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Zur Theorie des Doppelkäfigmotors
Von W. Michael, Bern 621.313.333.4

Die Stromgleichungen des Doppelkäfigmotors werden
gewöhnlich mit Hilfe eines Ersatzschaltbildes ermittelt,
meistens unter Einführung gewisser Vernachlässigungen, um die
Theorie zu vereinfachen [Z] [II] 1). Im Gegensatz hierzu
wird in der folgenden Untersuchung von einem Bezugsbild
des Motors in Verbindung mit einem Raumvektordiagramm
der Drehflusskomponenten ausgegangen und die Theorie nur
unter Vernachlässigung der Eisenverluste entwickelt. Dieser
Weg erscheint zunächst etwas umständlicher, führt aber ebenso

schnell zum Ziel und bietet den Vorteil, einen unmittelbaren

Einblick in die elektrodynamischen und mathematischen

Zusammenhänge der in der Maschine wirkenden Grössen

zu gewähren, die durch das Ersatzschaltbild verschleiert
werden. Dieses bedarf eben selbst wieder einer Begründung,
die schliesslich auf den hier eingeschlagenen Weg führt. Vom
theoretischen und didaktischen Standpunkt aus dürfte der
hier eingeschlagene Weg daher den Vorzug verdienen. —
Ausser den Stromgleichungen und dem Stromdiagramm werden

in einfacher Weise die Leistungen und das Drehmoment
des Motors allgemein ermittelt. — Die Ergebnisse werden
durch ein Zahlenbeispiel veranschaulicht. Zum Vergleich
wird der Einkäfigmotor herangezogen.

1. Bezugsbild und Raumdiagramm
der Drehflüsse

Fig. 1 stellt einen Querschnitt durch einen
Doppelkäfigmotor halbschematisch dar. Der Ständer S

trägt eine normale Dreiphasenwicklung, deren
Phasen je nur durch ihre mittlere Windung
angedeutet sind. Wir greifen eine beliebige Phase a—a'
im Ständer heraus und bezeichnen ihre magnetische

Achse mit A.

Fig. 1.

Bezugsbild für den

Doppelbäfigmotor

Der Läufer L weist einen äusseren und einen
inneren Käfig auf, deren Stabzahl (Phasenzahl)
verschieden (wie gezeichnet) oder auch gleich sein
kann. Der äussere Käfig besitzt einen grösseren
Ohmschen Widerstand, aber eine kleinere
Streureaktanz als der innere Käfig; der erste dient als
Anlaufswicklung, der zweite als Arbeitswicklung.
Die beiden Käfige können getrennte oder gemeinsame

Seitenringe aufweisen, welche die Stäbe zu je
einer Mehrphasenwicklung verbinden. Wir nehmen
im folgenden getrennte Ringe, d. h. elektrisch ganz
getrennte Käfige an.

Bei den Käfigen stellt jeder Stab eine Phase
dar, deren Wicklung aus einer halben Windung
besteht. (Die Stabzahl kann gerade oder ungerade
sein.) Wir greifen aus jedem Käfig eine beliebige
Phase, z. B. die Stäbe b und c heraus und zeichnen
die entsprechenden magnetischen Achsen B und C.
Die in der. Windung a—a' bzw. in den Stäben b
und c angegebenen positiven Zählrichtungen bilden
mit den positiven Zählrichtungen auf den ent-

Les équations du courant des moteurs à double cage d'écureuil

sont généralement déterminées à l'aide d'un schémd
équivalent et l'on néglige le plus souvent certains points, dans
le but de simplifier la théorie [Z] [ZZ] 1). L'auteur de la
présente étude part d'une image de référence du moteur en
combinaison avec un diagramme vectoriel des composantes du
flux tournant et ne néglige que les pertes dans le fer. Ce
procédé, qui peut paraître à première vue un peu compliqué,
permet cependant d'arriver tout aussi vite au but et présente
l'avantage d'indiquer directement les relations électrodynamiques

et mathématiques des grandeurs qui entrent en jeu
dans ce genre de moteur et qui n'apparaissent pas nettement
lorsque l'on se base sur un schéma équivalent. Celui-ci doit
en effet être motivé et c'est précisément ce qui a conduit au
procédé qu'indique M. Michael et qui est préférable aussi
bien au point de vue théorique que didactique. Outre les
équations et le diagramme du courant, l'auteur détermine les
puissances et le couple du moteur d'une manière simple et
générale. Les résultats sont illustrés par un exemple numérique.

Le moteur à simple cage d'écureuil sert de comparaison.

sprechenden Achsen je ein Rechtssystem. Die so
ergänzte Fig. 1 stellt das Bezugsbild für die in der
Maschine auftretenden elektrischen und magnetischen

Grössen dar.
Um die Beziehungen zwischen, diesen Grössen

mathematisch ohne Ersatzbilder und Ersatzgrössen
erfassen zu können, wurde in Fig. 2 das
Raumvektordiagramm des resultierenden Drehflusses ([>

gezeichnet, der von den primären und sekundären
Drehamperewindungen gemeinsam erzeugt wird.
Die Grösse dieses Drehflusses wird im wesentlichen
durch die aufgedrückte PrimärSpannung bestimmt,
denn er muss in der Primärwicklung eine EMK in¬

duzieren, die, abgesehen von den geringen Ohmschen

und induktiven Spannungsverlusten in dieser
Wicklung, der aufgedrückten Klemmenspannung
das Gleichgewicht halten muss. Man kann 0 als
den resultierenden Drehfluss der (fiktiven)
Komponenten 0'2, 02, welche von den
Drehamperewindungen der Ständerwicklung bzw. des
inneren und des äusseren Käfigs erzeugt werden,
bezeichnen.

In Fig. 2 sind ferner die drei magnetischen
Achsen A, B, C (Fig. 1) übernommen. Die Achse A

') Die römischen Ziffern in Klammern beziehen sich auf ') Les chiffres romains entre crochets se rapportent à la
die Literaturangaben am Schlüsse. bibliographie figurant à la fin de l'article.
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ist fest im Räume, während sich die Achsen B und C

mit der Läufergeschwindigkeit ü drehen, so dass

die Winkel und fr" von A nach B und C, die
die Augenhliekslage der bewegten Achsen bestimmen,

lineare Funktionen der Zeit sind. Dagegen
ist fr von B nach C konstant. Der Fluss 0> und seine

Komponenten drehen sich im Räume, d. h. relativ
zum Ständer, mit der Kreisfrequenz a> der
Primärspannung dividiert durch die Polpaarzahl p, die
wir hier gleich 1 annehmen. Relativ zum Läufer
dreht sich 0 mit der Geschwindigkeit

o co — Q. (D

Führt man den Schlupf s — ein, so ist 0 s-oj
ü)

zu setzen. 0 stellt den Hauptfluss der Maschine
dar, der den Luftspalt durchsetzt und mit allen drei
Wicklungen verkettet ist. Daneben treten noch
Streuflüsse auf, die man in bekannter Weise durch
Einführung der Streureaktanzen berücksichtigt.

Wir wollen nun die Flusskomponenten 0V 0'2
und 0'2' durch die sie erzeugenden Ströme
ausdrücken. Es gilt [III] :

3 Ttl'
(&\ A (klAj) i^max ; 02= — Ai'2 maxi

2 4

0'2'^Ai'2'max (2)
4

Darin bedeutet: A der magnetische Leitwert der
Maschine für sinusförmig im Luftspalt verteiltes
Feld (Grundwelle) ; kt und Nx Wicklungsfaktor
und Windungszahl einer Primärphasenwicklung ;

m 2 und m 2 Stab- oder Phasenzahl des inneren
bzw. des äusseren Käfigs. (Für diese ist k 1 und

1
/V -x- zu setzen.)

Der Drehfluss einer Mehrphasenwicklung dreht
sich relativ zu dieser bekanntlich so, dass die Achse
des Drehflusses mit der magnetischen Achse der
betreffenden Phasenwicklung zusammenfällt, wenn
in einer Phase der Strom seinen Maximalwert
erreicht. Umgekehrt, wenn der Strom null wird, stehen
die beiden Achsen senkrecht aufeinander. Mit
andern Worten: die Projektion des Drehflusses auf die
magnetische Wicklungsachse stellt einen zeitlich
sinusförmig schwingenden Fluss dar, der zeitlich
in Phase mit dem betreffenden Phasenstrom ist,
der ebenfalls eine Sinusfunktion der Zeit ist.
Bezeichnen wir also die Projektion von

0j auf A mit flA, von 0'2 auf B mit f2B und von
'I>2 auf C mit f2C, so gelten die Gleichungen

3 in '
fiA — A (fcjIVj)ij ; y*2ß ~ Ai'2'<)

2 4

fïc — ~~ Ai", (3)
4

welche einé Beziehung zwischen den Momentan-

XXXVI. Jahrgang

werten des Stromes in einer Phasenwicklung und
des in deren Achse schwingenden Flusses darstellen.

2. Einführung komplexer Grössen

Statt nun mit Momentanwerten zu rechnen, ist
es bekanntlich sehr zweckmässig, an ihre Stelle
Zeitvektoren (Zeiger) zu setzen, die man durch
komplexe Grössen darstellen kann [III]. Diese
Zeitvektoren sind dann Drehvektoren in der komplexen
Zahlenebene, die aber nicht mit den räumlichen
Drehvektoren in Fig. 2 zu verwechseln sind, denn
zu jeder Phase bzw. Achse gehören andere
Zeitvektoren. Wir bezeichnen sie wie üblich mit grossen
Frakturbuchstaben und entsprechenden Indices.

Nach diesen Bemerkungen ist die folgende
Darstellung leicht zu verstehen. Wir denken uns 0 und
seine Komponenten je auf die drei Achsen A, B und
C projiziert. Die Projektionen von 0 bezeichnen wir
mit fA, fß und /c. Sie sind auch gleich der
algebraischen Stimme der Projektionen von 0^02 und
0'2' auf die betreffenden Achsen. In Fig. 2 sind
nur einige dieser Projektionen eingezeichnet, damit
die Figur nicht überlastet wird. Es liefert

0X die Projektionen /u, flB, fic
^2 » n f'2Alf'2Blf'2C

„ » flAI /2'ß' f'2C

Aus Fig. 2 ist weiter zu entnehmen:

fiA #1 cos (frA + 7i); f'2A 0'2 cos (frA + y2) \
f'-lA cos (frA + /2') !#ti i(4)

' v\
Entsprechende Gleichungen gelten für die Grössen
mit den Indices B und C.

Für die Winkel frA, frg und &c von A, B und C
nach 0 ist zu setzen:

frA frA0 + cot; frB frB0 -f- öt\ frc frco -j- Ot.

(frAO beliebiger Wert zur Zeit t 0.)

Den reellen Grössen (4) (Momentanwerten) kann
man nun die komplexen Grössen (Zeitvektoren oder
Zeiger) zuordnen:

&, *, 3U Ve""*'";

%ä fy'ei(5)

Für die Grössen mit den Indices B und c gelten
entsprechende Gleichungen. Den reellen Gl. (3)
entsprechen die komplexen oder vektoriellen
Gleichungen:

Q ÏTI '
%lA ^A(klN1)%1-, &s -f-A3i;

$2C — —7- -4 $2' • (6)
4

Ferner bestehen zwischen den komplexen Grössen

(5) die folgenden durch Division je zweier
Vektoren leicht zu findenden Beziehungen.

BULLETIN SCHWEIZ. ELEKTROTECHN. VEREIN 1945, Nr. 19
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-jV iv Ö2/1 — Ös'c e

Ö"c e

Ji5"

(7)

Sis ~ Sis e î Sas Sâs e

Sic Sis e S2C S2B e

Hierin ist nach Fig. 2 :

ûA— dB "dA0 —
d"— dA — dc — dA0 — dC)0 £21 ;

d =-dB — dc d" — d'.
Mit Hilfe der Beziehungen (6) und (7) können
wir alle Komponenten der in den Achsen A, B und
C schwingenden Flüsse und damit auch diese selbst
durch die Stromvektoren öi? ö2' lmd öi'
ausdrücken, indem wir bilden:

%A SlS+S2S+S2S= SlS+Sis e +S2Ce"

Sß Slß+Säß+S^B SlSe
'

+S2B~f~S2Ce

Sc= S1C+S2C+S2C =SlSC +S2Be +S2C

Die komplexen Grössen %A, $ß, 3C stellen also die
resultierenden, in Richtung der Achsen A, B, C
schwingenden Flüsse dar, und zwar schwingt %A

mit der Kreisfrequenz <w, Sß und Sc mh der
Kreisfrequenz a. Die Faktoren e± und e±Jt5 sorgen
für den Frequenzausgleich zwischen den verschie-
denachsigen Zeitvektoren.

(8)

3. Berechnung der Haupt-EMKe und der Ströme

Durch den Fluss $A wird in der Phasenwicklung
a—a' die primäre Haupt-EMK:

e,/, - -MW%a
induziert. Ebenso induzieren die Flüsse Sc und Sc
in den Stäben b und c, beziehungsweise die sekundären

HauptEMKe (fe 1, N V2) :

@2h —i « Sb und Sä —j o Sc •
Z* z»

Unter Berücksichtigung der Gl. (8) und (6) ergibt
sich:

(fcjiVj) Ö2e (fei N,

®'2h —jßA

8

@2ft= —jiA Jr-
4

m+ T®
-j-ä mï

8
»2

(9)

Wir führen die folgenden, auf die Primärfrequenz co

bezogenen Haupt- und Gegenreaktanzen ein:

3 3
xih ojA — (fejlVj)2 ; x'12=x['2=xl2= coA — (fcj Nt)

2 4

Xnh= CO A

x'Z, — cjA

m"2

8

m2

IT

x'2l= (oA^-faN^
4

m"
*2l'= Wd-- (&! iVj)

4

(10)

Damit ergeben sich folgende Ausdrücke für die
Haupt-EMKe:

©iß ~j + Öi'eJ*"]

-j [*,2 Öi eWlS' + x'2h% + x'2'h%'e1'*] s (11)

@ft -J [*12 Öi«-"'*" +^,Ö+~^+^Ö2'] ß

Um die Spannungsgleichungen der Maschine
aufstellen zu können, müssen noch folgende Grössen
gegeben sein:
111 primäre Klemmenspannung
n Ohmscher Widerstand einer Primärphase
xu Streureaktanz einer Primärphase
t Ohmscher Widerstand einer Phase des inneren Käfigs
x Streureaktanz einer Phase des inneren Käfigs
r" Ohmscher Widerstand einer Phase des äusseren Käfigs
x" Streureaktanz einer Phase des äusseren Käfigs
x" gegenseitige Streureaktanz zweier benachbarter Phasen

der beiden Käfige.

Bei der Berechnung der sich auf die Käfige
beziehenden Grössen sind Stab- und Ringanteil iu
bekannter Weise zu berücksichtigen [III]. Die
Spannungsgleichungen für je eine Phase des Ständers

bzw. Läufers lauten daim:

U, + @,h= (r! +7*ls) öl
©Sit (r' A-jsx') & A-jsx'" e'*

(r"+jsx") Ö2' +jsx'" & e~J*

Setzt man für die EMKe die Werte (11) ein und
ordnet man nach den gesuchten Strömen, so
erhält man:

[U +7 (*17,+ *1S)1 Öl +7*21 Ö2 e>& +
+7*21 öreJlS" =;iii

7 « *12 Öl Ir'+js («J/.+ *')] Ö2 +
H-jß (*&+*'") ÖI'«'15 =°

7 5 *12 Öl e Jiy'' +1S (*27i + *"')Ö2 e_;,î +
+ [r"A-js(x'2'h-+-*")] Ö2' 0

Zur Vereinfachung führen wir noch die folgenden
Grössen ein:

A:n=A:,ft-(-*is totale primäre Reaktanz einer Phase,

x'22 x'2h-\-x' totale Reaktanz einer Phase des in¬

neren Käfigs,

x& X2h~hx" totale Reaktanz einer Phase des äus¬

seren Käfigs,
x'B =x'2h+ Gegenreaktanz des inneren Käfigs

auf eine Phase des äusseren Käfigs,
x'J Xih-\~x"' Gegenreaktanz des äusseren Käfigs

auf eine Phase des inneren Käfigs.
(13)

(12)
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Die Gl. (12) gehen damit über in:

(ri+ixli)'3i+jx&i%iei& +jx'2i eiß"

j s x12 e + [r'+jsxn] $2 Sa' elß — 0

jsxla 3!! e_J1? +j«4^2 e~^+[r"+jÖ2' 0

(14)

Aus den Gl. (14) lassen sich nun die Phasenströme
Su S2' un(l S2" am besten mittels Determinanten
leicht bestimmen. Zu dem Zwecke bilden wir
zunächst die Systemdeterminante

à (rj-1-jXn) [(r'+jx'22 s) (r"-hjx'22s) -j2XgX'g's2] —

-jxl2se~'"ä ljx'2\elß (r"-\-jx22s) —f x'2\ x'gse](^ _1?)]

+.7%2se~jß [J2x'zix'g se}+d) —jx'2'1 elß (r'-f-jX22«)]•

Die Ausrechnung ergibt, wenn man beachtet, dass

j2 —1 undd" — d d', d" (Abb. 2) ist:

A n [r' r"+ (x'g x'g — x'22 x'22) s2] + [r' xi2 x2l +
+ r"x12x21 - xx (ir' X22 — r" x'22)] s +j {rt (r' x22 +
-I- r"x'22) s +xur' r" + [xn (x'gx'J — x12 x'22) —
— X12 (x'2'1 Xg — X21X22 + *21 x'g — x'2'1 x22)] s2} (15)

Für die Ströme ergeben sich folgende Ausdrücke:

Si
Ux

r' r"4- (x'g x'g'—x22 X22) s2+j (r' x22 + r" x22) 4 (16)

$2 x12 \ (x'22 — x'g') s2 —j r" s
-j,r (17)

S2'=-^-*12 |(*22 — x'g)s2 — j'r'sje
Jl5

(18)

Diese Gleichungen stellen bîzirkulare Quarliken
dar. Die Faktoren e-W und e '&" in den Gl. (17)
und (18) sind durch den Frequenzunterschied
zwischen der Primärspannung Uj und den Sekundärströmen

S2' und §2" bedingt. Durch Multiplikation
der Gl. (17) und (18) mit e'&' bzw. e'#" und je mit
dem entsprechenden Uebersetzungsverhältnis
zwischen den Käfigwicklungen und der Ständerwicklung

kann man die Sekundärströme auf die
Primärfrequenz und Primärwindungszahl reduzieren2!.
Da wir jedoch die Sekundärströme für die weiteren
Berechnungen nicht benötigen, brauchen wir uns
mit ihnen nicht weiter zu befassen.

4. Leistungen und Drehmoment

Die primäre Leistung berechnet sich nach der
Formel

P1 m± U-L cos cplt

worin U1 und It die Effektivwerte der Klemmenspannung

bzw. des Primärstromes und cos cpx den

2) Wenn man dann noch auf der rechten Seite der Gl.
(16), (17) und (18) Zähler und Nenner durch s2 dividiert, so
treten die Verhältnisse r'/s und r"/s auf, während die sek.
Reaktanzen den Faktor s nicht mehr aufweisen. Hierauf gründet

sich die Einführung des bekannten Ersatzdiagrammes,
das, wie man sieht, ein recht abstraktes Hilfsmittel darstellt.

Leistungsfaktor bedeuten. Ix cos cp1 ist die
Wirkkomponente des Stromes, die wir mit Ilw bezeichnen.

Man erhält sie aus Gl. (16), indem man darin
13-! durch U1 ersetzt und den reellen Teil der rechten

Seite ausrechnet. Den (mit]/2 dividierten)
Bezugsvektor U1 lässt man nämlich mit der positiven
reellen Achse zusammenfallen, so dass I1W /j cos cp1

als die Projektion von I± auf die reelle Achse
erscheint. Der imaginäre Teil der Gl. (16) liefert
dann den Blindstrom Ilb I1sinq>1. Wir können
also auch schreiben (77^ 3) : P1 3U1 Ilw.
Ziehen wir davon die primären Kupferverluste
Pvi 3 rt I\ ab, (die Eisenverluste bleiben hier
unberücksichtigt), so erhalten wir die durch das
Drehfeld auf den Läufer übertragene Drehfeldleistung

Pd Pt-Pvl 3(VJm-rJ\).
Diese Leistung ist auch gleich dem Drehmoment M
multipliziert mit der Geschwindigkeit co des
Drehfeldes (bzw. co/p bei der Maschine mit p
Polpaaren) Man kann sich nämlich das Drehfeld auch
durch einen Magneten erzeugt denken, der mit der
Geschwindigkeit œ bzw. œ/p angetrieben wird und
auf den das Drehmoment M wirken muss, um das
vom Läufer ausgeübte Gegendrehmoment zu über-

p
winden; es ist also Pd — M • co und somit M =—!.

0)
Ist Q die Läufergeschwindigkeit, so ist die
erzeugte mechanische Leistung Pm=MQ—M<x> (1—s).
In Wärme umgewandelt werden die sekundären
Kupferverluste Py2 — Pa — Pm — Pd's-

Um die Rechnung übersichtlich zu gestalten,
führen wir die folgenden Konstanten ein:

K0 r' r"
KX X22 X'22 Xg Xg

K2 x12 (r'x'2'1 + r"*2l) (19)
Ks — r' x22 -+- r" x22

K4 X12 (x'2l X22 — *21 Xg + X'2'1 *22 — *21 xg)

Mit diesen Konstanten schreiben sich die Gl. (15)
und (16) wie folgt:
A r, K0+ (K2 — xn K3) s — rx Kj s2 +

+j {*n K0 + rx Ks s + (K4 -xnKx) s2] (15a)

& [K0 - K, s2 + j Ks s] (16a)

Um Ilw zu berechnen, muss man in Gl. (16a) den
Nenner reell machen, indem man den ganzen
Bruch rechter Hand mit dem konjugierten Wert A
erweitert. Für den Nenner erhält man dann den
reellen Ausdruck:

AI I J|2 [r, K0 + <K2 - *n Kd) s- r, K, s2]2 +
+ I^nKo+ r] K3s-f-(K4 — ^nK^s2]2 (20)

Multipliziert man noch den Zähler von Gl. (16a)
mit 2f und ersetzt man 11, durch U4, so ergibt der
reelle Teil des Bruches den Wert Ilw. Fügt man
noch den Faktor 3U1 hinzu, so ergibt sich
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Pl 3 UJiw ~r~ {r( (K0-K,sy+
\A2

+ (K0 - K! s2) K2 + (r, K,+ K4 s) K?j s2} (21)

Zur Bestimmung von PV1 braucht man I\. Dieser
Wert lässt sich als «Norm» 3) der rechten Seite von
Gl. (16a) unmittelbar hinschreiben. Durch
Multiplikation mit 3rj erhält man somit:

Pvi 3r1/?=-^{rJK0-K1s2]2+ r1K§s2} (22)
II

Indem wir Gl. (21) von (20) abziehen, erhalten
wir nach Ausrechnung die Drehfeldleistung

Pä-
3 Uf

Iii2
[K0 K2 + (K3 Ka-K, K2) s2} s - coM (23)

wodurch auch das Drehmoment M, sowie die
mechanische Leistung Pm Pd (1—s) und die sekundären

Verluste Pv2 Pd-s bestimmt sind.

Von besonderem Interesse sind das Anlauf-
moment, das man erhält, wenn man in Gl. (23)
s=l einsetzt; ferner das Kippmoment, d.h. das
maximale Drehmoment in der Nähe der synchronen

Drehzahl, wo also s relativ klein gegen 1 ist.
Um den entsprechenden Schlupf (Kippschlupf) zu

dpd
zu bilden und gleich Null zufinden, hat man

as
setzen und s aus der so erhaltenen Gleichung zu
berechnen. Zu dem Zweck entwickeln wir Zähler
und Nenner von Gl. (23) nach Potenzen von s und
erhalten

Pd 3 Uf
as-hbs3

(24)
c -f- d s e s2 fs3 g s*

wobei die Konstanten a bis g folgende Werte haben :

a K0K2 ; lb K3Ki-KlK2-,
c (rf —[— x2u) K\ ; d 2 rx K0 K2 ;

e'=rl(Kl-2K0Kl) + 2xnK0 (K4-Xl t Kt) +
-4- (K2 — xnKs)2;

f 2 r, (K3 K4—KjK2) ; g rtK' +^-xM2
(25)

Setzt man den Zähler von gleich Null, so erhält
ds

man zunächst die Gleichung:

ac+ (36c — ae) s2-\-(bd— af)'s3 —
jj—(be — 3 a g) s4]—[6 g s6 0.

Nun ist aher aus (25) zu ersehen, dass bd—af 0

ist; mithin reduziert sich obige Gleichung auf
folgende:

ac — (36c — ae) s2 -f- (be — 3ag) s4 — bgs6 0,

Das ist aber eine kubische Gleichung in s2. Setzen
wir s2 y und ordnen wir die Gleichung nach y'J,

so erhalten wir

3) Norm Betrag des Zählers im Quadrat durch Betrag
des Nenners im Quadrat.

3, + (5±_±W(^_i£)y_.ï£ o<2«>
\ b gj \bg g ] bg

Den drei Wurzeln dieser Gleichung entsprechen
sechs Werte von s. Sind die drei Wurzeln reell und
positiv, so gibt es drei positive und drei negative
Werte von s, wofür die Kurve einen Extremalwert
aufweist. In diesem Fall gibt es also drei positive
und drei negative Kippmomente, die paarweise
symmetrisch zur Ordinatenachse liegen. Wie die
Erfahrung zeigt, befinden sich zwei dieser
Kippmomente in der Nähe des Leerlaufs, wo also s klein
gegen I ist, während das dritte Kippmoment bei
s grösser als 1 vorkommt. Nur die beiden ersten
Kippmomente haben praktische Bedeutung.

Für diese ist also auch y sehr klein gegen 1. Man
kann diese y-Werte mit praktisch genügender
Genauigkeit aus der quadratischen Gleichung berechnen

(3
a e\ „ ae 3 c\ ac 0 <27>

die man aus (26) bei Vernachlässigung von y3
erhält. Die etwas zeitraubende Lösung der
kubischen Gl. (26) ist daher entbehrlich. Werden die
Wurzeln der Gl. (27) mit yx und y2 bezeichnet,
so sind die entsprechenden Schlupfwerte für die
Kippmomente :

si ±yyi' s2 ± ]/y2-

Das im folgenden Paragraphen berechnete Zahlenbeispiel

wird die Brauchbarkeit der Gl. (27)
erweisen.

5. Sonderfall:
Beide Käfige haben dieselbe Stabzahl, jedoch
getrennte Seitenringe (Fig. 3). Zahlenbeispiel und

Vergleich mit einem Einkäfigmotor1
Bei diesem praktisch wichtigen Sonderfall haben

beide Käfige dieselbe Phasenzahl m2 m" m2.

Fig. 3.

Doppelkäfiganker mit m'e ' m'i m->

Die sekundären Reaktanzen nach Gl. (10) und
(13) erhalten jetzt folgende Werte:

Hin
x'2h x2h x2h (OA —l-

8

X21 x'2'1 x2x coA — (fej iVj)
4

*22 xih + x'
x'n x2h -t- X"
x'g Xg xg x2h 4- x'"

Unverändert bleiben

x^h coA — (klN1)2 ; xl2 coA — (&, IV,)
2 4

xn xlh + xls.
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Für die Konstanten K erhalten wir folgende Werte:

K0 r' r"
Kj x'22 %22 — x2g — x2h {x'+x" — 2 x"')+x' x" - x"'2
K2 (r' + r") *12 X21

Ks r' x'22 \ T"x22 (C + r") x2h + r' x" + r"x'
•^4 *12*21 (*'+*"—2x"') (19a)

Um einen Einblick in das Verhalten des

Doppelkäfigankermotors in Abhängigkeit von den
Konstanten der Maschine zu gewinnen, wollen wir ein
bestimmtes Zahlenbeispiel behandeln, dessen Daten
etwas aufgerundet sind, in der Grössenordnung
aber einem praktisch ausführbaren Modell
entsprechen. Zum Vergleich wird dann ein analoges
Modell eines Einkäfigmotors mitbehandelt.

Der erste Motor sei eine zweipolige Maschine
mit einer dreiphasigen, in Dreieck geschalteten
Primärwicklung und zwei Käfigwicklungen mit je
50 Stäben und zwei getrennten Seitenringen. Die
Daten dieses Zweikäfigmotors seien folgende:

xlh 30 Ohm x2h 8 • 10~3 Ohm x12 0,12 Ohm
x' =6 • 1(M » x21 — 2 »

x" 0,4 • 1(H »
P 1 • 1(M »

r" 3 • 1(M »

x1s — 1

xxl 31

ri— 0,3 »
U1 200 V

(Die hier gewählten Ohmschen Widerstände wurden

relativ klein angenommen, um günstige
Verhältnisse für den Doppelkäfigmotor zu erhalten).
Mit Hilfe der Gl. (27) erhalten wir für die
Konstanten:

K3K4
K0 K2 288 • HM4

Kj IC 2183 • IO-14
K0 0,3 10-7

K1 43,41 -10-7
IC 960 • 10-7

Kz 33,84-10-7
Ki —1296 • 1(M

Die Gl. (15A) und (16a) für den Primärstrom Si
ergeben die Gleichung

Sx 200
0,3—43,41 «2+j 33,84 s

0,09—89,04 s —13,02 «2 _|_j [9,3 +10,15 s

— 49,71 s«]

Diese bizirkulare Quartik hat im Punkte s 0 den
Tangentialkreis [IV]

T0 200
0,3 +j 33,84 s

0,09 + j 9,3 +[ - 89,04 -j 10,15] s

und im Punkte s =00 den Tangentialkreis

j 33,84 — 43,41 s
Too 200

89,04 4-y 10,15 - [13,02 +j 49,71] s

Die Quartik (3J mit den beiden Tangentialkreisen
T0 und Too ist in Fig. 4 gezeichnet. Obwohl das

Arbeitsgebiet des Motors sich nur vom Punkte
s — 1 (Stillstand, Anlauf) bis zum Punkte s 0
(Synchronismus, Leerlauf) erstreckt, wurde die
ganze Kurve berechnet und aufgezeichnet. Auffallend

ist die Einsenkung zwischen den Punkten 0,2

und 1 bzw. -—0,2 und —1. Diese Einsenkung kann
mehr oder weniger ausgeprägt sein, je nach der
Grösse der Ohmschen Widerstände relativ zu den
Reaktanzen der Maschine.

Fig. 4.

Stromdiagramm des Doppelkäfigmotors

Um die Vor- und Nachteile des Doppelkäfigmotors gegenüber

dem Einkäfigmotor deutlich erkennen zu können, ist in
Fig. 5 das Stromdiagramm eines Einkäfigmotors gezeichnet,
dessen Ständer genau gleich dem des soeben betrachteten
Motors ist und dessen Läufer nur einen äusseren Käfig trägt
von derselben Stabzahl wie der frühere. Wir wollen für diesen
Käfig dieselbe Kupfermenge verwenden, wie für die beiden
Käfige zusammen, so dass der ohmsche Widerstand rj je Se-

Fig. 5.

Stromdiagramm des Einkäfigmotors

lcundärphase gleich dem Widerstand der parallelgeschalteten
Phasen der beiden Käfige im Synchronismus ist. Es ist also

-angenommen. In der Nähe des Synchronismus,
r'+r"ra

d. h. im Dauerarbeitsgebiet, tritt der Einfluss der Streureaktanz

im Sekundärstromkreis stark zurück gegenüber
demjenigen des Ohmschen Widerstandes. Wir wählen die
Streureaktanz x-2.— x", d. h. gleich derjenigen des äusseren Käfigs
des ersten Motors. Die beiden Motoren werden sich in ihrem
Verhalten in der Nähe des Synchronismus (Arbeitsgebiet)
nicht wesentlich voneinander unterscheiden, dagegen um so
mehr mit wachsendem Schlupf und also namentlich im Anlauf.

Für den Einkäfigmotor gelten also die Daten:

*1, 30 Ohm

*ls 1 »

xn 31 „
ri 0,3 „

Xik — 8110"3 Ohm

*2. 0,4-10-' „
*22 8,04 -10-3 „
r2 0,75 -10"4 „

*21 2 Ohm

*12 0,12 n

Vi 200 V
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Zur Berechnung des Ortskreises des Primärstromes 3l (siehe
Fig. 5) benutzen wir die bekannte Gleichung [III] :

& Ui- ri + j x-22 s

ri T2 — (ach X22 - Xlb *2h) s+j [r2 xn + n X22 s]

In unserem Falle erhalten wir

c?
200

0,075 + j 8,04 s

0,0225 — 9,24 s+j [2,325 -f- 2,412 s

Für die Hauptpunkte ergeben sich hieraus die Werte:

s 0; & (0,062 —j 6,46) A

s «; 3g (42,50 — ; 162,9) A

S 1; 3K (68,80—J 138,7) A

Zur Kontrolle wurde noch der Punkt s 0,1 berechnet :

s — 0,1; 3o,i (53,66 —j 25,07) A

Damit kann der Kreis samt Schlupfskala in bekannter Weise
gezeichnet werden. Nach Eintragung der Pd-Linie und der
iFVLinie körnten dem Kreisdiagramm sämtliche Betriebsgrös-
sen für jeden Schlupfwert ohne weitere Rechnung entnommen

werden. Mit den aus Fig. 4 graphisch ermittelten Werten
wurden die Kurven Pi, Pd und Pm in Fig, 6 konstruiert.

o
Ausserdem wurde aus Fig. 4 der Betrag des Stromes 3l ent"
Bommen und im Maßstabe 1 : 2 über den jeweiligen Schlupf-

o
wert in Fig. 5 eingetragen und damit die Kurve Ii gezeichnet.

!î_t= -2,2911; —— —b g bg g
0,2562;

ac
bg

0,00432.

Die Gl. (27) liefert dann die zwei Wurzeln:

y1 0,0207 und y2 — 0,0916,

denen die Schlupfwerte für die Scheitelwerte von
Pd bzw. M entsprechen:

Sl ±0,1439 und s2 ±0,3027.

Der Gl. (24) entspricht die numerische Gleichung

n o 288s 4- 2183s3
Pd=3-2002 -L

86,5+172,8s+7096s2±1310s3+2641si
(24a)

Setzt man hierin der Reihe nach die Werte s 0;
s1; s2; 1 ein, so erhält man die folgenden Hauptpunkte

der P/Kurve :

s 0 s, s„ 1

M

Pd

Pa

314

0

0

2187

6,96

2105

6,70

2622 Watt

8,34 Joule

es oA er ae o,s e* es es et es es 07 as es es es es etT
Fig. 6.

Einkäfigmotor

' Jo ' èo

too h
,30 kW

Fig. 7.

Doppelkäfigmotor

In Fig. 7 sind die entsprechenden Kurven für
den Doppelkäfigmotor aufgezeichnet. Von diesen
können nur die P,-Kurve und die /j-Kurve mit
Hilfe der Fig. 4 konstruiert werden. Die P^-Kurve
muss mit Hilfe der Gl. (23) punktweise berechnet
werden. Diese erhält den Zahlenwert:

Pd 3 • 2002
(288 H-2183-s2) s

[0,09—89,04 s—13,02 s2]2+ [9,3 +
10,15 s-49,71s2]2

Für die Konstanten der Gl. (24) erhalten wir mit
Hilfe der Ausdrücke (25) die Zahlenwerte:

a= 288-10"
b 2183 • IO-14

e 86,5 • 10-14

d =172,8 -10-14

e 7096 • 10-14;

/= 1310 -10-14;

g 2641 -IQ-".

Wir berechnen damit die Konstanten der Gl. (27)
zu:

Weitere Punkte der Pd-Kurve lassen sich
mit Hilfe der Gl. (26a) oder (27a) leicht
bestimmen; z. B. für s=0,02; 0,04...0,08;
0,1...0,9, wie dies für die Fig. 7 geschehen
ist. Doch bestimmen schon die obigen
vier Hauptpunkte im wesentlichen den
Verlauf der Pd-ICurve im Betriebsgebiet
s 0 bis s 1. Dem Schlupf st
entspricht das eigentliche Kippmoment,
dem Schlupf s2 entspricht ein kleineres
Kippmoment (Sattelmoment), das
theoretisch das grösste Belastungsmoment
vorschreibt, das der Motor heim Anlaufen

ohne Gefahr hängen zu bleiben, d. h.
die Betriebsdrehzahl nicht zu erreichen,
übernehmen kann.

Bevor wir zum Vergleich des
Doppelkäfigmotors mit einem Einkäfigmotor

übergehen, wollen wir noch die Brauchbarkeit der
Gl. (27) nachweisen.

Löst man die kubische Gl. (26) nach Einsetzung
der Zahlenkoeffizienten mit den bekannten
Formeln auf, so erhält man die Wurzeln bzw. die
genauen Schlupfwerte:

y1 0,020641;

71= ± 0,14367;
y2=: 0,096292;

72=± 0,31031;
y3 2,174143

S3= ± 1,474-5.

Die Näherungswerte s± und s2 stimmen mit den

genauen Werten und s2 ausreichend überein,
umso mehr, als sich die Ordinalen von Pd in der
Umgebung der Scheitelwerte nur geringfügig mit
den Abzsissen ändern. Der dritte Scheitelwert fällt
in das übersynchrone Gebiet | s | > 1 und hat praktisch

keine Bedeutung.
Die Ordinaten der Pm-Kurve ergeben sich aus

der Beziehung
Pm Prl Pw> Pft P,d s
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Der elektrische Wirkungsgrad ist 1] tEr ist
"i

in den Diagrammen nicht dargestellt.
Der Vergleich der Fig. 4 und 5 einerseits mit

den Fig. 6 und 7 anderseits zeigt die Vor" und Nachteile

der beiden betrachteten Motoren.
Im Anlauf (s l) ist das Verhältnis der

Kurzschlußströme :

K
h
o

h
102,5

154
0,666.

und das Verhältnis der Drehmomente:

Ô
Ma

O O

Pä

2622

1932
1,357.

Im Anlauf ist somit der Doppelkäfigmotor im Vorteil,

da er den kleineren Kurzschlußstrom und das
grössere Drehmoment besitzt. Darauf beruht seine
Verwendung für Betriebe, die mit verhältnismässig
grosser Last anfahren müssen.

Gegenüber dem Einkäfigmotor besitzt dagegen
der Doppelkäfigmotor das kleinere Kippmoment.
In unserem Beispiel ist

Mk_
0

mk
o

p,

2187

3840
0,5696.

Das hat zur Folge, dass die Ueberlastbarkeit des

Doppelkäfigmotors geringer als beim Einkäfigmotor
ist; in unserem Fall beträgt sie nur ca. 57%
derjenigen des Einkäfigmotors. Ein weiterer Nachteil
ist die Einsenkung der Drehmomentkurve (Sattel)

zwischen Anlauf und eigentlichem Kippmoment.
In unserem Beispiel ist diese Einsenkung wenig
ausgesprochen und daher nicht von Belang. Je
grösser jedoch die Einsenkung ist, desto kleiner
wird das zulässige Anlauf-Lastmoment.

Auch der Leistungsfaktor (cos cp) ist beim
Doppelkäfigmotor kleiner als beim Einkäfigmotor, wie
man aus Fig. 4 deutlich ersieht, in welcher das
Bogenstück 0...1 des Kreises der Fig. 5 bezeichnet
ist und die kleinsten Winkel cp^ und <px angegeben
sind. Infolgedessen ist auch der Wirkungsgrad beim
Doppelkäfigmotor schlechter als heim Einkäfigmotor.

Damit sind die wesentlichen Vor- und Nachteile

der beiden Motorenarten klargestellt. Die Wahl
zwischen denselben hängt von den gegebenen
Betriebsbedingungen ab [V].
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La station radiotélégraphique
Par S. C. Anselmi

La station émettrice de Münchenbuchsee est située
à environ 10 km au NE de Berne et a été construite
en 1921. Elle sert exclusivement au service
radiotélégraphique avec l'Europe et l'Amérique du Nord.

Les émetteurs de la station, au nombre de 11 en
1944 (1 seul existait en 1921), sont alimentés sur le
réseau triphasé des Forces motrices bernoises. La
tension de 16 000 V du réseau est transformée à la
station même en 500 V, 50 Hz. Ce courant est amené
à un tableau de distribution principal, d'où il
repart sur les pupitres de commande des émetteurs.
En cas de panne de courant, un moteur Diesel, à

démarrage automatique, couplé à un alternateur de
250 kVA, permet d'alimenter toute la station. La
mise en marche du groupe Diesel se fait en 15 secondes,

les boutons de démarrage et d'arrêt se trouvant
sur le tableau de distribution principal.

Les émetteurs, au nombre de 11, peuvent être
répartis comme suit:

2 émetteurs travaillant sur ondes longues,
9 émetteurs travaillant sur ondes courtes.

de Münchenbuchsee en 1945
Münchenbuchsee

621.396.712(494)

Les 2 émetteurs à ondes longues, chacun d'une
puissance anodique de 18 kW, travaillent sur les
fréquences de 95,85 kHz (3130 m) et 82,6 kHz
(3632 m). Ils sont tous deux utilisés pour le service
radiotélégraphique européen (principalement Londres

et Lisbonne). Ces émetteurs travaillent sur des
antennes supportées par des pylônes métalliques de
92 et 125 m de hauteur. L'une des antennes est
constituée par une nappe de 4 conducteurs horizontaux
et est en forme de L. L'autre antenne est composée
d'une nappe de 6 conducteurs et est en forme de T.

Les émetteurs à ondes courtes, au nombre de 9 —
dont plusieurs, c'est-à-dire les plus anciens, sont de
fabrication anglaise, tandis que les plus récents ont
été fabriqués entièrement en Suisse — possèdent des

puissances variant entre 4 et 40 kW au circuit anodique.

Quatre de ces émetteurs, d'un ancien type,
travaillent sur des fréquences fixes. Les 5 autres
émetteurs, de conception plus moderne, couvrent une
gamme de fréquences allant de 20 000 kHz à

3 750 kHz (15 à 80 m).
Tous les émetteurs ondes courtes à Münchenbuchsee

sont munis de maîtres oscillateurs système
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