Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 36 (1945)

Heft: 5

Rubrik: Communications ASE

Nutzungsbedingungen

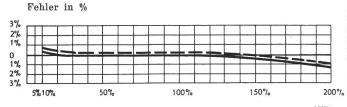
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

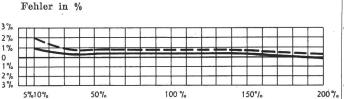
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

925016

925017


Einrichtung bewirkt, dass der Eichzähler nach Beendigung der Dauerprüfung ohne weitere Vorsichtsmassnahmen zum Abtransport bereit ist.

Last in % der Nennlast

Fig. 7.

Fehlerkurven eines Zweisystem-Eichzählers bei allseitiger Belastung für U=100~% und $\cos~\varphi=1~(-------)$ bzw. $\cos~\varphi=0.5~(-------------)$.

Last in % der Nennlast

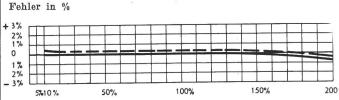
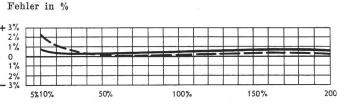

Fig. 8.

Fig. 7...10 zeigen noch die Fehlerkurven eines Drehstrom-Dreileiter-Eichzählers bzw. eines Drehstrom-Vierleiter-Eichzählers in Hochpräzisionsausführung.

Schlussfolgerungen


Die Prüfung eines Elektrizitätszählers lässt sich mittels eines Eichzählers viel einfacher ausführen, als mit Wattmetern. Für einen Drehstromzähler benötigt man nur einen einzigen Vergleichsapparat an Stelle von zwei oder drei Wattmetern, und die Ermittlung des Fehlers beschränkt sich auf eine einzige, einfache Rechnung.

Von ausschlaggebender Bedeutung ist jedoch der Umstand, dass die Messung auch bei stark schwankender Belastung und variabler Spannung

Last in % der Nennlast

Fig. 9.

Last in % der Nennlast

Fig. 10.

sehr genaue Resultate ergibt, da diese Schwankungen sowohl die Anzeige des Eichzählers, als auch diejenige des Prüflings in gleicher Weise und in gleichem Masse beeinflussen.

Aus dem gleichen Grunde können die Eichzähler unter Zuhilfenahme eines Zeitstoppers mit Vorteil auch für Abnahmeprüfungen an Maschinen, zur Feststellung des Wirkungsgrades usw. verwendet werden.

Adresse des Autors:

O. Maag, Ingenieur, Landis & Gyr A.-G., Zug.

Technische Mitteilungen — Communications de nature technique

Forschungslaboratorium von Gebrüder Sulzer

Die Firma Gebrüder Sulzer hat die Technische Rundschau Sulzer 1945, Nr. 1, im Umfang von 152 Seiten als Sonderheft der Eröffnung ihres zentralen Forschungslaboratoriums gewidmet. In verschiedenen Artikeln wird über Forschung und Materialprüfung im Dienste der Maschinenindustrie berichtet. Dr. h. c. F. Oederlin, Delegierter des Verwaltungsrates der Gebrüder Sulzer A.-G., stellt im Vorwort Betrachtungen an über Zweck und Bedeutung der Forschung für unsere Industrie

Empirische Methoden genügen in der heutigen Zeit nicht mehr, um dem Konstrukteur die Unterlagen für die Schaffung grundlegend verbesserter Maschinen zur Verfügung zu stellen. Neben die Grundwissenschaften, die an den Hochschulen gepflegt werden, ist die industrielle Forschung getreten. Es besteht heute die Notwendigkeit einer vermehrten Berücksichtigung der Grundwissenschaften, unter ihnen z. B. besonders der technischen Physik, die zusammen mit der modernen Metallurgie berufen ist, der Maschinenindustrie wichtige Grundlagen für die Weiterentwicklung der Wärmekraftmaschinen zu liefern.

Daneben ist die industrielle Forschung nötig, die eine systematische Problem- und Zielstellung verfolgt und den zweckmässigen Einsatz eines technisch und wissenschaftlich geschulten Stabes von Mitarbeitern erfordert. Industrielle Forschung kann aber nur dann erfolgreich sein, wenn zwischen Forschungsingenieur und Konstrukteur die richtige Verbindung besteht.

In einem grossen Industrieunternehmen wäre es nicht zweckmässig, wenn sich verschiedene Abteilungen mit den gleichen wissenschaftlichen Aufgaben oder mit der Bearbeitung gleicher Spezialgebiete befassen würden. Darum kam die Firma Sulzer dazu, verschiedene Laboratorien und Prüfstellen in einem gemeinsamen Forschungslaboratorium zu vereinigen.

Das neue Forschungslaboratorium der Firma Gebrüder Sulzer enthält die Materialprüfungsanstalt und ein physikalisches, ein chemisches, ein metallurgisches, ein strömungstechnisches und ein wärmetechnisches Laboratorium. Wir beschränken uns hier auf die Wiedergabe der Beschreibung des metallurgischen Laboratoriums, weil dieses interessante elektrothermische Einrichtungen enthält.

Das metallurgische Laboratorium. Die Räumlichkeiten für Bureaux und Laboratorien nehmen einen Teil des zweiten

Obergeschosses ein. Im Kellergeschoss befinden sich die Räume für Formsandprüfung, Glüh- und Schmelzversuche, die schwerere Aggregate und Einrichtungen umfassen.

Zur Prüfung der mechanischen und technologischen Eigenschaften der metallischen Werkstoffe ist unter Umständen ein umfangreiches Probematerial erforderlich. Die Schmelzkapazität des Laboratoriums wurde daher so gross gewählt, dass Metallmengen bis zu einem Gewicht von 100 bis 150 kg geschmolzen werden können. Diesem Schmelzgewicht wurden die Abmessungen der Glühöfen und Abschreckbäder angepasst. Für Materialuntersuchungen und Prüfungen, die mit kleineren Metallmengen auskommen, wurden entsprechend kleinere Schmelz- und Glühöfen aufgestellt.

Während der Herstellung und Weiterverarbeitung in den Giessereien und Werkstätten befinden sich die Werkstoffe in Berührung mit festen, flüssigen oder gasförmigen Stoffen, die auf sie einwirken und ihre Eigenschaften verändern können. Für das Studium dieser Einwirkungen sind im Laboratorium spezielle Apparate und Einrichtungen gebaut worden.

Von ausschlaggebender Bedeutung beim Giessen sind auch die feuerfesten Ofenbaustoffe und die Stoffe zur Herstellung der Gussformen. Das Verhalten dieser Stoffe wird in be-

sonderen Einrichtungen geprüft.

Weil bei den elektrischen Schmelzeinrichtungen starke Stromstösse auftreten können und zudem der Energieverbrauch verhältnismässig hoch ist, erhielt das metallurgische Laboratorium eine unabhängige Elektrizitätsversorgung aus dem internen 3-kV-Verteilnetz. In einen besonderen Hochspannungsraum sind eine Transformatorenstation für allgemeinen Betrieb mit einer Leistung von 300 kVA und einer Sekundärspannung von 380/220 V, eine Transformatorenstation für den Lichtbogen-Schmelzofen, und eine Umformergruppe, eine Kondensatorenbatterie und eine Drosselspule für den Mittelfrequenz-Schmelzofen installiert.

Der Gasverbrauch ist ebenfalls beträchtlich; er kann bis 90 Normalkubikmeter pro Stunde betragen. Während die kleinen Verbrauchsstellen das Gas unter normalem Druck zugeführt erhalten, wird das Gas für die Grossverbrauchsstellen im Glüh- und Schmelzraum durch einen Kompressor von 80 Nm³/h Ansaugeleistung auf 2 kg/cm² Ueberdruck gebracht. Für die gasbeheizten Oefen im thermisch-metallurgischen Laboratorium wird das Stadtgas mit einem kleinen Kompressor von 30 Nm³/h Ansaugeleistung auf 2 kg/cm² Ueberdruck gebracht.

Aus dem Werknetz der Pressluftversorgung können bis 500 kg/h Druckluft von 6 kg/cm² Ueberdruck entnommen

werden.

Im Schmelzraum befindet sich ein Dreiphasen-Lichtbogenofen, der bis 150 kg Stahl aufnehmen kann. Dem Lichtbogenofen gegenüber ist ein mit 8000 Hz betriebener Mittelfrequenzofen von 100 kg Fassungsvermögen und daneben ein mit der gleichen elektrischen Mittelfrequenzanlage betriebener kleinerer Ofen von 10 kg Fassungsvermögen für Stahl aufgestellt.

Ueber dem Lichtbogenofen und dem 100-kg-Mittelfrequenzofen ist an der Decke eine Laufkatze von 1000 kg Tragfähigkeit angebracht, mit der das zwischen den beiden Oefen liegende Giessfeld bestrichen werden kann. Der Lichtbogenund der Mittelfrequenzofen können bei dieser Anordnung im Einzelbetrieb oder im Duplexbetrieb arbeiten. Man kann z. B. im basisch zugestellten Lichtbogenofen die Entkohlungs-, Entphosphorungs- und Entschweflungsoperationen durchführen und den flüssigen Stahl zur Desoxydation und zum Fertigmachen mit Legierungselementen in den sauer zugestellten Mittelfrequenzofen überführen.

Weiter ist ein elektrischer Hochtemperatur-Universalofen, Bauart Nernst-Tammann, mit 100 kVA Anschlussleistung für Schmelzversuche aufgestellt, der zugleich auch zur Prüfung der feuerfesten Form- und Ofenbaustoffe dient.

Neben den elektrischen Schmelzöfen sind Tiegelöfen, die mit Pressgas, und solche, die mit Retortengraphit beheizt werden, vorhanden.

Mit einem elektrisch angetriebenen Federhammer von 100 kg Bärgewicht können aus den flüssigen Stahlbädern entnommene Proben auf ihre Schmiedbarkeit geprüft werden.

Zur Durchführung der Wärmebehandlung dienen ein elektrischer Muffelofen für Temperaturen bis 1000°C und ein elektrischer Schachtglühofen mit Luftumwälzung für Temperaturen bis 800° C. Für das Temperaturintervall von 1000...1500° C wird ein mit Pressgas beheizter Muffelofen benützt.

Für die Wärmebehandlung durch Abschrecken ist ein Wasserbad, ein Oelbad und ein Bleibad, das auch durch ein Salzbad ersetzt werden kann, vorhanden. Alle drei Abschreckbäder sind heizbar. Das Blei- bzw. Salzbad kann bis auf 600° C erhitzt werden, so dass sämtliche üblichen Warmbadhärteverfahren durchführbar sind.

Zur Vorbereitung des Form- und Kernsandes dienen ein Mischer von 5 kg Fassungsvermögen, eine Sandschleuder und ein Vibrationssieb. Zum Trocknen ist ein grosser, elektrisch beheizter Trockenschrank vorhanden. Auf Apparaten, die speziell für diesen Zweck gebaut sind, erfolgt die Prüfung Fliessvermögen, Gasdurchlässigkeit, Härte-, Druck-, Biege- und Zugfestigkeit.

Mit einer elektrisch betriebenen Siebeinrichtung wird unter Verwendung von Normalprüfsieben die Korngrössenverteilung bestimmt. Die Prüfung auf Feuerfestigkeit erfolgt in den bereits beschriebenen Hochtemperaturöfen.

Im thermisch-metallurgischen Laboratorium werden Versuche mit verhältnismässig kleinen Stoffmengen durchgeführt. Im Raume sind zwei Laboratoriumstische aufgestellt, die mit elektrischen Anschlüssen ausgestattet sind, denen Gleich- und Wechselstrom bis zu 40 A entnommen werden kann. An zwei Anschlußstellen können 500 A Wechselstrom, dessen Spannung von 75...7,5 V regulierbar ist, entnommen werden. Die Laboratoriumstische sind ferner mit Anschlußstellen für Stadtgas, Wasser, Dampf und Pressluft ausgerüstet. Ein Laboratoriumstisch besitzt eine eingebaute Wasserringvakuumpumpe und eine rotierende Hochvakuumpumpe mit Oelfüllung. Zur Herstellung von Hochvakuum ist ferner eine Quecksilberdampfpumpe und eine rotierende Molekular-vakuumpumpe vorhanden. Für die vielseitigen Arbeiten stehen Laboratoriumsöfen verschiedener Bauart zur Verfügung.

An der Rückwand befinden sich die elektrischen Regler und Messinstrumente für die Laboratoriumstische. Von hier aus führen Messleitungen in das physikalische Laboratorium, so dass dort Vorgänge, die sich im thermisch-metallurgischen Laboratorium abspielen, gemessen werden können.

Unter der an einer Seitenwand angebrachten grossen Abzughaube ist ein 37-kVA-Einphaseninduktionsregler aufgestellt, mit dem ein Spannungsbereich von 75...340 V durch stufenlose Regelung umfasst werden kann, ebenso ein kleiner Hochtemperatur-Universalofen nach Nernst-Tammann mit einer Transformatorleistung von 40 kVA, mit welchem Temperaturen über 2000 °C erreicht werden können, und ein kleiner Gastiegelofen.

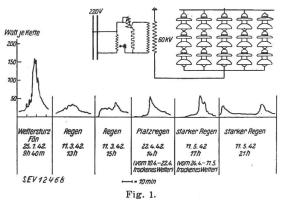
Im Bureau für Registratur und metallurgische Versuchsauswertung befinden sich, ausser den üblichen Bureaueinrichtungen, die auf Hollerithkarten gesammelte Kartei über chemische Untersuchungen und Festigkeitswerte, ein Zeichnungstisch und eine Rechenmaschine zur Auswertung der Versuchsresultate nach den Methoden der mathematischen

Statistik.

Sicherheitsgrad und Betriebssicherheit elektrischer Hochspannungsanlagen

[Nach W. Estorff, ETZ, Bd. 65 1944), Nr. 47/48, S. 390]

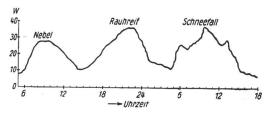
Das Isoliervermögen der Anlage und ihrer einzelnen Teile ist die Fähigkeit der Isolation, eine bestimmte Spannung bei einem genau anzugebenden zeitlichen Verlauf dauernd auszuhalten, ohne dass dabei ein Ueberschlag oder Durchschlag auftritt. Das Isoliervermögen, auch Stehspannung genannt, wird also durch einen Spannungswert bezeichnet, der um einen geringen Teilbetrag unter der Ueberschlagspannung liegt. Das Verhältnis von Isoliervermögen zur maximalen Betriebsspannung (Erzeuger) wird als spezifisches Isoliervermögen oder Sicherheitsgrad bezeichnet.

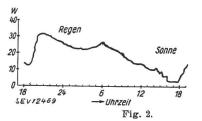

Tabelle I gibt eine Zusammenstellung der VDE-Werte für Stützer. Es fällt dabei der hohe Sicherheitsgrad für die unteren Nennspannungen auf. Da die Isolationsbemessung sich allmählich aus den Bedürfnissen der Praxis entwickelt hat, muss sich dieser auffallende Unterschied irgendwie erklären lassen. Die Isolation der Anlage erfährt grundsätzlich verschiedene Arten der Beanspruchung:

Isoliervermögen U und Sicherheitsgrad σ von Stützisolatoren Tabelle 1.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		50 Hz				Stoss 1 50			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	nspanung							Freiluft beregnet	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Nenı	Eff. W.	σ	Eff. W.	σ	Sch. W.	σ	Sch.W.	σ
	3 (6) 10 20 30 60 110 150	36,8 46,0 55,2 73,6 101,2 165,5	11,1 7,0 5,0 3,3 3,1 2,5 2,2	73,6 101,2 165,5 267 368	3,3 3,1 2,5 2,2 2,2	58,5 76,5 90 117 157,5 261	12,5 8,2 5,8 3,8 3,4 2,8	157,5 207 315 522 756	7,5 5,0 4,4 3,4 3,0 3,2 3,4

- a) 50 Hz. Die Spannung zwischen Leiter und Erde kann bei Erdschluss bis auf die verkettete Spannung ansteigen.
- b) Einschwingspannungen mittlerer Frequenz. Beim Uebergang von einem Zustand zum andern bei allen Schalthandlungen treten innere Ueberspannungen auf. Diese erreichen in der Mehrzahl kaum den doppelten Wert der Betriebsspannung. Beim Einsetzen von Erdschlüssen werden Werte bis zum 2,5fachen erreicht. Noch höhere Werte können gelegentlich beim Abschalten leerlaufender Leitungen, Kabel und Transformatoren auftreten, wenn die Unterbrechung vor dem natürlichen Nulldurchgang erfolgt. Im Bereiche der höheren Nennspannungen entspricht das Isoliervermögen augenfällig der Höhe der eben genannten inneren Ueberspannungen.
- c) Gewitterüberspannungen. Die atmosphärischen Ueberspannungen scheinen die Isolationsbemessung nicht stark beeinflusst zu haben. Es würde sich sonst ein Schwellenwert der Spannung in den Schlagweiten wiederfinden, unter welchem ein Betrieb der Anlage nicht möglich wäre. Dies ist nicht der Fall. Durch Ableiter werden Gewitterstörungen bekämpft.


Bis jetzt konnte noch kein unmittelbarer Zusammenhang zwischen der heute üblichen Isolationsbemessung der Hochspannungsgeräte und den im Betriebe auftretenden Beanspruchungen gefunden werden. Während nämlich alle Stellen zu knapper Bemessung der Isolation im Laufe der Entwicklungszeit von selbst ausgemerzt wurden, besteht die Möglichkeit, dass an anderen Stellen unberechtigte Ueberbemessungen mitgeschleppt wurden. Die Isolationsbemessung hat nicht nur die im Betriebe auftretenden Ueberspannungen, sondern auch die Minderung des Isoliervermögens, welche die Iso-



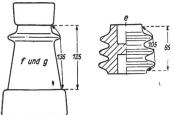
Oberflächenverluste von 110-kV-Hängeketten bei verschiedener Witterung während des Betriebes

lation im Laufe der Zeit durch Beschmutzung und Befeuchtung erleidet, zu berücksichtigen. Eine Verminderung durch Beschmutzung kann durch Abwaschen (Regen) wieder aufgehoben werden. Das Isoliervermögen eines Isolators ist also keine dauernd gleichbleibende Grösse, sondern ist je nach den Witterungsbedingungen Schwankungen unterworfen.

Fig. 1 zeigt die über eine längere Zeit gemessenen Verluste (Ableitung) einer Versuchskette bei verschiedener Witterung. Am stärksten leidet das Isoliervermögen im Winter nach längerer Verschmutzungsdauer (kein Regen, der die Oberfläche abwäscht) und Föhneinbruch (Tauniederschlag auf der Oberfläche). Es besteht sogar die paradoxe Möglichkeit, dass Isolatoren, die sich in einem niederschlagsreichen Gebiet bewährt haben, in einem trockenen Gebiet versagen können.

Einfluss der Witterung auf die Leistungsaufnahme einer dreigliedrigen VK(3)-Hängekette bei 63,5 kV gegen Erde.

Fig. 2 zeigt den Verlauf der Leistungsaufnahme über kurze Zeit. Die Isolationsminderung macht sich ausser bei Freileitungsanlagen im unbeheizten Innenraum in den Uebergangsjahreszeiten März/April und Oktober/November, wo Tauniederschläge auf den beschmutzten Isolatoren auftreten können, bemerkbar. Da in diesen Anlagen der reinigende Einfluss des Regens ganz fortfällt und ausserdem die Staubablagerung auf den oft waagrecht angeordneten Isolatoren stark begünstigt ist, so muss entweder die Isolationsabmessung reichlicher gewählt oder für periodische Reinigung der Isolatoren gesorgt werden, um Ueberschläge infolge Isolationsverminderung zu verhindern. Ausser einer Beheizung von Innenräumen kommt auch eine künstliche Trocknung der Luft über Kalziumkarbid während den kritischen Tagen als wirtschaftliche Lösung in Frage. Besser begegnet man diesen Störungen durch zweckmässig gebaute Isolatoren (Stützer mit Schirmen). Der höhere Anschaffungspreis wird durch die sonst nötigen Reinigungskosten ausgeglichen. Zur Festlegung der im Betriebe auftretenden Ueberspannungen eignen sich die an anderer Stelle 1) beschriebenen Messfunkenstrecken. Die Grundschlagweiten dieser Messfunkenstrecken entsprechen etwa dem 2,5fachen Werte der Erzeugerspannungen. In Tabelle II sind dazu ausserdem die vom VDE genormten Schlagweiten von Innenraumstützern angegeben und dazu der Isolationszuschlag berechnet.


VDE-Schlagweiten von Innenraumstützern

		200			Ta	belle 1
Nenn- span- nung Ur kV	Angenom. Pegel $2,5\cdot 1,1\cdot$ $\cdot \sqrt{2\cdot U_r}$ kV	Grund- schlag- weite s mm	Stützer- schlag- weite a mm	<u>a</u>	Isolations- zuschlag (a-s) mm	$\frac{a-s}{s}$
1 3 (6)	3,9 11,7 23,9	2 6,8 14	40 75 100	20 11 7,1	38 68,2 86	19 10 6,1
10 20	38,9 77,8	26 80	125 180	4,8 2,25	99 100	3,8 1,2
30 60	116,7	135 325	260 470	1,93	125 145	0,93
110	233,4 428	635	800	1,45 1,26	165	$0,45 \\ 0,26$

Die Isolationsbemessung der Nennspannung 3 kV ist das 10fache, diejenige der Nennspannung 110 kV jedoch nur noch das 0,26fache der Grundschlagweite. Den Schlüssel zu

¹⁾ ETZ, Bd. 65 (1944), S. 189, und Bull. SEV 1945, Nr. 2, S. 44.

diesen auffallenden Verschiedenheiten liefert Fig. 3, wo der Einfluss der Stützerform bei Schmutz und Tauniederschlag auf die Höhe der Ueberschlagspannung dargestellt ist.

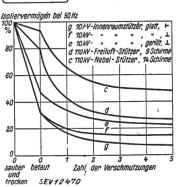
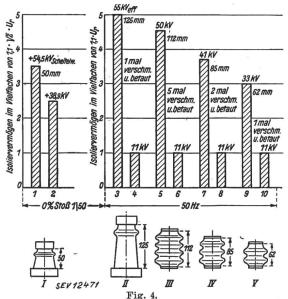



Fig. 3. Absinkkurven des Isoliervermögens bei 50 Hz von Stützern mit verschieden geformten Oberflächen

Bei einem glatten waagrechten 10-kV-Stützer sinkt nach (Beschmutzung nach VDE 0448/V 40, einer Beschmutzung 9, Leitsätze für Nebel- und Verschmutzungsprüfungen von Isolatoren) und Betauung die Ueberschlagspannung auf 1/6 des Trockenwertes und dieser muss nun schon gereinigt wer-

Isolationsbemessung von Innenraumstützern von 10 kV

den. Dagegen sind nach Tabelle II die Stützer der unteren Nennspannungen um so viel reichlicher bemessen, dass sie erst in grösseren Zwischenräumen vom Schmutz gesäubert zu werden brauchen. Die nahezu glatten Innenraumstützer der oberen Nennspannungen müssen wegen ihres wesentlich kleineren Isolationszuschlages um so mehr von der Taubildung durch Beheizen oder Trocknen der Luft in der Anlage geschützt werden. Ein Rillenstützer (e in Fig. 3) verhält sich günstiger als ein glatter. Durch geeignete Formbildung der Oberflächen kann also bei gleichen Schlagweiten der Isolator für Verschmutzungen und Tauniederschläge unempfindlicher gemacht werden. Das geht anschaulich aus Fig. 4

Dort wird gezeigt, nach wieviel Verschmutzungen der Isolator die bei 50 Hz minimal nötige Ueberschlagspannung von 11 kV erreicht hat. Mit Rücksicht auf Schaltüberspannungen soll die Stossüberschlagspannung bei Verschmutzung für diese Reihe nicht unter 39 kV, entsprechend 54,5 kV im sauberen Zustande, sinken 2).

Das entspricht einer Minimalschlagweite von 50 mm. Um für Ueberspannungsableiter den nötigen Lebensraum zu schaffen, muss die Stützerschlagweite mindestens 20 % mehr als diese Grundschlagweite von 50 mm betragen. Das gleiche gilt natürlich auch für Stützer anderer Nennspannungen. Die Neuordnung der Schlagweiten auf Grund dieser Erkenntnisse erfordert noch umfangreiche Arbeiten. Deshalb muss sich die jüngste Normung der Stützer und Durchführungen noch auf die bisher genormten Schlagweiten stützen.

Isolierbeton

[Nach M. E. Lambert, Bull. Soc. Franç. Electr., Bd. X (1940), Nr. 112, April, S. 257]

Gewöhnlicher Beton kommt als elektrisches Isoliermaterial nicht in Betracht, da er zu hygroskopisch ist. Es ist jedoch gelungen, unter Verwendung von geeignetem Kies und Sand sowie unter Beimischung einer Teeremulsion einen Isolierbeton zu schaffen, welcher vorzügliche elektrische Eigenschaften aufweist. Dem Teerzusatz fällt die Aufgabe zu, die Poren des Betons zu füllen und den Wiedereintritt des Wassers nach der Trocknung zu verunmöglichen. Um die fertigen Formstücke besonders wetterbeständig zu gestalten, wird die Oberfläche ausserdem thermisch und mit einem Speziallack nachbehandelt.

Die mechanische Festigkeit (Druck, Zug und Biegung) des Isolierbetons ist derjenigen des gewöhnlichen Betons gleich. Der innere Isolierwiderstand beträgt trocken über 106 MΩ·cm²/cm, die elektrische Festigkeit über 10 kV/cm. In nassem Zustande sinken diese Werte nur um etwa 30 %. Das Material ist somit elektrisch besser als Marmor oder Eternit, jedoch schlechter als Steinzeug und Porzellan. Ferner wurde beobachtet, dass der Isolierbeton sich selbst regeneriert, d. h. dass er nach einem elektrischen Durchbruch wieder unter Spannung gesetzt werden kann. Er ist feuerbeständig, und selbst wenn er längere Zeit der Autogenflamme ausgesetzt wird, verändern sich seine dielektrischen Eigenschaften nicht.

Die bisherige Hauptanwendung des neuen Betons bestand in der Anfertigung von Stützisolatoren für die spannungsführende Schiene («Dritte Schiene») von Ueberlandbahnen und der Pariset Untergrundbahn (zum Teil bereits 10 Jahre im Betrieb). Aber auch für Stützisolatoren in Hochspannungsprüfanlagen hat sich das Material bewährt. Dank der leichten Formbarkeit ist es ferner möglich, feuerfeste Kabelendverschlüsse zu bauen, welche in vielen Fällen kein Ausgiessen mit Compound benötigen.

Wirtschaftliche Mitteilungen — Communications de nature économique

Verschiebung des Baues des Juliawerkes

Der Vorstand der Industriellen Betriebe der Stadt Zürich

Das Juliawerk 1) kann vorläufig nicht gebaut werden. Für den Bau des Juliawerkes ist die Bewilligung des Eidg. Kriegs-

1) Siehe Bulletin SEV 1944, Nr. 23, S. 682.

Industrie- und- Arbeits-Amtes für die benötigten Baustoffe notwendig. Das bezügliche Gesuch ist schon Mitte des Jahres 1944 abgegangen. Der Entscheid wurde vom KIAA bis zur Gemeindeabstimmung ausgesetzt. Nun teilt das Amt mit, dass wegen des Kohlenmangels in der Herstellung von Zement Schwierigkeiten entstehen. Die noch vorhandene Menge müsse für besonders arbeitsintensive Unternehmungen, in erster Linie für den Wohnungsbau, verwendet werden. Für

²⁾ Estorff, Neue Wege in der Auswahl der Isolation auf Grund der Beanspruchungen im Betrieb, ETZ, Bd. 62 (1941), S. 392.

Données économiques suisses (Extrait de "La Vie économique", supplément de la Feuille Officielle Suisse du commerce.)

(EXLIAII	t de "La vie economique", supplement de la reune	nilicialia 901226	du commerce.)	
No.		Janvier		
No.		1944	1945	
1.	Importations	125,4	33,4	
	(janvier-décembre)	(1185,9)	_	
	Exportations	93,1	29,7	
	(janvier-décembre)	(1131,8)	_	
2.	Marché du travail: demandes			
	de places	16 005	25 233	
3.	Index du coût de la vie	206	209	
	Index du commerce de 1914 {	997	207	
	gros /	221	221	
	Prix-courant de détail (moyenne			
	de 34 villes)			
	Eclairage électrique	2.1.5(52)	2 4 7 (52)	
	cts/kWh	34,1 (68)	34,1 (68)	
	Gaz Cls/III / _ 100)	30 (143)	30 (143)	
	Coke d'usine à gaz	16 16 (202)	16 (6 (222)	
4.	frs/100 kg Permis délivrés pour logements	10,10 (323)	16,66 (333)	
4.	à construire dans 30 villes .	196	575	
	(janvier-décembre)	(7707)	313	
5.	Taux d'escompte officiel .%	1,50	1,50	
6.	Banque Nationale (p. ultimo)	1,50	1,50	
0.	Billets en circulation 106frs	2914	3409	
	Autres engagements à vue 106 frs	1368	1242	
	Encaisse or et devises or 1) 106 [18	4270	4670	
	Couverture en or des billets	12.0		
	en circulation et des autres			
	engagements à vue $^{0}/_{0}$	98,34	98,41	
7.	Indices des bourses suisses (le			
	25 du mois)			
	Obligations	_	_	
	Actions	177	183	
	Actions industrielles	281	286	
8.	Faillites	17	19	
	(janvier-décembre)	(210)		
	Concordats	1	8	
	(janvier-décembre)	(45)	_	
9.	Statistique du tourisme	D.	1	
9.	Occupation moyenne des lits	Décei 1943	mbre 1944	
	• -	10.5	12,0	
	existants, en %			
10.	Recettes d'exploitation des	Déce:	mbre 1944	
1.0.	CFF seuls	1340	1314	
		04.716	00.539	
	Marchandises	24 716	20 512	
	(janvier-décembre) (en {	(268 320) 16 456	(262 394) 18 760	
	Voyageurs (ianvier-décembre)		(221 666)	
	(Janvier-decembre)	(139 000)	(221 000)	

¹⁾ Depuis le 23 septembre 1936 devises en dollars.

Pouvoir calorifique et teneur en cendres des charbons suisses

Les données suivantes sont tirées des notices de l'Office de guerre pour l'industrie et le travail:

1º Anthracite

Teneur en cendres dans la règle 20 à 40 %. L'anthracite valaisan d'une teneur en cendres de 20 %, possède un pouvoir calorifique d'environ 5600 kcal/kg. Chaque augmentation de 5 % de la teneur en cendres correspond à une diminution du pouvoir calorifique d'environ 400 kcal/kg.

2º Lignite

Teneur en cendres environ 10 à 30 %. Pouvoir calorifique entre 7000 et 3500 kcal/kg.

3° Lignite feuilleté

Le pouvoir calorifique varie suivant la teneur en eau et en cendres entre 900 et 2700 kcal/kg.

Kraftwerke wird Zement nur noch zugeteilt, wenn ihr Bau bereits begonnen ist oder das neue Werk schon im Jahre 1946 Energie liefern kann. Beides trifft für das Juliawerk nicht zu, weshalb der hiefür benötigte Zement nicht zugeteilt wird. Der Bau kann also vorläufig nicht in Angriff genommen werden.

Miscellanea

In memoriam

Walter Köchli †, Chef der technischen Kontrolle der Bernischen Kraftwerke A.-G. Bern, wollte am 28. Dezember 1944, begleitet von Bergführern, bei schönem Wetter die 65-kV-Gemmileitung kontrollieren; dabei verunglückte er tödlich im Couloir, das im Winter von Leukerbad aus zum Aufstieg auf die Gemmi benutzt wird. Die Bernischen Kraftwerke A.-G. haben in ihm einen sehr tüchtigen Beamten verloren, der ihnen während nahezu 35 Jahren grosse Dienste geleistet hatte.

Walter Köchli 1885—1944

Walter Köchli wurde in Kilchberg (Kt. Zürich) geboren und wuchs dort auf. Nach der Sekundarschule absolvierte er bei Escher Wyss, Zürich, eine vierjährige Mechanikerlehre und besuchte hierauf das Technikum Burgdorf, das er 1908 als diplomierter Elektrotechniker verliess. Nach anderthalbjähriger Tätigkeit in der Abteilung Leitungsbau der Kraftübertragungswerke Rheinfelden trat W. Köchli am 1. Mai 1910 bei den Bernischen Kraftwerken A.-G. (BKW) ein. Er war zunächst während zehn Jahren in der Betriebsleitung Spiez tätig, vom Jahre 1916 an als Stellvertreter des Betriebsleiters; in gleicher Eigenschaft amtete er von 1922 bis 1930 bei der Betriebsleitung Bern. In der Zeitperiode 1920—1922 arbeitete er in der Maschinen- und technischen Betriebs-Abteilung des Zentralsitzes der BKW, ebenso wieder vom 1. Mai 1930 an, nun als Chef der technischen Kontrolle.

W. Köchli befasste sich hauptsächlich mit der Projektierung, der Montage und dem Unterhalt von Hochspannungsleitungen. Die Gemmileitung ¹), die eine Pionierleistung war, und die 150-kV-Leitungen der BKW ²) werden uns immer an ihn erinnern, an sein Geschick und seine Tatkraft, mit denen er seine Aufgaben meisterte.

Der Verstorbene war ein hervorragender Bauleiter; er bewies dies von neuem, als er im Spätherbst 1944 auf der Gemmi mit dem Montagepersonal schweren Schneestürmen und Gefahren trotzte und die Arbeiten zu einem guten Abschluss führte.

W. Köchli vertrat die BKW im Fachkollegium Freileitungen des Schweizerischen Elektrotechnischen Komitees und wurde von seinen Kollegen sehr geschätzt. Sein Referat

¹⁾ siehe S. 130...135.
2) Die 150-kV-Leitungen Innertkirchen-Bickingen und Innertkirchen-Mühleberg wurden von H. Oertli und W. Köchli im Bull. SEV 1944, Nr. 3, beschrieben. Die in diesem Aufsatzerwähnte «Dreieckaufhängung» (Fig. 5) wurde von W. Köchli angeregt.

an der Betriebsleiterkonferenz des SEV vom 16. Dezember 1932 über Betrieb und Unterhalt von Hochspannungsleitungen und Verteilungsanlagen 3) fand lebhaftes Interesse.

Alle, die mit W. Köchli zusammenarbeiteten, bedauern tief seinen Hinschied, und wer den lieben Menschen kannte, denkt ehrend an diesen vorbildlichen Mann.

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Camille Bauer A.-G., Basel. An Stelle des verstorbenen Theodor Fluck-Brodbeck, Delegierter des Verwaltungsrates und Direktor, wurde Robert Bauer, Mitglied des SEV seit 1945, zum Direktor mit Einzelunterschrift, und der Geschäftsführer der Filiale Bern, Albert Fluck, Mitglied des SEV seit 1935, zum stellvertretenden Direktor mit Kollektivunter-

8) siehe Bull. SEV 1933, Nr. 9, S. 185.

schrift ernannt. Carlo Tuena und Alphons Wenger wurden zu Prokuristen ernannt.

Lonza A.-G., Gampel. Der bisherige Vizedirektor A. Müller wurde zum Direktor, und E. Koelliker, Dr. P. Matile und Dr. E. Stirnemann wurden zu Prokuristen ernannt.

Gebrüder Sulzer A.-G., Winterthur. Kollektivprokura wurde erteilt an S. Semadeni und F. Wiesendanger.

Kleine Mitteilungen

Der Schweizerische Energie-Konsumenten-Verband hält am Dienstag, den 20. März 1945, 14.15 h im Kongresshaus in Zürich seine Generalversammlung ab. Es werden Vorträge gehalten über das Hauptthema: Verteilung der elektrischen Energie in der Schweiz.

Literatur — Bibliographie

Der Anteil der Schweiz an der Entwicklung des Lokomotiv- und Triebwagenbaus. Von K. Sachs. Bern, Verlag Hans Huber, 1944; 15.5×23 cm, S. 303...378, 65 Fig. S. A. aus «Die Schweiz und die Forschung», II(1944)3-5.

Mit grossem Geschick hat der Verfasser das umfangreiche Gebiet im Rahmen einer gedrängten Darstellung behandelt. Vom Kapitel über Thermo-Lokomotiven und -Triebwagen ist ein erster Abschnitt den Anfängen des schweizerischen Dampflokomotivbaus bis zur Gründung der Schweiz. Lokomotiv- und Maschinenfabrik (SLM) in Winterthur gewidmet. Am Ende dieser Periode, im Jahre 1871, umfasste das normalspurige Netz der schweizerischen Eisenbahnen bereits 1439 km, in das sich im wesentlichen die Nordostbahn, die Centralbahn, die Vereinigten Schweizerbahnen und die 1890 in die Jura--Simplonbahn aufgegangenen, vorwiegend westschweizerischen Bahnen teilten. Die meisten Lokomotiven dieser Bahnen waren ausländischer Herkunft; nur einige stammten aus den Werkstätten der Centralbahn, der Nordostbahn und der Firma Escher Wyss in Zürich.

Im zweiten Abschnitt wird deutlich gezeigt, welche Entwicklungsstufen die Dampflokomotive von 1871 bis zur Gegenwart, d. h. hauptsächlich bis zum Beginn der grosszügig durchgeführten Elektrifizierung der SBB und vieler Privat-bahnen durchmachte. Von der Mitte der achtziger Jahre an baute nämlich die SLM mit wenigen Ausnahmen sämtliche Lokomotiven für alle Schweizerbahnen, und eine grosse Zahl schweizerischer Lokomotiven fand im Auslande Absatz und warb dort für schweizerische Qualitätsarbeit. Die Einführung der Verbundwirkung und des Heissdampfsystems sowie ihre gemeinsame Anwendung sind Marksteine in der Geschichte des Dampflokomotivbaus. Neben den Lieferungen für die SBB konnte die SLM etwa 3/4 der Lokomotiven für die normalspurigen Nebenbahnen unseres Landes ausführen. Von 1872...1917 sind auf diesen Strecken insgesamt 164 Lokomotiven in Dienst gestellt worden, während wir bei 21 Bahnunternehmungen 177 Dampflokomotiven für Schmalspur vor-

Besondere Aufmerksamkeit hat der Verfasser den verschiedenen Bauarten der Dampflokomotiven für Zahnradbahnen geschenkt. Wir möchten hier nur auf die in der Schweiz angewendeten Zahnstangensysteme hinweisen: Riggenbachsche, Abtsche und Lochersche Zahnstange.

Das Kapitel der elektrischen Traktion wird durch Bilder aus der Frühzeit elektrischer Bahnen eröffnet: Lokomotiven der Strecken Sissach-Gelterkinden (1891), Burgdorf-Thun (1899), Seebach-Wettingen (1904) und der Simplonlinie Brig-Iselle (1906) finden wir hier. Dann folgen die Lötschberglokomotiven aus den Jahren 1911, 1913 und der Gegenwart sowie eine Auswahl elektrischer Triebfahrzeuge der SBB und wichtiger Privatbahnen. Aus den letzten 25 Jahren, die für einen überwiegenden Teil des schweizerischen Bahnnetzes den Uebergang zum elektrischen Betrieb brachten. erwähnen wir die Anwendung des Einzelachsantriebes und der Hochspannungssteuerung. Auch einige Sonderbauarten von thermischen und themoelektrischen Lokomotiven und Triebwagen sowie die Grundsätze des Leichtbaus von Triebfahrzeugen werden gewürdigt.

Im Bilde werden Männer gezeigt, deren Werke wesentlich zur internationalen Anerkennung der schweizerischen Maschinen- und Elektroindustrie beigetragen haben: Niklaus Riggenbach, Charles Brown, Jules Weber, Olaf Kjelsberg, Roman Abt, Jakob Buchli. Die vorliegende Arbeit gibt der jungen Generation, die das Dampfzeitalter im schweizerischen Eisenbahnwesen immer weniger kennen wird, einen guten Ueberblick über die langjährige Entwicklung, und sie bildet für die ältere Generation eine hübsche Erinnerungsschrift.

621.2(494) Nr. 2396

Der Anteil der Schweiz an der Entwicklung der hydraulischen Maschinen. Von R.Dubs. Bern, Verlag Hans Huber, 1944; 15.5×23 cm, S. 229-258, 31 Fig. SA. aus «Die Schweiz und die Forschung», II(1944)3-5.

Seitdem die Energieknappheit und die Diskussionen um den Ausbau unserer Wasserkräfte durch Anlegen grosser Winterspeicherbecken das Interesse an unserer Wasserkraftnutzung in weiten Kreisen wachgerufen haben, ist es wertvoll, in einer gedrängten Zusammenfassung die Entwicklungsgeschichte der hydraulischen Maschinen verfolgen zu können. Die Schweiz war auf diesem Gebiet der Technik von Anfang an besonders beteiligt, sei es durch die grundlegenden Studien unserer grossen Basler Mathematiker oder durch die Weitsicht und den Unternehmungsgeist unserer Maschinenindustrie.

Der Verfasser, welcher während Jahrzehnten in seiner praktischen Tätigkeit und als Professor an der Eidg. Technischen Hochschule das gesamte Gebiet dieses Industriezweiges kennengelernt hat, zeigt, wie die verschiedenen Tur-binensysteme einander abgelöst haben, und wie bei den hauptsächlichsten Turbinenbaufirmen durch intensive Forschungstätigkeit in den eigenen Laboratorien und durch Verwertung der Erfahrungen die Güte und Leistungsfähigkeit der gebauten Maschinen stetig gesteigert werden konnten bis zu den heutigen Spitzenleistungen.

In ähnlicher Weise ist auch der Bau von Pumpen für alle möglichen Verwendungszwecke der Praxis aus kleinen Anfängen heraus entwickelt worden, und hat insbesondere im Speicherpumpenbau einen Stand erreicht, der auch international jeden Vergleich aushält.

Radio — heute und morgen. Von A. Huth. Zürich, Europa-Verlag, 1944; A₅, 407 S., 8 Tafeln. Preis: geb. Fr. 15.—,

Die schon lange geforderte Uebersetzung der Studie «Radio Today» des bekannten Radiofachmannes Arno Huth liegt hier in wesentlich erweiterter Form vor. Diese grundlegende Darstellung aller mit dem Radio zusammenhängenden Fragen verdient die Bezeichnung einer «Enzyklopädie des gesamten Rundspruchs, Bildfunks und Fernsehens», die auf Grund ihrer sachlich fundierten Ausführungen und der Klarheit und Einfachheit der Form dem Fachmann wie dem Laien viel Interessantes und Wertvolles zu bieten hat.

In seiner Einleitung äussert sich Prof. W. E. Rappard über die politischen Möglichkeiten des Radios. Der erste Teil des Werkes befasst sich mit Problemen allgemeiner Natur des Rundspruchs: Organisation und Finanzierung werden erörtert und europäische und amerikanische Systeme einander gegenübergestellt. Sendung, Programmdienst und Empfang bilden den Mittelpunkt der nächsten Kapitel, wobei ausgedehntes Zahlenmaterial und teilweise nur schwer zugängliche Unterlagen ein lebhaftes Bild des ganzen Fragenkomplexes zu geben vermögen. Im zweiten Teil wird über die Situation des Radio in Europa, Amerika, Afrika, Asien und Ozea-nien berichtet. Da der Verfasser hierbei den Ereignissen bis in die letzten Tage nachgeht, vermag man schon jetzt einen Eindruck zu gewinnen von den grossen Auswirkungen, die der Krieg in vielen Ländern auch auf dem Gebiete des Radiowesens hatte. In diesem Zusammenhang sei speziell noch das Kapitel über die illegalen Geheimsender erwähnt. Den bisher behandelten Problemen des Radio von heute folgen die von morgen, worin der Verfasser versucht, die Wege der künftigen Entwicklung aufzuzeigen, unter besonderer Berücksichtigung von Bildrundfunk und Fernsehen.

Anschliessend behandeln namhafte Fachleute des Inund Auslandes verschiedene Probleme von ihrem Standpunkte aus. Es folgt noch ein Anhang physikalischer Grundbegriffe der Radiosendung, der ziemlich populär gehalten ist. Eine Tabelle der stärksten Sender der Welt, der wichtigsten Kurzwellensender und Fernsehstationen und das ausserordentlich vollständige Namen- und Sachregister gestalten das Buch zu einem nützlichen Nachschlagewerk, während die Bibliographie für die Dokumentation über Spezialgebiete wertvolle Dienste leistet.

Arbeitsbeschaffung ist kein Programm — Arbeitsbeschaffung ist eine Tat. Herausgegeben von der A.-G. Brown, Boveri & Cie., Baden, A5, 47 S., 35 Fig.

Wenn wir heute auf die vorliegende, für die MUBA 1944 gedachte kleine Schrift zurückkommen, so besonders, weil sie eine vielseitige Dokumentation der Arbeitsbeschaffung auf dem elektrotechnischen Gebiet darstellt und weil die Arbeitsbeschaffungsfrage in naher Zukunft sehr aktuell werden kann.

An einer bunten Folge von Beispielen wird gezeigt, wie der Wirkungsgrad, die Betriebssicherheit und folglich die Wirtschaftlichkeit von veralteten Elektrizitätswerken und Unterwerken durch Modernisieren erhöht werden können. Durch vermehrte Verwendung der Elektrowärme und der elektromotorischen Antriebe in der Industrie, dem Gewerbe und der Landwirtschaft kann unter nutzbringender Kapitalinvestierung die Arbeitsbeschaffung weitgehend gefördert werden. Die Berücksichtigung dieser Vorschläge zu Verbesserungen und Neuerungen, die durchwegs im Interesse eines rationellen Betriebes liegen, ergänzt durch persönliche Initiative und frischen Unternehmungsgeist, wird wesentlich dazu beitragen, die kommende Uebergangszeit, die im Konkurrenzkampf grösste Anforderungen stellen wird, zu überwinden.

Messapparate der Sport A.-G., Biel. Die Sport A.-G., Biel, schickte uns ihren eben herausgekommenen Katalog über Messapparate, die von der Firma seit 10 Jahren für Laboratorien in Präzisionsausführung gebaut werden. Es handelt sich vorläufig um folgende Apparate: Linienprüfer zur Messung von Störspannungen, Messverstärker, Störspannungsprüfer (nach Bull. SEV 1944, Nr. 19, S. 534, der vom Fachkollegium für das CISPR des CES angegeben wurde), Störsuchgeräte, Schwebungssummer, Pegelmesser, Meßender, Messempfänger, Universal-Messbrücke, Dekaden-Widerstand, Eichsender, Feldstärkemessgerät für Kurzwellen, Echoempfänger, tragbarer Sender-Empfänger. Geräte für spezielle Zwecke werden auf Anfrage gebaut.

Estampilles d'essai et procès-verbaux d'essai de l'ASE

I° Marque de qualité

Pour interrupteurs, prises de courant, coupe-circuit à fusibles, boîtes de jonction, transformateurs de faible puissance, douilles de lampes, condensateurs.

Sur la base des épreuves d'admission, subies avec succès, le droit à la marque de qualité de l'ASE a été accordé pour:

Coupe-circuit

A partir du 15 février 1945

E. Weber's Erben, Emmenbrücke.

Marque de fabrique:

Socles de coupe-circuit pour 500 V 25 A. Exécution: Socles en porcelaine, couvercle en matière isolante moulée. Raccordement par devant.

bipolaire tripolaire

No. B 1523 No. B 1524 sans sectionneur du neutre. No. B 1523 N No. B 1524 N avec sectionneur du neutre.

Transformateurs de faible puissance

A partir du 15 février 1945

Rauscher & Stoecklin A.-G., Sissach.

Marque de fabrique: R&S plaquette

Transformateurs de faible puissance à basse tension. Utilisation: fixe, pour locaux mouillés. Exécution: transformateurs monophasés, non-résistants aux courts-circuits, classe 2b, 150 VA.

Tensions: primaire 110 jusqu'à 250 V; secondaire 36 V.

Prises de courant

A partir du 15 février 1945

Appareillage Gardy S. A., Genève.

Marque de fabrique:

Prises de courant pour 250 V 6 A.

Utilisation: pour montage sur crépi, dans les locaux secs. Exécution: socle en matière céramique. Couvercle en matière isolante moulée de couleur ivoire (../02) ou brune (../03). Coupe-circuit incorporé.

No. 30020/02, . ./03: 2P type 1/1u, Norme SNV 24505. No. 30022/02, . ./03: 2P type 1a, Norme SNV 24505. No. 30026/02, . ./03: 2P+T type 2/2u, Norme SNV 24507. No. 30032/02, . ./03: 2P+T type 2a, Norme SNV 24507.

Interrupteurs

A partir du 15 février 1945

Appareillage Gardy S. A., Genève.

Marque de fabrique:

Interrupteurs rotatifs type «COMBI», pour 380 V 15 A ~. Utilisation: dans les locaux secs, pour montage sur tableaux de distribution (série 23 700) ou encastrés dans des coffrets en matière incombustible (série 22 700).

Exécution: isolations en matière isolante moulée.

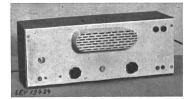
	Schéma		No.	No.
Interrupteur ordinaire	0	lpol.	22701.00	23701.00
		2pol.	22701.20	23701.20
		3pol.	22702.40	23702.40
		4pol.	22702.60	23702.60

	Schéma		No.	No.
Commutateur	II	lpol.	22701.02	23701.02
Commutateur	11	2pol.	22702.22	23702.22
		3pol.	22703.42	23703.42
		4pol.	22704.62	23704.62
Inverseur	III	-	22701.03	23701.03
Inverseur	111	lpol.	22701.03	23702.23
		2pol.		23702.23
		3pol.	22703.43	
0.	***	4pol.	22704.63	23704.63
Commutateur multiple	\mathbf{V}	lpol.	22702.05	23702.05
		2pol.	22733	23733
		3pol.	22706.139	
		4pol.	22708.140	23708.140
Commutateur multiple			22759.125	23759.125
schéma spécial		3nol	22706.125	23706.125
schema special		spor.	22706.125 22759.108	23759.108
			22758.101	23758.101
Commutateur étoile-				
triangle			22754.122	23754.122
Commutateur de pôles	1			
étoile-triangle avec	ζ		22757.107	23757.107
inversion du sens de	ſ		44/37.107	25757.107
rotation	J			
Interrupteur pour com-				
mande par impulsions	3		22702.120	23702.120

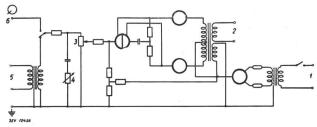
IV. Procès-verbaux d'essai (Voir Bull. ASE 1938, No. 16, p. 449)

P. No. 393.

Objet: Amplificateur à basse fréquence


Procès-verbal d'essai ASE: O. No. 18991, du 22 déc. 1944.

Commettant: Autophon S. A., Soleure.

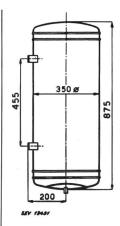

Inscriptions:

Autophon A.-G., Solothurn Type NVK 10/1 Anschlusswert 60 VA Wechselstrom 110—250 V 50 Hz Apparat No. 28700

Description: Amplificateur selon figure et schéma, pour la télédiffusion à basse fréquence et la reproduction des disques de gramophone.

- 1 Réseau
- 2 Haut-parleur
- 3 Régulateur de puissance
- 4 Régulateur de tonalité
- 5 Télédiffusion
- 6 Pick-up

Cet amplificateur est conforme aux «Prescriptions pour appareils de télécommunication» (publ. No. 172 f).


P. No. 394.

Objet: Chauffe-eau à accumulation

Procès-verbal d'essai ASE: O. No. 18936a, du 24 janvier 1945. Commettant: August Lenzin, Zurich.

Inscriptions:

August Lenzin Zürich Elektr. Boiler (Eisen) No. FE. PT. 101 Dat. 15. 11. 44 Lt. 20 V. ~ 220 Watt 240 At. 6/12

Description: Chauffe-eau à accumulation pour montage mural, selon croquis, comprenant un corps de chauffe et un régulateur de température avec dispositif de sûreté. Conduite d'eau froide et chaude ½".

Ce chauffe-eau est conforme aux «Conditions techniques pour chauffe-eau électriques à accumulation» (publ. No. 145 f).

P. No. 395.

Objet: Etuve de séchage

Procès-verbal d'essai ASE: O. No. 18868a, du 26 janvier 1945. Commettant: H. Krüger, Ing., St-Gall.

Inscriptions:

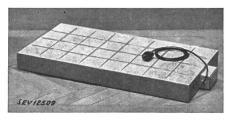
H. Krüger, Ing., St. Gallen Lufttechn. Einrichtungen u. Instrumente Volt 220 ~ Watt 190 Type 10 No. 157

Description: Appareil de laboratoire pour sécher les éprouvettes, selon figure, composé d'une caisse en bois contre-plaqué de $170 \times 300 \times 250$ mm, ventilée et munie d'un revêtement d'amiante et d'éternite émaillé, dans laquelle sont placés deux lampes à filament de charbon et un régulateur de température réglable. Les pièces à sécher sont placées sur une grille en treillis, fixée à la partie supérieure de la caisse. Raccordément au réseau par un cordon rond à deux conducteurs, muni d'une fiche. Un interrupteur à bascule, unipolaire, est fixé à l'appareil.

Cette étuve de séchage a subi avec succès les essais relatifs à la sécurité.

P. No. 396.

Objet:


Chauffe-pieds

Procès-verbal d'essai ASE: O. No. 19057, du 6 février 1945. Commettant: Delz & Co., Zurich.

Inscriptions:

Delz & Co. Zürich V 220 W 320 No. B 286

Description: Chauffe-pieds (plaque chauffante), selon figure, pour emploi dans les boucheries, etc. Le corps de chauffe cylindrique, monté dans un tuyau métallique, est

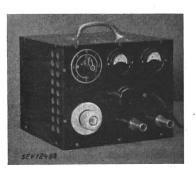
fixé dans le sens de la longueur du chauffe-pieds. Le cadre et la partie inférieure sont en fer, la partie supérieure est constituée par des plaques de grès. Dimensions: $430 \times 480 \times 87$ mm. Raccordement au réseau par un cordon à trois conducteurs, muni d'une fiche 2P+T.

Ce chauffe-pieds a subi avec succès les essais relatifs à la sécurité. Utilisation: dans les locaux secs, humides et mouil-

lés; tension de service maximum: 250 V.

P. No. 397.

Objet: Transformateur pour dégeler les conduites d'eau


Procès-verbal d'essai ASE: O. No. 18929, du 26 janvier 1945. Commettant: *Emil Kägi, Wädenswil*.

Inscriptions:

KRASSIN
Emil Kägi, Wädenswil

"I Patent
Type 10 No. 427
Volt 220 Amp. 220
k.V.A 1,2 ~ 50

Description: Transformateur selon figure, pour dégeler les conduites d'eau. L'intensité secondaire peut être réglée au moyen des différentes prises de l'enroulement primaire. Un ampèremètre est inséré dans les circuits primaire et secondaire. Un coupe-circuit de 6 A est placé dans le circuit primaire. Raccordement au réseau par un cordon à trois conducteurs avec isolation thermoplastique, muni d'une fiche 6 A (2P+T).

Ce transformateur a subi avec succès les essais relatifs à la sécurité. Utilisation: en tenant compte des «Recommandations pour le dégel électrique des conduites d'eau dans les bâtiments et les précautions à prendre pour éviter des dégâts» (publ. No. 162 f).

Communications des organes des Associations

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels des organes de l'ASE et de l'UCS

Nécrologie

Le 4 janvier 1945 est décédé à Kilchberg, à l'âge de 78 ans, Monsieur H. Kuhn, ancien directeur. Nous présentons nos sincères condoléances à la famille en deuil.

Comité Technique 11 du CES Lignes aériennes

Le CT 11 a tenu sa 8° séance le 18 février 1945, à Davos, sous la présidence de M. B. Jobin. Cette séance fut principalement consacrée à une prise de contact avec la commission fédérale pour l'étude de la neige et des avalanches, ainsi qu'avec la direction de l'institut fédéral du Weissfluhjoch, au sujet d'essais systématiques en laboratoire concernant le givrage des lignes aériennes. A cette séance participèrent notamment MM. Petitmermet, inspecteur en chef des forêts et président de cette commission, Niggli, professeur, et Haefeli, tous deux de l'EPF, en qualité d'experts scientifiques, Bucher, ingénieur, directeur technique, ainsi que d'autres personnes de l'institut du Weissfluhjoch.

Outre l'examen des possibilités offertes par les essais en laboratoire, le CT 11 entendit un rapport de M. Weber, St-Gall, le nouveau chef de l'installation de mesure du givrage aménagée au Säntis. Les résultats acquis jusqu'ici ne sont pas encore très importants, car les conditions atmosphériques n'ont guère été favorables à la formation de givre durant les hivers 1942/43 et 1943/44; il a fallu également remédier à quelques insuffisances de l'installation d'essais. Au cours du présent hiver, on a pu faire quelques observations intéressantes, qui devront encore être étudiées en détail. On espère que cette installation permettra d'obtenir des résultats utiles pour les praticiens. Il sera toutefois nécessaire de compléter les résultats pratiques du Säntis par les essais de laboratoire prévus.

Le CT 11 s'est également occupé de questions ayant trait à la coordination des isolements des lignes aériennes et a pris note de rapports sur les essais de soudage de conducteurs en aluminium, entrepris ces derniers temps.

Comité Suisse de l'Eclairage Groupe d'étude du papillotage

Le groupe d'étude du papillotage a tenu sa première séance le 22 février 1945, à Berne, sous la présidence de M. le profeseur H. König. Il a examiné l'important matériel qui sera présenté à une séance du CSE avec invités. Ce matériel a été consigné dans un rapport, qui sera transmis au CSE pour approbation. Par la même occasion, le groupe d'étude du papillotage demandera au CSE d'organiser pour le 12 avril 1945, sur invitations, une séance consacrée au papillotage, c'est-à-dire à la question des variations à la fréquence du réseau des intensités des sources lumineuses alimentées par courant alternatif et de leurs conséquences.

Demandes d'admission comme membre de l'ASE

Les demandes d'admission suivantes sont parvenues au Secrétariat de l'ASE depuis le 15 février 1945:

a) comme membre collectif:

Adolf Schmids Erben A.-G., Abt. Elektromechanik, Effingerstrasse 17, Bern. Svenska Elektriska Materielkontrollanstalten, Box 19058, Stockholm 19.

b) comme membre individuel:

Hauri Hans, Dipl. El. Techn., Areggerstrasse 22, Solothurn. Reuter Walter, Ingenieur, Albisriederstrasse 221, Zürich. Simmen Eugène, ingénieur électricien ElL, Sonnenbergstr. 17, Ennetbaden. Stalder Josef, Elektrotechniker, Rue de fer 11, Delémont.

c) comme membre étudiant:

Diethelm Carl, stud. el. ing., Lavaterstrasse 15, Zürich. Froidevaux James, stud. techn., Le Roc, Cologny (Genève).

Liste arrêtée au 1er mars 1945.

Vorort

de l'Union Suisse du Commerce et de l'Industrie

Nos membres peuvent prendre connaissance des publications suivantes du Vorort de l'Union Suisse du Commerce et de l'Industrie:

Trafic de paiements avec le Canada.

Réglementation en matière de dollars; paiement en dollars d'importations provenant de pays non rattachés au dollar. Impôts fédéraux et cantonaux. Estimation d'avoirs à l'étranger et d'avoirs bloqués en Suisse.

Acceptation de colis postaux par l'Administration des postes en cas d'interruption du trafic afin d'obtenir le paiement d'accréditifs.