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XXXVIe Année N° 9 Mercredi, 2 Mai 1945

Der Einfluss von Dämpfungs- und Phasenverzerrungen
auf frequenzmodulierte Wellen

Von P. Güttinger, Baden 621.396.619.13

Die Dämpfungs- und Phasenverzerrungen werden nach
einer exakten Methode behandelt, welche vom Frequenzspektrum

bei Frequenzmodulation ausgeht. Es wird gezeigt, dass
die Dämpfungsstörungen gegenüber denjenigen infolge
Phasenverzerrungen normalerweise wesentlich kleiner sind. Ferner

Hess sich der Beweis erbringen, dass zur rechnerischen
Behandlung der Phasenverzerrungen die sogenannte «quasi-
slationäre» Berechnungsmethode in den meisten praktisch
vorkommenden Fällen genügt. Bei grossen Phasenverzerrungen

muss allerdings die in dieser Arbeit entwickelte genauere
Methode verwendet werden.

L'auteur étudie les distorsions dues à l'affaiblissement et
au déphasage, à l'aide d'une méthode précise, basée sur le
spectre des fréquences résultant de la modulation. Il
démontre que les perturbations dues à l'affaiblissement sont
normalement beaucoup moins importantes que les distorsions
dues au déphasage, et que, dans la plupart des cas pratiques,
on peut fort bien appliquer au calcul des distorsions dues au
déphasage la méthode dite quasistationnaire. Toutefois,
lorsqu'il s'agit de très fortes distorsions, il est nécessaire de
recourir à la méthode plus précise préconisée par l'auteur.

Einleitung
Die Entwicklung der theoretischen Grundlagen

für die Behandlung frequenzmodulierter Vorgänge
ist eng verbunden mit bekannten Namen, z. B.
Armstrong, Carson, Crosby, Fry, Murray, Roder u. a.*).
Zum Teil auf diese grundlegenden Arbeiten
aufbauend hat sich eine Reihe von Autoren mit den
Störverhältnissen bei Frequenzmodulation befasst.
Es sei hier erinnert an die Untersuchungen von
Franz, Hölzler, Kulp, Plump, Vellat u. a.x). Im
Zusammenhang mit den folgenden Ausführungen sind
vor allem wichtig die Arbeiten von Hölzler (I) und
Kulp (II).

Wie bekannt, ergibt die spektrale Auflösung
(Frequenzspektrum) einer frequenz- oder phasenmodulierten

Welle nicht nur Träger und einfache
Seitenbänder wie hei Amplitudenmodulation, sondern ein
theoretisch unendlich breites Spektrum von Seiten-
bandkomponenten. Praktisch allerdings ist das
Frequenzband begrenzt, da ausserhalb dieses ziemlich
scharf definierten Bandes die Komponenten sehr
rasch abnehmen. Es ist klar, dass im Empfänger
(nach Demodulation) Verzerrungen auftreten, wenn
die einzelnen Komponenten in bezug auf Amplitude
und Phase nicht gleich übertragen werden. Grösse
und Art dieser Verzerrungen zu bestimmen, war das
Ziel der erwähnten Arbeiten von Hölzler und Kulp.
Hölzler hat in seinen Rechnungen über Phasenverzerrungen

die stationäre Methode verwendet, welche
er durch Messungen mit einer zweifellos sehr sauberen

Versuchsanordnung legitimiert hat. Die
stationäre Berechnungsmethode besteht darin, dass man

*) Siehe Literaturverzeichnis am Schluss.

mit der Momentanfrequenz (zeitliche Ableitung der
Phase) operiert. Diese Methode ist zwar nur eine
Näherung, gibt aber praktisch die richtige Grössen-
ordnung.

Die Grundlagen für eine exakte Behandlung
(spektrale Methode) sind z. B. in den sehr eingehenden

Studien von Kulp (II) gelegt worden. Hier werden

die einzelnen Komponenten separat in ihren
Veränderungen betrachtet und das demodulierte
Bild des veränderten (linear verzerrten)
Frequenzspektrums untersucht. Kulp 2) gibt eine originelle
Methode zur Berechnung der einzelnen Störfaktoren.
Zweifellos lässt sich damit in vielen Fällen das
genaue Resultat berechnen. Für andere Aufgaben
hingegen erfordert diese Methode viel zu grossen
Aufwand; es ist dann wohl möglich, mit umfangreicher
Rechenarbeit bestimmte numerisch vorgegebene
Fälle zu berechnen. Besonders der Einfluss der
Phasenverzerrungen scheint einer mathematischen
Behandlung unüberwindliche Schwierigkeiten zu
bereiten. Kulp selbst schreibt in der erwähnten Arbeit:

«Es zeigte sich, dass selbst in dem vereinfachten
Fall f (n) =a0 + api a2n2 [Anmerkung: f(n)
bedeutet hier das Phasenmass] keine Klirrfaktorbe-
rechnung durchführbar ist, ...»

Der Zweck unserer Arbeit soll es sein, ebenfalls
mit Hilfe der exakten Methode (spektrale
Zerlegung), aber auf einem ganz anderen Wege, zum
Ziele zu gelangen. Es sollte dabei nicht nur der
Einfluss der Phasenverzerrung untersucht werden,
sondern allgemein die Störungen infolge linearer
Verzerrungen, auch der Dämpfungsverzerrungen.

2) Vgl. ENT Juni 1942, S. 98, Gl. (17) bis Gl. (20).
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A. Einfluss der Dämpfungsverzerrungen
In der Literatur findet man hin und wieder die

Auffassung vertreten, dass die Dämpfungsverzerrungen
lediglich eine Amplitudenmodulation verursachen,

hingegen keine störende Frequenzmodulation.
Dies ist nur in gewissen Fällen richtig und auch da

nur unter hestimmten Voraussetzungen (z. B.
genaue Resonanz- oder Symmetrielage des Trägers).
Es kann allerdings gesagt werden, dass die
«Dämpfungsstörungen» in der Regel um etwa eine Grössen-
ordnung kleiner sind als die «Phasenstörungen».
Immerhin ist es wichtig, eimnal die Grösse dieser
Störungen rechnerisch festzustellen.

Für die meisten Bandfilteranordnungen kann die
Dämpfungskurve im Durchlassbereich mit
ausreichender Genauigkeit durch ein Polynom 5. Grades :

G(Q) G0+Giß+ G2ß24- G3ß3+G4ß4+G5ß5 (1)

dargestellt werden. Damit kann im allgemeinsten
Falle eine unsymmetrische Dämpfungskurve nach
Fig. 1 wiedergegeben werden. Q stellt dabei die Fre-

Fig. 1.

Dämplungskurve

quenzabweichung vom Arheitspunkt (Trägerlage)
Q 0 dar. Wir wollen nun der Einfachheit halber
annehmen, die unverzerrte frequenzmodulierteWelle

ye sin (Q0t-\- m sinwf) (2)

sei mit einem einzigen Sinus-Ton von der Frequenz

moduliert. Am Eingang des ersten Bandfiltersill
haben wir dann ein Frequenzspektrum von der
Form :

ye Z Jß(rn) sin [S20t + /ncot) (3)

— oo

Wenn wir zunächst die Phasenverzerrungen gleich
Null setzen, haben wir am Ausgang des Filters
folgendes Spektrum:

ya= Go 2 Jß (m) sin {J201 + /ucat}
ß

4- G4 2" (H Jß (m) • sin [Q0t -f- ficat]
ß

4- G2 I (jucô)2 Jß (m) sin [ß0t 4- /ua>t]
ß

G3 2 (/tco)3 Jß (m) • sin [Q01 juœt]
ß

+ G4 2 (/iw)'1 Jß (m) sin \.Q0t -(- fioA\
ß

+ G52 (/tco)5 Jß (m) • sin [Q0t + jucot}
ß

Es ist nämlich Q ye) zu setzen; ferner können
wir G0 zu 1 normieren, so dass die Grössen die
relativen Verzerrungskoeffizienten bedeuten. Sum-

(4)

men, wie sie unter Gl. (4) auftreten, lassen sich
exakt in geschlossener Form darstellen, wobei wir
folgende Beziehungen für die Besselfunktionen
Jß{m) benützen:

+ oo

£ ju-Jß(m)-ei/iUt m-cos(ot-eim"a"' (5)
ß-
— oo

+ oo

2 iu2-jß(m)-eiß"' (6)
ß

~ \ 2 2
-j- OOIH3-Jß(m)-e^a>'
ß

cos 2 cot + im sin cot \ 0 i tn Bin G) t

I

3m3\ 3im2 „m-\ —|cos«f-| sm2wf-|--K-+!r)-
m°

H cos 3 cot
4

q i m sin ù) t

+
2

ß
— oo

+ *'( m

3m3\

/ 3 m \ m2
(m-\—— jsinwf + — (7 + m2) cos2cof +

sin 3 cot + —- 008 4cof| eim''nu' (8)
2 8

2 ii5•Ju(m)eifiù"
15 m3 5 m5'

ß
— oo

/15 m2 5m4\ „coscot 4~~1 sin2o4 -f-
V 2 2

/25m3 5m5\ 5 m4
)cos3 wt + i sin4cüf+

V 4 16 4

m"
-| cos 5ü)t \ e'""'1"1-"

16
(9)

Wenn wir diese Beziehungen (5) bis (9) zum
Aufsummieren von Gl. (4) verwenden, erhalten wir
schliesslich :

ya A-sin (ß0t 4" msinwf) 4-
+ 5-cos (Q0t 4- msincof) (10)

mit

A=1 + |Gs-45!+G4-^( 3m'

3 m3s

4

4" |Gj • com 4- G3W3 4 —^

15m3 5m5\]4- G5w5 Im.-1 1 cos +
—)— |g2Cc>2 — + G4w4- — (7 + m2) I cos2wf +

1 In am3 n s/25m3 5m5\|4- |G3w3— + G5co /———I—Ucos3co/4-

m
4- G a ù)4 cos 4w/4-

8

171'^

4- G.co5 cos 5tot
16

(H)
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und

B — |g2w2'«-|- G4-w4^m M s'mcot

„3m2 /15m2 5m4\|

G.CO'- sin 3 m/ +
_ "5 m4
G=mö sin 4m/

sin 2 m / +

(12)

Wir können Gl. (10) auch in folgender Form
schreiben :

ya l/A2 + J52,sin (ß0/ + m sin m/-f- 3>) (13)
wo

tg '!> (14)

Da normalerweise die Dämpfungsverzerrungen klein
gehalten werden können, ist <P und B klein und
A ~ 1 ; sodass

<I> ~ B (15)

gesetzt werden kann. Das in der Phase enthaltene
Störglied wird im wesentlichen

3 m2 /15i^8-—+ G5m5^--
3 TTlfi

+ G a
Co4

m sin 3 m / +

ht |G.
m*

- + -
5 m4

_ ,5m4.+ G5 • m sin 4m/
4

Die Klirrfaktoren werden somit:

a) bei Phasenmodulation

3 m

2

sin 2 m/ +

(16)

k% G3m3 ——KG5m5
/15 m 5 m3\

\ 2 2 j
ks G4 M4

&4 G5M5
4

(17)

b) bei Frequenzmodulation

k2 — 2 è2

k3 3 ks

h (18)

Auf Grund dieser Resultate können wir folgende
interessante Feststellungen machen:

Das lineare und quadratische Glied in der
Dämpfungskurve G(Q) nach Gl. (1) hat praktisch keinen
Anteil an den Dämpfungsstörungen. Diese Tatsache
ist von Wichtigkeit, wenn das Filter ein einfacher
Resonanzkreis ist, weil dort die Dämpfungskurve im
wesentlichen nur das quadratische Glied enthält.
Man kann also sagen, dass die Dämpfungsverzerrungen

am einfachen Resonanzkreis praktisch keine
störende Phasen- oder Frequenzmodulation erzeugen.

Wir woUen nun die Störungsverhältnisse be¬

trachten unter Annahme eines Dämpfungsverlaufes
nach Fig. 1.

Als Beispiel nehmen wir eine Kurve, welche
bezüglich der Geraden Q 0 symmetrisch ist (Fig. 2).

U>B

* fjCO Si Si 0

Fig. 2.

Eine derartige Kurve ist gegeben durch:
ß4

G 1 4-16 h-
<x>l

64-h~ (19)
M

Bei symmetrischer Lage des Trägers (Q — 0) ist
demnach :

16 h
G,

m|
g3 o

g4 -
G5 Ü

64 h

to g

5 +
2 7t

Damit erhält man für (17) bei Frequenzmodulation

k2 0

ko 288/l m2- (—X
\coBJ

k4 0.

Als Zahlenbeispiel nehmen wir folgendes :

h 0,05 (5 °/o)

m ojg (Grenzfrequenz), Frequenzhub fh

Bandbreite coB 2-8-m 16m

Damit ist m 5 und k3 0,0055 (5,5 °/oo)

Diese 3. Störharmonische fällt aber ausserhalb
des Hörbereiches. Wenn wir im Empfänger die
demodulierte Spannung ein Tiefpassfilter für den
Bereich 0...M» durchlaufen lassen, hören wir nur dann

den Störton, wenn m < — ; k3 wird in diesem Falle
3

maximal (m 15) :

fc3 288 0,05 • 225- 0,6 • 10"3 (0,6 °/00)

Als weiteres Beispiel wollen wir annehmen, dass
der Träger nicht auf den Symmetriepunkt eingestellt

sei, sondern um 10 % der Gesamtbandbreite
Mß verschoben ist. Wir können dann Gl. (19)
verwenden, wenn wir Q durch Q— 0,1 ersetzen.
Man findet in diesem Falle:

Q Q2
G 1 + 0,1536 • h - 2,944 • h • — 4-12,16 h =- +

MB m|

+ 25,6-h- — — 64-h- —
COß CO ß

(20)
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Wir erhalten also:

G3 25,6 h- -1
Wj

G4= -64,-h —
Mj

und:

fe2 76,8 h-m•

fe3 288 y
Für co <o, und m 5 mit h 0,05

16
findet man:

k2 0,0047 und /c3 0,0055

Für co ; m 15 und h 0,05
3 48

entsprechend :

k2 0,0005 und k3 0,0006

Trotz dieser verhältnismässig kleinen Verstimmung

von nur 1/io der Bandbreite ist der totale
Klirrfaktor ziemlich grösser geworden. Ebenso
erhält man wesentlich höhere Klirrfaktorwerte, wenn
die Dämpfungskurve bezüglich der Achse Q — 0

(Fig. 2) nicht mehr symmetrisch ist.
Immerhin kann man diesen Zahlenbeispielen

entnehmen, dass die Störfaktoren infolge
Dämpfungsverzerrungen verhältnismässig klein bleiben,
jedenfalls viel kleiner als diejenigen, welche durch
Phasenverzerrungen entstehen.

B. Einfluss der Phasenverzerrungen
So wie man jedem Filter eine Dämpfungskurve

zuordnen kann, so lässt sich auch das Phasenmass
als Funktion einer «stationären» Frequenz Q dar-

Fig. 3.
Phasenmass ip, Durchlassbereich.

Für feste Frequenzen ist die Anwendung einer
solchen Kurve klar, auch bei langsam veränderlichen

Frequenzen. Anders liegen die Verhältnisse
hingegen, wenn die Frequenz sich sehr rasch ändert,
was z. B. bei der Frequenzmodulation der Fall ist.
Nun lässt sich bei einer frequenzmodulierten Spannung

ye sin fQàt (21)

in jedem Zeitpunkt durch Differenzieren der Phase
die Momentanfrequenz Q (t) eindeutig definieren.
Es liegt nahe, die vom Filter erzeugte Phasenverschiebung

yj direkt als Funktion der zeitlich
veränderlichen Frequenz Q (t) anzusetzen. Wir erhal¬

ten dann am Ausgang des Filters eine Spannung
(oder Strom) von der Form:

ya sin [fQ dt -+- xp [J?(t)]} (22)

Dieses «quasistationäre» Verfahren ist sehr
einfach und führt in den meisten praktisch vorkommenden

Fällen zur richtigen Grössenordnung. Es
muss aber betont werden, dass es sich dabei nur um
eine Näherung handelt. Das Phasenmass yj lässt sich
grundsätzlich als eindeutige Funktion der
«Frequenz» Q nur definieren, wenn es sich um zeitlich
konstante Frequenzen handelt. Das prinzipiell richtige

Verfahren bei Frequenzmodulation besteht
daher darin, dass man die frequenzmodulierte Welle
zunächst spektral in die einzelnen Seitenbänder
zerlegt. Diese Seitenbänder ändern sich nämlich nicht
schneller als die Dynamik des Tonhildes resp- der
Modulationsspannung. Man kann daher diese einzelnen

Seitenhänder unbedenklich nach der «stationären»

Methode behandeln.
Wir wollen annehmen, die Modulationsspannung

könne dargestellt werden durch
n

M Yj av • cos fcovt -|- cpv) (23)
V — 1

Die damit frequenzmodulierte Hochfrequenz-
Spannung ist dann gegeben mit:

ye sin <Q0t -f kY — • sin (<M + cpv)\ (24)
[ v=i u>v I

Setzen wir zur Abkürzung

k • mv (25)
COy

Dann lässt sich die unverzerrte Hochfrequenz-
Spannung in ein Frequenzspektrum nach der
Formel:

(26)
+ oo

y« H E • • S JßSmi) Jßn{n) sin §ß
ßl ß2 ß*

— oo

zerlegen, wobei wir unter dem Symbol £ß die
Summe

§ß ['öo+^lWl + V2(02-} h^nW„]t +
+ L"lSPl +^2^2 + ÇPn] (27)

verstehen. Beim Durchlaufen eines Filters geht nun
die Grösse über in

§ß + V [A) + f12OJ2 H- • • • + ftw«] t -j-
+ \P\CP\ + /«2 ÇP2 + ' ' " + M-nVn] +
+ W (4 -t~lU2a>2 • f^nCOn) (28)

wobei yj die Phasenmasskurve gemäss Fig. 3 ist.
Wenn der Träger in die Bandmitte Û — Q0 fällt, ist
die Verstimmung A — 0. Es ist klar, dass durch die
ungleichmässigen Phasenverschiebungen y> Verzerrungen

entstehen. Wir wollen im folgenden die
Rechnung weiterführen unter der Annahme, dass
die Modulation nur in einem einzigen Ton von der

Frequenz besteht. Wir haben dann am Ausgang
2 71
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des Bandfilters eine Spannung von der Form:

+

ya — E Jß(m) sin {^o+ xp (/xœ)} (29')
fl-

— oo

ya A.ûn{Q0t-\-'I>) (29")

Uns interessiert nur die Phasenmodulation (p, welche
gegeben ist durch

ß

,p _ E Jß(m)sin + vfr«")}
(30^

E Jß (m) cos {fxu {poj)\
tg 1

Für xp 0 wird <P m sin cot und A 1, wie
es ja auch sein muss.

Interessant ist der Spezialfall, wenn yj eine
lineare Funktion ist:

xp Tq'/jlco (31)

Wie man leicht nachrechnen kann, findet man dann

0 in • sin cü x mit r=t-\-T0 (32)

Man muss sich aber klar sein, dass To nicht die
hochfrequente Laufzeit ist, sondern eine
«Modulationsverzögerung».

Wir wollen auch noch den Fall betrachten, wo xp

ein konstantes Glied enthält:

V Vo 4- ToP<*> (33)

Dabei greifen wir auf Formel (29') zurück und
erhalten für (29")

ya A sin (i20f + xp0 + m sin co(t-+- T0)} (34)

Man kann dafür auch schreiben:

ya A sin {,ß0 (t + t') + m sin co (t -\- t' Tf)} (35)

wenn wir

ip0 ß0V d. h. p ^2-

und
T\ T0 — f

(36)

(37)

setzen.

Wir haben also eine Laufzeit t' für alle Komponenten

(und Träger), sowie eine Modulationsverzögerung,

vwelche durch T1 gegeben ist. Da Q„ gegen
w sehr gross ist, wird t' in der Regel viel kleiner
sein als T0.

Dem Vorstehenden ist zu entnehmen, dass eine
lineare Funktion xp zu keinen nichtlinearen
Verzerrungen am Ausgang des Empfängers Anlass gibt.
Solche treten erst auf, wenn xp noch Glieder höheren

Grades enthält. Um in diesem Falle die
Verzerrungen zu berechnen, gehen wir von Gl. (30) aus.
Die Entwicklung von 0 als Arcus-Tangens eines
ziemlich komplizierten Quotienten scheint eine
aussichtslose Sache zu sein. Einfacher ist es, die Fre-

A<I>
quenzmodulation

—j—
zu berechnen.

Eine elementare goniometrische Umrechnung
führt zu:

A0
OJ • (38)

dt
X ß

EE fi jß(m) -Jß - /jm)cos |ÂOJT+ if(uoj)-xp([//--/]co)}
E E Jß'(m) Jß'_x'(m)cos{A'u>T+xp(/Li (o)-xp([/u'-A']aj)}
X' ß'

Vorgängig dieser Umrechnung wurde das lineare
Glied in xp abgetrennt, so dass xp gegeben ist durch

(39)xp a2 (fioj)2 a3 (pxuj)3

A0
Wir gehen nun so vor, dass wir für den An-

dt
satz:

E (A^BJe'*^ (40)
dt k

machen. Der Grund der Aufteilung in zwei
Bestandteile Ak und Bk wird später ersichtlich. Durch
Gleichsetzung von (38) und (40) erhalten wir:

w ' YlHlu,Jß(m)-Jß-x(m)'cos{^CÜT'
X ß

-+- xp (uco) - xp ([u—A\ co)}

E i^k + Bß) e'k01T HHJß (m)-Jß'-x (m)coa
ß X ß'

• xp(ju'co) — xp([/u' — A']a>)} (41)

Nach Durchführung verschiedener Substitutionen
und Umformungen, welche in ihren Details an dieser

Stelle übersprungen werden sollen, gelangt man
schliesslich zu folgender Darstellung:

(O

Y EE(p-hA) Ju(m) ' Jß+X (m) •

X ß
^XlOT-iXpiß^ + iilUß + X]")

|

X ß
iX<JT+i1p(ßO)-iXp(lß-X] <J)

EEE^ft-/«(m) 'Jß-X+ß (;m)
X ß ß

eiXß>T + ilp(ß<j) — iTpdß-X+ß] u)
|

+ EEEßfc-/«(m) •Jß+X-K (;m)
x ß ß

eiXo>T-np(ß(o) + iip([ß+X—ß]o) ^42)

Hierzu ist zu bemerken, dass diese Gl. (42) identisch

für jeden einzelnen Wert von X erfüllt sein
muss. Wir spalten nun Gl. (42) in zwei Teile auf:

(43)E Ak E Jß (m)-Jß-x+ß(m) •

k ß

unci

YE^+^I^W'WW • +
* ß

=E#*E JßW-Jß+x-ßH ^{ßU>+inß+x~k]aLx
ß ß

Die Summationen über pi lassen sich für jedes X

resp. X—k ausführen, wobei man feststellen kann,
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dass für grössere A diese Summen praktisch
verschwinden. Wir erhalten dadurch ein rein algebraisches

Gleichungssystem mit praktisch nur endlich
vielen Gleichungen und nur endlich vielen
Unbekannten Ak und Bj„ die wesentlich von Null
verschieden sind.

Diese Gl. (43) und (44) gestatten also für eine
beliebige Phasenkurve xp die genauenWerte von Ak und
Bk zu berechnen. Die rechnerische Arbeit ist aber
ziemlich zeitraubend und gestattet nur, Resultate
für zahlenmässig feste Werte von m und co zu
erhalten.

Wir wollen nun einen Weg zeigen, wie man zu
allgemeinen Resultaten gelangt. Man kann nämlich
feststellen, dass die Gl. (43) und Gl. (44) erfüllt
sind, wenn

für jedes y — y A
(45)

2 k

für jedes y p + A

- yJY(m)e+t^) £ Bk Jy_k(m). e + ^d^l »)

2 k

Wir haben damit zwei Gleichungssysteme gefunden,

welche wesentlich einfacher sind. Wichtiger ist
jedoch die Tatsache, dass man einen Ausdruck von
der Form

co -iiplyo)— • y • Jy(m)e

verhältnismässig leicht in eine Reihe

?,Ak.Jy+k(m)e-'W + W
k

entwickeln kann. Wenn wir nämlich folgende
Beziehung für Besselfunktionen verwenden:

y Jy(m) y jJy-i (m) + JY+1 (m)j> (47)

können wir Gl. (45) in der Form:

mco J TU CO —ithfyû))— Jy—i (m) e w ; + — Jy+i{m)e w
4 4

T,Ak-Jy+k(m)e-i^ + k]0') (48)
k

anschreiben. Nun haben wir die linke Seite von (48)
«beinahe» in der gewünschten Form, nur dass

statt

und

e
I'û>) der Ausdruck e

statt e + auc]j e s^e]lt

Die linke Seite von (48) werden wir daher folgen-
dermassen schreiben:

mco

4

mco

4

Jy-i (m) e~'^(ly ~1'• e~ '^<yu) + '^y-ü «)

JY+1 (m) e~i^^y+11u). e~"Ay") + "My+i]«)

Da xp {yco) -—xp ([y— 1]co) « 1 ist, können wir
in folgende Reihe entwickeln:

mco— Jy-1 {m)e
4

i$([y-1]6>)jl— i [xp(yco)

mco

-xp(\y-l\co)\-—{.]* J +

4 //+1(m)e-^(ly+1,u)|l-i[v;(^)-

-V,([y+l]o,)]_i.[...]2 J

Die Taylorreihen in den geschweiften Klammern
können in Potenzreihen nach y umgeformt werden.
Wenn wir wieder die Beziehung (47) verwenden
und unsere Entwicklungsmethode in analoger Weise
weiterführen, wächst die gesuchte Reihe

ZAk.Jy+k(m)
k

allmählich heraus. Dieses Verfahren hat den grossen
Vorteil, dass man die Grössen Ak undßfe direkt als
Funktionen von m und co erhält, womit man sich
eine umständliche Zahlenrechnerei ersparen kann.

Wir wollen mit unserer Betrachtung wieder zu
den wichtigen Formeln (45) und (46) zurückkehren.

Zwischen den Grössen Ak und Bk bestehen
gewisse Beziehungen. Wenn wir z. B. die konjugiert-
komplexe Form von Gl. (45) nehmen und k durch
—k ersetzen, finden wir zunächst, dass allgemein:

d, h. auch

ist.

Bk AU
Ak BU
A-k= Bf
At B.k

Wenn xp speziell eine symmetrische Funktion ist,
d. h. darstellbar durch

xp a3 (fico)3 + a5 (yco)5 H (49)

sind noch weitere Bedingungen erfüllt:

A_k (-l)»+iAt
B_k (-1)*+'B?
Ak =(-l)' + i Bk

At =(-1 )k + lBt
Also in dem Falle, wo xp eine ungerade (symmetrische)

Funktion ist, erhalten wir:

A'I>

di 2 [1 —1)"!+1] Ake,hOT
k

co

S [!+ (—'1)fc+1] \(AkA-A_k) cosfcwr-t-
k= 1

-\-i (Ak — A _k) sin kcov] (50)

Die Störtöne gerader Ordnung verschwinden
dann, da für diese

[l+ (— l)*+i] =0
Dies gilt aber nur, wenn die Phasenkurve (Fig. 3)

bezüglich der Lage des Trägers symmetrisch ist.
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In diesem Falle kann yj in genügender Näherung
durch eine Parabel 3. Grades dargestellt werden.

Wenn wir:
V> «3(,«w)3 (51)

setzen und die beschriebene Entwicklungsmethode
anwenden, gelangen wir zu folgendem Ergebnis
[vgl. Formel (29")]:
d#
— com • coscor —
dt

— com (a3co3) <Jl+ ~ m2 j sin cor —

3
3 m2

— com (a3cod) smdwr —
4

'1 9
— com (OoW3)2! (- 3m2H m41 coscüt —3 \2 16 J

— com (a„ co3)2 J— m2 -+- — m41 cos3wr —3 \2 32 |

45
— com (a3co3)2— m4- cos 5 cot (52)

32

Die höheren Potenzen von a3 sind hier vernachlässigt.

Die analoge Formel für Phasenmodulation
di>

erhält man durch zeitliche Integration von —, d. h.
dt

durch eine sehr einfache Rechnung. Es mag interessant

sein, dieses Ergebnis demjenigen gegenüberzustellen,

welches die «quasistationäre» Methode
ergibt. Diese liefert nämlich folgendes Resultat:

d'I>

dt"
com • cos cor —

— com (o3o)3)

— com (a3w3)

3 m2

3 m2

• sm cor -

sin 3 cor (53)

Um ein Bild von der Grösse der Abweichung
zwischen (52) und (53) zu erhalten, wollen wir ein
konkretes Beispiel betrachten.

Beispiel. Zunächst müssen wir Annahmen treffen
über die Grösse der Koeffizienten in

tp a2 (pco)2 + a3 (pco)3 + (39)

'3t
à-
t / cOg/2

S-o —iE

SCvttSf -X
Fig. 4.

Pliasenkurve für ein Bandfiltcr.

In Fig. 4 ist die Kurve für das Phasenmass eines

Bandfilters dargestellt, wobei die gesamte
2 7t

Bandbreite sein soll. Für ein ausgeführtes Filter waren

die Daten etwa folgende:

Der Frequenzhub ff,— 5-—, die halbe Band¬

en
2jr

breite — 8 • cog (cog Grenzfrequenz), die Abwei-
2

chung ßn von der Geraden ergab für ß einen Wert
von etwa 0,2. Der Träger konnte so eingestellt werden,

dass a2 0 war. (Wendepunkt; symmetrische
Kurve.) Für 5 hintereinandergeschaltete Bandfilter
hat man somit:

oder
"(fh 5 • 0,2# jt

TT

(8 cd,)3

Da bei dieser symmetrischen EinsteRung nur
ungerade Obertöne auftreten, ist die höchste Tonfrequenz,

für welche die 3. Harmonische in den

Bereich 0...co„ fällt, co — — mit m 15. Wenn wir
3

nun diese Daten in Formel (52) einsetzen, erhält
man:

~dt
2 • cos cor — 2#/ft'0,0015-coscdT

— 2 7tfh 0,0385 • sin cor

— 2 7tfh 0,0070 • cos 3 cor

— 2 7tfh • 0,0384 • sin 3 cor

— 2 7tfh- 0,0037 • cos 5 cor (54)

wogegen die «stationäre» Methode folgendes Resultat

ergibt:
d<P

ht 2#/ft-coswr — 2 7tfh-0,0 384-sin cor

— 2 7tfh-0,0384-sin 3 cor (55)

Die Amplitude der 3. Harmonischen nach der
genaueren Rechnung von Gl. (54) ist:

^(0,0384)2 + (Ö,0070)2 0,0390

Amplitudenmässig besteht also zwischen der
genauen und der einfachen «stationären» Rechnung
nur ein sehr kleiner Unterschied; der Unterschied
liegt im wesentlichen darin, dass die Phase des
störenden 3. Obertones um ca. 10° abweicht.

Wir glauben, damit gezeigt zu haben, dass die
einfache «stationäre» Methode in den meisten Fällen

genügt. Man muss sich jedoch klar sein, dass bei
sehr langen Uebertragungswegen mit vielen Filtern
auch die Amplitudenabweichungen erheblich
werden.

Die Legitimierung dieser Rechnungsmethode ist
deshalb von grosser Wichtigkeit, weil nach der
einfacheren Methode ohne Redenken auch
Mehrtonprobleme behandelt werden können. Die Ausführung

der genauen Rechnung, z. B. für das Zweiton-
prohlem zeigte sogar, dass bei einem Tongemisch
(Mehrton-Modulation) die Abweichungen noch
wesentlich kleiner sind als beim Eintonproblem.
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Wenn die Abweichungen zwischen der Rechnung

und den Messungen von Hölzler (I) grösser
sind, so liegt dies zweifellos darin, dass für eine
genauere analytische Angleichung seiner Phasenkurve
auch noch ein Glied 5. Grades verwendet werden
xnüsste.
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Präzisionswandler für Hochspannungsnetze
Vortrag, gehalten an der Diskussionsversammlung des SEV vom 7. Oktober 1944 in Luzern,

von J. Fischer, Basel 621.314.22.08

Der Einfluss von Spannungs- und Stromwandlerfehlem
auf die Genauigkeit der Messung der Energieabgabe wird
untersucht; es geht daraus hervor, wie wichtig es ist, nicht
nur die prozentualen Fehler, sondern auch die absoluten
Messfehler, in kWh, zu betrachten. Dann werden Möglichkeiten

besprochen, Spannungswandler und Slromwandler zu
verbessern; es wird auch auf den Einfluss der Betriebsbedingungen

hingewiesen.

Etude de l'influence des erreurs dues aux transformateurs
de tension et d'intensité sur la précision de mesure de la.

fourniture d'énergie. L'auteur constate qu'il est très important

de considérer non seulement les erreurs en pour cent,
mais aussi les erreurs absolues, en kWh. Il examine ensuite
les moyens aptes à améliorer à cet égard les transformateurs
de tension et d'intensité et attire l'attention sur l'influence
exercée par les conditions d'exploitation.

Die folgenden Ausführungen richten sich an
den Betriebsingenieur, der wegen seiner vielseitigen

Beanspruchung kaum Zeit findet, in die
Feinheiten eines Spezialgebietes einzudringen. Ein
Eingehen in Grundlagen blieb dabei unvermeidlich;
absichtlich wird aber auf die allgemein bekannten
Darstellungen über Leistungstransformatoren
Bezug genommen. In der Messwandler-Theorie werden

nämlich Diagramme benützt, welche infolge
ihrer knappen Darstellung den Zusammenhang mit
den Verhältnissen bei Leistungstransformatoren
nicht so leicht erkennen lassen. Es schien mir
deshalb angezeigt, j'ene knappen Darstellungen hier
nicht zu benützen.

Allgemeines
Entwurf und Fabrikation von genauen

Hochspannungswandlern haben mit einer Reihe von
Schwierigkeiten zu kämpfen. Diese sind zum Teil
durch die verhältnismässig grossen Isolations-
abstände bedingt, welche zu grossen Magnetkörpern
führen. Dazu kommen noch Forderungen
wirtschaftlicher Natur; auch eine organische
Eingliederung in eine Schaltanlage ist zu berücksichtigen.

Um die Bedeutung genauer Messwandler
abschätzen zu können, seien zunächst einige
allgemeine Begriffe in Erinnerung gerufen.

Durch Einschalten von Strom- und Spannungswandlern

in einen Messkreis werden folgende
Fehlergrössen in die Messung eingefügt (Fig. 1) :

1. Durch Strom- und Spannungsfehler: Messfehler von
gleicher Grösse und gleichem Vorzeichen.

2. Durch Winkelfehler: Veränderung des Phasenwinkels
zwischen Strom und Spannung im Messkreis.

Fig. 2 zeigt, mit welchen Grössenordnungen von
Messfehlern etwa gerechnet werden muss, wenn
beispielsweise Wandler benützt würden, welche die

Bestimmungen der Eidg. Verkehrsprüfung erfüllen
und in üblicher Weise abgestimmt sind. Die
eingetragenen Werte stellen die Summe der Einzelfehler

dar, die bei einer Einphasenmessung
auftreten, jedoch ohne Berücksichtigung allfälliger

Fig. 1.

Wirkung; der Messwandlerfehler
U, I, <p. P Sollwerte, wobei P U I cos <p

U\ <p, P' Istwerte P' U' /' cos <p'

Gesamte Messfehler in % bei einer Einphasenmessung:
bei Nacheilung z 4U % + JI % — 0,0291 (ôXJ-ôI) tg <p

bei Voreilung z J U % + JI % + 0,0291 (âU— ôl) tgÇ>
Sämtliche Einzelfehler sind einschliesslich ihres Vorzeichens

einzusetzen, wobei ây0r= +, <Wh — gilt.

Fehler der angeschlossenen Messinstrumente. Sie
sind auch gültig für Messungen im symmetrischen
Dreiphasennetz, wenn zugleich genau gleichartige
Messwandlerpaare benützt werden.

Bei Wahl von Wandlern nach Klasse 0,2 sinken
die Fehler auf rund 40 %, bei Klasse 0,1 auf rund
20 % der Werte nach Fig. 2.
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