Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 36 (1945)

Heft: 21

Artikel: Systematische Versuche über Schnellwiedereinschaltung im Netz der

Kraftwerke Gösgen und Laufenburg

Autor: Wanger, W.

DOI: https://doi.org/10.5169/seals-1056514

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ASSOCIATION SUISSE DES ÉLECTRICIENS

BULLETIN

RÉDACTION:

Secrétariat de l'Association Suisse des Electriciens Zurich 3, Seefeldstrasse 301 ADMINISTRATION:

Zurich, Stauffacherquai 36 * Téléphone 23 77 44 Chèques postaux VIII 8481

Reproduction interdite sans l'assentiment de la rédaction et sans indication des sources

XXXVIe Année

Nº 21

Mercredi, 17 Octobre 1945

Systematische Versuche über Schnellwiedereinschaltung im Netz der Kraftwerke Gösgen und Laufenburg

Von W. Wanger, Baden

621.316.57.064.22 : 621.316.92

Der vorliegende Artikel berichtet über systematische Versuche, die im Netz der Kraftwerke Gösgen und Laufenburg durchgeführt wurden, um die Grenzen der Leistungsfähigkeit der Schnellwiedereinschaltung bei Kurzschlüssen auf Verbindungsleitungen zwischen zwei Kraftwerken oder Netzen festzustellen. Es zeigte sich, dass die Stabilität des Parallelbetriebes in der Mehrzahl der Fälle gewahrt werden kann. Ausser bei wirklich langen Leitungen ist die Stabilität nur gefährdet, wenn über eine einzige Kuppelleitung eine relativ zu den Leistungen der verbundenen Netze grosse Leistung übertragen wird und wenn gleichzeitig die Generatoren des Leistung beziehenden Netzes nur schwach belastet sind oder wenn es sich um Phasenschieber oder Synchronmotoren handelt. Selbst in solchen Fällen kann bei zweipoligen Kurzschlüssen in gelöschten Netzen die Stabilität dadurch gerettet werden, dass nur einpolig unterbrochen und wiedereingeschaltet wird. Zum Vergleich mit den Versuchsresultaten wurden eingehende Berechnungen durchgeführt.

Für eine sichere Entionisierung der Ueberschlagstrecke ist bei grössern Kurzschlußströmen eine Pausenzeit von ca. 25 cs notwendig und hinreichend. Diese Zeit genügt, um auch bei Mehrfachblitzen in den weitaus meisten Fällen den Erfolg der Wiedereinschaltung zu sichern. Komplizierte Einrichtungen, um die Länge der Pause von der Geschwindigkeit, mit der die Phasenwinkel der beiden Netze auseinanderlaufen, abhängig zu machen, erübrigen sich daher. Auch die Anwendung einer mehrfachen Schnellwiedereinschaltung ist nicht zu empfehlen. Sowohl für die Schnellwiedereinschaltung, als auch für den Netzschutz im allgemeinen sind möglichst kurze Relais- und Schalterzeiten von fundamentaler Bedeutung.

1. Einleitung

Die Methode der Schnellwiedereinschaltung (Kurzschlussfortschaltung) hat seit einigen Jahren bei den Fachkreisen aller Länder grosses Interesse gefunden. Sie besteht im Prinzip darin, dass bei Kurzschlüssen, die die Abschaltung eines Netzteiles erforderlich machen, die ausgelösten Schalter nach ganz kurzer Zeit automatisch wieder eingeschaltet werden. Handelt es sich um einen Kurzschluss über einen Lichtbogen, der in der Pausenzeit, während der der betreffende Netzteil abgeschaltet und spannungslos ist, erlischt, so ist das Netz sofort nach der Wiedereinschaltung wieder voll im Betrieb. Wenn ein fester Kurzschluss vorhanden ist, muss nach der Wiedereinschaltung der kranke Netzteil definitiv abgeschaltet werden; aber nur in diesem Fall ergibt sich eine dauernde Abtrennung.

Le présent article traite d'essais systématiques effectués dans le réseau des centrales de Gösgen et de Laufenburg afin de se rendre compte des limites qui existent pour la méthode du réenclenchement ultra-rapide lors de courts-circuits sur des lignes d'interconnexion entre deux centrales ou réseaux. On a trouvé que la stabilité de la marche en parallèle peut être sauvegardée dans la plupart des cas. Exception faite de lignes extrêmement longues, la stabilité n'est mise en danger que si une puissance élevée par rapport à la puissance des réseaux interconnectés est transmise à travers une seule ligne et si, en même temps, les génératrices du réseau recevant de l'énergie ne sont que faiblement chargées, ou s'il s'agit de compensateurs ou de moteurs synchrones. Même dans de tels cas difficiles, la stabilité peut être sauvegardée si une seule phase est interrompue et réenclenchée, lors de courts-circuits bipolaires dans un réseau muni de bobines d'extinction. Des calculs détaillés ont été effectués et leurs résultats comparés avec ceux des essais.

Une durée d'interruption de la ligne d'environ 25 cs est nécessaire et suffisante pour une déionisation certaine de la distance de contournement, même dans le cas de courants de court-circuit les plus élevés. Cette durée suffit également pour garantir le succès du réenclenchement dans la plupart des cas de coups de foudre multiples. Des dispositifs compliqués qui choisissent le moment du réenclenchement selon la vitesse de variation de l'angle de phase entre les deux réseaux semblent donc inutiles. De même, l'introduction d'un réenclenchement multiple n'est pas à recommander. Le temps de fonctionnement des relais et le temps propre et la durée d'arc des disjoncteurs doivent être le plus courts possible, aussi bien eu égard au réenclenchement rapide qu'à la protection des réseaux en général.

Die automatische Schnellwiedereinschaltung nach einem Lichtbogenkurzschluss bietet zunächst den Vorteil, dass die am betroffenen Netzteil angeschlossenen Verbraucher nur ganz kurzzeitig spannungslos werden und daher überhaupt keine ernstliche Störung erleiden. Das dürfte vor allem bei Mittelspannungsnetzen wichtig sein.

Netze höherer Spannung sind dagegen meistens — zum mindesten in ihren wichtigsten Teilen — so ausgebildet, dass bei einer Störung auf einer Leitung nur ein reines Leitungsstück ohne Abzweige abgeschaltet wird, so dass keine Verbraucher spannungslos werden. In diesem Fall hat die Schnellwiedereinschaltung einen ganz andern Zweck, nämlich zu verhindern, dass das betroffene Leitungsstück längere Zeit unterbrochen bleibt. Hat dieses vor der Störung Leistung übertragen, so werden

nämlich die Verhältnisse durch eine längere Unterbrechung auf alle Fälle irgendwie verschlechtert. Entweder werden dadurch zwei Netzteile vollständig voneinander getrennt, wobei gewisse Generatoren höher als vorher — vielleicht unzulässig hoch — belastet werden und wobei die nachfolgende Zusammenschaltung eine Neu-Synchronisierung erforderlich macht; oder die Verbindung zwischen den beiden Netzteilen, die in einem vermaschten Netz zwar noch vorhanden ist, wird geschwächt, wodurch die Stabilität des Parallelbetriebes gefährdet werden kann. Die Schnellwiedereinschaltung wirkt sich in all diesen Fällen günstig aus, indem sie die Unterbrechungszeit auf sehr kleine Werte verkürzt. Sie hat also in Netzen höherer Spannung vor allem den Zweck, das Auseinanderfallen (Aussertrittfallen) des Netzes zu verhindern, d. h. die Stabilität des Parallelbetriebes zu verbessern.

Die Erwartungen, die in dieser Hinsicht an die Schnellwiedereinschaltung geknüpft werden, sind zum Teil ausserordentlich hoch. Die Ansicht, dass diese Methode imstande sei, bei Lichtbogenkurzschlüssen selbst auf einer einfachen Verbindungsleitung zwischen zwei Kraftwerken die Stabilität des Parallelbetriebes in jedem Fall zu erhalten, ist z. B. sehr verbreitet. Oder man stösst häufig auf die Meinung, dass ein Erdschlußschutz mit Löschspulen überhaupt keine Berechtigung mehr habe, wenn man die Schnellwiedereinschaltung anwende; denn diese eliminiere ja alle Erdschlüsse so rasch, dass das Netz praktisch nichts davon merke und vor allem die Stabilität durch Erdkurzschlüsse keinesfalls gefährdet werde. Solch hochgespannte Erwartungen stimmen leider nicht mit den Tatsachen überein. Sicher ist die Schnellwiedereinschaltung ein sehr wertvolles Hilfsmittel zur Verbesserung der Stabilität, aber ein wichtige Fragen beantworten. In diesen Publikationen findet man einerseits wertvolle Angaben über Betriebserfahrungen (2) (5) (6) (12) (16) (26), anderseits theoretische Berechnungen über die Stabilität des Parallelbetriebes (1) (18) (20) (22) (32) (33) bei der Schnellwiedereinschaltung. Was aber unseres Wissens bis jetzt vollständig fehlt, das sind systematische Versuche in Netzen, die die Grenzen der Leistungsfähigkeit der Schnellwiedereinschaltung, speziell mit Rücksicht auf die Stabilität, zeigen; ferner eine experimentelle Bestätigung der theoretischen Stabilitätsberechnungen. Diese Lücke möchte der vorliegende Aufsatz ausfüllen.

Bei dieser Gelegenheit soll den Direktionen der Aare-Tessin A.-G. für Elektrizität und des Kraftwerkes Laufenburg der beste Dank dafür ausgesprochen werden, dass sie der Firma Brown Boveri ermöglicht haben, die interessanten und aufschlussreichen Wiedereinschaltversuche in ihren Kraftwerken Gösgen und Laufenburg durchzuführen. Ferner möchte der Autor auch dem an den Versuchen beteiligten Personal der beiden Elektrizitätsunternehmungen sowie seinen zahlreichen Mitarbeitern bei Brown Boveri, die bei der Vorbereitung, Durchführung und Auswertung der Versuche sowie den daran anschliessenden Berechnungen mitgewirkt haben, herzlich danken.

2. Das bei den Versuchen benützte Netz und die Versuchseinrichtungen

Für die Versuche standen zwei Dreiphasenleitungen von $50\,\mathrm{kV}$ mit $50\,\mathrm{mm^2}$ Kupferquerschnitt zwischen den beiden hydraulischen Kraftwerken Gösgen und Laufenburg zur Verfügung (L_I und L_{II} in Fig. 1). Die Distanz beträgt 24,4 km, jede der parallelen Leitungen hat bei $50\,\mathrm{Hz}$ eine Reaktanz von

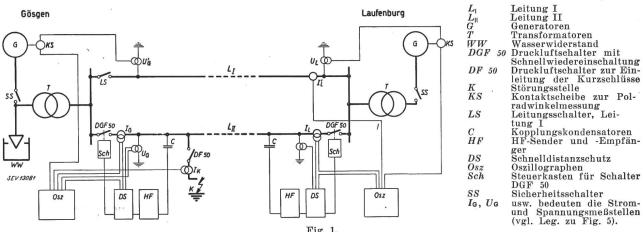


Fig. 1.
Grundsätzliches Schaltungsschema für die Schnellwiedereinschaltversuche

Allerweltsmittel ist sie nicht. Wenn man mit dieser Methode nicht Enttäuschungen erleben will, so ist es nötig, abzuklären, was sie tatsächlich leistet und was nicht.

Es sind nun bereits zahlreiche Veröffentlichungen erschienen 1), die verschiedene interessante und

9,0 Ω pro Phase und einen Wirkwiderstand von 8,5 Ω pro Phase. Die beiden Leitungen sind auf gemeinsamen Masten verlegt. Der Nullpunkt des Netzes war vollständig isoliert.

Bei den Versuchen war in jedem der beiden Kraftwerke nur ein Generator angeschlossen, einerseits, weil man die übrigen Teile der sehr ausgedehnten Netze nicht in Mitleidenschaft ziehen wollte, anderseits aber auch, weil man auf diese Art die ungün-

¹⁾ Vgl. das Literaturverzeichnis am Schluss dieses Artikels.

^{(2) (5) (6)} usw.: Alle Zahlen-Hinweise in Klammern beziehen sich auf die betr. Nummer im Literaturverzeichnis.

stigsten Stabilitätsverhältnisse schaffen konnte. Da beide Werke Laufkraftwerke sind, sind die Maschinen Langsamläufer; ihre wichtigsten Daten sind in Tabelle I zusammengestellt. Wie Fig. 1 zeigt, ist jeder Generator über einen eigenen Transformator an eine 50-kV-Sammelschiene angeschlossen, die ihrerseits mit den Freileitungen in Verbindung steht. Die wichtigsten Daten der Transformatoren sind aus Tabelle II ersichtlich.

Daten der Generatoren

Tabelle I

8 8	Gösgen	Laufenburg
Nennleistung (kVA) Leistungsfaktor $\cos \varphi$ Nennwirkleistung (kW) Spannung (V)	7050 0,7 4930 8060 ± 340 50 83,3	7850 0,716 5620 6400 ± 5 °/ ₀ 50 107
ohne Turbine (t m²) Rotorkonstruktion	1500 Polschuhe lamelliert, keine Dämpfer- wicklung	1250 Pole ganz massiv, keine Dämpfer- wicklung

Bemerkung: Das Schwungmoment des Turbinenlaufrades betrug für Gösgen 70 t m², für Laufenburg 50 t m², also knapp 5 % des Generatorschwungmomentes. Erfahrungsgemäss ist aber das massgebende Schwungmoment — offenbar weil das Wasser im Laufrad auch noch einen gewissen Beitrag liefert — etwas grösser. Daher wurde für beide Kraftwerke das Schwungmoment der Turbine mit 10 % desjenigen des Generators in Rechnung gesetzt.

Daten der Transformatoren

Tabelle II.

	Gösgen	Laufenburg
Nennleistung (kVA)	16 000 $\frac{1}{1}$ 8885 8158 53 631	6600 △/↓ 65906300 49 350
verhältnis Frequenz (Hz) Kurzschlussreaktanz (%) .	6,56 50 8,25	7,62 50 3,4

Als Energieverbraucher diente ein Wasserwiderstand in Gösgen, der bis 12 000 kW aufnehmen konnte. Es wurde also bei den Versuchen Energie von Laufenburg nach Gösgen übertragen, wobei die übertragene Leistung verschieden gross eingestellt und auch der Generator in Gösgen mehr oder weniger belastet wurde.

Die Erregerströme wurden bei allen Versuchen so eingestellt, dass beide Generatoren mit einem Leistungsfaktor $\cos\varphi \gtrsim 1$ arbeiteten. Da nur ohmsche Belastung vorhanden war, war die Erregung ziemlich schwach. Dadurch waren die Stabilitätsverhältnisse merklich schlechter als im normalen Netzbetrieb. Die gefundenen Versuchsergebnisse enthalten also in dieser Beziehung noch eine gewisse Sicherheitsreserve.

Als Störungen wurden Lichtbogenkurzschlüsse auf der Leitung II durchgeführt. Die Kurzschlussstelle war nahe an einem Leitungsende, nur etwa 30 m vom Schalthaus des Kraftwerkes Gösgen entfernt. Hinter einem Druckluftschnellschalter, der von der Leitung II abzweigte und zunächst offen war, wurden durch dünne Eisendrähte (0,3 mm Durchmesser) zwei oder alle drei Phasen mit der Erde verbunden. Durch Einschalten des Schalters wurden dann zwei- oder dreipolige Erdkurzschlüsse eingeleitet. Nachdem die dünnen Eisendrähte sehr rasch durchgeschmolzen waren, hatte man es mit Lichtbogenkurzschlüssen zu tun, die nun durch die Schnellwiedereinschaltung fortzuschalten waren.

Die Schalter an beiden Enden der Leitung II waren mit Drehfeld-Schnelldistanzschutz ausgerüstet. Ausserdem war noch eine Hochfrequenzkupplung zwischen den Distanzrelais in Gösgen und Laufenburg vorhanden. Sobald das Relais am einen Ende der Leitung den Auslösebefehl gab, wurde dieser durch die Hochfrequenzkupplung auf das andere Ende übertragen, so dass der andere Schalter mit bloss etwa 1 cs Verzögerung ebenfalls ausgelöst wurde. Die Hochfrequenzkupplung hatte also den Zweck, eine möglichst gleichzeitige Abschaltung an beiden Leitungsenden herbeizuführen. Auf diese Art wurden beide Schalter praktisch mit Grundzeit ausgelöst, während sonst bei einem Kurzschluss nahe an einem Leitungsende der Schalter am andern Ende um die Staffelzeit verzögert ausgelöst worden wäre. Die Grundzeit der Schnelldistanzrelais war 5 bis 6 cs, die Schalterzeit (Eigenzeit plus Lichtbogenzeit) der Druckluftschnellschalter ca. 5 cs, so dass die totale Störungszeit vom Beginn des Kurzschlusses bis zu dessen Unterbrechung normalerweise 10 bis 12 cs betrug.

Nach beidseitiger Abschaltung ist die Leitung II spannungslos, und die Lichtbogenstrecken des Erdkurzschlusses können entionisieren. Nach der spannungslosen Pause, über deren Dauer im nächsten Kapitel diskutiert werden soll, schalten die beiden Schalter wieder ein, und die normale Verbindung über die Leitung II ist wieder hergestellt. Voraussetzung für eine störungsfreie Weiterführung des Betriebes ist, dass die Kurzschlusslichtbögen nach der Wiedereinschaltung nicht mehr zünden und dass die beiden Kraftwerke während der Kurzschlussdauer und der Pausenzeit nicht ausser Tritt fallen oder sich nachher rasch und ohne unzulässig grosse Leistungsstösse wieder fangen.

Bei dreipoligen Kurzschlüssen muss natürlich die Leitung auf beiden Seiten dreipolig abgeschaltet werden. Bei zweipoligen Kurzschlüssen wurden sowohl Versuchsreihen mit dreipoliger Unterbrechung, als auch solche mit einpoliger Unterbrechung durchgeführt. Im letzten Fall besteht auch während der Pausenzeit noch eine zweiphasige Verbindung über die Leitung II, wodurch die Stabilität des Parallelbetriebes sehr verbessert wird. Da der Nullpunkt des Netzes nicht direkt geerdet ist, wird bereits durch die einpolige Abschaltung der Kurzschlußstrom unterbrochen; es bleibt nur ein einpoliger Erdschluss, der mit der Zeit von selber verschwindet.

Die für die Schnellwiedereinschaltung verwendeten Druckluftschalter hatten in Serie mit der aktiven Unterbrechungsstelle einen Trenner in Luft. Bei der Abschaltung und Wiedereinschaltung blieb der Serietrenner eingeschaltet; nur die aktive Un-

terbrechungsstelle schaltete aus und wieder ein, wobei sie natürlich während der ganzen Pausenzeit unter Druck blieb. Wenn dagegen eine definitive Abschaltung nötig war, schaltete bei der zweiten Abschaltung nach der aktiven Unterbrechungsstelle auch der Serietrenner aus. Da die Schalter nur für dreipolige Aus- und Wiedereinschaltung eingerichtet waren, wurden bei den Versuchen mit einpoliger Unterbrechung zwei Phasen der Schalter durch eine feste Verbindung überbrückt. Wäre bei diesen Versuchen eine definitive Unterbrechung nötig gewesen, so hätten die Generatorschalter (Sicherheitsschalter SS in Fig. 1) ausgelöst werden müssen.

Bei den Versuchen war nur die Leitung II, auf der die Kurzschlüsse gemacht wurden, für Schnellwiedereinschaltung ausgerüstet. Die Leitung I war bei einer Versuchsreihe fest eingeschaltet, so dass auch während der Unterbrechung der Leitung II noch eine Verbindung zwischen den beiden Kraftwerken bestand. Bei den andern Versuchsreihen war der Schalter am Ende der Leitung I in Gösgen ausgeschaltet, so dass nur eine einfache Leitung zwischen den beiden Kraftwerken vorhanden war. In diesem Fall war es möglich, die an den Sammelschienen von Laufenburg vorhandene Spannung auch in Gösgen zu messen, indem man am offenen Ende der Leitung I Spannungswandler anschloss.

Alle wichtigen Grössen (Spannungen, Ströme, Leistungen, Ströme in den Steuerkreisen der Schalter zur Kontrolle der Schalterbetätigung) wurden oszillographisch aufgenommen. In Gösgen standen 12, in Laufenburg 6 Oszillographenschleifen zur Verfügung. Die Polradwinkel der beiden Generatoren wurden dadurch gemessen, dass die Spannung am Leitungsende in jedem Kraftwerk über eine rotierende Scheibe, die auf der Welle des betreffenden Generators befestigt war, auf eine Oszillographenschleife geleitet wurde. Diese Scheiben waren zum grössten Teil leitend, hatten aber an bestimmten Stellen des Umfangs Unterbrüche. Aus der Lage der Unterbrüche in der Sinuskurve der Spannung kann für jedes Kraftwerk der Winkel zwischen der Polaxe des Generators und der betreffenden Spannung bestimmt werden. Führt man bei offener Leitung I die Spannung am offenen Ende über die Unterbrecherscheibe des Generators in Gösgen, so ermittelt man den Winkel zwischen der Sammelschienenspannung in Laufenburg und dem Generator in Gösgen. Addiert man dazu noch den Winkel zwischen Spannung und Generator in Laufenburg, so erhält man den totalen Winkel zwischen den Polrädern der beiden Generatoren.

Die Versuche wurden an insgesamt vier Tagen durchgeführt, wobei zweimal ein Samstag-Nachmittag und der darauffolgende Sonntag bis zum Einbruch der Dunkelheit — unter Ausschluss der dazwischen liegenden Nacht — zur Verfügung standen. In diesen Zeiten mussten auch die Umschaltungen vom normalen Netzbetrieb auf den Versuchsbetrieb und umgekehrt vorgenommen werden. Es braucht wohl nicht besonders betont zu werden, dass peinlich genaue Vorbereitungen erforderlich

waren, wenn man in der relativ kurzen Zeit alle vorgesehenen Versuchsreihen durchführen wollte.

3. Die zweckmässige Länge der Pausenzeit

Die spannungslose Pause muss so lange gewählt werden, dass die Lichtbogenstrecke an der Kurzschlußstelle genügend entionisiert, damit nach der Wiedereinschaltung keine Rückzündung erfolgt. Dieses Problem wurde in der Literatur schon verschiedentlich behandelt (1) (3) (7) (8) (20) (21) (24). Es soll daher hier keine systematische Untersuchung für verschiedene Spannungen durchgeführt werden. Lediglich zur Ergänzung der Literaturangaben sei das Resultat von (unveröffentlichten) Versuchen mit Schnellwiedereinschaltung in einem 70-kV-Netz angeführt. Bei einem Kurzschlußstrom von 5000 A wurden mehrphasige Erdschlüsse über eine Lichtbogenlänge von 1,2 m eingeleitet. Nach einer Kurzschlussdauer von 10...20 cs wurde eine spannungslose Pause von 30...40 cs eingeschaltet, wobei in keinem Fall eine Rückzündung auftrat. Die zur sichern Entionisierung erforderliche Pausenzeit betrug also höchstens 30 cs.

Bei den Versuchen in Gösgen-Laufenburg wurden ein paar Wiedereinschaltungen mit ziemlich kurzer Pausenzeit durchgeführt. Die Ergebnisse sind in Tabelle III zusammengestellt. Es handelte sich um dreiphasige Erd-Kurzschlüsse mit dreiphasiger Unterbrechung, mit Ausnahme des letzten Versuches, bei dem nur zwei Phasen über Lichtbögen an Erde gelegt wurden und die Unterbrechung in einer einzigen Phase erfolgte.

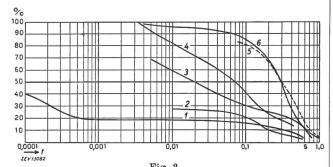
Nötige Dauer der Pausenzeit bei 40 bis 50 kV verketteter Spannung und 350 bis 400 A Kurzschlußstrom

			Tabelle III
Spannung kV	Strom A	Pausenzeit cs	Rückzündung
47	353	22	nein
46	368	20	nein
50	368	14,6	ja
46,5	345	12,5	nein
42	375	12	nein
47	375	13	ja

Selbst bei Pausenzeiten von 12...13 cs konnte in zwei Fällen einwandfreie Entionisierung festgestellt werden. Die längste Pausenzeit, bei der noch eine Rückzündung erfolgte, betrug ca. 15 cs. Man kann annehmen, dass bei den hier untersuchten Verhältnissen eine Pausenzeit von 20 cs genügt, um mit Sicherheit keine Rückzündungen zu erhalten.

Da bei diesen Versuchen nur ein Generator in jedem Kraftwerk angeschlossen war, war der Kurzschlußstrom ziemlich klein, und man darf die hier gefundenen Ergebnisse nicht ohne weiteres auf andere Verhältnisse übertragen. Aus diesem Grunde wurden in der Hochleistungsversuchsanlage von Brown Boveri noch Versuche mit grössern Strömen durchgeführt. Zwischen zwei Leitern im Abstand von 60 cm wurden durch 0,3 mm dicke Eisendrähte Kurzschlüsse eingeleitet, die nach 13 cs abgeschaltet wurden. Nach verschieden langen Pausenzeiten wurde die Spannung (ca. 50 kV) wieder eingeschal-

tet und festgestellt, ob der Lichtbogen wieder zündete oder nicht. Die Resultate sind in Tabelle IV zusammengestellt.


Nötige Dauer der Pausenzeit bei ca. 50 kV Spannung und ca. 4000 A Kurzschlußstrom Tabelle IV.

Strom A	Pausenzeit cs	Rückzündung
3950 4080 4000 4070 4070 4070 4070 4070 407	37,7 29,7 24,5 20,7 19,7 18,7 16,9 15,8 16,4 18,2	nein nein nein ja nein ja ja nein nein
4070 4070	23,2 23,4	nein nein nein nein
	A 3950 4080 4070 4070 4070 4070 4070 4070 4070 4070 4070 4070 4070	A cs 3950 37,7 4080 29,7 4000 24,5 4070 20,7 4070 19,7 4070 16,9 4070 15,8 4070 16,4 4070 18,2 4070 23,2 4070 23,4

Während dreimal bei Pausenzeiten unter 20 cs keine Rückzündungen auftraten, ist bei ca. 20 cs noch eine vorgekommen. Will man sicher sein, so muss daher die Pausenzeit noch etwas höher eingestellt werden. Bei ca. 25 cs ist die Sicherheit schon recht gross, denn bei insgesamt 6 Schaltungen mit Pausenzeiten zwischen 20 und 25 cs kam nie eine Rückzündung vor.

Mit Rücksicht auf die Stabilität ist es günstig, die Pausenzeit möglichst kurz einzustellen, nur gerade so lang, dass sicher keine Rückzündungen stattfinden. Auf der andern Seite könnte man mit Rücksicht auf Mehrfachblitze versucht sein, eine wesentlich längere Pausenzeit zu wählen, damit womöglich alle Teilentladungen solcher Blitze vor erfolgter Wiedereinschaltung nach der Erde abgeleitet werden.

Um diese Frage zu studieren, muss man die totale Dauer solcher Mehrfachblitze kennen. Hierüber sind verschiedene Veröffentlichungen erschie-

Wahrscheinliche totale Dauer von Mehrfachblitzen

Abszisse: totale Blitzdauer in Sekunden. Ordinate: Prozentuale Anzahl der Blitze, deren totale Dauer einen bestimmten Abszissenwert erreicht oder überschreitet. Die einzelnen Kurven stammen von folgenden Messungen:

- Messungen von 34 Ableiterströmen (Wagner, McCann und Beck) Messungen von 184 Röhrenableiteransprechungen (McEachron)

- (McEachron)
 Kameraaufnahmen von 37 Einschlägen in freies Feld
 (Wagner, McCann und Beck)
 Kameraaufnahmen von 9 Einschlägen in hohe Objekte
 (Wagner, McCann und Beck)
 25 Messungen an induzierten Antennen
 (Stekolnikov und Valeev)
 Messung von 49 Einschlägen am Empire State Building
 (McEachron)

nen, und eine Arbeit von C. F. Wagner und Mc. Cann (15) gibt eine interessante Zusammenstellung davon. Danach ergeben sich für die totale Blitzdauer Häufigkeitskurven nach Fig. 2. Die Kurven streuen ausserordentlich stark. Es ist aber zu beachten, dass die Kurven mit der grossen Häufigkeit langer Blitzdauern unter ganz andern Verhältnissen gefunden wurden als sie bei elektrischen Freileitungen vorliegen. Den Verhältnissen, die wir bei der Schnellwiedereinschaltung antreffen, dürften am ehesten die in den Kurven 1 und 2 zugrunde liegenden Messungen gerecht werden. Die Kurve 2 hat dabei erst noch den Vorteil dass sie auf einer weitaus grössern Zahl von Einzelmessungen basiert als alle andern Kurven.

Wenn man nun bei der Schnellwiedereinschaltung die Summe von Kurzschlussdauer und Pausenzeit zu 0,4 s wählt (z. B. 12 cs für die Kurzschlussdauer und 28 cs für die Pausenzeit), so werden nicht alle Blitze mit einer totalen Dauer von höchstens 0,4 s einwandfrei abgeleitet werden; denn nach der letzten Teilentladung muss ja die Lichtbogenbahn noch entionisieren, bevor wieder eingeschaltet werden kann. Nehmen wir an - was eher zu ungünstig ist —, dass für diese Entionisierung die gleiche Zeit erforderlich sei wie für die eines Kurzschlusslichtbogens bei Betriebsfrequenz, also nach Tabelle IV höchstens 20 cs, so werden alle Mehrfachblitze mit einer totalen Dauer von höchstens 0,2 s einwandfrei abgeleitet. Die längeren Blitze werden dagegen bei der Wiedereinschaltung zu einer Rückzündung führen oder nach bereits vollzogener Wiedereinschaltung nochmals in die Leitung schlagen. Nach Kurven 1 und 2 von Fig. 2 sind das aber nur 10...13 % aller Blitzeinschläge.

Die praktischen Erfahrungen mit der Schnellwiedereinschaltung sind sogar noch besser, als diese theoretischen Ueberlegungen erwarten lassen. Sporn und Müller (16) berichten über 5jährige Erfahrungen in einem amerikanischen 132-kV-Netz, in dem die Wiedereinschaltung mit totalen Störungszeiten (Kurzschluss- und Pausenzeit) von 30...40 cs (im Mittel eher der kleinere Wert) betrieben wurde. Bei 71 Fällen, bei denen die Wiedereinschaltung infolge von Blitzschlägen in Aktion trat, verlief sie in 65 Fällen, d. h. 91 1/20/0, erfolgreich.

Man kann demnach festhalten, dass auch bei minimalen Pausenzeiten die Schnellwiedereinschaltung bei Mehrfachblitzen in weitaus den meisten Fällen einwandfrei spielt. Anderseits werden wir in den folgenden Abschnitten sehen, dass man sehr häufig tatsächlich mit diesen minimalen Zeiten operieren muss, wenn die Kraftwerke bei der Wiedereinschaltung nicht ausser Tritt fallen sollen. Aus diesen Gründen wurden die meisten Versuche ungefähr mit der für sichere Entionisierung mindest erforderlichen Pausenzeit durchgeführt, nämlich mit 26...28 cs. Nur bei ein paar wenigen Versuchen wurden aus ganz bestimmten Gründen kürzere oder längere Zeiten eingestellt (s. 4. Kapitel).

Statt eine lange Pausenzeit zu wählen, kann man auch eine Mehrfach-Wiedereinschaltung in Betracht ziehen. Sofern nach der ersten Wiederein-

Uebersicht über die wichtigsten Wiedereinschaltversuche bei Lichtbogen-Kurzschlüssen

Tabelle V.

Versuchs- reihe und Nr.	Parallele Leitung I	Kurz- schluss	Unter- brechung	Vorbel Generator Gösgen kW	astung Generator Laufenburg kW	Kurzschluss- dauer cs	Pausen- zeit cs	Bleiben die Generatoren im Tritt?	Oszillo- gramm siehe Fig.	Polrad- winkel siehe Fig.
A 1 A 2	offen	3 polig	3 polig	0	0	11 11	26 315	ja ja	5	3
B 1 B 2	offen	3 polig	3 polig	400 250	4000 3200	11 11	27 27	nein nein	6	4
В 3				300	4800	7	15	ja	_	_
C 1 C 2 C 3	offen	3 polig	3 polig	1400 1700 2500	5200 3700 3300	11 11 11	30 28 28	nein nein ja	 7 8	
D	geschlossen	3 polig	3 polig	320	4400	11	28	ja	9	3
E	offen	2 polig	3 polig	350	4100	14	28	nein	10	4
F 1 F 2 F 3	offen	2 polig	1 polig	0 0 200	5100 5400 4200	16 11 13	13 198 307	ja ja ja	_ 11	3

schaltung der Kurzschluss noch besteht, wird die Aus-Ein-Schaltung in gleicher Art wiederholt und erst dann wird, wenn nötig, definitiv abgeschaltet. Nach dem was über die Mehrfachblitze gesagt wurde, ist tatsächlich zu erwarten, dass auf diese Art die Schnellwiedereinschaltung noch in ein paar wenigen Fällen gelingt, in denen bei der einfachen Schnellwiedereinschaltung eine endgültige Unterbrechung erfolgt wäre, das aber selbstverständlich nur unter der Voraussetzung, dass die Stabilität des Parallelbetriebes eine zweifache Wiedereinschaltung erlaubt. Bei einer einfachen Verbindungsleitung zwischen zwei Werken und dreipoliger Unterbrechung wird das aber sozusagen nie der Fall sein.

Eine mehrfache Wiedereinschaltung lässt sich daher wohl nur in solchen Fällen anwenden, wo die Stabilität ohne weiteres auch eine wesentlich längere Pausenzeit gestattet, nämlich bei Vorhandensein einer zweiten Verbindungsleitung oder bei nur einpoliger Unterbrechung. Da eine längere Pausenzeit bei einmaliger Wiedereinschaltung sicher die einfachere Lösung ist, scheint uns eine mehrfache Schnellwiedereinschaltung nicht sehr interessant²). Im Rahmen der vorliegenden Versuche wurde ausschliesslich mit einmaliger Wiedereinschaltung gearbeitet.

4. Die wichtigsten Versuchsresultate

Insgesamt wurden über 30 Kurzschlüsse mit Schnellwiedereinschaltung durchgeführt. Es ist natürlich ausgeschlossen, die Ergebnisse von all diesen Versuchen detailliert aufzuführen. In den Tabellen V, VI und VII sind daher lediglich die interessantesten Versuche zusammengestellt, d. h. vor allem diejenigen, die zeigen, wo bei den verschiedenen Betriebsbedingungen die Stabilitätsgrenzen liegen. Bei den Oszillogrammen haben wir uns mit einer noch kleineren Auswahl begnügen müssen. Dabei sind bei jedem Oszillogramm nur die interessantesten Partien wiedergegeben; leider war auch

Sammelschienenspannungen vor den Kurzschlüssen (Auswertung aus den Oszillogrammen)

Tabelle VI.

Versuchs-	Spannungen in kV								
reihe		Gösgen		Laufenburg					
ulid Nr.	R-S	S – T	T – R	R - S	S-T	T — R			
A 1 A 2	52,2 52,2	53,8 54,6	52,6 52,6	48,8 50,0	51,6 52,0	52,0 54,1			
B 1 B 2	50,7 48,6	50,1 49,4			51,0 48,5	51,0 49,4			
В 3	R-0 26,0	S-0 30,3	T-0 31	R-0 26,4	S-0 28,2				
C 1	25,2	27,2	25,2	24,7	26,5				
C 2 C 3	R—S 46,7 50,8	S—T 46,7 52,6	T—R 46,7 51,6	R—S 44,6 50,0	S-T 46,7 51,2	T—R 47,8 52,5			
D	51,3	50,8	51,0	47,7 49,0		50,5			
E .	R — 0 28,1	S-0 31,6	T-0	51,0	52,7	53,5			
F 1 F 2	25,0 27,8	27,8 28	28,4 28	R — 0 25,0 27,4	S-0 26,4 27,2				
F 3	28,9	30,3	28,9	R—S 50,3	S-T 51,0	T-R 54,6			

Bemerkung: Spannung R-O bedeutet Spannung der Phase R gegen Erde, R-S verkettete Spannung zwischen den Phasen R und S.

²⁾ Nicht zu verwechseln mit der mehrfachen Schnellwiedereinschaltung auf Kuppelleitungen ist die z. B. von Vrethem (26) erwähnte Methode, die nach einer Schnellwiedereinschaltung und darauffolgender Abschaltung einer Stichleitung mit grosser Verzögerung (z. B. 3 min) nochmals eine automatische Einschaltung vornimmt. Da es sich hier nicht darum handelt, die Stabilität des Parallelbetriebes zu erhalten, kann diese Methode nützlich sein; denn gewisse Störungsursachen, die innerhalb Bruchteilen von Sekunden nicht verschwinden (auf die Leitung gefallene Aeste, Sperrballons usw.) können tatsächlich nach einigen Minuten verschwunden sein.

Kurzschlusströme und wiederkehrende Spannung (Auswertung aus den Oszillogrammen)

Tabelle VII.

	Stosskurzschlußstrom¹) (Scheitelwerte)														Wiederkehrende
Versuchs-	Gösgen Laufenburg Gösgen Laufent		Gösgen Laufent			Laufenburg Gösgen		Gösgen Laufenburg Total		Tota1	Spannung verkettet				
reihe und Nr.		Phase		Phase		Phase Phase Ph		Phase	(Effektivwert)						
	R	S	T	R	S	R	S	T	R	S S					
	Α	A	A	A	A	A	A	Α	A	Α	A	kV			
A 1				280	345				148	145	390	46,0			
A 2	530	672	776	358	407	285	275	285	161	162	404	50,3			
B 1	550	580	625	450	324	294	293	293	154	154	390	48,8			
B 2	638	555	652	435	335	275	262	293	160	158	404	50,6			
B 3	675	1050		435		326	306	306	194	197	368	31,3			
C 1	590	598	680	370	340	303	303	285	164	183	420	29,0			
C 2	500	582	534	309	355	250	252	240	159	159	384	49,7			
C 3	708	850	540	329	466	290	292	265	154	154	405	48,7			
D				1718)	171				988)	88	451	45,0			
E		545		374	295	251	300		212	144	426	53,5			
F 1		845				28	292				375	29,6			
F 2	570	700		435		222	312		222		393	29.6			
F 3	395	470		351	264	253	305		218	148	437	42,8			

- 1) Maximaler Momentanwert des Kurzschlußstromes.
- ²) Effektivwert des Wechselstromanteils.
 ³) Strom in Phase S von Leitung I. Alle übrigen Ströme sind auf Leitung II gemessen.

so noch eine ziemlich weitgehende Verkleinerung nötig. Da der Verlauf des Polradwinkels nicht ohne weiteres aus den Oszillogrammen herausgelesen werden kann, wurde er für einige interessante Fälle in den Fig. 3 und 4 besonders aufgezeichnet.

Die Versuche sind in die Versuchsreihen A...F unterteilt. Im folgenden sollen die Ergebnisse dieser 6 Versuchsreihen noch im einzelnen besprochen werden.

Versuchsreihe A

Zunächst wurde die Stabilität einer einfachen Verbindungsleitung bei dreipoligen Kurzschlüssen mit dreipoliger Schnellwiedereinschaltung untersucht. Dabei befasst sich die Versuchsreihe A mit dem leichtesten Fall, wo beide Generatoren unbelastet waren, wo also keine Leistung über die Leitung übertragen wurde. Die Stabilität wird hier natürlich, wie Fig. 5 und 3 zeigen, durch Kurzschlüsse und Wiedereinschaltung mit den minimalen Zeiten in keiner Weise gefährdet. Sogar bei viel längerer Unterbrechung (Versuch A2) fallen die Generatoren nicht ausser zeit (Versuch A1) verläuft dagegen der Vorgang ganz ruhig; der Ausgleichstrom überschreitet den normalen Betriebsstrom nicht.

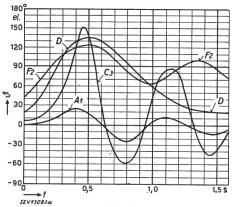


Fig. 3.

Zeitlicher Verlauf des Winkels zwischen den Polrädern in Gösgen und Laufenburg (Polradwinkel 3) Die Buchstaben und Zahlen bei den einzelnen Kurven beziehen sich auf die Versuchsnummern in Tabelle V.

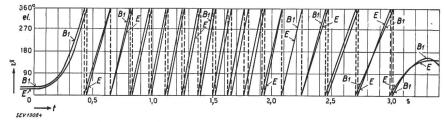


Fig. 4. Zeitlicher Verlauf des Winkels zwischen den Polrädern in Gösgen und Laufenburg (Polradwinkel ϑ)

Die Buchstaben und Zahlen bei den einzelnen Kurven beziehen sich auf die Versuchsnummern in Tabelle V.

Tritt. Allerdings treten in diesem Falle nach der Wiedereinschaltung ziemlich heftige Pendelungen auf, bei denen die ausgetauschte Leistung Spitzen von ca. 10 000 kW und der Ausgleichstrom Werte von 65...70 % des Kurzschlußstromes erreichen. Bei der Wiedereinschaltung mit der minimalen Pausen-

Versuchsreihe B

Bei dieser Versuchsreihe wurde nun der Generator Laufenburg belastet, so dass also die Leitung Leistung übertragen musste. Der Generator Gösgen war praktisch unbelastet. Die Versuche B1 und B 2 zeigen, dass hier die Maschinen nach der Wie-

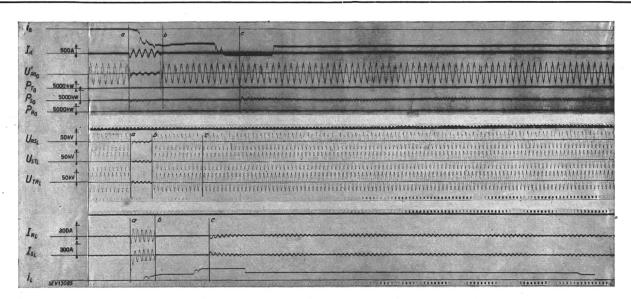


Fig. 5.
Oszillogramme eines dreipoligen Lichtbogen-Kurzschlusses mit Schnellwiedereinschaltung (Versuch A 1)

Nur eine Kuppelleitung im Betrieb. Beide Generatoren im Leerlauf. $\left. \begin{array}{l} I'_{R_L} \\ I'_{S_L} \\ I'_{T_L} \\ \end{array} \right\} \begin{array}{l} \text{Str\"{o}me, gemessen in den drei Phasen R, S, T in Laufenburg an der} \\ \text{Stelle } I'_{L}, \text{ siehe Fig. 1.} \end{array}$ $\left. \begin{array}{l} U_{\text{RS}_{\mathsf{G}}} \\ U_{\text{ST}_{\mathsf{G}}} \\ U_{\text{TR}_{\mathsf{G}}} \end{array} \right\} \begin{array}{l} \text{Verkettete Spannungen, gemessen} \\ \text{zwischen den drei Phasen R, S, T} \\ \text{in Gösgen an der Stelle U_{G}.} \end{array}$ Die mit A, kV und kW benannten Zahlen vor den Oszillogrammen sind Eichwerte. Die übrigen Buchstaben und Zahlen auf Iog den Oszillogrammen bedeuten: $U'_{\mathsf{RO}_{\mathsf{G}}}$ Phasenspannung R-O, resp. verkettete Spannung R-S der Sammel- $U'_{\mathsf{RS}_{\mathsf{G}}}$ schiene in Laufenburg, gemessen in Gösgen an der Stelle U'_{G} Summenstrom, gemessen in Gösgen an der Stelle I_{G} . Kurzschlussbeginn
Abschaltung des Kurzschlusses
Wiedereinschaltung
Löschung des Lichtbogens
2. Abschaltung. $_{b}^{a}$ Kurzschlußstrom, gemessen an der Stelle $I_{\rm K}$ in Fig. 1 Strom im Steuerkreis des Leitungs-schalters in Gösgen $\left. \begin{array}{l} I_{\text{R}_{\text{G}}} \\ I_{\text{S}_{\text{G}}} \\ I_{\text{T}_{\text{G}}} \end{array} \right\} \begin{array}{l} \text{Str\"{o}me, gemessen in den drei Phasen R, S, T in G\"{o}sgen an der Stelle} \\ I_{\text{G}} \text{, siehe Fig. 1.} \end{array}$ Strom im Steuerkreis des Leitungs- $U_{\mathsf{RS}_\mathsf{L}}$ schalters in Laufenburg Verkettete Spannungen zwischen den drei Phasen R, S, T, gemessen in Laufenburg an der Stelle $U_{\rm L}$. $\left. \begin{array}{c} U_{\text{RO}_{G}} \\ U_{\text{SO}_{G}} \\ U_{\text{TO}_{G}} \end{array} \right\} \stackrel{\text{Phasenspannungen, gemessen in den}}{\text{drei Phasen R, S, T in Gösgen an}} \ \text{der Stelle } U_{\text{G}}.$ Ust $_{\mathsf{L}}$ $U_{\mathsf{TR}_{\mathsf{L}}}$ $I_{\mathsf{R}_\mathsf{L}}$) Ströme, gemessen in den drei Phasen R, S, T in Laufenburg an der Stelle $I_{\rm L}$, siehe Fig. 1. $P_{\mathsf{R}_{\mathsf{G}}}$ $I_{\rm S_L}$ Phasenleistung, gemessen in Gösgen, mit den Strömen $I_{\rm G}$ und den Spannungen $U_{\rm G}$. P_{G}

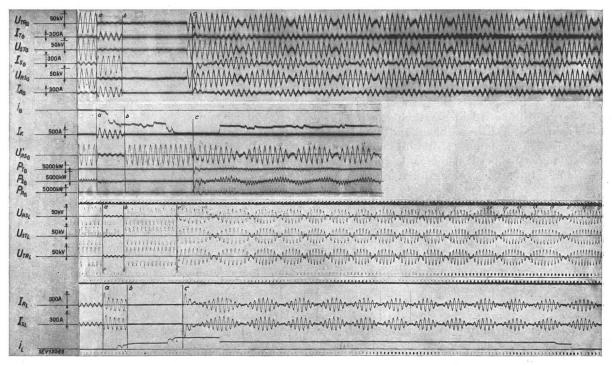


Fig. 6.

Oszillogramme eines dreipoligen Lichtbogen-Kurzschlusses mit Schnellwiedereinschaltung (Versuch B1)
Nur eine Kuppelleitung im Betrieb. Vorbelastung des Generators Gösgen 400 kW. Vorbelastung des Generators Laufenburg 4000 kW. Bedeutung der eingetragenen Zeichen s. Fig. 5

dereinschaltung nicht mehr parallel liefen, nicht einmal bei einer Vorbelastung von rund halber Nennleistung (3 200 kW beim Versuch B 2).

Die Generatoren laufen also nach der Wiedereinschaltung asynchron durcheinander. Wie aus Fig. 6 ersichtlich ist (am besten aus dem dritten Oszillogramm von oben), wird die Schwebungsdauer zuerst kürzer, dann aber allmählich wieder länger. Das Längerwerden ist natürlich auf die Wirkung der Turbinenregler zurückzuführen. Nach einer grösseren Anzahl Schlüpfungen und einer Zeit von einigen Sekunden fangen sich die Generatoren wieder (vgl. Fig. 4). Während der Ausgleichsvorgänge treten aber sehr grosse Leistungs- und Stromstösse auf. Wird der Generator in Laufenburg noch höher vorbelastet als mit 4000 kW, so findet auch mit Hilfe der Turbinenregler kein Intrittziehen mehr statt.

durch den Ausfall der übertragenen Leistung viel weniger gebremst. Wären in Laufenburg mehrere Generatoren angeschlossen, die nur einen Teil ihrer Leistung über die Leitung nach Gösgen übertragen, so würden sie bei der Unterbrechung dieser Leitung viel weniger beschleunigt. Man sieht also: der Betriebsfall der Versuchsreihe B ist in verschiedener Hinsicht ungünstig. Dieser Fall wurde absichtlich gewählt, um die Grenzen der Stabilität bei der Schnellwiedereinschaltung zeigen zu können. Die ungünstigen Ergebnisse dieser Versuche dürfen dann aber nicht zu sehr verallgemeinert werden.

Versuchsreihe C

Bei der Versuchsreihe C waren nun die Stabilitätsbedingungen dadurch verbessert, dass auch der Generator in Gösgen vorbelastet wurde. Wenn aller-

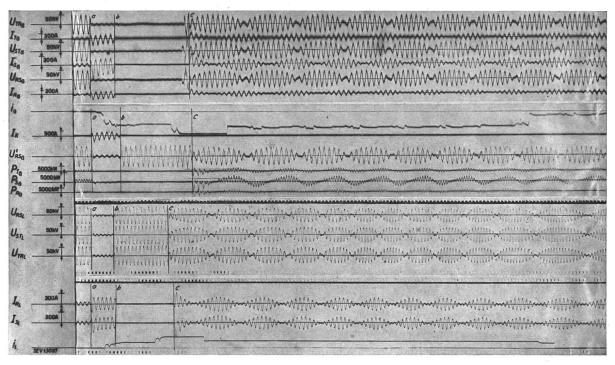


Fig. 7.

Oszillogramme eines dreipoligen Lichtbogen-Kurzschlusses mit Schnellwiedereinschaltung (Versuch C2)

Nur eine Kuppelleitung im Betrieb. Vorbelastung des Generators Gösgen 1700 kW. Vorbelastung des Generators Laufenburg
3700 kW. Bedeutung der eingetragenen Zeichen s. Fig. 5.

Der Versuch B 3 zeigt, dass mit wesentlich kleineren Störungszeiten die Stabilität des Parallelbetriebes gerettet werden könnte. Die Pausenzeit von 15 cs ist jedoch für eine sichere Entionisierung zu kurz.

Der hier untersuchte Betriebsfall ist ganz besonders ungünstig. Da die Leistungsübertragung während des dreipoligen Kurzschlusses und der Pausenzeit vollständig unterbunden ist, und da in Laufenburg überhaupt keine Belastung angeschlossen ist, wird der Generator in Laufenburg vollständig entlastet, und der vorher unbelastete Generator in Gösgen wird während der Pausenzeit sehr stark belastet. Jener wird also mit der vollen Uebertragungsleistung beschleunigt und dieser sehr stark abgebremst.

Wären in Gösgen und dem daran angeschlossenen Netz viele Generatoren vorhanden, so würden sie

dings bei fast voller Belastung von Laufenburg der Generator in Gösgen nur 1 400 kW abgeben musste (Versuch C1), so fielen die Maschinen immer noch ausser Tritt. Selbst im Versuch C2, wo Laufenburg bedeutend weniger Leistung abgab und der Unterschied in der Belastung der beiden Kraftwerke noch 2 000 kW betrug, wurde die Stabilität nicht erhalten. Dagegen beim Versuch C3, wo der Unterschied der Belastungen nur 800 kW betrug, blieben die Kraftwerke im Tritt. Dass wirklich der relativ kleine Belastungsunterschied für dieses günstige Verhalten verantwortlich ist, zeigt der Vergleich mit dem Versuch B2: Der Generator Laufenburg und somit die Uebertragungsleitung waren dort praktisch gleich belastet wie bei C3, aber der Generator Gösgen war fast unbelastet; dabei fielen die Kraftwerke ausser Tritt.

Der Wert des zulässigen Belastungsunterschiedes, bei dem die Stabilität gerade noch erhalten bleibt, ist je nach dem Absolutwert der über die Leitung übertragenen Leistung etwas verschieden. Hierüber gibt das folgende Kapitel Aufschluss. In gewissen Fällen, wo die Maschinen ausser Tritt fallen, fangen sie sich unter der Wirkung der Turbinenregler nach ein paar Sekunden wieder (z. B. beim Versuch C2; vgl. Fig. 7).

ständen bleibt die Mehrbelastung viel kleiner.

Aus diesen Versuchen kann auch geschlossen werden, dass die Stabilität eines Phasenschiebers oder eines Synchronmotors am Ende einer Leitung in vielen Fällen schlechter ist als die eines belasteten Generators. Diese Verschlechterung ist besonders ausgeprägt, wenn — wie das häufig vorkommt — die Anlaufzeitkonstante eines solchen Phasenschiebers viel kleiner ist als die der Generatoren des Netzes.

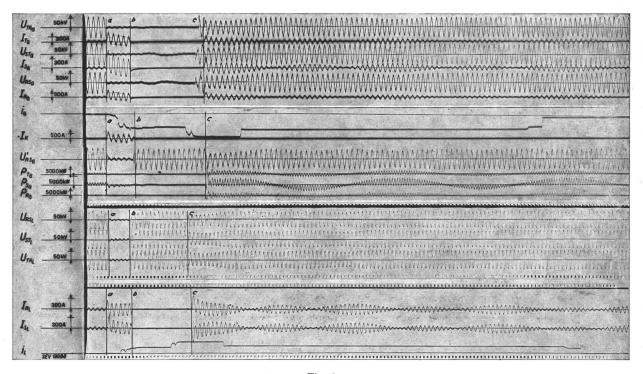
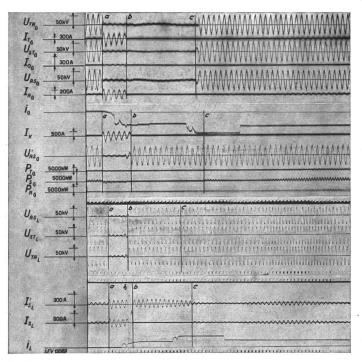


Fig. 8.

Oszillogramme eines dreipoligen Lichtbogen-Kurzschlusses mit Schnellwiedereinschaltung (Versuch C 3)

Nur eine Kuppelleitung im Betrieb. Vorbelastung des Generators Gösgen 2500 kW. Vorbelastung des Generators Laufenburg
3300 kW. Bedeutung der eingetragenen Zeichen s. Fig. 5.

Die Verbesserung der Stabilität bei wesentlicher Vorbelastung von Gösgen hat verschiedene Gründe. Zunächst ist der stationäre Winkel zwischen den beiden Polrädern vor der Störung kleiner als wenn Gösgen unbelastet ist. Das ist allerdings nur von geringer Bedeutung. Dafür ist sehr wichtig, dass der vorbelastete Generator Gösgen während der Dauer des dreipoligen Kurzschlusses entlastet und beschleunigt wird und daher noch zu Beginn der Pausenzeit gegenüber dem ebenfalls beschleunigten Generator Laufenburg eine ziemlich kleine Winkelverschiebung und Relativgeschwindigkeit hat. Bei Einstellung auf Leerlauf behält dagegen der Generator Gösgen die Drehzahl während der Kurzschlussdauer ungefähr bei und ist daher zu Beginn der Pause relativ zum beschleunigten Generator Laufenburg viel mehr verschoben. Schliesslich wird, wie im folgenden Kapitel gezeigt wird, der Generator Gösgen während der Pausenzeit bedeutend weniger abgebremst, wenn er vorbelastet war als wenn er vor der Störung bei genau gleicher Leistung auf der Leitung leerlief. Er wird eben während der Pause nicht einfach entsprechend der ausfallenden Leistung der Leitung mehrbelastet, sondern unter Um-


Versuchsreihe D

Diese Versuchsreihe dient zur Untersuchung der Stabilität bei der Schnellwiedereinschaltung in einem vermaschten Netz. Die beiden Leitungen zwischen Gösgen und Laufenburg waren vor und nach der Störung parallel geschaltet, so dass während der Unterbrechungsdauer der Leitung II immer noch eine Verbindung über die Leitung I vorhanden war. Während der Dauer des dreipoligen Kurzschlusses ist zwar die Leistungsübertragung infolge des Spannungszusammenbruchs praktisch ganz unterbunden; aber diese Dauer beträgt kaum 30 % der totalen Störungszeit. Die parallele Leitung, die während der Pausenzeit eine Verbindung aufrecht erhält, bedeutet also tatsächlich eine grosse Stabilitätsverbesserung, obschon sie die Verhältnisse während der Kurzschlussdauer kaum ändert.

Die Versuche wurden mit den Belastungsverhältnissen durchgeführt, die sich bei den Versuchsreihen A...C als die ungünstigsten erwiesen hatten: Generator Gösgen praktisch unbelastet, Generator Laufenburg möglichst hoch belastet. Die Generatoren blieben dabei im Tritt. Es trat bloss eine Pendelung auf, bei der ein maximaler Winkel zwischen den

beiden Polrädern von ca. 135° el. erreicht wurde (Fig. 3). Die Strom- und Spannungsschwankungen waren unbedeutend (Fig. 9).

Wie zu erwarten war, ist also die Stabilität bei Vorhandensein einer zweiten Leitung ausserordent-

lich gut. In diesem Fall können die Stabilitätsverhältnisse nur dann kritisch werden, wenn es sich um sehr lange Leitungen handelt und infolgedessen schon beim stationären Betrieb einer Leitung die

Stabilitätsgrenze beinahe erreicht oder sogar überschritten wird.

Versuchsreihe E

Hier wurde die Wirkung von zweipoligen Erdkurzschlüssen untersucht. Die Kraftwerke waren

wieder durch eine einzige Leitung verbunden, und es wurden die ungünstigsten Belastungsverhältnisse eingestellt: Generator Gösgen praktisch unbelastet, Generator Laufenburg möglichst hoch belastet.

Ein zweipoliger Kurzschluss ist an sich weniger ungünstig als ein dreipoliger. Zwischen den beiden kurzgeschlossenen Phasen einerseits und der gesunden Phase anderseits besteht ja noch eine Spannung, so dass noch eine gewisse Leistung über die Leitung übertragen werden kann. Da jedoch die Kurzschlussdauer nur einen Bruchteil der totalen Störungsdauer ausmacht, ist, sofern man dreipolig unterbricht, keine grosse Verbesserung zu erwarten.

Fig. 9. Oszillogramme eines dreipoligen Lichtbogen-Kurzschlusses mit Schnellwiedereinschaltung (Versuch D) Parallel zu der Leitung, mit der die Wiedereinschaltung durchgeführt wird, ist eine 2. Kuppelleitung dauernd eingeschaltet. Vorbelastung des Generators Gösgen 320 kW. Vorbelastung des Generators Laufen-

Gösgen 320 kW. Vorbelastung des Generators Laufenburg 4400 kW. Bedeutung der eingetragenen Zeichen s. Fig. 5.

Tatsächlich zeigt denn auch der Versuch E mit zweipoligem Kurzschluss (s. Fig. 4 und 10) praktisch das gleiche Resultat wie der Versuch B 1 mit dreipoligem Kurzschluss: Die Generatoren fallen ausser

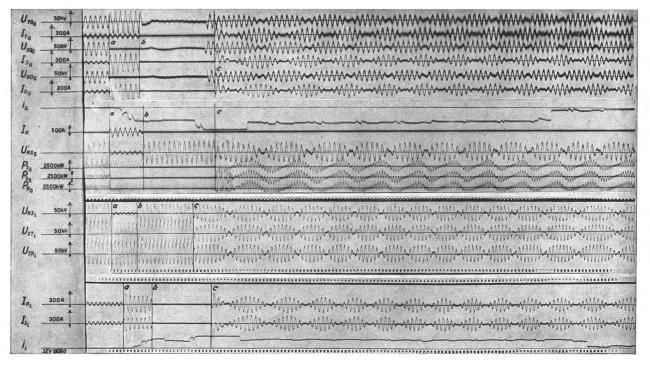


Fig. 10.

Oszillogramme eines zweipoligen Lichtbogen-Kurzschlusses auf den Phasen R und S mit dreipoliger Unterbrechung und Wiedereinschaltung (Versuch E)

Nur eine Kuppelleitung im Betrieb. Vorbelastung des Generators Gösgen 350 kW. Vorbelastung des Generators Laufenburg 4100 kW. Bedeutung der eingetragenen Zeichen s. Fig. 5.

Tritt und fangen sich erst nach heftigen Pendelungen von einigen Sekunden Dauer wieder.

Versuchsreihe F

Ganz andere Resultate erhält man dagegen, wenn man bei einem zweipoligen Kurzschluss die Leitung nur einpolig unterbricht. In diesem Fall kann auch während der Pausenzeit noch über zwei Phasen der der Versuche F 2 und F 3 bestand also bei der Wiedereinschaltung kein Erdschluss mehr. Beim Versuch F 1 war dagegen der Erdschluss im Moment der Wiedereinschaltung noch vorhanden, löschte aber nach kurzer Zeit von selber. Es scheint also, dass man sich tatsächlich bei der Wiedereinschaltung auf die Löschung des Kurzschlusses beschränken darf und die Löschung des Erdschlusses dem Erdschlusses

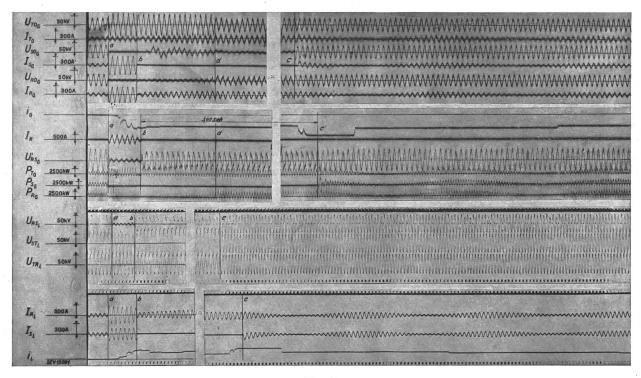


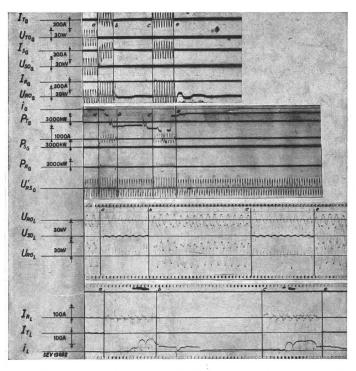
Fig. 11.

Oszillogramme eines zweipoligen Lichtbogen-Kurzschlusses auf den Phasen R und S mit einpoliger Unterbrechung in der Phase S und Wiedereinschaltung (Versuch F 3)

Nur eine Kuppelleitung im Betrieb. Vorbelastung des Generators Gösgen 200 kW. Vorbelastung des Generators Laufenburg
4200 kW. Bedeutung der eingetragenen Zeichen s. Fig. 5.

Leitung Leistung übertragen werden. Wie die Versuche F 1, 2 und 3 zeigen, bleiben die Generatoren auch bei den ungünstigsten Belastungsverhältnissen im Tritt, und zwar selbst bei sehr langen Pausenzeiten. Aus den Fig. 3 und 11 geht hervor, dass die Leistungsübertragung sogar während der Pausenzeit stabil ist. Wenn diese genügend lang ist, so schwingen die Rotoren der beiden Generatoren in eine neue Gleichgewichtslage ein, denn der stationäre Polradwinkel ist natürlich bei bloss zweipoliger Kupplung grösser als bei dreipoliger. Vom Gesichtspunkt der Stabilität aus kann die Pausenzeit beliebig lange sein.

Da nur eine der vom Erdkurzschluss betroffenen Phasen (S) unterbrochen wird, wird zwar der Kurzschluss sofort abgeschaltet, aber der (kapazitive) Erdschlußstrom kann in der andern Phase (R) weiterfliessen, was sich in einer Spannungsverlagerung äussert. (Bis zum Punkt d in Fig. 11 hat die Phase T verkettete Spannung gegen Erde, die Phase R nur die kleine Lichtbogenspannung; in d erfolgt die Löschung des Erdschlusslichtbogens.) Der einphasige Erdschluss löschte spätestens 0,5 s nach der Abschaltung des Kurzschlusses. Bei der langen Pausenzeit


schutz überlassen kann (bei grösserer Netzausdehnung Erdschlusslöschspulen!).

Die einpolige Durchführung der Schnellwiedereinschaltung bietet also beträchtliche Vorteile, indem die Stabilität auch in solchen Fällen gewahrt werden kann, wo die Generatoren bei dreipoliger Unterbrechung unweigerlich ausser Tritt fallen. Lässt sich für gewisse Belastungsverhältnisse die Stabilität bei dreiphasigen Kurzschlüssen nicht erhalten, so kann sie mit Hilfe der einpoligen Unterbrechung und Wiedereinschaltung wenigstens bei den viel häufigern zweiphasigen Kurzschlüssen gerettet werden. Dabei kann erst noch die Pausenzeit in der Regel wesentlich länger gewählt werden als für die blosse Entionisierung erforderlich, so dass auch bei Mehrfachblitzen eine zusätzliche Sicherheit besteht, obschon ja die Untersuchungen des letzten Kapitels gezeigt haben, dass selbst bei Anwendung der minimalen Pausenzeiten die Versagerwahrscheinlichkeit ziemlich klein ist.

Bei bloss einpoliger Unterbrechung kann über die Lichtbogenstrecke zwischen der abgeschalteten Phase und der Erde immer noch ein gewisser Strom fliessen, da die abgeschaltete Phase mit den beiden andern Phasen der Leitung kapazitiv gekoppelt ist. Es scheint daher fraglich, ob die Lichtbogenstrecke genügend rasch entionisiert. Neuere Untersuchungen (24) für Netze mit direkt geerdetem Nullpunkt zeigen jedoch, dass die Bedingungen für die Entionisierung über Erwarten günstig sind und dass bei Spannungen bis 220 kV und Leitungslängen von einigen hundert Kilometern keine besondern Massnahmen nötig sind. Lediglich die Pausenzeit wird mit Vorteil etwas länger gewählt als die minimalen Zeiten, die nach den Untersuchungen des letzten Kapitels bei allpoliger Abtrennung des vom Kurzschluss betroffenen Leitungsstückes erforderlich sind.

Die Untersuchungen der Literaturstelle (24) beziehen sich aber nur auf Netze mit direkt geerdetem Nullpunkt, wo die einpolige Unterbrechung und Wiedereinschaltung ausschliesslich bei einpoligen Erdschlüssen angewendet wird. Wenn dagegen in gelöschten Netzen zweipolige Erdkurzschlüsse durch einpolige Unterbrechung eliminiert werden sollen, so sind die Verhältnisse wesentlich ungünstiger, so dass unter Umständen besondere Massnahmen erforderlich werden.

Zur Kontrolle der Wiedereinschaltvorrichtungen wurden auch noch ein paar feste zwei- und dreipolige Erdkurzschlüsse (über Metallschienen) eingelegt, wobei die Schalter an den Enden der Lei-

tung II nach der Wiedereinschaltung definitiv unterbrechen mussten. Bei diesen Versuchen war die Leitung I offen; die beiden Generatoren waren unbelastet. Fig. 12 zeigt als Beispiel einen zweipoligen festen Erdkurzschluss auf den Phasen S und T mit dreipoliger Unterbrechung, Wiedereinschaltung und definitiver Abschaltung.

Bei diesen Versuchen, wie auch bei allen Wiedereinschaltversuchen mit Lichtbogenkurzschlüssen arbeitete die ganze Wiedereinschaltvorrichtung einwandfrei. Die Schnelldistanzrelais erwiesen sich als unempfindlich gegen die heftigen Ausgleichsvorgänge, die auftraten, wenn die beiden Generatoren bei der Wiedereinschaltung ausser Tritt gefallen waren. Es fand nie eine Fehlauslösung statt.

Auch die Hochfrequenzkupplung, die hier zum erstenmal im Netzbetrieb ausprobiert wurde, arbeitete nach Behebung einiger kleiner Anfangsschwierigkeiten einwandfrei. Sie verwendet Trägerwellen von 115 kHz in der einen und 135 kHz in der andern Richtung. Um die Uebertragung von störenden Einflüssen möglichst unabhängig zu machen, sind die Trägerwellen mit einer Frequenz von 3 200 Hz moduliert. Diese Wellen werden bei ungestörtem Netzbetrieb kontinuierlich übertragen. Soll bei einem Kurzschluss, nachdem das Schnelldistanzrelais am einen Leitungsende angesprochen hat, auch das Relais am andern Ende mit Grundzeit ausgelöst werden, so wird die Sendung der modulierten Hochfrequenzwelle unterbrochen. Um Falschauslösungen bei eventuell fehlerhaftem Ausbleiben der Hochfrequenz zu vermeiden, ist die Schaltung so getroffen, dass die Auslösung nur dann erfolgt, wenn gleichzeitig die Betriebsspannung der Leitung (Hochspannung) unter einen bestimmten Wert gesunken ist, was ein Kriterium für das Vorhandensein eines Kurzschlusses ist.

Bei einem dreiphasigen Erdkurzschluss ist es nun denkbar, dass die Hochfrequenzwelle nicht mehr übertragen wird, und dass daher, weil gleichzeitig auch die Hochspannung auf einen ganz kleinen Wert abgesenkt ist, die Auslösung erfolgt, bevor das Distanzrelais am andern Ende der Leitung den Befehl dazu erteilt. Bei unsern Versuchen war jedoch zwischen der Leitung und der Kurzschlußstelle ein Stromwandler eingeschaltet (s. Fig. 1), und dank der Streureaktanz dieses Wandlers wurde die Hochfrequenzspannung nicht zu sehr abgesenkt, so dass keine vorzeitige Auslösung erfolgte.

Bei einem besondern Versuch wurde jener Stromwandler in allen Phasen überbrückt, worauf die Hochfrequenzkupplung tatsäch-

Fig. 12.

Oszillogramme eines zweipoligen festen Kurzschlusses auf den Phasen S und T mit dreipoliger Unterbrechung, Wiedereinschaltung und definitiver Ausschaltung

Nur eine Kuppelleitung im Betrieb. Beide Generatoren im Leerlauf. Bedeutung der eingetragenen Zeichen s. Fig. 5.

lich unabhängig vom Schnelldistanzschutz die Schalter an den beiden Leitungsenden auslöste. Dadurch wird die Kurzschlussdauer verkleinert, was sogar als Vorteil gewertet werden muss. Die Selektivität der Auslösung wird nämlich dadurch nicht beeinträchtigt: Ist der dreiphasige satte Kurzschluss auf einer andern von Gösgen abgehenden Leitung, z. B. auf der Leitung I in Fig. 1, so werden die Schalter der Leitung II nicht ausgelöst; denn die

Hochfrequenzsperrkreise an den Enden der Leitung II sorgen dafür, dass die Hochfrequenzsignale auf dieser Leitung ungestört übertragen werden, auch wenn eine andere Leitung in der Nähe kurzgeschlossen ist.

Die Uebertragungszeit durch die Hochfrequenzkupplung, von der Befehlsgabe bis zum Kontaktschluss im Gegenempfänger, beträgt 1,2 cs. Die Schalterauslösungen an beiden Leitungsenden liegen also höchstens um diese Zeit auseinander. Das ermöglicht, minimale Pausenzeiten einzustellen, ohne dass die Gefahr einer Rückzündung besteht; denn praktisch während der ganzen Pausenzeit ist die Leitung tatsächlich spannungslos. Wären dagegen die Schalterauslösungen zeitlich stark verschoben, so würde bei gleichen Pausenzeiten der beiden Schalter die Zeit, während der die Leitung spannungslos ist, wesentlich verkürzt; mit andern Worten, man müsste längere Pausenzeiten einstellen, um eine sichere Entionisierung zu erzielen, und würde dadurch die Stabilität verschlechtern.

Ausser der gleichzeitigen Auslösung der Schalter ist natürlich auch eine sehr rasche Auslösung enorm wichtig, wobei kurze Relais- und Schalterzeiten gleicherweise ins Gewicht fallen. Relais und Schalter, die die Kurzschlüsse statt nach 10...12 cs erst nach z. B. 20 cs unterbrechen, würden die Stabilitätsverhältnisse schon ganz bedeutend verschlechtern

5. Stabilitätsberechnungen

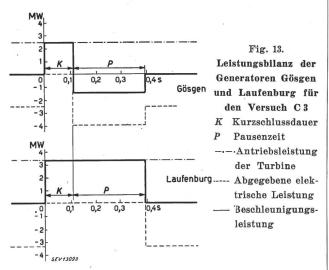
Zur Durchführung der Stabilitätsberechnungen braucht man zunächst die Reaktanzen. Nach Kapitel 2 beträgt die Reaktanz einer Leitung 9,0 Ω /Phase. Die prozentualen Kurzschlussreaktanzen der Transformatoren sind in Tabelle II angegeben. Die Synchronreaktanzen der Generatoren betragen für Gösgen 95 %, für Laufenburg 135 %. Für die Rechnung ist es zweckmässig, alle Reaktanzen auf eine bestimmte Spannung zu reduzieren, wobei die in Tabelle II angegebenen Uebersetzungsverhältnisse der Transformatoren zu berücksichtigen sind. Da der Belastungswiderstand an der Generatorsammelschiene in Gösgen angeschlossen ist, sind alle Reaktanzen auf diese Stelle reduziert worden; die reduzierten Werte sind in der Tabelle VIII zusammengestellt.

Bei der Berechnung der Schwingungsvorgänge, die sich unmittelbar nach der Wiedereinschaltung abspielen und die darüber entscheiden, ob die Maschinen im Tritt bleiben oder nicht, darf man nicht mit den Synchronreaktanzen rechnen. Entweder verwendet man eine Schritt-für-Schritt-Methode, bei der die elektromagnetischen Ausgleichsvorgänge genau berücksichtigt werden, oder man rechnet näherungsweise mit einer konstanten Reaktanz, der sogenannten Pendelreaktanz (29), die kleiner als die Synchronreaktanz ist. Wir haben die zweite Methode gewählt, weil sie bedeutend einfacher ist.

Die massgebende Pendelreaktanz wurde aus der Pendelungsfrequenz ermittelt, die bei Versuchen, bei denen die Maschinen nicht ausser Tritt fallen, beobachtet wurde. Beim Versuch A 2, bei dem der

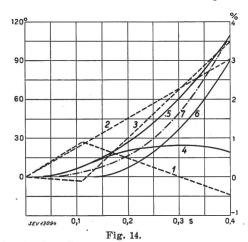
Wasserwiderstand nicht angeschlossen war, hatte die Pendelung eine Periodendauer von 0,75 s, die Kreisfrequenz betrug also 8,3 s-1. Mit den Schwungmomenten nach Tabelle I bestimmt man daraus eine massgebende Reaktanz von 15,3 Q/Phase. Beim Versuch C3 mit angeschlossenem Wasserwiderstand wurde eine Pendel-Kreisfrequenz von 9,3 s-1 gemessen, woraus sich eine massgebende Reaktanz von 12,2 Ω /Phase ergibt. Der Unterschied kommt daher, dass bei kleinen Schwingungen um eine Gleichgewichtslage, sofern die Generatoren unbelastet sind, nur die Queraxen-Reaktanzen im Spiel sind, während bei belasteten Generatoren auch die Hauptaxen-Reaktanzen mitspielen. Nun kann sich aber der Fluss der Queraxen-Reaktanz in den Pollücken ungehindert ausbilden, während sich der Ausbildung eines pulsierenden Hauptaxen-Flusses die induzierten Gegen-AW der Erregerwicklung entgegenstellen. Da die Generatoren beim Versuch C 3 eine mittlere Belastung aufwiesen, wurde für die weitern Rechnungen der dort gefundene Wert der Pendelreaktanz verwendet.

Der genannte Wert von $12,2\,\Omega/\mathrm{Phase}$ gilt für die Serieschaltung aller Reaktanzen vom Innern des Generators Gösgen durch Transformatoren und Leitung bis ins Innere des Generators Laufenburg (vgl. Fig. 1). Zieht man davon die Reaktanzen der Transformatoren und der Leitung nach Tabelle VIII ab, so bleibt die Summe der Pendelreaktanzen beider Generatoren. Diesen Wert haben wir so auf beide Generatoren aufgeteilt, dass bei jedem die Pendelreaktanz den gleichen Prozentsatz der Synchronreaktanz ausmachte. Auf diese Art ergaben sich die in Tabelle VIII angegebenen Werte der Pendelreaktanzen der Generatoren und der totalen Pendelreaktanzen der beiden auf den Wasserwiderstand arbeitenden Zweige.


Die wichtigsten Reaktanzen in Ω /Phase; alle Werte reduziert auf die Generatorsammelschienen in Gösgen

	T'E	pelle VII
	Gösgen	Laufenburg
Synchronreaktanzen der Generatoren .	8,8	9,4
Pendelreaktanzen der Generatoren Kurzschlussreaktanzen der Transforma-	5,50	5,86
toren	0,34	$\begin{vmatrix} 0,29 \\ ,21 \end{vmatrix}$
Totale Pendelreaktanz vom Innern je- des Generators bis zu den Klemmen		
des Wasserwiderstandes	5,5	6,7

Im weitern ist nun die Belastung der beiden Generatoren während der Kurzschluss- und Pausenzeit von Bedeutung. Während dreipoligen Kurzschlüssen sind beide Generatoren vollständig entlastet, wenn man von den relativ kleinen Verlusten in den ohmschen Widerständen der Generatoren, der Transformotoren und der Leitungen absieht; auch die Leistung, die der Wasserwiderstand noch aufnimmt, weil sich zwischen seinen Klemmen und der Kurzschlußstelle ein Transformator mit einem gewissen Spannungsabfall befindet, ist nur gering. Anderseits sind die von den Turbinen aufgenommenen Leistun-


gen genau gleich wie vor der Störung, da die Turbinenregler in so kurzen Zeiten noch nicht reagieren 3). Man kann also mit guter Näherung annehmen, dass jeder Generator während der Kurzschlussdauer gerade mit einer so grossen Leistung, wie er vor der Störung abgab, beschleunigt wird.

Während der Unterbrechung der Leitung (Pausenzeit) dauert die vollständige Entlastung des Generators Laufenburg weiter; er wird weiter mit der gleichen Leistung beschleunigt. Der Generator Gösgen arbeitet nun allein auf den Wasserwiderstand, der vor der Störung von beiden Generatoren parallel gespeist wurde. Wir haben angenommen, dass der Wasserwiderstand dabei den gleichen Ohmwert besitze wie vor der Störung. Unter dieser Voraussetzung lässt sich die von ihm aufgenommene Leistung leicht bestimmen, indem man die Strom- und Spannungsdiagramme für den Zustand vor der Störung auf Grund der bekannten Leistungen und Klemmenspannungen konstruiert und dann mit dem so ermittelten Erregungszustand des Generators Gösgen und dem bekannten Ohmwert des Wasserwiderstandes die entsprechenden Diagramme für die Pausenzeit aufzeichnet. Da die Synchronreaktanz der Queraxe nicht gemessen war, haben wir dafür 60 % des Wertes der Hauptaxe eingesetzt. Das entsprach der Berechnung für den Generator Gösgen und ist erfahrungsgemäss ein guter Mittelwert 4).

Wenn auf diese Art die Belastungen während der Kurzschluss- und Pausenzeit bestimmt werden, erhält man eine Leistungsbilanz wie sie beispielsweise für den Versuch C 3 in Fig. 13 graphisch dargestellt ist. Aus den dort ermittelten Beschleunigungsleistungen lassen sich dann sehr leicht die Aenderungen der Winkelgeschwindigkeit (d. h. der Schlupf)

weiter die Winkeländerungen berechnen. wie das in Fig. 14 für den gleichen Versuch C 3 gemacht worden ist. Zunächst werden die Geschwindigkeitsänderungen und Winkeländerungen für jeden Generator einzeln berechnet, und dann ergeben sich durch Differenzbildung der relative Schlupf und die Aenderung der totalen Phasenverschiebung zwischen den beiden Polrädern. Der beim Versuch gemessene Verlauf der Winkeländerung zwischen

Schlupf und Winkeländerung der beiden Generatoren während Kurzschluss- und Pausenzeit beim Versuch C 3

- 3
- Rurzseniuss- und Pausenzeit beim Versuch C3
 Schlupf des Generators Gösgen (pos. = übersynchron)
 Schlupf des Generators Laufenburg (pos. = übersynchron)
 Relativer Schlupf zwischen den beiden Generatoren
 (pos. = Laufenburg dreht rascher)
 Aenderung des Polradwinkels Gösgen (pos. = voreilend)
 Aenderung des Polradwinkels Laufenburg (pos. = voreilend)
 Aenderung des Winkels zwischen den beiden Polrädern
 (pos. = Laufenburg eilt vor)

 .6 Berechnete Kurven
 Gemessene Aenderung des Winkels zwischen den beiden Polrädern

den Polrädern der beiden Generatoren ist ebenfalls aufgetragen worden (strichpunktierte Kurve 7). Er stimmt mit dem berechneten Verlauf ziemlich gut überein, wodurch die verschiedenen getroffenen Annahmen und Näherungen nachträglich gerechtfertigt werden.

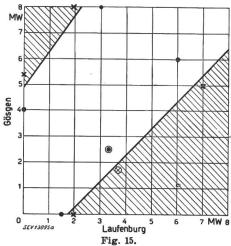
In Tabelle IX sind die Belastungsverhältnisse während der Kurzschluss- und Pausenzeit noch für ein paar andere Fälle zusammengestellt. Die beiden mittleren Fälle beziehen sich auf die Versuche C3 und C2, bei den andern 4 Zeilen sind vor der Störung willkürliche Belastungen angenommen worden, die keinem bestimmten Versuch entsprechen. In den verschiedenen Kolonnen ist nach den Angaben über die Belastung vor der Störung zunächst angegeben, wie hoch der Generator Gösgen während der Pausenzeit belastet und um wieviel er mehr belastet ist als vor der Störung. Die beiden ersten Zeilen zeigen, dass dieser Generator, wenn er vor der Störung leerlief, während der Pausenzeit nahezu die ganze Leistung aufbringen muss, die vorher der Generator Laufenburg über die Leitung lieferte. War dagegen der Generator Gösgen vor der Störung belastet, so ist seine Zusatzbelastung während der Pausenzeit ganz bedeutend geringer als die Leistung, die vorher der Generator Laufenburg über die Leitung lieferte. Bei den Annahmen der beiden letzten Zeilen, wo beide Generatoren sehr grosse Vorbelastungen

³⁾ Auch für die Zeit nach der Wiedereinschaltung wurde näherungsweise so gerechnet, wie wenn die Leistungen der Turbinen noch konstant wären.

⁴⁾ Es ist natürlich eine Näherung, wenn man für die Pausenzeit mit stationären Strom- und Spannungsdiagrammen rechnet. Einerseits ist die EMK des Generators in Gösgen durchschnittlich kleiner als vor der Störung, da sie während der Kurzschlussdauer abgeklungen ist und nur langsam wieder ansteigt; anderseits sind aber bei der plötzlichen Zustandsänderung auch kleinere Reaktanzen als die Synchronreaktanzen massgebend.

aufweisen, die allerdings praktisch nicht mehr ganz realisiert werden können, ergibt sich während der Pausenzeit sogar eine kleine Entlastung des Generators Gösgen. Auf diese für die Stabilität sehr wichtige Tatsache, dass der vorbelastete Generator Gösgen während der Pausenzeit nur eine kleinere Mehrbelastung aufnimmt, ist schon im letzten Kapitel hingewiesen worden.

Belastungen und Beschleunigungsleistungen der beiden Generatoren in kW während Kurzschluss- und Pausenzeit Tabelle IX.


Ver- suchs- Nr.	Vor der Be- lastung Gösgen	astung lastung Be- lastung			Resulti Beschleu leist △P _K *)	Bleiben die Gene- ratoren im Tritt?	
_	0	1500	1360	1360	1090	2450	ja
_	0 .	2000	1870	1870	1460	3330	nein
C 3	2500	3300	3950	1450	-90	3860	ja
C 2	1700	3700	3730	2030	1000	4730	nein
_	6000	6000	5360	-640	-1620	3740	ja
l —	5000	7000	4650	-350	100	4750	nein

$$\triangle P = \frac{\theta_{\mathsf{G}}}{\theta_{\mathsf{L}}} P_{\mathsf{L}} - P_{\mathsf{G}}$$

In der Tabelle IX ist dann im weitern noch die resultierende Beschleunigungsleistung für Kurzschluss- und Pausenzeit angegeben. Darunter ist die Beschleunigungsleistung des Generators Laufenburg, vermindert um die des Generators Gösgen, verstanden, wobei die Leistungen natürlich auf gleiches Schwungmoment und gleiche Drehzahl reduziert werden müssen. Die resultierenden Beschleunigungsleistungen sind für die Kurzschlusszeit (ΔP_K) und die Pausenzeit (ΔP_P) berechnet worden. Die Generatoren laufen bis zum Ende der Pausenzeit am wenigsten auseinander, wenn beide resultierenden Beschleunigungsleistungen möglichst klein sind oder wenn der erste Wert sogar negativ ist. Das letztere bedeutet, dass der Generator Gösgen während der Kurzschlusszeit mehr beschleunigt wird als der Generator Laufenburg, so dass die Ausgangsbedingungen zu Beginn der Pausenzeit denkbar günstig sind.

Nach diesen Untersuchungen über die Leistungen und Polradbewegungen während der Kurzschlussund Pausenzeit ist jetzt noch die eigentliche Stabilitätsrechnung für die Zeit nach der Wiedereinschaltung in Angriff zu nehmen. Diese Rechnungen wurden, wie bereits angedeutet, mit den Pendelreaktanzen nach Tabelle VIII durchgeführt. Zunächst wurden die Versuche C 2 und C 3 nachgerechnet, wobei sich in Uebereinstimmung mit den Versuchsresultaten ergab, dass die Generatoren bei C2 ausser Tritt fallen, bei C3 dagegen nicht. Diese beiden Punkte sind in das Belastungsdiagramm Fig. 15 eingetragen worden.

Die Stabilitätsverhältnisse sind dann noch für zwei weitere Punktepaare (vgl. die beiden obersten und die beiden untersten Zeilen von Tabelle IX) durchgerechnet worden, wobei die Belastungen so gewählt worden waren, dass die Generatoren jeweils im einen Fall im Tritt blieben, im andern nicht. Damit konnte nun in Fig. 15 zwischen den drei Punktepaaren hindurch die Grenze für stabilen Parallelbetrieb gzeogen werden 5).

Stabilitätsberechnung für die dreipoligen Kurzschlüsse mit Schnellwiedereinschaltung

Abszisse und Ordinate: Vorbelastung von Laufenburg und

Schraffiert: Die Generatoren fallen nach 11 cs Kurzschluss-und 28 cs Pausenzeit ausser Tritt.

Nicht schraffiert: Die Generatoren bleiben nach diesen Kurz-schluss- und Pausenzeiten im Tritt.

- berechnete Einzelpunkte, und zwar:
- Generatoren fallen ausser Tritt
- Generatoren bleiben im Tritt
- Versuch C2
- Versuch C3

Bei sehr grosser Belastung von Gösgen, die zwar mit Rücksicht auf die Turbine schon fast ausserhalb der praktischen Möglichkeit liegt, ergibt sich dann nochmals ein unstabiler Bereich. Die zugehörige Stabilitätsgrenze wurde durch die Berechnung von zwei weitern Punktepaaren festgelegt. In den beiden schraffierten Bereichen der Fig. 15 fallen nun die Generatoren ausser Tritt. Im dazwischenliegenden, nicht schraffierten Bereich bleiben sie dagegen im Tritt; dort gelingt die Schnellwiedereinschaltung. Man überzeugt sich leicht, dass die Rechnung ausser für die bereits erwähnten Versuche C2 und C3 auch für alle andern dreiphasigen Kurzschlüsse mit den Versuchsergebnissen übereinstimmt. Bei den Belastungsverhältnissen der Versuche B1, B2 und C1, wo die Generatoren nach Berechnung ausser Tritt fallen, haben sie es tatsächlich auch getan; beim Versuch A1 bleiben sie dagegen übereinstimmend nach Rechnung und Versuch im Tritt.

6. Schlussfolgerungen

Die in diesem Aufsatz beschriebenen Untersuchungen betreffen die automatische Schnell-

⁵⁾ Diese Grenzkurve wurde etwas näher an die untern Punkte gelegt, da die Berechnung von einigen (in der Figur nicht eingetragenen) Zwischenpunkten gezeigt hat, dass sie so verläuft.

wiedereinschaltung auf Kuppelleitungen zwischen zwei Kraftwerken oder Netzen, wobei eine von einem Kurzschluss betroffene Leitung beidseitig ausund wieder eingeschaltet wird. Es hat sich, wie zu erwarten war, gezeigt, dass die Stabilität des Parallelbetriebes bei einer

einfachen Kuppelleitung und 3poliger Unterbrechung

am meisten gefährdet ist. Wird vor der Störung keine Leistung über die Leitung übertragen, so sind allerdings selbst bei einfacher Kuppelleitung die Verhältnisse absolut harmlos; denn die beiden Netze haben auch während ihrer vollständigen Auftrennung keine Veranlassung, auseinanderzulaufen, so dass sie beim Wiedereinschalten selbst nach längeren Pausenzeiten noch im Tritt laufen und höchstens unbedeutende Pendelungen ausführen.

Die Verhältnisse werden aber um so schwieriger, je höher die Kuppelleitung vor der Störung belastet ist, am schwierigsten, wenn die ganze erzeugte Leistung des einen Netzes über die betrachtete Leitung ins andere Netz übertragen wird. Denn wenn das eine Netz während der Unterbrechung (Pausenzeit) seine erzeugte Leistung nicht mehr über die Leitung übertragen kann, werden seine Generatoren stark beschleunigt, während gleichzeitig die Maschinen des andern Netzes, das die benötigte Leistung über die Kuppelleitung nicht mehr erhält, stark verzögert werden. In einem solchen extremen Fall können selbst bei relativ kurzen Verbindungsleitungen die Netze nach dreipoliger Unterbrechung und Wiedereinschaltung ausser Tritt fallen.

Ganz besonders schlecht ist die Stabilität, wenn im Leistung beziehenden Netz nur eine kleine Maschinenleistung eingesetzt ist (kleine kinetische Energie) oder wenn die Generatoren dieses Netzes vor der Störung leerliefen.

Die Stabilitätsverhältnisse werden dagegen besser, wenn das liefernde Netz nur einen kleinen Teil seiner Leistung über die Kuppelleitung überträgt, wenn die Totalleistung des beziehenden Netzes viel grösser ist als die übertragene Leistung und wenn die Maschinen dieses Netzes generatorisch belastet sind. In solchen günstigen Fällen kann daher die Stabilität nur in Frage gestellt sein, wenn wirklich lange Leitungen im Spiel sind. Im weitern ist noch zu beachten, dass ausser Tritt gefallene Netze sich unter dem Einfluss der Turbinenregler nach einigen Sekunden wieder fangen können, wobei allerdings heftige Leistungs- und Stromstösse auftreten.

Zwei oder mehr Kuppelleitungen

zwischen den beiden Netzen verbessern die Stabilität gewaltig. Wenn auch während der Pausenzeit noch eine Verbindung vorhanden ist, so laufen die Netze entweder gar nicht auseinander oder doch zum mindesten viel langsamer, so dass ein Aussertrittfallen nach der Wiedereinschaltung viel weniger wahrscheinlich ist.

Auch durch die

einpolige Unterbrechung

und Wiedereinschaltung, die in Netzen mit Lösch- (oder Kupplung über eine besondere Steuerleitung)

spulen oder isoliertem Nullpunkt bei zweipoligen Kurzschlüssen angewendet werden kann, wird die Stabilität ausserordentlich verbessert. Da während der Pausenzeit immer noch eine Verbindung über zwei Phasen besteht, ist selbst bei sehr ungünstigen Belastungsverhältnissen und wenn nur eine Kuppelleitung vorhanden ist, die Stabilität im allgemeinen noch recht gut.

In Netzen mit fest geerdetem Nullpunkt können mit einpoliger Unterbrechung natürlich nur einpolige Erdschlüsse weggeschaltet werden, d. h. die einpolige Schnellwiedereinschaltung leistet hier nicht mehr als die Löschspule ohne jede Wiedereinschaltvorrichtung. Ausserdem hat die erste Lösung noch den Nachteil, dass sie die Erdschlüsse nur auf den Leitungen, nicht aber in den Stationen erfasst, und dass jeder Erdschluss ein Kurzschluss ist. Zu diesem Preis müssen die bekannten Vorteile der direkten Nullpunkterdung (28) erkauft werden.

Natürlich kann in Netzen mit fest geerdetem Nullpunkt ausser der ein- und dreipoligen auch noch eine zweipolige Unterbrechung vorgesehen werden, die bei zweipoligen Kurz- oder Erdkurzschlüssen in Aktion tritt. Abgesehen von der Komplikation durch 3 statt 2 verschiedene Schaltmöglichkeiten ist natürlich die Stabilität in diesem Fall schlechter als wenn in einem gelöschten Netz bei zweipoligen Kurz- oder Erdkurzschlüssen nur eine Phase unterbrochen wird.

Alle bis hieher gemachten Angaben über die Stabilität beziehen sich auf eine Kurzschlussdauer von 10...12 cs und eine Pausenzeit von 25...28 cs, also eine

totale Störungszeit von 35...40 cs.

Bei diesen Zeiten kann man mit einer absolut sichern Entionisierung des Kurzschlusslichtbogens rechnen. Nun ist aber auch schon bei einer Pausenzeit von 20 cs die Entionisierung sehr wahrscheinlich. Man kann daher in Fällen mit schwierigen Stabilitätsverhältnissen die Pausenzeit so weit oder sogar noch etwas weiter heruntersetzen, wobei man mit einzelnen — aber seltenen — Versagern infolge von Rückzündungen rechnen muss, aber dafür die Stabilität des Parallelbetriebes eher erhalten kann. Ein solches Vorgehen kann angezeigt sein, wenn zwei Netze durch sehr lange Leitungen miteinander verbunden sind oder wenn über eine einzige Kuppelleitung eine relativ zu beiden Netzen grosse Leistung übertragen wird, besonders wenn noch damit gerechnet werden muss, dass die Generatoren im Leistung beziehenden Netz schwach belastet sind oder wenn dort im wesentlichen nur Phasenschieber und Motoren vorhanden sind.

In solch ungünstigen Fällen oder schon ganz allgemein, wenn nur eine einzige Kuppelleitung vorhanden ist, empfiehlt es sich, neben der dreipoligen auch eine einpolige Wiedereinschaltung vorzusehen. Für diese wird dann mit Vorteil die Pausenzeit so lang gewählt, dass eine sichere, nicht nur eine wahrscheinliche Entionisierung zu erwarten ist.

In Fällen mit schwierigen Stabilitätsverhältnissen scheint eine

Hochfrequenzkupplung

als Ergänzung zu einem modernen Schnelldistanzschutz unerlässlich, damit die Schalter an beiden Leitungsenden unabhängig von der Lage der Kurzschlußstelle mit Grundzeit ausgelöst werden. Denn die Stabilität kann in heiklen Fällen nur gewahrt werden, wenn für kürzeste Störungszeiten und selektive Abschaltung gesorgt wird. In Mittelspannungsnetzen dürfte allerdings eine solche Hochfrequenzkupplung nur dann wirtschaftlich tragbar sein, wenn sie gleichzeitig auch für Telephonie oder Steuerund Fernmeldezwecke benötigt wird.

Sind zwei oder mehrere parallele Leitungen vorhanden, die genügend leistungsfähig und nicht übermässig lang sind, oder verzichtet man von vornherein auf die Erfassung dreipoliger Kurzschlüsse und führt überhaupt nur einpolige Wiedereinschaltungen durch, so kann man die Hochfrequenzkupplung weglassen. Die Pausenzeiten müssen dann so verlängert werden, dass die Entionisierung auch gewährleistet ist, wenn die beiden Schalter nicht gleichzeitig ausschalten.

Was die Frage der

Mehrfachblitze

betrifft, ist ihre Gefahr für das gute Gelingen der Schnellwiedereinschaltung von gewissen Seiten gewaltig überschätzt worden. Theoretische Ueberlegungen wie auch jahrelange Betriebserfahrungen zeigen, dass bei einer totalen Störungszeit (Kurzschluss- plus Pausenzeit) von 30...40 cs die Wiedereinschaltung in rund 90 % aller Fälle gelingt; denn die totale Blitzdauer ist nur in rund 10% der Fälle so gross, dass die Ueberschlagstrecke im Moment der Wiedereinschaltung noch leitend ist oder dass nach der Wiedereinschaltung noch weitere Ueberschläge erfolgen. Es ist zweckmässig, die Pausenzeit für einpolige Unterbrechung, aber nur für diese, etwas länger einzustellen; dadurch kann die Versagerwahrscheinlichkeit nochmals um eine Grössenordnung verkleinert werden.

Dagegen scheint uns der Vorschlag, den Wiedereinschaltmoment von der Grösse des Winkels und der Winkelgeschwindigkeit zwischen den beiden auseinanderlaufenden Netzen abhängig zu machen (27), zu kompliziert. Nach den sehr guten Erfahrungen mit fest eingestellten, kurzen Pausenzeiten in amerikanischen Netzen (16) darf man sicher dieser viel einfachern Methode den Vorzug geben und wird lediglich bei einpoliger (und evtl. zweipoliger) Unterbrechung die Pausenzeiten etwas länger einstellen als bei dreipoliger Unterbrechung.

Aus den gleichen Gründen ist auch eine

mehrmalige Wiedereinschaltung

nicht zu empfehlen. Bei schwierigen Stabilitätsverhältnissen würden dabei die Netze unweigerlich ausser Tritt fallen. In den Fällen, wo mit Rücksicht auf die Stabilität eine mehrmalige Unterbrechung und Schnellwiedereinschaltung zulässig wäre, ist aber die Wahl einer längern Pausenzeit der einfachere Weg, um auch bei den längsten Blitzdauern Rückzündungen mit Sicherheit zu vermeiden.

Zum Schluss sei noch auf die Bedeutung der kurzen Relais- und Schalterzeiten

hingewiesen. Eine selektive Abschaltung mit möglichst kleiner Kurzschlussdauer ist nicht nur bei der Schnellwiedereinschaltung, sondern ganz allgemein beim Netzschutz für die Erhaltung der Stabilität ausserordentlich wichtig. Konstruktive Details der Synchronmaschinen, z. B. die Grösse des Luftspaltes (d. h. Kurzschlussverhältnis oder relative Synchronreaktanz) sind demgegenüber von geringer Bedeutung 6), und die Frage der vielumstrittenen Dämpferwicklung ist gegenüber der Wichtigkeit kurzer Selektionszeiten überhaupt bedeutungslos. Erfreulicherweise bricht sich diese Erkenntnis, für die wir uns schon seit langem eingesetzt haben (14) (29) (30), neuerdings auch in andern Ländern Bahn, sogar in solchen, wo früher auf die konstruktiven Massnahmen an den Generatoren ganz besonders grosser Wert gelegt wurde. So findet man in einer amerikanischen Veröffentlichung aus dem Jahre 1942 (20) die Sätze:

In früheren Jahren konzentrierte sich die Aufmerksamkeit hauptsächlich auf die Verbesserung der Stabilitätsgrenzen durch konstruktive Massnahmen an den Maschinen, Transformatoren und Sammelschienenanordnungen, durch passende Plazierung der längs der Leitung angeordneten Schaltstationen und durch die Konstruktion der Uebertragungsleitung selber. Im letzten Jahrzehnt wurden grosse Geschwindigkeiten bei der Relais- und Schalterbetätigung üblich und weitgehend angewandt. Apparate mit grosser Geschwindigkeit, die die Dauer der Störungen auf Uebertragungsleitungen auf ein Minimum reduzieren, sind zu einem Hauptfaktor für die Verbesserung des Betriebes geworden.

7. Literaturverzeichnis

- Keeping the Line in Service by Rapid Reclosing, von S. B. Griscom und J. J. Torok, Electr. J. 1933, Mai, S. 201...204.
- (2) Results with Quick Reclosure of 110—kV Breakers, von J. T. Johnson und J. W. Graff, Electr. World 1935, S. 2101...03 und 2214...16.
- (3) Elimination rapide des défauts et réenclenchement ultrarapide des lignes de transmission à haute tension, von Ph. Sporn und D. C. Prince, CIGRE 1937, III, Rapport 339.
- (4) Kurzschlussfortschaltung, von O. Mayr, VDE Fachber. 10 (1938), S. 32...35.
- (5) Experience with Ultrahigh-Speed Reclosing of High-Voltage Transmission Lines, von Ph. Sporn und C. A. Müller, Electr. Engg. Trans. 1939, S. 625.
- (6) Résultats expérimentaux concernant l'élimination rapide des défauts et le réenclenchement à grande vitesse des lignes de transmission à haute tension, von Ph. Sporn und C. A. Müller, CIGRE 1939, III, Rapport 322.
- (7) Recherches sur le réenclenchement rapide, von H. Thommen, CIGRE 1939, III, Rapport 108.
 (8) Die Weiterentwicklung des Druckluft-Schnellschalters
- (8) Die Weiterentwicklung des Druckluft-Schnellschalters bis zu den höchsten Spannungen und für Freiluftaufstellung, von H. Thommen, BBC-Mittg. 1939, März, S. 55...68.

⁶⁾ Bei sehr langen Leitungen kann es allerdings nötig sein, neben kurzen Störungszeiten auch möglichst kleine wirksame Reaktanzen zu verwirklichen, wofür aber auch andere als rein konstruktive Massnahmen in Frage kommen.

- (9) Betrachtungen über die Anwendung der Schnellausschaltung u. automatischen Wiedereinschaltung in Frei-leitungsnetzen, v. O. Naef, Bull. SEV 1939, S. 761...765.
- (10) La richiusura istantanca degli interruttori di linea, von 4. Parrini, Energia elettr. 1939, S. 481...489.
- (11) Die Eignung des Druckgasschalters für die Kurzschlussfortschaltung, v. G. Brockhaus, ETZ 1940, I, S. 191...193.
- (12) Die Bewährung der Kurzschlussfortschaltung im Netzbetrieb, von R. Merkel, ETZ 1940, II, S. 769...772.
- (13) Inertia Relay Anticipates to Facilitate Reclosure, von J. T. Logan und J. H. Miles, Electr. World 1940, April, S. 1061...1064.
- (14) Die Zusammenhänge zwischen Erdschluss-, Kurzschlussund Ueberspannungsschutz in Hochspannungsnetzen, von W. Wanger, BBC-Mittg. 1941, Juni, S. 120...125.
- (15) Lightning Phenomena III (Field Studies), von C. Wagner und G. D. Mc. Cann, Electr. Engg. 1941, Okt.,
- (16) Five Years' Experience with Ultrahigh-Speed Reclosing of High-Voltage Transmission Lines, von Ph. Sporn und C. A. Müller, Electr. Engg. Trans. 1941, Mai, S. 241...245.
- (17) A Novel Reclosing Relay, von P. O. Bobo, Electr. Engg. Trans. 1941, Dez., S. 1041...1045.
- (18) Analysis of the Application of High Speed Reclosing Breakers to transmission Systems, von Crary, Kennedy und Woodrow, Electr. Engg. Trans. 1942, Juni. (Diese Veröffentlichung ist in der Schweiz z. Zt. nicht erhältlich und nur auszugsweise aus einem schwedischen Aufsatz (Nr. 26) bekannt.)
- (19) Relays and Breakers for High-Speed Single-Pole Tripping and Reclosing, von S. L. Goldsborough und A. W. Hill, Electr. Engg. Trans. 1942, Febr., S. 77...80.
- (20) High-Speed Single-Pole Reclosing, von Trainor, Hobson und Müller, Electr. Engg. Trans. 1942, Febr., S. 81...87.
- (21) Die Kurzschlussfortschaltung im Netzbetrieb, von O. Mayr, Elektr. Wirtsch. 1942, S. 222...227.
- (22) Studier över stabiliteten hos langa kraftöverföringar för växelström, von I. Herlitz, ASEA Tidn. 1943,

- S. 152...163. (Diese Veröffentlichung befasst sich mehr mit allgemeinen Stabilitätsberechnungen als mit der Stabilität bei der Wiedereinschaltung.)
- (23) Einordnung der Kurzschlussfortschaltung in den Netzbetrieb, v. F. Schultheiss, ETZ 1943, 7. Okt., S. 521...528.
- (24) L'extinction des arcs dans le réenclenchement ultrarapide monophasé sur les lignes à 220 kilovolts, von E. Maury, Rev. gén. électr. 1944, Mai, S. 79...90.
- (25) Selbsttätige Wiedereinschaltvorrichtung zur Inbetriebnahme kurzzeitig gestörter Leitungsstrecken, von Angele, Elektr. Wirtsch. 1944, 5. Jan., S. 9...10.
- (26) Automatische Schnellwiedereinschaltung, von A. Vrethem, Teknisk Tidskrift 1945, H. 5, S. 127.
- (27) L'élimination des défauts transitoires sur les lignes d'interconnexion par le réenclenchement ultrarapide des disjoncteurs, von *P. Ailleret*, Bull. Soc. franç. électr., 1938, S. 341...348.
- (28) Betrachtungen über die Verwendung von Löschspulen in Höchstspannungsnetzen, von Th. Boveri, Bull. SEV 1944, Nr. 10, S. 270...273.
- (29) Stabilität von Drehstromnetzen mit Aufklärungsversuchen an kleinern und mittlern Maschinen, von W. Wanger, BBC-Mittg. 1937, S. 99...111.
- (30) Etude expérimentale sur la stabilité d'un turbo-alternateur de 2300 kVA en court-circuit, von W. Wanger, CIGRE 1937, I, Rapport 118.
- Factors Contributing to Improving Electric Service by Means of High-Speed Switching and Utilisation of Stored Energy, von J. T. Logan und J. H. Miles, Electr. Engg. Trans. 1941, Dez., S. 1012...1016.
- (32) Sur les puissances limites d'une ligne de transport d'énergie électrique dans un réseau maillé d'interconnexion, von R. Langlois-Berthelot, Rev. gén. électr. 1944, Dez., S. 269...278
- (33) Influence du réenclenchement rapide sur la stabilité des grands réseaux de transport d'énergie électrique, von L. Perrin, Rev. gén. électr. 1944, Aug., S. 151...157 und 1945, Jan., S. 17...22.

Adresse des Autors:

Dr. W. Wanger, Oberingenieur der A.-G. Brown Boveri & Cie., Baden.

Der Bundesrat zur Ausnützung der Wasserkräfte

Bericht des Bundesrates an die Bundesversammlung zum Postulat Klöti und Botschaft zum Entwurf eines Bundesgesetzes über die Teilrevision des Bundesgesetzes über

die Nutzbarmachung der Wasserkräfte

Vom 24. September 1945.

A. Einleitung

In der Sitzung des Ständerates vom 22. September 1943 hat sich der Vorsteher des eidgenössischen Post- und Eisenbahndepartements namens des Bundesrates bereit erklärt, ein Postulat Klöti über die Ausnützung der Wasserkräfte zur Prüfung entgegenzunehmen. Das Postulat wurde sodann vom Ständerat nach einem Abänderungsantrag Weck am 27. September 1943 mit folgendem Wortlaut angenommen:

Der Bundesrat wird eingeladen, sobald als möglich darüber Bericht zu erstatten, ob nicht gewisse Massnahmen ergriffen werden könnten, um die Ausnützung der noch verfügbaren Wasserkräfte zu beschleunigen und den Bau oder die Erweiterung von Wasserkraftwerken zu erleichtern.

Der Sprecher des Bundesrates sagte jedoch auch die Prüfung der durch den Wortlaut des Postulates Klöti und einen wieder zurückgezogenen Abänderungsantrag Bührer aufgeworfenen Fragen zu.

Wir beehren uns, Ihnen heute unsern Bericht zu diesem Postulat des Ständerates und unsere Schlussfolgerungen zu unterbreiten, wobei wir es für richtig erachtet haben, einige allgemeine Fragen unserer Wasser- und Energiewirtschaft in den Rahmen unserer Untersuchungen zu ziehen. Der vorliegende Bericht bildet so eine gewisse Ergänzung zu den frühern Berichten des Bundesrates an die Bundesversammlung über die schweizerische Elektrizitätswirtschaft vom 27. März 1925 (Bundesbl. 1925, I, 833 ff.), 30. Mai 1928 (Bundesbl. 1925, I, 835 ff.), 30. Mai 1928 (Bundesbl. 1925, I, 835 ff.), 30. Mai 19 desbl. 1928, II, 201 ff.) und 21. Januar 1930 (Bundesbl. 1930, 53 ff.).

Das Postulat Klöti vom 22. Juni 1943, über dessen Behandlung im Ständerat wir im Bull. SEV 1943, Nr. 22, S. 676 ausführlich berichteten, strebte unter Beteiligung des Bundes die Schaffung eines gesamtschweizerischen Unternehmens an, das Wasserkraftwerke zu projektieren, in der dem Landesinteresse entsprechenden Reihenfolge zu erstellen und zu betreiben hätte.

Ständerat Klöti führte dann eine Reihe von Fragen auf, die nach seiner Meinung abgeklärt werden müssen, bevor an den Bau von Grosskraftwerken, wie sie im Rheinwald und im Urserental geplant werden, geschritten werden darf.

Auf Antrag von Ständerat Weck wurde am 28. September 1943 dem Postulat Klöti die oben angeführte allgemeinere Fassung gegeben. Ständerat Weck hielt dafür, dass die zur Sicherung einer harmonischen und systematischen Entwicklung der Ausnützung weiterer Wasserkräfte erforderliche Zusammenarbeit schon verwirklicht ist dank der grossen Verbände, die alle schweizerischen Elektrizitätsunternehmungen umfassen. Hingegen wird die Inangriffnahme des Baues neuer Werke durch die gegenwärtigen Verhältnisse, namentlich durch die Teuerung und den Mangel an ge-wissen Rohstoffen, verzögert. Der Bund sollte sich in erster Linie dieser praktischen Fragen annehmen, d. h. die bereits vorliegende gemeinsame Eingabe des Schweizerischen Elektrotechnischen Vereins (SEV) und des Verbandes Schweizerischer Elektrizitätswerke (VSE) an den Bundesrat vom 31. Juli 1943, die diese Fragen zum Gegenstand hat, beantworten*).

^{*)} Bull. SEV 1943, Nr. 18, S. 551. (Red.)