Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 38 (1947)

Heft: 13

Artikel: Empfindlichkeitssteigerung von Verstärker- und Mischstufen im Meter-

und Dezimeterwellengebiet

Autor: Strutt, M.J.O.

DOI: https://doi.org/10.5169/seals-1056743

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ASSOCIATION SUISSE DES ÉLECTRICIENS

BULLETIN

RÉDACTION:

Secrétariat de l'Association Suisse des Electriciens Zurich 8, Seefeldstrasse 301 ADMINISTRATION:

Zurich, Stauffacherquai 36 * Téléphone 23 77 44 Chèques postaux VIII 8481

Reproduction interdite sans l'assentiment de la rédaction et sans indication des sources

38e Année

Nº 13

Samedi, 28 Juin 1947

Empfindlichkeitssteigerung von Verstärker- und Mischstufen im Meterund Dezimeterwellengebiet.¹)

Von M. J. O. Strutt, Eindhoven

621,396.645.31.029.6

Die maximale Leistungsverstärkung von Verstärker- und Mischstufen bei Dezimeterwellengeräten wird für schmale und breite Frequenzbänder abgeleitet. Nach der Entwicklung der Theorie zur Berechnung der Störfaktoren, werden 3 Regeln aufgestellt, nach welchen durch geeignete Rückkopplungsschaltungen die Störfaktoren herabgesetzt und in Idealfällen sogar eliminiert werden können. Es werden eine Anzahl Anwendungen besprochen, und es zeigt sich, dass die günstigsten Ergebnisse bei Gitterbasis-Verstärkern und bei Mehrgittermischstufen (Herabsetzung des Störfaktors um bis 15 db) zu erreichen sind.

L'amplification maximum d'étages amplificateurs et d'étages changeurs de fréquence est calculée pour des intervalles de fréquence étroits et larges. Après un exposé de la théorie des facteurs perturbateurs on obtient trois propositions, par l'application desquelles les facteurs perturbateurs peuvent êtres réduits et même éliminés dans des cas idéaux. Quelques applications pratiques de ces propositions sont traitées, montrant que les résultats les plus avantageux correspondent à des étages grilles et à des étages changeurs de fréquence multigrilles (réduction des facteurs perturbateurs d'environ 15 db).

1. Allgemeines zur Leistungsverstärkung bei Verstärker- und Mischstufen

Verstärker- und Mischstufen können als Vierpole aufgefasst werden. Bei Verstärkern sind Eingangsund Ausgangsfrequenz gleich, bei Mischstufen sind sie verschieden. Der Begriff der Leistungsverstärkung kann am einfachsten anhand der verfügbaren Leistung erläutert werden. Es ist dies die Maximalleistung, welche dem Klemmenpaar eines Zweipols entnommen werden kann, der unter den üblichen Voraussetzungen der Linearität aus einer Spannungsquelle (EMK) in Reihe geschaltet mit einer Impedanz $Z_1 = R_1 + jX_1$ $(j = \sqrt{-1})$ besteht. Die verfügbare Leistung ist $P_1 = U_1^2/4 R_1$, wo U_1 die Quellenspannung bedeutet. Wenn ein solcher Zweipol an die Eingangsklemmen eines Vierpols angeschlossen wird (Fig. 1), so ist P_1 die verfügbare Eingangsleistung. Die verfügbare Ausgangsleistung sei P₂. Dann ist die Leistungsverstärkung des Vierpols $v = P_2/P_1$. Durch diese Definition hängt der Verstärkungsfaktor v also nicht von der äusseren Impedanz ab, welche am Ausgang des Vierpols angeschlossen wird. Da P_1 und P_2 beide von der Impedanz Z_1 abhängig sind, die am Eingang des Vierpols liegt, ist auch v von Z_1 abhängig.

Wie dem Namen Vierpol entnommen werden kann, sind die Eigenschaften eines Vierpols durch vier (im allgemeinen komplexe) Konstanten darstellbar. Diese Werte können als Admittanzen an-

$$I_{2} = A U_{1} - B U_{2}$$

$$I_{1} = D U_{1} - E U_{2}$$
(1)

Falls die Rückwirkungsadmittanz E zum Verschwinden gebracht wird (z.B. durch Neutralisierung oder durch Verwendung geeigneter Schirm-

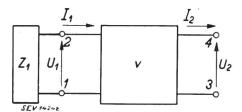


Fig. 1 Vierpol mit Angaben der positiven Richtung der Ströme und Spannungen

 I_1 , I_2 Ein- und Ausgangsstrom; U_1 , U_2 Ein- und Ausgangsspannung; Z_1 Impedanz der Spannungsquelle; v Verstärkungsfaktor.

elektroden), wird die Eingangsadmittanz D des Vierpols $D = I_1/U_1$ und die Ausgangsadmittanz $B = I_2/U_2$. A ist die Uebertragungsadmittanz.

Die imaginären Anteile von D und B werden meistens durch die Abstimmung der Ein- und Ausgangskreise auf Resonanz eliminiert. Somit kann in diesen Fällen mit reellen Leitwerten D_r und B_r gerechnet werden und man erhält

$$v = \frac{R_1 |A|^2}{B_r} \left(\frac{1}{R_1 D_r + 1}\right)^2 \tag{2}$$

Der Maximalwert von v entsteht, wenn $R_1 D_r = 1$ ist (Anpassung am Eingang). Dann wird:

genommen werden. Die Vierpolgleichungen erhalten dann die Form

¹⁾ Der wesentliche Inhalt dieser Arbeit entspricht demjenigen eines Vortrages, den der Verfasser am 22. Februar 1947 an der Sorbonne in Paris vor der «Société française des Radioélectriciens» gehalten hat.

$$v_{max} = \frac{|A|^2}{4B_r D_r} \tag{3}$$

2. Maximale Leistungsverstärkung von Dezimeterwellenverstärkern

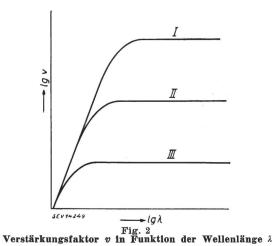
Die Leistungsverstärkung v soll für eine Kreisfrequenz ω und eine Bandbreite $\Delta \omega$ betrachtet werden. Zunächst ist die Abhängigkeit der Admittanzen A, B_r und D_r von ω wichtig. Die Elektronenröhren sollen in der sogenannten Kathodenbasisschaltung verwendet werden, d. h. die Kathode soll an je einer Ein- und Ausgangsklemme des Vierpols liegen. Die reellen Teile B_{Rr} und D_{Rr} der Röhrenadmittanzen sind nach theoretischen und experimentellen Ergebnissen im praktisch wichtigen Frequenzbereich proportional zu ω^2 , während $|A_R|$ nahezu frequenzunabhängig ist [15] ²). Falls $\Delta \omega$ genügend klein im Vergleich zu ω ist, liegen annähernd gleiche Verhältnisse wie bei Uebertragung einer einzigen Frequenz vor und es können |A|, B_r und D_r der Gl. (3) durch $|A_R|$, B_{Rr} und D_{Rr} ersetzt werden. Folglich kann man schreiben:

$$v_{max} = \left(\frac{\omega_G}{\omega}\right)^4 \tag{4}$$

wo ω_G den Wert von ω darstellt, für den $v_{max} = 1$ ist. Diese Grenzkreisfrequenz ω_G kann experimentell dadurch bestimmt werden, dass sie die höchste Kreisfrequenz darstellt, für welche die Stufe durch Rückkopplung noch zum Oszillieren gebracht werden kann. Wenn sie bestimmt worden ist, ergibt sich die maximale Leistungsverstärkung v_{max} bei Verwendung der betreffenden Röhre in der Verstärkerstufe nach Gl. (4). Für Pentoden und Tetroden vom Miniaturtyp (Knopfröhren) hat $f_{G_{-}}(=\omega_{G}/2\pi)$ oft die Grössenordnung von 300 MHz.

Im Falle einer Bandbreite $\Delta \omega$, gemessen zwischen den beiden Halbleistungspunkten der Resonanzkurve, ergibt sich eine Resonanzimpedanz Z_{res} eines Schwingungsgebildes (z. B. Hohlraum) von

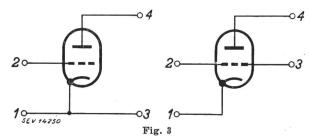
$$Z_{res} = \frac{1}{\Delta \omega C}$$
 (5)


wo C die Gesamtparallelkapazität bei der Abstimmkreisfrequenz ω darstellt. Im günstigsten Falle ist C am Stufeneingang etwas grösser als die Röhreneingangskapazität c_g und am Stufenausgang etwas grösser als die Röhrenausgangskapazität c_a . Man kann nun drei Fälle unterscheiden:

Der 1. Fall tritt bei schmalen Frequenzbändern auf und wurde in Gl. (4) behandelt. Der 3. Fall gehört zu sehr breiten Frequenzbändern. Der 2. Fall nimmt eine Zwischenstellung ein und kommt namentlich dadurch zustande, dass B_R meistens viel kleiner als D_R ist (z. B. 10...100mal kleiner). Die maximale Leistungsverstärkung im 2. und im 3. Fall wird durch die Formeln bestimmt:

2. Fall:
$$v_{max} = \left(\frac{\omega_{\theta}}{\omega}\right)^{2}$$
 (6)
3. Fall: $v_{max} = \left(\frac{\Delta \omega_{\theta}}{\Delta \omega}\right)^{2}$ (7)

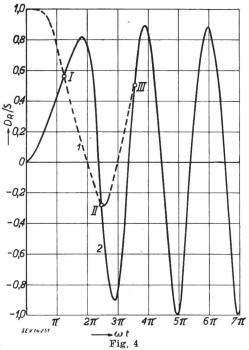
3. Fall:
$$v_{max} = \left(\frac{\Delta \omega_{\theta}}{\Delta \omega}\right)^2$$
 (7)


wo ω_G und $\Delta\omega_G$ wieder jene Werte von ω bezw. $\varDelta \omega$ darstellen, für die $v_{max}=1$ wird, also bei günstiger Rückkopplung das Oszillieren aufhört. Wenn $\Delta\omega$ festliegt und ω wächst, durchläuft v_{max} die drei Fälle in umgekehrter Reihenfolge (von 3 nach 1). Eine Kurvendarstellung von v_{max} als Funktion der Wellenlänge zeigt Fig. 2. Man merke noch, dass

(logarithmische Maßstäbe) Die übertragene Bandbreite ist für Kurve I am kleinsten, für Kurve III am grössten.

die Verstärkung einer Stufe stets durch Rückkopplung vom Ausgang zum Eingang gesteigert werden kann, solånge v_{max} ohne Rückwirkung grösser als 1 ist, d. h. die Stufe unterhalb der Grenzkreisfrequenz arbeitet (daher die prinzipielle Bedeutung dieser

Bei den uns interessierenden Wellenlängen sind Trioden in den letzten Jahren öfters in der sogenannten Gitterbasisschaltung (Fig. 3) verwendet worden [2, 10]. Wenn der Verstärkungsfaktor der



Schaltungsmethoden von Röhren in Vierpolen Links: Kathodenbasisschaltung; Rechts: Gitterbasisschaltung.

betreffenden Triode gross gegenüber 1 ist (z. B. 20 oder mehr), sind die Werte von A_R und B_R nahezu die gleichen wie für die gleiche Röhre in Kathodenbasisschaltung. Dagegen ist der reelle Teil D_{Rr} der Eingangsadmittanz in beiden Fällen stark verschie-

²⁾ siehe Literaturverzeichnis am Schluss.

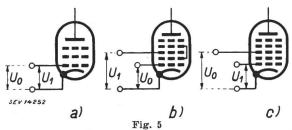
den, wie aus Fig. 4 hervorgeht. Bei dieser Fig. wurde angenommen, dass D_R ausschliesslich von der Elektronenbewegung im Vakuum herrührt. Folglich ist für schmale Frequenzbänder (1. Fall) v_{max} bei niedrigen Frequenzen viel geringer für die Gitterals für die Kathodenbasisschaltung. Oberhalb der Kreisfrequenz, die dem Punkte I der Fig. 4 ent-

Verstärkungselgenschaften der Gitter- und der Kathodenbasisschaltung

 ω abgestimmte Kreisfrequenz des Verstärkers; t Elektronenlaufzeit Kathode-Gitter; D_R Eingangsadmittanz der Röhre; S Steilheit der Röhre (für niedrige Hochfrequenzen); t Kurve für Gitterbasisschaltung; t Kurve für Kathodenbasisschaltung; t Kurve

spricht, liegen diese Verhältnisse umgekehrt bis zum Punkt II. Zwischen II und III ist v_{max} wieder kleiner für die Gitter- als für die Kathodenbasisschaltung, ... $\omega t = \frac{5}{4} \pi \text{ oder:}$ $f = \frac{12,5 \sqrt{U_p}}{d}$ schaltung, usw. Für den Punkt I in Fig. 4 ist etwa

$$\omega t = \frac{5}{4} \pi \text{ oder}$$
:

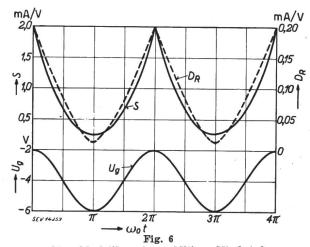

$$f = \frac{12.5 \sqrt{\overline{U_p}}}{d} \tag{8}$$

wo f die entsprechende Frequenz in MHz, U_p die äquivalente Spannung an der Gitterfläche in V und d den effektiven Abstand Kathode-Gitterfläche in cm darstellen. Als Beispiel sei $U_p = 2$ V und d = 0,01 cm. Dann wird f = 1770 MHz. Auch bei Frequenzen unterhalb dem Punkt I der Fig. 4 wird die Gitterbasisschaltung wegen der viel geringeren Rückwirkungsadmittanz (im Verhältnis zum Verstärkungsfaktor) oft verwendet.

3. Betriebsarten der Mischstufen

Es sollen hier drei Betriebsarten der Mischstufen erwähnt werden, bei denen die Verwendung von Trioden und Mehrgitterröhren möglich ist. Bei der additiven Mischung arbeiten Oszillator- und Signalspannung beide zwischen Steuergitter und Kathode

(Fig. 5a). Bei der multiplikativen Mischung werden diese Spannungen verschiedenen, untereinander abgeschirmten Gittern zugeführt. In diesem Fall gibt es zwei Möglichkeiten (Fig. 5b und c). Da die Ausgangsfrequenz meistens viel niedriger ist als die Eingangsfrequenz, kann die Rückwirkung bei Mischstufen oft vernachlässigt werden. Gitterbasisschal-



Einige Betriebsarten für Mischstufen a) additive Mischung; b) und c) multiplikative Mischung; U_1 Eingangsspannung; U_0 Oszillatorspannung.

tungen weisen daher meistens wenig Vorteile bezüglich Leistungsgewinn auf, ausser bei höchsten Eingangsfrequenzen, wo der Eingangsleitwert günstiger als bei Kathodenbasisschaltungen sein kann (Fig. 4).

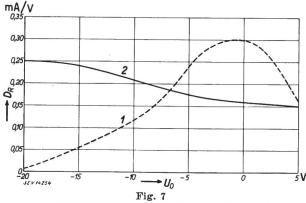
a) Additive Mischung

Bei der additiven Mischung wird die Steuergitterspannung durch die Oszillatorwirkung zwischen einem Wert entsprechend der Maximalsteilheit (bei Vermeidung von Gitterstrom) und einem stark negativen Wert entsprechend der Steilheit Null hin und her geworfen. Diese Gitterspannungsschwankung findet mit der Kreisfrequenz ω_o des Oszillators statt (Fig. 6). Die entstehende Steilheit S in bezug

Charakteristiken einer additiven Mischstufe $U_{\mathfrak{g}}$ Eingangsgitterspannung; S Steilheit; $D_{\mathfrak{R}}$ Eingangsleitwert der Mischröhre; $\omega_{\mathfrak{g}}$ Oszillatorkreisfrequenz; t Zeit.

auf Signale der Eingangsfrequenz kann als Funktion der Zeit in harmonische Anteile zerlegt werden

$$S = S_0 + 2 S_1 \cos \omega_0 t + 2 S_2 \cos 2 \omega_0 t + \dots$$
 (9)


Im vorliegenden Eingangsfrequenzbereich sind die Werte S_0 , S_1 , S_2 usw. im allgemeinen komplex. Wenn eine Signalspannung $U_{_1} \equiv |U_{_1}| \, e^{j \, \omega_1 \, \hat{t}}$ an den Eingang der Mischröhre gelegt wird, entsteht ein Anodenstrom, der durch Multiplikation dieser Spannung mit S der Gl. (9) erhalten wird. Der Anodenstromanteil der Kreisfrequenz $\omega_o - \omega_1$ hat die Amplitude $|S_1 U_1|$. Aus diesem Grunde wird S_1 als Ueberlagerungssteilheit bezeichnet. Die gewünschte Zwischenkreisfrequenz ω_2 am Ausgang der Mischstufe ist entweder $\omega_1 - \omega_0$ oder $\omega_0 - \omega_1$. Es soll zunächst der absolute Betrag von S_1 im Vergleich zum Betrage der Maximalsteilheit beim Betrieb der gleichen Röhre als Verstärker abgeschätzt werden (Kurve II der Fig.6). Dieses Verhältnis hängt von der Gestalt der Steilheitskurve als Funktion der Zeit ab, welche in Gl. (9) zerlegt wurde. Falls die Oszillatorspannung günstig gewählt wird, beträgt dieses Verhältnis in manchen Fällen etwa 1:3 bis 1:4.

Ausser der Steilheit ändert sich infolge der Wirkung der Oszillatorspannung auch der Eingangsleitwert D_R als Funktion der Zeit. Ein Beispiel zeigt Fig. 6. Da keine Phasenbeziehung zwischen der Eingangs- und der Oszillatorspannung besteht, wird der effektive Leitwert für die Eingangsfrequenz durch zeitliche Mittelwertbildung aus Kurve D_R der Fig. 6 ermittelt. Dieser Wert ist in vielen Fällen etwa 1/3 bis 1/4 des Wertes D_R , welcher der Maximalsteilheit entspricht.

Der Ausgangsleitwert ändert sich als Funktion der Zeit in analoger Weise wie der Eingangsleitwert infolge der Wirkung der Oszillatorspannung. Bei der Ausgangsfrequenz ist wieder der zeitliche Mittelwert der betreffenden Kurve massgebend, da keine Phasenbeziehung zwischen Ausgangsspannung und Oszillatorspannung besteht. Der betreffende Mittelwert beträgt auch hier oft etwa 1/3 bis 1/4 des Wertes, welcher der Maximalsteilheit entspricht. Aus diesen Daten können Schätzungen über die Leistungsverstärkung bei additiver Mischung gemacht werden (siehe Abschnitt 4).

b) Multiplikative Mischung

Bei den multiplikativen Mischröhren nach Figur 5 b und c verhalten sich Steilheit und Ausgangsleitwert ganz analog wie bei der additiven Mischung. Bei Röhren nach Fig. 5 b ist der Eingangsleitwert für die vorliegenden Eingangsfrequenzen meistens negativ (Fig. 7). Der massgebende Mittelwert ist

Charakteristiken multiplikativer Mischstufen Uo Vorspannung des Oszillatorgitters; Dr. Eingangsleitwert der Zweigitter-Mischröhren; 1 Kurve für Mischstufe vom Typus der Fig. 5b (Dr. ist negativ); 2 Kurve für Mischstufe vom Typus der Fig. 5c.

folglich ebenfalls negativ und wächst im Betrag proportional mit ω^2 . Bei Röhren nach Fig. 5 c wächst der Eingangsleitwert mit zunehmender negativer Spannung des Oszillatorgitters. Dieses Verhalten wird namentlich von Pendelelektronen verursacht, welche vor dem Oszillatorgitter ihre Bewegungsrichtung umkehren. Der effektive Eingangsleitwert wird dadurch grösser als der zur Maximalsteilheit gehörende Wert. Diese Ueberlegungen gestatten für die vorliegenden Röhren ebenfalls Schätzungen über die Leistungsverstärkung [14].

4. Leistungsverstärkung von Mischstufen

Da die Ausgangsfrequenz fast immer viel niedriger ist als die Eingangsfrequenz (z.B. 1/10 oder noch kleiner), ist das Verhältnis des Ausgangsleitwertes zum Eingangsleitwert bei Mischstufen noch kleiner als bei Verstärkerstufen (z. B. 1/100 oder $^{1}/_{1000}$). Infolgedessen tritt der erste in Abschnitt 2 genannte Fall: $D_{R} \gg \Delta \omega \ c_{g}$ und $B_{R} \gg \Delta \omega \ c_{a}$ bei Mischstufen meistens nicht auf, und man kann sich auf die beiden übrigen Fälle beschränken. Die Symbole A_R , D_R und B_R haben auch bei Mischstufen die Bedeutung: komplexe Steilheit, reeller Eingangsleitwert und reeller Ausgangsleitwert (unter optimalen Betriebsbedingungen als Verstärkerstufe, wie in Abschnitt 2 erwähnt wurde). Man muss berücksichtigen, dass sich A_R und D_R auf die Eingangskreisfrequenz ω_1 und B_R auf die Ausgangskreisfrequenz ω_2 beziehen. Der Diskussion im Abschnitt 3 kann entnommen werden, dass die Werte von A und D_r , welche in Gl. (3) vorkommen, zu ersetzen, sind durch $|A| = \frac{1}{4} |A_R|$ und $D_r = \frac{1}{4} D_R$ für Mischstufen nach Abb. 5 a und durch $|A| = \frac{1}{4}$ $|A_R|$ und $D_r = 2 D_R$ für Mischstufen nach Fig. 5 c. Diese Faktoren $\frac{1}{4}$ und 2 haben natürlich nicht unter allen Betriebsbedingungen Gültigkeit. Sie stellen

aber Mittelwerte dar, welche oft bei Mischstufen unter optimalen Bedingungen auftreten. Setzt man diese Werte für den 2. Fall ein, so erhält man als maximale Leistungsverstärkung:

bei Mischstufen nach Fig. 5
$$a$$
:
$$v_{max} = \frac{|A_R|^2}{16 D_R \Delta \omega c_a} = \left(\frac{\omega_{G1}}{\omega_1}\right)^2$$
bei Mischstufen nach Fig. 5 c :
$$v_{max} = \frac{|A_R|^2}{128 D_R \Delta \omega c_a} = \left(\frac{\omega_{G2}}{\omega_1}\right)^2$$
(10)

Im allgemeinen ist der Wert ω_{G_1} viel höher als ω_{G_2} . Im 3. Fall erhält man für alle drei Typen von Fig. 5:

$$v_{max} = \frac{|A_R|^2}{64 (\Delta \omega)^2 c_g c_a}$$
 (11)

Für Stufen nach Fig. 5 b ist allein diese Formel massgebend, da D_R negativ ist. Der Wert D_r ist in diesem Falle gleich $\varDelta\omega \ c_g$. Da $\varDelta\omega \ c_g$ nach Voraussetzung $\ll D_R$ ist (für Stufen nach Fig. 5 c im 2. Falle), kann gefolgert werden, dass diese Stufen eine kleinere Leistungsverstärkung aufweisen als Stufen nach Fig. 5 b. Im 3. Falle tritt zwischen Stufen nach Fig. 5 b und 5 c kein beträchtlicher Unterschied auf.

Allgemein ist in diesem Falle der Breitbandstufen die Gütezahl einer Röhre gleich $\frac{|A_R|^2}{c_g\,c_a}$. In Verstärkerstufen mit sehr geringer Bandbreite ist die Gütezahl $\frac{|A_R|^2}{D_R\,B_R}$, während im zwischenliegenden Falle sich die entsprechende Zahl nach der Formel $\frac{|A_R|^2}{D_R\,c_a}$ berechnet.

5. Störfaktoren

Die in Abschnitt 1 gegebene Definition für die verfügbare Leistung ist auch auf Störleistungen anwendbar, insbesondere auf solche, welche von spontanen Schwankungserscheinungen herrühren. Diese sind in den meisten Fällen gleichmässig über ein vorgegebenes Frequenzintervall Δf verteilt. Nimmt man einfachheitshalber an, dass die Verstärkung v des vorliegenden Vierpols im ganzen Frequenzband den gleichen Wert hat und ausserhalb dieses Bandes gleich Null ist, so erhält man einen Störfaktor [3, 4, 5, 11, 13]

$$N_s = \frac{P_{s2}}{v K T \Delta f} \tag{12}$$

Es bedeuten: P_{s2} die Störausgangsleistung, die dem Frequenzband Δf entspricht, K die Boltzmannsche Konstante 1,38·10-23 Joule pro Grad Kelvin und T die Zimmertemperatur in Grad Kelvin (etwa 291 Grad).

In einigen Fällen wird N_s in db ausgedrückt und berechnet sich zu $10~\lg_{10}~N_s$.

Jede Signalquelle erzeugt ausser der Nutz- auch Störleistung. Der Wert dieser Störleistung hängt vom Bau der Signalquelle ab und kann innerhalb des Frequenzbandes Δf stets durch den Ausdruck $K\,T_1\Delta f$ dargestellt werden, wo T_1 die absolute Temperatur des Ausgangswiderstandes der Quelle darstellt. An den Klemmen eines passiven ohmschen Widerstandes mit der absoluten Temperatur T_1 beträgt die verfügbare Störleistung infolge spontaner Schwankungen $K\,T_1\,\Delta f$. Am Vierpolausgang entsteht eine verfügbare Störleistung $v\,K\,T_1\,\Delta f$ und der Störfaktor $N_{\rm S2}$ des Vierpols beträgt

$$N_{S2} = \frac{P_{s2} - v K T_1 \Delta f}{v K T \Delta f} = N_s - \frac{T_1}{T}$$
 (13)

Wendet man diese Gleichung auf einen einfachen Vierpol an, der aus einer einzigen Querimpedanz Z besteht, und nimmt man an, dass sowohl T_1 , als auch die Temperatur von Z gleich der Zimmertemperatur T sind, ergibt sich

$$v = \frac{1}{1 + \frac{R R_1}{|Z|^2}}$$

$$N_s = 1 + \frac{1 + \frac{R R_1}{|Z|^2}}{1 + \frac{|Z|^2}{R R_1}}$$
 (14)

wo R den reellen Teil von Z und R_1 den reellen inneren Widerstand der Signalquelle darstellen. Falls die Impedanz Z zu einem Resonanzkreis oder zu einem Hohlraum gehört, entspricht der Maximalwert von |Z| der Abstimmlage, wo $R \approx |Z_{res}|$ ist. Bei dieser Resonanzfrequenz erreicht N_s nach Gl. (14) ein Minimum und v ein Maximum im Vergleich zu benachbarten Frequenzen. Falls Δf im Vergleich zur Halbwertsbreite, welche zur Resonanzkurve von |Z| gehört, klein ist, kann das Intervall Δf sowohl auf die Resonanzfrequenz als auch auf eine andere Frequenz gelegt werden. Im ersten Fall erreicht N_s offenbar den kleinsten Wert.

Es soll nun der Störfaktor von Verstärker- oder Mischstufen bestimmt werden, in welchen Ein- oder Mehrgitterröhren verwendet werden. In solchen Stufen, bei welchen der Ausgang kurzgeschlossen ist, kann für das mittlere Quadrat des Störstromes I_s geschrieben werden

$$I_s^2 = 4 K T_R |S_0| \Delta f \tag{15}$$

 S_{0} ist die *mittlere* Steilheit nach Gl. (9) und T_{R} die absolute Temperatur der verwendeten Röhre. Bei Trioden liegt der Wert von T_{R} in der Grössenordnung der Kathodentemperatur. Bei Mehrgitterröhren ist er höher infolge der sogenannten spontanen Stromverteilungsschwankungen der Elektronen, welche durch die Maschen positiver Gitter hindurchfliegen. Die verfügbare Störleistung am Röhrenausgang wird aus Gl. (15) durch Division mit $4\ B_{r}$, dem effektiven Ausgangsleitwert, erhalten. Nach Gl. (12) ergibt sich für die Röhre ein Störfaktor

$$N_R = \frac{T_R}{T} \frac{|S_0|}{B_r v} \tag{16}$$

Für die in einer Stufe verwendete Röhre ist der Stufenstörfaktor wegen der zusätzlichen Störungen in der Stufe und der gegenseitigen Beeinflussung von Eingangskreis und Röhre grösser als N_R [7, 11]. Im vorliegenden Fall muss Gl. (2) für die Berechnung von v verwendet werden. Unter der Annahme, dass $R_1 D_r = 1$ ist, wird

$$N_R = \frac{T_R}{T} - \frac{4 |S_0|}{R_1 |A|^2} \tag{17}$$

Der Wert |A| ist gleich $|S_0|$ bei Verstärkerstufen und gleich $|S_1|$ bei Mischstufen. Da $|S_1| < |S_0|$ ist, wird bei Verwendung vergleichbarer Röhren N_R für Mischstufen grösser als für Verstärkerstufen sein. Unter günstigen Betriebsbedingungen in bezug auf die Oszillatorspannung ist der Unterschied jedoch nicht gross.

6. Beeinflussung der Störfaktoren

Fig. 8 zeigt den Vierpol I, der an seinem Ausgang die verfügbare Störleistung P_{s2} und die verfügbare

Nutzleistung P_2 aufweist, während der Verstärkungsfaktor v ist. Denkt man sich einen Zweipol an den Vierpoleingang angeschlossen, der die verfügbare Störleistung $P_{\rm s2}/v$ und die verfügbare Nutzleistung $P_{\rm 2}/v$ aufweist, so braucht der Vierpol keine Störleistung mehr zu erzeugen und die verfügbaren Aus-

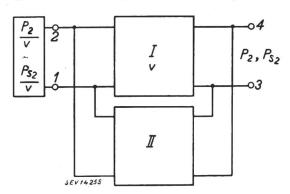


Fig. 8 Rückkopplungsschaltung

I Vierpol mit Verstärkungsfaktor v, der verfügbaren Ausgangsnutzleistung P_2 und der verfügbaren Ausgangsstörleistung P_{52} . II Vierpol als Rückkopplungskreis geschaltet.

gangsleistungen bleiben wie angegeben. Schaltet man nun einen zweiten Vierpol II zwischen die Ausgangsklemmen 3, 4 und die Eingangsklemmen 1, 2 des Vierpols I, so wird die Gesamtverstärkung geändert. Der entstandene Kreis stellt eine bestimmte Rückkopplung zwischen Ausgang und Eingang des Vierpols I dar. Nimmt man an, dass der Vierpol II keine beachtenswerten Störquellen enthält — diese Bedingung ist z.B. erfüllt, falls II nur passive Reaktanzen enthält —, so ist das Verhältnis der verfügbaren Nutzleistung zur verfügbaren Störleistung an den Klemmen 3, 4 gleich wie ohne den Vierpol II. Folglich gilt die

Regel 1: Wenn ein Vierpol derart rückgekoppelt wird, dass die Wirkung der Störquellen des Rückkopplungskreises vernachlässigbar ist, so bleibt der Störfaktor gleich, wie wenn keine Rückkopplung stattfindet.

Es soll nun ein 2q-Pol betrachtet werden, der ein Paar Eingangsklemmen und q-l Paare Ausgangsklemmen aufweist. Diese Vorrichtung kann auch als Zusammenstellung von q –1 getrennten Vierpolen aufgefasst werden, deren Eingangsklemmen parallelgeschaltet sind [17]. Jeder dieser Vierpole hat seinen eigenen Störfaktor. An demjenigen Vierpol, dessen Störfaktor am niedrigsten ist, soll eine Rückkopplung in der eben beschriebenen Art angebracht werden. Diese Rückkopplung soll eine sehr hohe Verstärkung am betreffenden Vierpol bewirken. Eine solche Rückkopplung kann als «nahezu kritisch» bezeichnet werden, wobei «kritische» Rückkopplung einem unendlich hohen Verstärkungsfaktor entsprechen würde, der ausserhalb der Grenzen der «linearen» Theorie fällt. Durch eine solche nahezu kritische Rückkopplung wird die verfügbare Störleistung des Vierpols am Ausgang wie am Eingang derart gesteigert, dass die Störleistungen, welche von anderen Quellen herrühren, im Verhältnis dazu vernachlässigbar sind. Das gleiche gilt in bezug auf die Nutzleistung. Folglich werden die Verhältnisse von verfügbarer Stör- zur Nutzleistung am Ausgang der übrigen Vierpole und damit auch die Störfaktoren nahezu gleich den Werten des eben betrachteten Vierpols, und man erhält

Regel 2: Durch Anwendung nahezu kritischer Rückkopplung vom Ausgangsklemmenpaar mit dem niedrigsten Störfaktor eines 2q-Poles zum Eingangsklemmenpaar können die Störfaktoren der übrigen Ausgangsklemmenpaare nahezu gleich diesem niedrigsten gemacht werden.

An dieser Stelle soll der Begriff der Korrelation verschiedener Störungen eingeführt werden. Störungen, welche von gleichen physikalischen Quellen herrühren und zu dem gleichen Klemmenpaar gelangen, sind unter sich vollkommen korreliert. Sind ihre verfügbaren Störleistungen an dem genannten Klemmenpaar gleich P' und P", so ergibt sich die gesamte verfügbare Störleistung aus P' + P" ± $2\sqrt{P'P''}$. Wegen dem Minuszeichen dieser Formel ergibt sich für P' == P" die Möglichkeit des gegenseitigen Auslöschens zweier Störungen, wie noch gezeigt werden wird. Störleistungen, welche physikalisch vollkommen verschiedenen Quellen entstammen, sind unkorreliert. In diesem Falle wird die gesamte verfügbare Störleistung gleich der Summe P' + P''.

Bei der Ableitung der Regel 2 wurde keine Korrelation der Störleistungen an den verschiedenen Ausgangsklemmenpaaren des 2q-Poles vorausgesetzt. In einigen praktisch wichtigen Fällen ist jedoch eine solche Korrelation vorhanden. Bei vollkommener Korrelation der Störleistungen an zwei verschiedenen Ausgangsklemmenpaaren kann durch eine geeignete Rückkopplung von einem dieser Klemmenpaare zum Eingang am anderen Klemmenpaar eine zusätzliche Störleistung erzeugt werden, welche genau gegenphasig zur ursprünglichen Störleistung steht und ausserdem von gleichem Betrage ist. Dadurch wird die Störleistung am betreffenden Ausgang vollkommen gelöscht. Wenn weiter vorausgesetzt wird, dass durch die Rückkopplung die Nutzleistung am betrachteten Ausgang nicht ebenfalls gelöscht wird, kann der entsprechende Störfaktor auf Null herabgesetzt werden. Man erhält somit

Regel 3: Wenn zwischen den verfügbaren Störleistungen zweier Ausgangsklemmenpaare eines 2q-Poles vollkommene Korrelation besteht, kann von einem dieser Klemmenpaare eine derartige Rückkopplung zum Eingang angewandt werden, dass die Störleistung am andern Ausgangsklemmenpaar ausgelöscht wird. Falls bei diesem Vorgehen die verfügbare Nutzleistung am zweiten Klemmenpaar nicht gleichfalls gelöscht wird, wird der entsprechende Störfaktor gleich Null.

7. Herabsetzung des Störfaktors in Verstärkerstufen

Wie bereits im Zusammenhang mit Gl. (15) erwähnt wurde, treten in Schirmgitterröhren infolge der Möglichkeit, dass Elektronen auf dem Schirmgitter oder auf der Anode landen, spontane Schwankungen auf. Eine solche Schirmgitterröhre ist schematisch in Fig. 9 dargestellt. Es sollen hier nur die

genannten Stromverteilungsschwankungen betrachtet, alle sonstigen Schwankungen aber ausser Acht gelassen werden. Wie in Fig. 9 angegeben, kann die Röhre als Sechspol mit dem Eingangsklemmenpaar 1, 2 und den beiden Ausgangsklemmenpaaren 3, 4 und 5, 6 betrachtet werden. Durch die erwähnte Beschränkung auf eine einzige Art der Schwankungs-

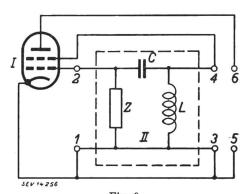


Fig. 9 Rückgekoppelte Tetroden-Verstärkerstufe in Kathodenbasisschaltung

I Tetrode als Sechspol geschaltet; 1, 2 Eingangsklemmen;
 3, 4 und 5, 6 Ausgangsklemmen; II Vierpol als Rückkopplungskreis;
 Z Impedanz;
 C Kapazität;
 L Induktivität.

störungen sind die verfügbaren Störleistungen an beiden Ausgangsklemmenpaaren vollkommen korreliert. Folglich kommt die Regel 3 zur Anwendung, wonach durch geeignete Rückkopplung vom Klemmenpaar 3, 4 zum Eingang 1, 2 am Klemmenpaar 5, 6 eine Löschung der verfügbaren Störleistung stattfinden kann. In Fig. 9 ist ein Vierpol II angegeben worden, welcher eine Induktivität L, eine Kapazität C und eine Impedanz Z enthält. Durch Anschluss dieses Vierpoles zwischen den Klemmenpaaren 3, 4 und 1, 2 kann die Entstörung am Klemmenpaar 5, 6 erzielt werden, falls die Werte von C, L und Z im Hinblick auf die Röhrenadmittanzen richtig gewählt werden. Weiter kann gezeigt werden, dass durch diese Massnahmen der Verstärkungsfaktor von 1, 2 nach 5, 6 nicht gleichzeitig verschwindet. Folglich ergibt sich am Ausgang 5, 6 ein Störfaktor Null. Dass der Verstärkungsfaktor nicht gleichzeitig Null wird, hängt eng mit den Stromverteilungsschwankungen zur Anode Schirmgitter zusammen, die entgegengesetzte Vorzeichen aufweisen, während die Steilheiten von 1, 2 nach 3, 4 und nach 5, 6 Anteile gleichen Vorzeichens enthalten. Diese Herabsetzung des Störfaktors wurde durch Experimente bei 300 MHz vollkommen bestätigt [9].

Eine Anwendung der Regel 3 auf eine Gitterbasis-Verstärkerstufe zeigt Fig. 10. Auch hier gibt es ein Eingangsklemmenpaar 1, 2 und zwei Ausgangsklemmenpaare 3, 4 und 5, 6. Es sollen wieder ausschliesslich die durch spontane Schwankungen der Elektronenbewegung verursachten Störungen betrachtet werden. Im idealen Fall sind die Störungen an den Klemmenpaaren 3, 4 und 5, 6 vollkommen korreliert. Folglich gilt die Regel 3. Die Rückkopplung besteht in einer geeignet gewählten Impedanz Z, die zwischen den Klemmen 3 und 4 angeschlossen ist (Fig. 10). Durch diese Rückkopplung können die Triodenschwankungen an den Ausgangsklemmen 5, 6 auf Null herabgedrückt werden, während im allgemeinen die Verstärkung von 1, 2 nach 5, 6 nicht gleich Null wird. Folglich kann der Störfaktor der Triode so weit herabgesetzt werden, bis dessen Bei-

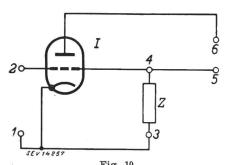
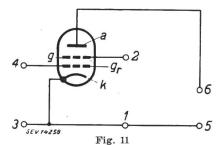



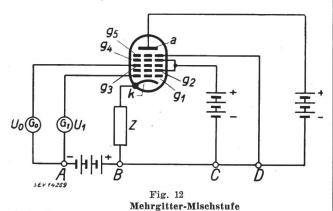
Fig. 10 Rückgekoppelte Trioden-Verstärkerstufe in Gitterbasisschaltung

I Triode als Sechspol geschaltet; 1, 2 Eingangsklemmen; 3, 4 und 5, 6 Ausgangsklemmen; Z als Rückkopplung wirkende Impedanz.

trag in der Verstärkerstufe unwesentlich wird. Auch für diesen Fall liegen befriedigende experimentelle Bestätigungen bei etwa 300 MHz vor [9]. Bei diesen Messungen wurde eine Gitterbasisschaltung verwendet. Die Regel 3 kann aber auch auf die Kathodenbasisschaltung angewandt werden, indem in Fig. 10 Kathode und Gitter vertauscht, die Kathode mit 2, 4, 5 und das Gitter mit 1 und 3 verbunden werden [16].

Als Beispiel, in welchem die Regel 3 nicht zu einer nützlichen Schaltung führt, sei die Raumladungsgitterröhre der Fig. 11 erwähnt. Die Elek-

Schaltung mit Raumladungsgitterröhre k Kathode; g. Raumladungsgitter (mit positiver Vorspannung); g Steuergitter (mit negativer Vorspannung); a Anode; 1, 2 Eingangsklemmen; 3, 4 und 5, 6 Ausgangsklemmen.


troden sind mit k (Kathode), g_r (Raumladungsgitter mit positiver Vorspannung), g (Steuergitter mit negativer Vorspannung) und a (Anode) bezeichnet. Wenn wieder ausschliesslich Störungen infolge Stromverteilungsschwankungen betrachtet werden, so können diese am Ausgang 5, 6 durch Anwendung einer geeigneten Rückkopplung von 3, 4 nach 1, 2 beseitigt werden. Durch diese Massnahmen wird aber die Verstärkung von 1, 2 nach 5, 6 ebenfalls praktisch auf Null herabgedrückt. Die entstandene Verstärkerstufe wäre somit sinnlos. Dieses Verhalten hängt damit zusammen, dass die Steilheit vom Steuergitter nach dem Raumladungsgitter im wesentlichen gegenphasig zur Steilheit vom Steuergitter nach der Anode ist. Auch die Stromverteilungs-

schwankungen zur Anode und zum Raumladungsgitter sind gegenphasig.

8. Herabsetzung des Störfaktors in Mischstufen

Durch Anwendung der Regel 2 (Abschnitt 6) kann der Störfaktor von Triodenmischstufen herabgedrückt werden. Diese Herabsetzung kann so weit gehen, dass nahezu der Störfaktor einer vergleichbaren Triodenverstärkerstufe unter gleichen Oszillatorbedingungen erreicht wird.

Bei Mehrgittermischstufen können in einigen Fällen noch viel bedeutendere Herabsetzungen des Störfaktors erzielt werden. Als Beispiel betrachte man die in Fig. 12 schematisch gezeichnete Misch-

 G_0 Quelle der Oszillatorspannung U_0 ; G_1 Quelle der Eingangspannung U_1 ; Z Impedanz; k Kathode; $g_1...g_5$ Gitter der Mischröhre; a Anode; A, B, C, D Knotenpunkte der Schaltung.

stufe, welche zum Typus c der Fig. 5 gehört. Die Stromverteilungsschwankungen fliessen in den Leitungen, welche die Gitter g_2 und g_4 mit den Punkten A und C sowie mit der Anode a und dem Gitter g_3 verbinden. In der Leitung, welche die Kathode kmit dem Punkte B verbindet, fliessen diese Stromschwankungen nicht. Als Folge der zwischen dem Punkte A und dem Gitter g_3 wirkenden Oszillatorspannung U_o fliessen beträchtliche Ströme der Ausgangskreisfrequenz ω_2 ausschliesslich in den Leitungen, welche die Gitter g_2 , g_3 und g_4 mit g_5 und mit der Anode a verbinden.. Somit kann nur ein Ausgangsklemmenpaar, das durch Unterbrechung einer dieser Leitungen entstanden ist, eine beträchtliche verfügbare Nutzleistung der Ausgangskreisfrequenz ω_2 aufweisen. Im Gegensatz dazu weist irgendein Klemmenpaar, das durch Unterbrechung irgendeiner Zuleitung einer Elektrode (einschliesslich der Kathode k und der Anode a) entsteht, eine verfügbare Störleistung entsprechend einem Frequenzintervall Δf auf, das in irgendeinem Frequenzband liegen kann. Aber bei Klemmenpaaren in den Leitungen, welche die Gitter g_2 , g_3 und g_4 mit g_5 und a verbinden, ist das Verhältnis der verfügbaren Störleistung zur verfügbaren Nutzleistung bei der Kreisfrequenz ω_1 bedeutend höher als z.B. in der Leitung von knach B. Dies ist eine Folge der Stromverteilungsschwankungen. Es lässt sich ein Sechspol konstruieren, dessen Eingangsklemmen vom Punkt A und vom Gitter g1 gebildet werden, während die Ausgangsklemmenpaare die Kathode k und der Punkt B, sowie eine Unterbrechung der Leitung zwischen

D und a sind. Am ersten Ausgangsklemmenpaar gibt es eine verfügbare Nutzleistung der Kreisfrequenz ω_i , sowie eine verfügbare Störleistung entsprechend einer Bandbreite Af. Diesen verfügbaren Leistungen entspricht ein Störfaktor N_{s_2} am betreffenden Ausgangsklemmenpaar. In analoger Weise kann ein Störfaktor N_{s3} am zweiten Ausgangsklemmenpaar berechnet werden, der zur Kreisfrequenz ω_2 gehört. Aus diesen Ueberlegungen geht hervor dass infolge der Stromverteilungsschwankungen N_{s3} viel höher als N_{s2} ist, in praktischen Fällen z.B. 10...20mal grösser. Da die genannten Schwankungen in N_{s3} überwiegen, gibt es nur eine geringe Korrelation zwischen den Störungen an den beiden Ausgangsklemmenpaaren. Wenn gar keine Korrelation vorausgesetzt wird, kann die Regel 2 von Abschnitt 6 angewandt werden, indem eine geeignete Rückkopplung angebracht wird. Nähert man diese Rückkopplung ihrem kritischen Werte, so kann der Störfaktor N_{s3} nahezu auf den Wert von N_{s2} herabsinken. Auf diese Weise kann in praktischen Fällen eine beträchtliche Herabsetzung des Störfaktors erzielt werden, z. B. bis 15 db. Eine einfache Rückkopplung dieser Art entsteht durch Einschaltung einer geeigneten Impedanz Z in die Leitung zwischen k und B. Diese Impedanz kann aus einem Schwingungskreis oder Hohlraum bestehen, der auf eine etwas höhere Kreisfrequenz als ω_1 abgestimmt ist.

Durch eine solche Rückkopplung wird die Verstärkung bedeutend erhöht und es entsteht die Gefahr der Instabilität und sogar des Selbstschwingens der Schaltung. Durch eine einfache Anwendung der Regel 1 aus Abschnitt 6 kann die gewünschte Stabilität wieder hergestellt werden ohne nennenswerte Aenderung des erreichten niedrigen Ausgangsstörfaktors. Am zweiten Ausgangsklemmenpaar ist auch eine verfügbare Nutzleistung der Kreisfrequenz ω_1 vorhanden. Folglich kann auch eine Rückkopplung von diesem Ausgang zum Eingang eingeführt werden, welche bei der Kreisfrequenz ω_1 arbeitet und den Verstärkungsgrad vermindert. Nach der Regel 1 wird durch diese zusätzliche Rückkopplung der vorher erzielte günstige Störfaktor nicht oder nur wenig verändert. Diese Rückkopplung kann z. B. durch Kapazitäts-Widerstands-Kreise erzielt werden.

Durch Anwendung einer in dieser Weise störfrei gemachten Mischstufe kann eine vorangehende Hochfrequenzstufe, z.B. beim Empfang frequenzmodulierter Wellen, überflüssig werden [1].

Für die besprochenen Mischstufen kann nicht ohne weiteres eine automatische Verstärkungsregelung mittels negativer Gittervorspannung angewandt werden, da hiedurch das richtige Arbeiten der Schaltung gestört würde. Falls eine solche Regelung nicht vermieden werden kann, sollten andere Mittel, z. B. elektromechanische Aenderung von Kopplungskapazitäten, in Betracht gezogen werden.

Literatur

[1] Cohen, R. M., Fortin, R. C., und Morris, C. M.: Miniature tubes for f-m conversion; IRE convention New York 1946. Electronics Bd. 1946, März, S. 107.

[2] Dishal, Milton: Theoretical Gain and Signal-to-Noise Ratio of the Grounded-Grid Amplifier at Ultra-High

- Frequencies. Proc". Inst. Radio Engr". Bd. 32(1944), Nr. 5, S. 276...284.
- [3] Fränz, Kurt: Ueber die Empfindlichkeitsgrenze beim Empfang elektrischer Wellen und ihre Erreichbarkeit. Elektr. Nachr.-Techn. Bd. 16(1939), Nr. 4, S. 92...96.
- [4] Fränz, Kurt: Messung der Empfängerempfindlichkeit bei kurzen elektrischen Wellen. Hochfrequenztechn. u. Elektroakustik Bd. 59(1942), Nr. 4, S. 105...112, u. Nr. 5, S. 143...144.
- [5] Friis, H. T.: Noise Figures of Radio Receivers. Proc". Inst. Radio Engr". Bd. 32(1944), Nr. 7, S. 419...422, u. Nr. 12. S. 729.
- [6] Herold, E. W.: The operation of frequency converters and mixers for superheterodyne reception. Proc". Inst. Radio Engr". Bd. 30(1942), Nr. 2, S. 84...102.
- [7] Herold, E. W., und Malter, L.: Some Aspects of Radio Reception at Ultra-High Frequency. Proc". Inst. Radio Engr". Bd. 31(1943), Nr. 8, S. 423...438; Nr. 9, S. 491... 500, u. Nr. 10, S. 567...581.
- [8] Hill, A. G.: Microwave phenomena and techniques. Radio News Bd. 35(1946), Nr. 3, S. 3...30.
- [9] Kleen, W.: Verstärkung und Empfindlichkeit von UKWund Dezimeter-Empfangsverstärkerröhren. Telefunken-Röhre Bd. 1941, Nr. 23, S. 273...296.
- [10] Kleen, W.: Gittersteuerung, Kathodensteuerung und Kathodenverstärker. Elektr. Nachr.-Techn. Bd. 20(1943), Nr. 2, S. 140...144.
- [11] MacDonald, D. K. C.: A Note on Two Definitions of

- Noise Figure in Radio Receivers. Phil. Mag. Bd. 35 (1944), Nr. 245, S. 386...395.
- [12] North, D. O.: Fluctuations induced in vacuum tube grids at high frequencies. Proc". Inst. Radio Engr". Bd. 29(1941). Nr. 2. S. 49...50.
- Bd. 29(1941), Nr. 2, S. 49...50.
 [13] North, D. O., und Friis, H. T.: Discussion on «Noise figures of radio receivers». Proc". Inst. Radio Engr". Bd. 33(1945), Nr. 2, S. 125...126.
- [14] Strutt, M. J. O.: Die charakteristischen Admittanzen von Mischröhren für Frequenzen bis 70 Megahertz. Elektr. Nachr.-Techn. Bd. 15(1938), Nr. 1, S. 10...17.
- [15] Strutt, M. J. O., und van der Ziel, A.: The causes for the increase of the admittances of modern high-frequency amplifier tubes on short waves. Proc". Inst. Radio Engr". Bd. 26(1938), Nr. 8, S. 1011...1032. Strutt, M. J. O., und van der Ziel, A.: Die Ursachen für die Zunahme der Admittanzen moderner Hochfrequenz-Verstärkerröhren im Kurzwellengebiet. Elektr. Nachr-Techn. Bd. 14(1937), Nr. 9, S. 281...293.
- [16] Strutt, M. J. O., und van der Ziel, A.: Verringerung der Wirkung spontaner Schwankungen in Verstärkern für Meter- und Dezimeterwellen. Physica Bd. 9(1942), Nr. 10, S. 1003...1012, u. Bd. 10(1943), Nr. 10, S. 823...826.
- [17] Van der Ziel, A., und Strutt, M. J. O.: Suppression of spontaneous fluctuations in 2n-terminal amplifiers and networks. Physica Bd. 9(1942), Nr. 6, S. 528...538.

Adresse des Autors:

Dr. M. J. O. Strutt, N. V. Philips' Gloeilampenfabrieken, Eindhoven, Nederland.

Les systèmes de mesures pour l'enregistrement des vibrations des lignes aériennes

Par M. Preiswerk et G. Dassetto, Lausanne

621.315.1.056.3.0014

Ce rapport a été établi sur demande du Sous-comité du Calcul des Lignes et des Vibrations du Comité des Conducteurs Aériens de la CIGRE. Après un aperçu sur les différents systèmes de mesure employés pour l'enregistrement des vibrations, tant en laboratoire que sur les lignes hors tension, et avoir indiqué les cas où ces mesures peuvent présenter un intérêt, on décrit le système le plus convenable de recherches sur les lignes sous tension. Une bibliographie suit.

tungs- und Schwingungsberechnung des Freileitungskomitees der CIGRE verfasst worden. Nach Aufführung der verschiedenen Messmethoden, die für die Registrierung der Schwingungen, sowohl im Prüffeld, als auch auf spannungslosen Freileitungen, angewendet worden sind, und nach Erörterung der Fälle, wo solche Messungen von Nutzen sein können, wird die geeignete Methode für die Untersuchung der unter Spannung stehenden Leitungen beschrieben. Ein Literaturnachweis folgt.

Dieser Bericht ist auf Wunsch des Unterkomitees für Lei-

Introduction

Le premier pas le plus important vers la solution des différents problèmes relatifs aux vibrations a été, sans doute, celui de la constatation, de l'identification, de la mesure et de l'analyse des vibrations elles-mêmes.

La première indication, très ancienne du reste, de l'existence des vibrations sur les lignes électriques a été fournie par le bourdonnement bien connu des lignes de télécommunication.

Plus tard, les vibrations furent cherchées soit en appuyant l'oreille ou une baguette en bois tenue avec les dents au pylône qui vibre aussi, soit par constatation visuelle, surtout dans le cas de conducteurs à fort diamètre, lorsque les vibrations présentent des amplitudes de 1 à 2 cm, avec grandes distances nodales (4 à 8 m).

Ces premières indications, jointes aux phénomènes (ruptures) de fatigue, formèrent le cadre extérieur de l'étude des vibrations.

Dès ce moment, on constata la nécessité d'une étude détaillée de ces phénomènes afin d'aboutir aux moyens convenables pour combattre avantageusement les vibrations. Ces moyens sont désormais bien connus et l'on peut donc se demander à quel but doivent servir ces enregistrements.

S'il s'agit de lignes anciennes, les enregistrements peuvent éventuellement donner des indications utiles sur la nécessité de les équiper avec des armatures plus convenables.

S'il s'agit de nouvelles lignes, l'équipement peut être directement choisi de façon à éviter tout danger qui pourrait découler de phénomènes vibratoires. Toute mesure de vibrations devient donc superflue.

Le fait essentiel, par contre, est le choix judicieux de la pince de suspension, qui doit surtout pouvoir suivre facilement tout mouvement ondulatoire du conducteur et ne pas devenir un point de réflexion des vibrations. Il n'est toutefois pas facile de trouver une pince qui réponde entièrement à ce but et qui présente toutes les qualités requises. A ce sujet, consulter la «Note récapitulative sur l'état actuel des vibrations de conducteurs et des moyens pour en éliminer les méfaits» présentée à ce Sous-comité à l'occasion du Congrès 1946 de la CIGRE 1.

Il est cependant intéressant de résumer les moyens adoptés par le passé dans les différents cas.

¹⁾ voir Bull. ASE t. 37(1946), nº 14, p. 375...382.