VII	$-\frac{3\pi}{2} < \beta \le -\frac{\pi}{2}$	$q_2^2 = \frac{5}{4}$
	$\beta^* = \operatorname{arc sin} \left(-\frac{1}{3}\right)$	
	$=-19^{\circ} 28' 16''$	

Die Dreifach-Pyramidenschaltung hat ferner die Eigenschaft, dass immer $u_{k}^{4} = 2 u_{k}^{2}$ ist; deshalb tritt ein Betriebszustand weniger auf als nach der allgemeinen Theorie zu erwarten ist.

Ein Vergleich mit der Dreifach-Kaskadenschaltung ergibt, dass die homogenen Gleichungen (10) für beide Schaltungen identisch sind. Es ergibt sich daraus, dass für die Einschaltmöglichkeit III $\left(-\pi < \beta \le -\frac{\pi}{2}\right)$, wo in beiden Fällen $q_2^2 = \frac{5}{4}$ ist, die Potentialwerte u_2^2 übereinstimmen, nicht aber die Potentialwerte u_2^4 .

3. Die Vierfach-Pyramidenschaltung

Die Schlussformel, gültig für $k \ge 2$ lautet:

$$u_{k}^{5} = u_{k}^{5,4} = 4u_{s} \left[1 - \frac{1}{16} (8 + 6\sqrt{2} - \sqrt{2}q_{2}^{2} - 2q_{2}^{4} - \sqrt{2}q_{2}^{4}) \left(\frac{2 + \sqrt{2}}{4} \right)^{k-2} - \frac{1}{16} (8 - 6\sqrt{2} + \sqrt{2}q_{2}^{2} - 2q_{2}^{4} + \sqrt{2}q_{2}^{4}) \left(\frac{2 - \sqrt{2}}{4} \right)^{k-2} \right]$$
(34)

Es gibt hier wieder vier Einschaltmöglichkeiten. Die Einsatzkoeffizienten sind der Tabelle III unter Berücksichtigung folgender Gesetzmässigkeit zu entnehmen:

 q_2^2 der Vierfachschaltung gleich q_2^4 der Sechsfachschaltung;

 q_2^4 der Vierfachschaltung gleich q_2^6 der Sechsfachschaltung.

Der Vergleich mit der Vierfach-Kaskadenschaltung zeigt, dass für beide Schaltungen dieselbe Rekursionsformel gilt. Die Potentialfunktionen stimmen jedoch im allgemeinen nicht überein; nur für die Einschaltmöglichkeiten III und IV sind je die Einsatzpotentiale u_k^4 und u_k^5 gleich. Das Potential des obersten Schaltpunktes P_5 oszilliert nicht wie bei der Kaskadenschaltung, sondern steigt gleichmässig an.

4. Die Fünffach-Pyramidenschaltung

Nach der Transformation (17) ergeben sich die für $k \ge 2$ gültigen Schlussformeln (alle q_2^2 sind gleich 1):

$$\frac{\overline{u}_{k}^{6}}{u_{k}^{6}} = 5 u_{s} \left[1 - \frac{4}{25} (5 + \sqrt{5} - 2 q_{2}^{4}) \left(\frac{5 + \sqrt{5}}{8} \right)^{k-1} - \frac{4}{25} (5 - \sqrt{5} - 2 q_{2}^{4}) \left(\frac{5 - \sqrt{5}}{8} \right)^{k-1} \right]$$
(35)

$$\frac{\vec{a}_{k}^{6}}{\vec{a}_{k}^{4,5}} = 5 \, \vec{a}_{s} \left[1 - \frac{4}{25} \, (5 + \sqrt{5} - 2 \, q_{2}^{4}) \left(\frac{5 + \sqrt{5}}{8} \right)^{k} - \frac{4}{25} \, (5 - \sqrt{5} - 2 \, q_{2}^{4}) \left(\frac{5 - \sqrt{5}}{8} \right)^{k} \right] \tag{36}$$

Die q_2^4 sind identisch mit den q_2^2 in Tabelle II. Es besteht keine Uebereinstimmung mit der Fünffach-Kaskadenschaltung.

5. Die Sechsfach-Pyramidenschaltung

Die Schlussformel, gültig für $k \ge 2$ lautet:

$$u_{k}^{7} = u_{k}^{7,5} = 6 u_{s} \left[1 - \frac{1}{9} \left(1 + q_{2}^{4} - q_{2}^{6} \right) \left(\frac{1}{2} \right)^{k-1} - \frac{1}{9} \left(4 + 3 \sqrt{3} + q_{2}^{4} - \sqrt{3} q_{2}^{4} - q_{2}^{6} \right) \left(\frac{2 + \sqrt{3}}{4} \right)^{k-1} - \frac{1}{9} \left(4 - 3 \sqrt{3} + q_{2}^{4} + \sqrt{3} q_{2}^{4} - q_{2}^{6} \right) \left(\frac{2 - \sqrt{3}}{4} \right)^{k-1} \right]$$

$$(37)$$

Eine Uebereinstimmung mit der Sechsfach-Kaskadenschaltung ist nicht vorhanden.

Die zweiten Einsatzkoeffizienten haben folgende Werte:

Tabelle III

		140011	OILL
Ein- schalt- möglich- keiten	Bereiche der Einschaltphasen	Einsatzkoeffizienten	
I	$0 < \beta \leq \frac{\pi}{2}$	$q_2^4 = 1$, $q_2^6 = \frac{5}{4}$	
п	$-\frac{\pi}{2} < \beta \le 0$	$q_2^4 = 1$, $q_2^6 = \frac{5}{4} - \frac{1}{4}$	$\sin \beta$
ш	$-\pi < \beta \leq -\frac{\pi}{2}$	$q_2^4 = 1$, $q_2^6 = \frac{3}{2}$	
IV	$-\frac{3\pi}{2} < \beta \leq -\pi$	$q_2^4 = 1 + rac{1}{16}\sineta$, $q_2^6 = rac{3}{2} + rac{3}{16}$	$\sin \beta$

III. Spannungsaufbau in den erweiterten Pyramidenschaltungen

1. Grundlagen

Zur Erzeugung von vervielfachten Gleichspannungen aus Wechselstrom scheint auch eine Schaltung verwendet zu werden [11], die der Pyramidenschaltung sehr ähnlich ist. Sie geht aus dieser hervor durch Einfügen eines zusätzlichen Kondensators C_0 vor das unterste Ventil (Fig. 5), so dass sie

aus m+1 Kondensatoren und m Gleichrichtern aufgebaut wird. Diese m-fache Schaltung liefert eine konstante Gleichspannung mu_s , wo m eine gerade Zahl sein muss 7). Für sie wird die Bezeichnung erweiterte Pyramidenschaltung vorgeschlagen.

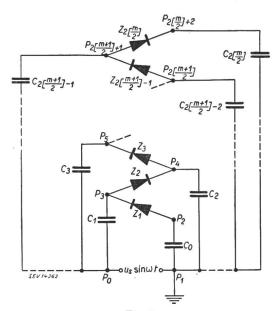


Fig. 5
Erweiterte Pyramidenschaltung
(Bezeichnungen wie in Fig. 1)

Durch das Einfügen des Kondensators C_0 entsteht eine symmetrische Spannungsverteilung. Im stationären Zustand werden folgende Potentiale angenommen:

Zweifachschaltung: P_2 (— u_s), P_4 (+ u_s),

Vierfachschaltung: P_2 ($-2u_s$), P_4 (0), P_6 ($+2u_s$)

Sechsfachschaltung: P_2 (—3 u_s), P_4 (— u_s),

 $P_6 (+u_s), P_8 (+3u_s).$

Infolge dieser Symmetrieeigenschaft steigt während jeder Halbperiode die Potentialdifferenz zwischen P_2 und $P_2[\frac{m}{2}]+2$ gleichmässig an. Der Spannungsaufbau geht daher sehr rasch vor sich.

Die Theorie weist gegenüber derjenigen der Kaskadenschaltung kleine Aenderungen auf. So gilt für die Einsatzpotentiale in Abweichung von Gl. (1):

$$u_{k}^{2} = u_{k}^{3}; \quad u_{k}^{0} = u_{s},$$

$$u_{k}^{3} = u_{k}^{4}, \dots u_{k}^{2} \left[\frac{m+1}{2}\right]^{+1} = u_{k}^{2} \left[\frac{m+1}{2}\right]^{+2}$$
(38)

Die Funktion $\chi(n)$ wird daher:

$$\kappa_{n,\lambda}^{\alpha} = \varrho_{n,\lambda} \, \tau_{\alpha,\lambda} + \chi(n)
\chi(n) = \begin{cases} 1 & \text{für } 2 \, \alpha - 3 \leq n \leq 2 \, \alpha - 2 \\ 0 & \text{für } 2 \, \alpha - 2 < n < 2 \, \alpha - 3 \end{cases}$$
(39)

7) Entgegen der Angabe von Hofer [11] entstehen bei ungeradzahliger Vervielfachung keine konstanten Gleichspannungen.

Die allgemeine Potentialfunktion lautet:

$$u_{k}^{n} = R_{n,\lambda} u_{s} \sin \varphi + \sum_{\alpha=1}^{\left[\frac{m+4}{2}\right]} u_{n,\lambda}^{2\alpha-2}$$

$$(40)$$

Die Rekursionsformel (8) wird homogen und vom Grad $l = \left[\frac{m+3}{2}\right]$. Durch den Ansatz $u_{k+1}^0 = \omega^{k+l}$ geht sie sogleich in Gl. (12) über. Weil die erste Wurzel $\omega_k^{k+l} = 1$ ist, folgt als allgemeine Lösung:

$$u_k^0 = A_1 + A_2 \omega_2^k + A_3 \omega_3^k + \dots + A_l \omega_l^k$$
 (41)

Für $k\to\infty$ folgt $u^0_{\mathbf{k}}\to A_1$; A_1 ist daher gleich dem bekannten $\lim_{k\to\infty}u^0_{\mathbf{k}}$. Die übrigen Kombinationskonstanten $A_2\dots A_l$ werden aus den l-1 Anfangsbedingungen gefunden.

Weil die vom Punkt P_2 aus gemessenen Potentialdifferenzen gesucht sind, werden in den Schlussformeln die Werte

$$U_{k}^{n} = u_{k}^{n} - u_{k}^{2} \tag{42}$$

mitgeteilt.

2. Die erweiterte Zweifach-Pyramidenschaltung Die Schlussformeln, gültig für $k \ge 1$ sind:

$$U_{k}^{4} = u_{k}^{4} - u_{k}^{2} = 2 u_{s} \left[1 - 3 \left(1 + q_{1}^{2} \right) \left(\frac{1}{4} \right)^{k} \right]$$
 (43)

$$U_{k}^{\frac{4}{2}3} = u_{k}^{\frac{4}{3}3} - u_{k}^{\frac{2}{3}3} = 2 u_{s} \left[1 - \frac{3}{2} (1 + q_{1}^{2}) \left(\frac{1}{4} \right)^{k} \right]$$
(44)

Die q_1^2 sind für alle vier Einschaltmöglichkeiten in Tabelle IV zu finden.

3. Die erweiterte Vierfach-Pyramidenschaltung

Die Schlussformeln, gültig für $k \ge 1$ lauten:

$$U_{k}^{6} = 4 u_{s} \left[1 - \frac{1}{2} \left(2 + q_{1}^{2} + \sqrt{5} q_{1}^{4} - q_{1}^{4} \right) \left(\frac{3 + \sqrt{5}}{8} \right)^{k} - \frac{1}{2} \left(2 + q_{1}^{2} - \sqrt{5} q_{1}^{4} - q_{1}^{4} \right) \left(\frac{3 - \sqrt{5}}{8} \right)^{k} \right]$$
(45)
$$U_{k}^{6,4} = 4 u_{s} \left[1 - \frac{1}{8} \left(2 + 2\sqrt{5} + q_{1}^{2} + \sqrt{5} q_{1}^{2} + 4 q_{1}^{4} \right) \right]$$

Alle q_1^2 und q_1^4 sind aus Tabelle IV zu entnehmen.

4. Die erweiterte Sechsfach-Pyramidenschaltung

Die Gleichung (12) besitzt ausser $\omega_4 = 1$ keine weiteren rationalen Wurzeln. Die übrigbleibende kubische Gleichung hat folgende Lösungen:

$$\omega_1 = 0.811747...$$
 $\omega_2 = 0.388737...$ $\omega_3 = 0.049516...$

Die Schlussformeln, gültig für $k \ge 1$ sind:

$$U_{k}^{6} = 6 u_{s} + A_{1} \left[4 (2 \omega_{1} - 1)^{3} - 6 \omega_{1} + 2 \right] \omega_{1}^{k} + A_{2} \left[4 (2 \omega_{2} - 1)^{3} - 6 \omega_{2} + 2 \right] \omega_{2}^{k} + A_{3} \left[4 (2 \omega_{3} - 1)^{3} - 6 \omega_{3} + 2 \right] \omega_{3}^{k}$$
(47)

$$U_{k}^{8,5} = 6 u_{s}^{1} + A_{1} \left[4 \left(2 \omega_{1} - 1 \right)^{3} - 7 \omega_{1} + 3 \right] \omega_{1}^{k} + \\ \left[+ A_{2} \left[4 \left(2 \omega_{2} - 1 \right)^{3} - 7 \omega_{2} + 3 \right] \omega_{2}^{k} + \\ + A_{8} \left[4 \left(2 \omega_{3} - 1 \right)^{3} - 7 \omega_{3} + 3 \right] \omega_{3}^{k}$$
(48)

Dabei gilt für die Kombinationskonstanten:

$$A_1 = (2,84161 + 0,66910 \ q_1^2 + 1,07314 \ q_1^4) \ u_s$$

 $A_2 = (0,70704 + 0,27673 \ q_1^2 - 1,24359 \ q_1^4) \ u_s$
 $A_3 = (8,45107 + 7,05391 \ q_1^2 - 7,82939 \ q_1^4) \ u_s$

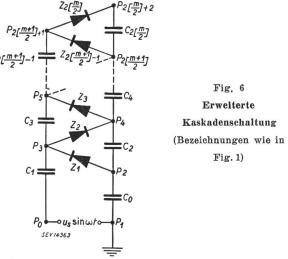
In den Schlussformeln ist der konstante Wert von $q_1^6 = \frac{1}{2}$ schon miteinbezogen. Die übrigen Einsatzkoeffizienten sind:

Ein- schalt- möglich- keiten	Bereiche der Einschaltphasen	Einsatzkoeffizienten
1	$0 < \beta \leq \frac{\pi}{2}$	$q_1^2 = 0$, $q_1^4 = \frac{1}{2}$
п	$-\frac{\pi}{2} < \beta \le 0$	$q_1^2 = \frac{1}{2} \sin \beta$, $q_1^4 = \frac{1}{2}$
ш	$-\pi < \beta \leq -\frac{\pi}{2}$	$q_1^2 = -\frac{1}{2}$, $q_1^4 = \frac{1}{2}$
IV	$-\frac{3\pi}{2} < \beta \le -\pi$	$\left q_1^2 = -\frac{1}{2} - \frac{1}{4} \sin \beta, q_1^4 = \frac{1}{2} - \frac{1}{8} \sin \beta \right $

IV. Spannungsaufbau in den erweiterten Kaskadenschaltungen

1. Grundlagen

Wird in der Kaskadenschaltung vor das unterste Ventil ein Kondensator C_0 eingefügt, so entsteht aus ihr (analog der erweiterten Pyramidenschaltung)



die erweiterte Kaskadenschaltung (Fig. 6). Die m-fache Schaltung baut sich somit aus m+1 Kondensatoren und m Gleichrichtern auf. Sie liefert für gerades m eine konstante Gleichspannung $m u_s$. Die Schaltpunkte der rechten Seite nehmen im stationären Zustand folgende Potentiale an:

$$P_2\left(-rac{1}{2}\;u_s\;
ight),\;P_4\left(rac{3}{2}\;u_s\;
ight),\;P_6\left(rac{7}{2}\;u_s\;
ight),\;\dots$$

Zur Erläuterung wird die Zweifachschaltung betrachtet, welche begrenzt ist durch P_0 , P_1 , P_3 , P_4 . Vor dem Minimumdurchgang der Eingangswechselspannung werden in der k-ten Periode die Kondensatoren C_0 und C_1 durch das Ventil Z_1 in Serie geschaltet; das Teilstück P_2 P_3 führt daher die halbe eingangsseitige Potentialbewegung aus. Während des letzten Intervalls der k-ten Periode werden die Kondensatoren C_1, C_2, C_0 über das Ventil Z_2 in Serie geschaltet; es tritt somit eine Dreiteilung der eingangsseitigen Potentialbewegung ein. Sie bewirkt gegenüber der gewöhnlichen Kaskadenschaltung eine Verlangsamung des Spannungsaufbaus. Bei der erweiterten m-fachen Schaltung äussert sich dies darin, dass der kleinste von Null verschiedene Potentialteilungsfaktor $\frac{1}{m+1}$ ist, während er bei der

Kaskadenschaltung $\frac{1}{m}$ beträgt.

Für die Berechnung finden die gleichen Formeln Verwendung wie bei der erweiterten Pyramidenschaltung.

Weil diese Schaltung keine Bedeutung besitzt, sind die Berechnungen nur für die Zwei- und Vierfachschaltung und lediglich zu Vergleichszwecken ausgeführt worden.

2. Die erweiterte Zweifach-Kaskadenschaltung

Die Potentialdifferenz zwischen den Punkten P_2 und P_4 ist für $k \ge 1$ gegeben durch:

$$U_{k}^{4} = U_{k}^{43} = 2 u_{s} \left[1 - \frac{3}{4} (1 + 2 q_{1}^{2}) \left(\frac{2}{3} \right)^{k} \right]$$
 (49)

Für die Einschaltmöglichkeiten I, II, III ist q_1^2 aus Tabelle V zu entnehmen; für IV ist in Abweichung davon:

$$q_1^2 = \frac{1}{6} - \frac{1}{9} \sin \beta$$

3. Die erweiterte Vierfach-Kaskadenschaltung

 $U_{k}^{6} = 4 u_{s} \left[1 - \frac{3}{584} (73 + 19) \sqrt{73} + 146 q_{1}^{2} - \right]$

Die für $k \ge 1$ gültigen Schlussformeln lauten:

$$-18\sqrt{73}q_{1}^{2}-8\sqrt{73}q_{1}^{6})\left(\frac{13+\sqrt{73}}{24}\right)^{k}-\frac{3}{584}\left(73-19\sqrt{73}+146q_{1}^{2}+18\right)\overline{73}q_{1}^{2}+\frac{3}{73}q_{1}^{6}\right)\left(\frac{13-\sqrt{73}}{24}\right)^{k}\right]$$

$$+8\sqrt{73}q_{1}^{6}\left(\frac{13-\sqrt{73}}{24}\right)^{k}\right]$$

$$(50)$$

$$U_{8}^{6,4}=4u_{s}\left[1-\frac{1}{292}\left(219+21\sqrt{73}-73q_{1}^{2}+\frac{7\sqrt{73}}{24}\right)^{k}-\frac{1}{292}\left(219-21\sqrt{73}-73q_{1}^{6}\right)\left(\frac{13+\sqrt{73}}{24}\right)^{k}-\frac{1}{292}\left(219-21\sqrt{73}-73q_{1}^{2}-7\sqrt{73}q_{1}^{2}-\frac{1}{292}\left(219-21\sqrt{73}-73q_{1}^{2}-7\sqrt{73}q_{1}^{2}-\frac{1}{292}\left(219-21\sqrt{73}-73q_{1}^{2}-\frac{1}{24}\right)^{k}\right]$$

$$-73q_{1}^{6}+5\sqrt{73}q_{1}^{6}\left(\frac{13-\sqrt{73}}{24}\right)^{k}\right]$$

$$(51)$$

Auffallend sind die grossen Faktoren und Radikanden in den Schlussformeln.

Die ersten Einsatzkoeffizienten haben folgende Werte:

Tabelle V

		Tubelle V
Ein- schalt- möglich- keiten	Bereiche der Einschaltphasen	Einsatzkoeffizienten
I	$0 < \beta \le \frac{\pi}{2}$	$q_1^2 = \frac{1}{3}$, $q_1^6 = \frac{2}{3}$
п	$-\frac{\pi}{2} < \beta \le 0$	$\left q_1^2 = \frac{1}{3} + \frac{1}{6} \sin \beta, \ q_1^6 = \frac{2}{3} - \frac{1}{6} \sin \beta \right $
ш	$-\pi < \beta \leq -\frac{\pi}{2}$	$q_1^2 = \frac{1}{6}$, $q_1^6 = \frac{5}{6}$
IV	$-\frac{3\pi}{2} < \beta \le -\pi$	$q_1^2 = \frac{1}{6} - \frac{1}{18} \sin \beta, \ q_1^6 = \frac{5}{6} + \frac{5}{36} \sin \beta$

V. Experimentelle Untersuchungen

1. Gegenstand der Untersuchungen

Vor allem handelte es sich darum, den Spannungsaufbau der berechneten Schaltungen experimentell zu prüfen. Die Messungen sollten ferner auf Anordnungen ausgedehnt werden, die durch naheliegende Abänderungen hervorgehen und beim Betrieb Vorteile mit sich bringen.

Da bei der Kaskadenschaltung der erste Kondensator C_1 nur eine halb so grosse Spannung auszuhalten hat wie alle übrigen, ist es gegeben, seine Kapazität dafür doppelt so gross [9] oder überhaupt um ein beliebiges Vielfaches grösser zu wählen [12]. Ein besonders günstiges Verhalten bei Belastung (kleiner Spannungsabfall und geringe Welligkeit) zeigt eine Anordnung, bei der die Kapazitäten von unten nach oben linear abnehmen [9].

Wie Greinacher gezeigt hat [1, 5], ist es ferner von Vorteil, die Kaskade in zwei Hälften aufzuteilen, die sich in umgekehrtem Sinne aufladen. Der Spannungsaufbau dieser doppelt wirkenden oder symmetrischen Schaltung geht bedeutend rascher vor sich als in einer einfach wirkenden mit gleicher Vervielfachung. Weil die Einschaltphasen einen Unterschied von π aufweisen, nimmt die Potentialdifferenz zwischen den beiden Teilen während jeder halben Periode zu. Auch alle andern Vervielfachungsschaltungen lassen sich doppelt wirkend ausführen. Da sich ihr Spannungsaufbau unter Verwendung der mitgeteilten Schlussformeln ergibt, und diese bereits experimentell geprüft wurden, konnte von einer weiteren Kontrolle der doppelt wirkenden Schaltungen abgesehen werden.

Schliesslich wurde auch das Verhalten einiger Schaltungen bei Stromentnahme geprüft. Hier interessierte sowohl das Absinken der Klemmenspannung als auch die Grösse und Form der Welligkeit.

2. Experimentelle Angaben

Das Verhalten der Vervielfachungsschaltungen während des Spannungsaufbaus und bei Belastung ist im Prinzip unabhängig von der Höhe der angelegten Eingangswechselspannung. Daher ist es naheliegend, diesbezügliche Messungen an kleinen Modellen vorzunehmen. Die von der Theorie verlangten Voraussetzungen lassen sich dabei ausreichend verwirklichen.

Die verwendeten Kondensatoren (Prüfspannung 2500 V) hatten je eine Kapazität von 2 μ F und wurden aus einer grösseren Anzahl ausgesucht, so dass ihr Spannungsabfall während 10 Minuten bei 400 V nicht grösser als 3 % war.

Als Ventile dienten Philips-Gleichrichterröhren 506 K, deren beide Anoden parallel geschaltet wurden. Jeder Röhre war zur Lieferung des Heizstromes (1 A bei 4 V) ein besonderer Bleiakkumulator zugeteilt. Da diese als Ganzes die Potentiale der entsprechenden Schaltpunkte P2, P4 usw. annehmen (Fig. 1), so müssen sie einzeln gegen Erde isoliert werden. Dazu wurden sie auf Paraffinblöcke gestellt. Nach 10 Minuten betrug der Spannungsabfall eines Aggregates, bestehend aus einem aufgeladenen Kondensator von 2 μ F, einer in Sperrichtung geschalteten Gleichrichterröhre und ihrem Heizakkumulator durchschnittlich 8½ % von 400 V. So hohe Beanspruchungen traten übrigens bei den Messungen nicht ein. Bei der Fünffach-Kaskadenschaltung war er für den höchsten Schaltpunkt 5 % von 600 V.

Die Potentialmessungen wurden meistens mit einem Wulfschen Einfadenelektrometer ausgeführt, das an der oberen Grenze des verwendeten Messbereiches (ca. 800 V) eine Genauigkeit der Ablesung auf 2 V gestattete. Zur Messung kleinerer Potentiale (bis ca. 120 V) diente ein Pohlsches Einfadenelektrometer mit Hilfsspannungen.

3. Messungen zum Spannungsaufbau

Zur Kontrolle der Theorie wurden die Potentiale sämtlicher Schaltpunkte während einiger Perioden, vom Einschalten an, gemessen. Dafür konnte nicht Netzwechselstrom verwendet werden. wurde die «Eingangswechselspannung» durch Ein-

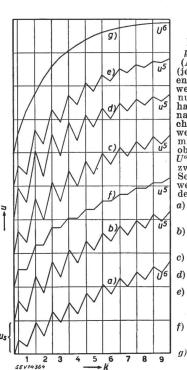


Fig. 7 Aufladekurven von Vierfach-Schaltungen (Einschaltung beim Nulldurchgang, $\beta = 0$)

k Periodennumerierung
(Abszisse); u Spannung
(jeder Ordinatenabschnitt
entspricht dem Scheitelwert us der Eingangsspannung: jede Kurve a...g
hat ihren eigenen Ordinatennullpunkt, von welchem aus die Spannungswerte bestimmt werden
müssen); us Potentiale der
obersten Schaltpunkte P_5 ; U° Spannungsdifferenzen
zwischen den obersten
Schaltpunkten P_6 der erweiterten Schaltungen und
den geerdeten Punkten P_1 .

g) erweiterte Kaskaden-Nulldurchgang, $\beta = 0$) a) erweiterte Kaskaden-schaltung (alles gleiche Kondensatoren) b) Kaskadenschaltung

Kaskadenschaltung (alles gleiche Kondensatoren)
Kaskadenschaltung ($C_1 = 2C_n$)
Kaskadenschaltung ($C_1 = 10C_n$)
Kaskadenschaltung (Kapazitätswerte nehmen von unten nach oben linear ab)
Pyramidenschaltung Pyramidenschaltung (alles gleiche Kondensa-toren)

erweiterte Pyramiden-schaltung (alles gleiche Kondensatoren)

und Ausschalten sowie Umpolen einer konstanten Gleichspannung erzeugt. So konnten die Potentiale an den verschiedenen Schaltpunkten beim Nulldurchgang, beim Maximum und Minimum gemessen werden. Um Fehler möglichst auszuschalten, die aus langsamer Entladung hervorgehen können, wurde die Aufladung nach der k-ten Periode unterbrochen, die Anlage vollständig entladen und in rascher Folge (also ohne Zwischenablesungen) wieder bis zur k-ten Periode aufgeladen. Die Unterschiede gegenüber den theoretischen Werten hatten die Grössenordnung 1 V (bei $u_s = 120 \text{ V}$).

In Fig. 7 sind die gemessenen Potentialwerte einiger Vierfachschaltungen beim Maximum- und Minimumdurchgang der Eingangswechselspannung aufgetragen (zur besseren Uebersicht sind die Zwischenwerte durch Geraden überbrückt). Die Reihenfolge der Kurven ist so gewählt, dass sich diejenige der Schaltung mit dem rascheren Spannungsaufbau über der vorhergehenden befindet.

In Tabelle VI sind für das beliebig herausgegriffene Beispiel der erweiterten Vierfach-Pyramidenschaltung einige gemessene und berechnete Potentialwerte angegeben. Die Schlussformeln (45) und (46) liefern mit $u_s = 121,2$ V und Einschalten beim

Nulldurchgang
$$\left(\beta=0\;;\;\;q_1^2=0,\;q_1^4=\frac{1}{2}\right)$$
 folgende Spannungsdifferenzen:

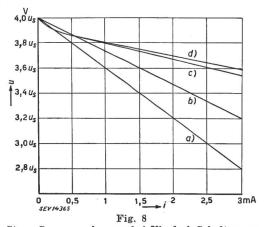
$$U_k^6 = 121,2 (4 - 5,236 \cdot 0,6545^k - 0,7638 \cdot 0,0955^k) V$$

 $U_k^6 = 121,2 (4 - 4,236 \cdot 0,6545^k + 0,2361 \cdot 0,0955^k) V$

				Tabe	He vi
	k=1	k=2	k=3	k=4	k=5
	V	V	V	V	V
$U_0^6 \begin{cases} \text{gemessen} \\ 1 \end{cases}$. 61	212	307	368	408
berechnet	60,6	213	308	368	409
$U_{3,4}^6$ $\left\{ \begin{array}{l} \mathrm{gemessen} \\ \end{array} \right.$	153	264	340	390	422
$m{U}_{_{m{k}}^{3,4}}^{6} igg\{_{\mathbf{berechnet}}^{\mathbf{emessen}}$	151,8	265	341	391	423

4. Messungen der Klemmenspannung bei Belastung

Fig. 8 stellt die Strom-Spannungskurven von vier charakteristischen Vierfachschaltungen dar. Die Eingangswechselspannung betrug 200 V und wurde über



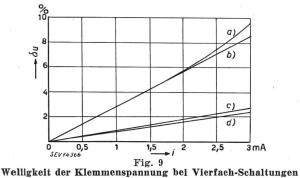
Strom-Spannungskurven bei Vierfach-Schaltungen u Klemmenspannung (Vielfaches des Scheitelwertes us der Eingangsspannung); i Belastungsstrom; a) erweiterte Kaskadenschaltung; b) Kaskadenschaltung; c) Pyramidenschaltung; d) erweiterte Pyramidenschaltung

einen Transformator dem Lichtnetz entnommen. Die Belastung geschah durch regulierbare Hochohmwiderstände; die Stromstärke wurde mit einem Gleichstrom-Ampèremeter gemessen. Schaltungen, bei welchen der Spannungsaufbau am langsamsten vor sich geht, weisen bei Belastung wie zu erwarten auch den grössten Spannungsabfall auf.

5. Messungen der Welligkeit bei Belastung

Für diese Messungen fand ein Philips-Kathodenstrahloszillograph GM 3152 Verwendung. Er wurde kapazitiv an die Klemmen der Vervielfachungsschaltungen angeschlossen. Die Welligkeit ergab sich als Vertikalablenkung auf dem Leuchtschirm; sie wurde in mm gemessen und nach nachträglicher Eichung mit kommutiertem Gleichstrom (unter Verwendung eines rotierenden Kommutators [12]) bei unveränderter Verstärkung in Volt umgerechnet.

In Fig. 9 ist die Welligkeit δu für dieselben Schaltungen wie bei Fig. 8 in Prozenten angegeben. Die Schaltung mit dem grössten Spannungsabfall zeigt auch die grösste Welligkeit.



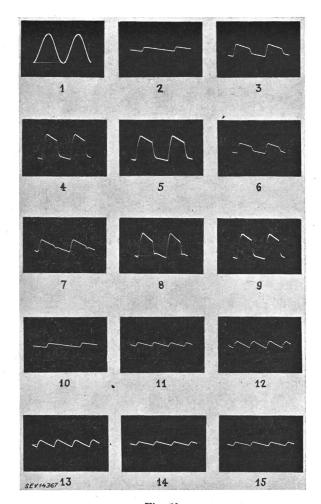
 \mathcal{E}_u Welligkeit in %; i Belastungsstrom; a) erweiterte Kaskadenschaltung; b) Kaskadenschaltung; c) Pyramidenschaltung; d) erweiterte Pyramidenschaltung

Die Oszillogramme in Fig. 10 veranschaulichen charakteristische Formen der bei einer Belastung von 1 m A entstehenden Welligkeit. Die Eingangswechselspannung betrug auch hier 200 V. Verstärkung und Kippfrequenz des Oszillographen sind bei allen Aufnahmen dieselben (Ausnahme: Verstärkung bei Aufnahme Nr. 1). Es bestätigt sich, dass bei doppelt wirkenden Schaltungen der Spannungsaufbau während einer Periode zweimal einsetzt.

Literatur

- [1] Greinacher, H.: Erzeugung einer Gleichspannung vom vielfachen Betrage einer Wechselspannung ohne Transformator. Bull. SEV Bd. 11(1920), Nr. 3, S. 59...66.
 [2] Greinacher, H.: Ueber die Methode, Wechselstrom mit-
- tels elektrischer Ventile und Kondensatoren in hochgespannten Gleichstrom umzuwandeln. Z. Phys. Bd. 4 (1921), Nr. 2, S. 195...205.
- [3] Cockroft, J., und Walton, E. T. S.: Experiments with high velocity positive ions. Proc". Royal Soc. London Bd. 136(1932), S. 619 ff.

 [4] Bouwers, A.: Some principles in the design of
- X-ray apparatus. Radiology Bd. 22(1934), S. 163 ff. [5] Greinacher, H.: Ueber den Spannungsaufbau im Kas-
- kaden-Generator. Helv. phys. acta Bd. 15(1942), Nr. 6, S. 518...522.
- [6] Jaggi, Martin: Untersuchung des Aufladevorganges im Kaskadengenerator. Helv. phys. acta Bd. 15(1942), Nr. 4,
- [7] Jaggi, Martin: Untersuchung des Aufladevorganges im Kaskadengenerator zur Erzeugung hochgespannten



Oszillogramme der Eingangswechselspannung und der Klemmenspannung verschiedener Schaltungen

- Klemmenspannung verschiedener Schaltungen 1 Eingangswechselspannung 2 Zweifach-Kaskadenschaltung 3 Dreifach-Kaskadenschaltung 4 Sechsfach-Kaskadenschaltung 5 Sechsfach-Kaskadenschaltung ($C_1=20~\mu\mathrm{F},~C_2...C_6=2\mu\mathrm{F})$ 6 Sechsfach-Kaskadenschaltung ($C_1=12~\mu\mathrm{F},~C_2=10~\mu\mathrm{F},~C_3=8~\mu\mathrm{F},...C_6=2~\mu\mathrm{F})$ 7 Vierfach-Kaskadenschaltung mit Greinacher-Verdopplungsschaltung als Grundstufe
- 7 Vierfach-Kaskadenschaltung mit Greinacher-Verdopplungsschaltung als Grundstufe
 8 Sechsfach-Kaskadenschaltung mit Greinacher-Verdopplungsschaltung als Grundstufe
 9 Erweiterte Sechsfach-Kaskadenschaltung
 10 Sechsfach-Pyramidenschaltung
 11 Erweiterte Sechsfach-Pyramidenschaltung
 12 Doppelwirkende Sechsfach-Kaskadenschaltung (zwei Dreifachschaltungen)
 13 Doppelwirkende erweiterte Sechsfach-Kaskadenschaltung
 14 Doppelwirkende Sechsfach-Pyramidenschaltung
 15 Doppelwirkende erweiterte Sechsfach-Pyramidenschaltung
 (Ist nichts anderes vermerkt, haben die Kondensatoren eine

- (Ist nichts anderes vermerkt, haben die Kondensatoren eine Kapazität von $2 \mu F$)
 - Gleichstroms aus Wechselstrom. Bull. SEV Bd. 34(1943), Nr. 14, S. 386...399.
- [8] Mehlhorn, Hans: Ueber die Greinacher-Ventilvervielfachungsschaltung und ihre Verwendung zur Erzeugung hoher konstanter Gleichspannung. Wiss. Veröff". Siemens-Werke Bd. 21(1942), Nr. 2, S. 1...46.
- [9] Bouwers, A.: Elektrische Höchstspannungen. Berlin, 1939.
- Schenkel, M.: Eine neue Schaltung für die Erzeugung hoher Gleichspannungen. Elektrotechn. Z. Bd. 40(1919),
- Nr. 28, S. 333...334.
 [11] Hofer, W.: Der Selen-Trockengleichrichter und seine Anwendung. Schweiz. techn. Z. Bd. 12(1937), Nr. 35, S. 521...526, u. Nr. 36, S. 537...544.
- [12] Greinacher, H.: Der Kaskadengenerator als stabilisierte Spannungsquelle. Helv. phys. acta Bd. 16(1943), Nr. 3, S. 265...276.

Adresse des Autors: Dr. Th. Gerber, Stämpflistrasse 4, Bern.