Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 36 (1945)

Heft: 24

Artikel: Phasenschieber

Autor: Güggi, W.

DOI: https://doi.org/10.5169/seals-1056524

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 05.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schaltern angewendet werden, so dass sekundäre Umschalt- und Verriegelungseinrichtungen weggelassen werden können. Der Unterhalt der Schnelldistanzrelais erfolgt in regelmässigem Turnus und gibt zu keinen Bemerkungen Anlass.

Phasenschieber

Von W. Güggi, Zürich

621.316.727

Der Artikel behandelt die Entwicklung einer Phasenschieber-Schaltung für beliebige und kontinuierliche Phasendrehung einphasiger Wechselströme beliebiger Frequenz. Unter besonderer Berücksichtigung von RC-Gliedern wird eine Prinzipschaltung, die sich speziell für den Laboratoriumsgebrauch eignen dürfte, stufenweise weiterentwickelt, um auch höheren Anforderungen genügen zu können. Alle Schaltungen sind durch Einfachheit und kleinen Materialaufwand besonders gekennzeichnet.

L'auteur décrit une méthode étudiée pour varier de façon continue l'angle de phase d'un courant alternatif monophasé de fréquence quelconque et obtenir n'importe quel décalage. Un schéma de principe comprenant des résistances ohniques et des condensateurs, prévu pour les travaux de laboratoire, est décrit ainsi que son développement progressif pour satisfaire à toutes les exigences. Cette méthode se caractérise par sa simplicité et le peu de matériel nécessaire.

Zu verschiedenen Mess- und Steuerzwecken ist es oft erforderlich, eine Wechselspannung in der Phase gegenüber der Ursprungsphase mehr oder weniger zu verschieben. Es wurden dazu verschiedene Schaltungen entwickelt, die jedoch einen ziemlich grossen Aufwand an Material erfordern und entsprechend kostspielig werden, wenn sie hohen Forderungen, z. B. an die Konstanz der Ausgangsspannung, an die maximale Phasendrehung (± 360°) und an die Einfachheit der Bedienung genügen sollen.

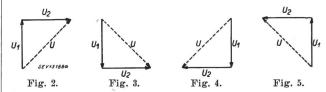
Prinzipschema

1 Stellung 1, Anfangsstellung der Potentiometer
2 Stellung 2, Endstellung der Potentiometer

Die folgenden Ausführungen zeigen die Entwicklung einer Phasenschieberschaltung mit kontinuierlicher Phasendrehung von \pm 360° und einer maximalen Spannungsänderung $< 10^{\circ}/_{0}$.

Von der Tatsache ausgehend, dass sich zwei Wechselspannungen von verschiedenem Wert und verschiedener Phase zu einer einzigen Wechselspannung mit resultierender Phase zusammensetzen lassen, kann eine Schaltung entwickelt werden, welche die Einstellung jeder Phasenlage zwischen 0 und 360° gestattet. In diesem Falle werden zwei um 90° verschobene Spannungen, U_1 und U_2 , an einen gemeinsamen Punkt X geführt, wo sie sich addieren und eine resultierende Spannung U mit zugehörender Phase φ' bilden.

Fig. 1 zeigt die praktische Ausführung, bestehend aus einem Transformator oder Widerstand, mit Mittelabgriff als Nullpunkt, der mit 2 Potentiometern P_1 und P_2 überbrückt ist. Der Abgriff von P_1 geht über ein RC-Glied an den Punkt X, während der Abgriff von P_2 über einen Spannungsteiler ebenfalls mit dem Punkt X verbunden ist. Das RC-Glied, bestehend aus R_1 , C_1 , dreht die Phase von U_1 um 90°, wobei die angelegte Spannung um $^{1/3}$ abfällt. Für gleiche Spannungsverhältnisse von U_2 am Punkt X

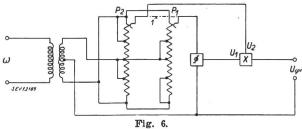

sorgt der Spannungsteiler R_2 , R_3 . Die Widerstände R_4 sind zwei Entkopplungswiderstände, sie führen die beiden Spannungen U_1 und U_2 an den gemeinsamen Punkt X.

Zur Untersuchung der Verhältnisse betrachte man den Mittelabgriff als Nullpunkt; die Potentiometer befinden sich in Stellung 1. U_1 hat dabei die Phase $\varphi + 90^\circ$, U_2 die Phase $+ \varphi$. Da die beiden Spannungen gleiche Werte haben, addieren sie sich in X zu einer resultierenden Spannung U mit der Phase $\varphi + 45^\circ$ (Fig. 2).

Dreht man nun das Potentiometer P_1 in die Stellung 2, so geht die Spannung U_1 über null in Gegenphase über. Die Ausgangsspannung setzt sich nun zusammen aus den beiden Spannungen U_1 mit der Phase φ —90° und U_2 mit der Phase $+\varphi$, was einer resultierenden Phase von φ —45° entspricht. U hat dabei seine Phase um 90° gedreht (Fig. 3).

Eine Verschiebung des Potentiometers P_2 in Stellung 2 (während P_1 in Stellung 2 stehenbleibt), verursacht eine weitere Phasendrehung um 90°, da U_2 in den Gegenwert übergeht. U setzt sich dabei zusammen aus den beiden Spannungen U_1 mit zugehöriger Phase φ —90° und U_2 mit der Phase $-\varphi$, was eine resultierende Phase von $-\varphi+45$ ° ergibt (Fig. 4).

Es ist nun leicht, einzusehen, dass durch Zurückdrehen von P_1 in Stellung 1 eine weitere Phasendrehung von 90° stattfindet (Fig. 5).



Durch Zurückdrehen von P_2 in Stellung 1 wird U in seine Ausgangsphase zurückgeschoben.

Man sieht also, dass durch abwechslungsweises Durchdrehen der beiden Potentiometer eine kontinuierliche Phasendrehung von 360° erzielt werden kann.

Es ist nun möglich, die Schaltung so auszuführen, dass beide Potentiometer auf eine einzige Achse gekoppelt werden können, die Phasendrehung also mit einem einzigen Drehknopf erfolgt. Die Prinzipschaltung zeigt Fig. 6.

Elektrisch muss dann die Schaltung dahin abgeändert werden, dass 1/4 des einen Potentiometers überbrückt ist, während der entsprechende Viertel des andern Potentiometers als solches arbeitet. Der eine Kontakt bleibt also, während er mechanisch

Schaltung unter Verwendung von Potentiometern auf einer Achse

Phasendrehung 90° Mischung. 1 Mechanische Verbindung der Potentiometerachsen

dreht, elektrisch auf dem gleichen Potential stehen, der zweite führt den zu Fig. 3 beschriebenen Vorgang aus. Nach 1/4-Drehung werden die Rollen gewechselt, der Vorgang entspricht demjenigen von Fig. 4 usw., bis die Endstellung erreicht ist und die Phasendrehung 360° beträgt.

Zur Abklärung der Spannungsverhältnisse am Ausgang des Phasenschiebers sei folgendes erwähnt: Es werden 2 Spannungen zusammengesetzt, von denen die eine konstant bleibt, also z.B. den Wert U_1 hat, während die zweite Spannung U_2 ihren absoluten Wert von null bis $U_2 = U_1$ ändert. Da die beiden Spannungen Phasenunterschiede von 90° aufweisen, ergibt sich aus ihrer Summe eine Spannung, die zwischen den Werten $U = U_1$ und $U_1 \cdot \sqrt{2}$ bzw. $U = U_2 \cdot \sqrt{2}$ auf- und absteigt.

Dies entspricht einer Spannungsänderung beim Durchdrehen der Phase von einem Faktor ~ 1.5 . Sind noch grössere Spannungsschwankungen zulässig, so braucht das RC-Glied nur aus einem einzigen Kondensator und einem Widerstand zu bestehen, wodurch die Phasendrehung von $U_1 < 90^{\circ}$

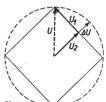
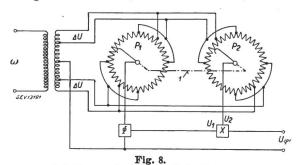



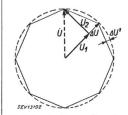
Fig. 7. Darstellung des Phasenverlaufs erzielter Verlauf ----- erwünschter Verlauf

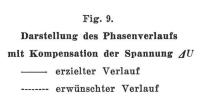
Stellt man die Ausgangsspannung U als Radiusvektor dar, so ist ersichtlich, dass dieser nicht einem Kreis, sondern einem im Kreis einbeschriebenen Quadrat folgt, was durch die Spannungsschwankungen ΔU ausgedrückt wird (Fig. 7).

Da aber solche Spannungsschwankungen nicht für jeden Zweck zulässig sind, soll eine Schaltung beschrieben werden, die jene weitgehend eliminiert. Ein Ausgleich kann dadurch erzielt werden, dass die momentan konstante Spannung, z.B. U_1 , um den Wert △U zunimmt, während die zweite Spannung, in diesem Fall U_2 , auf null absinkt, und während sie wieder auf den entgegengesetzten Wert ansteigt, U, auf seinen Normalwert zurückfällt. Betrachtet man

Fig. 6, so erscheint die Lösung am einfachsten durch Zuführung einer Spannung ΔU zwischen die Ueberbrückungspunkte der Potentiometer. Aendert man die beiden Potentiometer noch dahin ab, dass man sie als geschlossen baut, also durchdrehbar, d. h. ohne

Schaltung mit endlosen Potentiometern


Phasendrehung 90° Mischung. 1 Mechanische Verbindung der Achsen


Anschlag, so entsteht die vollständige Schaltung nach

Betrachten wir den Spannungsverlauf wiederum als Radiusvektor, so ergibt sich, dass dieser einem einbeschriebenen Achteck folgt, was leicht zu beweisen ist, da ΔU als lineare Funktion von U_1 bzw. U_2 angesehen werden kann. Daraus geht hervor, dass die Spannungsschwankungen \(\Delta \) U' auch praktisch in der Grössenordnung < 10 % gehalten werden können (Fig. 9).

Eine weitere Kompensation kann natürlich durch Zuführung mehrerer Spannungen zwischen die Ueberbrückungspunkte oder durch entsprechenden Verlauf des überbrückten Widerstandsteiles angestrebt werden.

Die beschriebene Schaltung eignet sich nur zur Spannungssteuerung im Bereiche der Niederfrequenz. Ist Leistungsabgabe erforderlich, so kann diese durch Zuschalten einer Verstärkerröhre erzeugt werden, wobei der Mischvorgang im Punkte X an das Steuergitter oder zwei getrennte Gitter der betreffenden Röhre verlegt wird. Eine andere Mög-

lichkeit besteht darin, an Stelle der beiden Potentiometer Dreh- oder Schiebetransformatoren zu verwenden und auch die Mischung über einen Transformator zu vollziehen. Diese Ausführung hat gegenüber dem Drehfeldschieber den Vorzug, dass bestehende Normalteile verwendet werden können.

Für hohe Frequenzen ist grundsätzlich das gleiche Prinzip anwendbar, am vorteilhaftesten unter Verwendung von zwei Röhren. Die Anwendungsmöglichkeiten auf diesem Gebiete scheinen jedoch beschränkt zu sein, weshalb nicht näher darauf eingegangen sei.

Adresse des Autors:

W. Güggi, Elektrotechniker, Rotstrasse 15, Zürich 6.