Bulletin de l'Association suisse des électriciens					
Association suisse des électriciens					
35 (1944)					
6					
Die Messwandler im Kraftwerk Verbois und in der Verteilanlage des thermischen Kraftwerkes Genf					
Goldstein, J.					
https://doi.org/10.5169/seals-1056947					

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 22.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

de 2500 W, 220 V soit au total 55 kW, disposés en dessous des fenêtres. Ces appareils sont munis d'interrupteurs individuels permettant de les faire fonctionner à volonté à demi ou pleine charge.

Les pertes dans les transformateurs du système de commande à distance dont il a été brièvement question plus haut, contribuent également au chauffage du rez-de-chaussée. C'est pourquoi celui-ci ne compte que 7 radiateurs alors que l'étage en est

Die Messwandler im Kraftwerk Verbois und in der Verteilanlage des thermischen Kraftwerkes Genf

 ϕ_{c}

Es werden die Messwandler-Konstruktionen der 18-kV-Schaltanlagen des Kraftwerkes Verbois und der Verteilanlage des thermischen Kraftwerkes Genf (Usine thermique) dargestellt. Die Eigenschaften der Spannungs- und Stromwandler werden nach verschiedenen Gesichtspunkten, z.B. nach Betriebssicherheit, Kurzschlussfestigkeit und 'Messgenauigkeit beurteilt. Unter anderem werden auch die Eigenschaften der Wandler in Erdschlußschaltungen besprochen.

Einleitung

Das neue Rhone-Kraftwerk Verbois weist in allen Anlageteilen interessante Fortschritte der Technik auf. Die Generatorspannung von 18 kV und die Ueberführung der Energie bei dieser Spannung durch Kabel in das Verteilungssystem des thermischen Kraftwerkes des Elektrizitätswerkes Genf gaben Anlass zur Erstellung einer grossen Zahl einander sehr ähnlicher Messwandlergruppen sowohl im Kraftwerk Verbois selbst, als auch in der Verteilanlage des thermischen Kraftwerkes Genf (im folgenden «Usine thermique» genannt).

Die öllosen, mit modernen Druckluftschaltern ausgerüsteten Schaltanlagen machten die Aufstellung von gleichfalls öllosen Messwandlern zur Notwendigkeit. Die Firma Moser-Glaser & Co. A.-G. in Basel erfüllte die gestellten Forderungen mit neu entwickelten Trockenspannungswandler-Typen und mit Einleiter-Durchführungsstromwandlern, die, soweit es sich um Stromstärken unter 400 A handelte, mit gesteuerter Eigenvormagnetisierung ausgeführt wurden. Neben der Oellosigkeit war auch die vielseitige Verwendungsart der Wandler für Mess-, Schutz- und Schaltzwecke eine technisch interessante Aufgabe. Im weiteren sollen die Wandlerarten und die Lösungen der gestellten Aufgaben besprochen werden 1).

Bemerkt sei noch, dass an das Kraftwerk Verbois auch eine Freiluftstation von 125 kV und 150 kV angeschlossen ist und dass die dort installierten Hochspannungsmesswandler nicht zum Gegenstand dieses Aufatzes gehören.

1. Spannungswandler

Um eine günstige räumliche Unterbringung der Spannungswandler in der 18-kV-Schaltanlage zu pourvu de 15. La puissance par unité de volume atteint ainsi environ 27,5 W/m³ pour chaque étage.

La question du chauffage des locaux des installations de couplage ne doit pas être négligée. La pratique a montré que les variations de température auxquelles celles-ci peuvent être soumises, ont souvent conduit à des bris d'isolateurs, surtout lorsque des dispositions spéciales n'avaient pas été prises pour assurer un libre jeu des connexions sur leurs supports.

Von J. Goldstein, Zürich 621.314.22.08 Description des transformateurs de mesure des installa-

tions de couplage à 18 kV de l'usine de Verbois et de l'installation de distribution de l'usine thermique de Genève. L'auteur examine les caractéristiques des transformateurs de tension et d'intensité à différents points de vue, tels que la sécurité d'exploitation, la résistance aux courts-circuits et la précision des mesures, de même que le comportement de ces transformateurs en cas de mise à la terre accidentelle.

ermöglichen, hat die Lieferfirma den üblichen, aus zwei Spannungswandlern bestehenden Spannungswandlersatz durch einen Drehstromwandler des Tempeltyps von 20 kV Nennspannung, 64 kV Prüfspannung, ersetzt. Es ist interessant, dass diese geschichtlich ursprüngliche Form des Drehstromtransformators wegen des magnetisch vollkommen symmetrischen Kernaufbaues im Messwandlerbau eine Anzahl Vorteile mit sich bringt, die für den dreiphasigen Anschluss von Bedeutung sind.

a) Leerlaufstrom und Messgenauigkeit

Der Leerlaufstrom hat beim Spannungswandler bei weitem nicht die gleiche Bedeutung für die Messgenauigkeit, wie beim Stromwandler. Es interessiert in erster Linie der Fehlwinkel im Leerlaufzustand, d. h. der «Anfangswert». Da in der Regel keine Kompensation vorgesehen wird, soll dieser Winkel klein sein. Man kann diesen Wert um so kleiner gestalten, je geringer der Leerlaufstrom ist. Die neue Wandlerkonstruktion hat sich in dieser Beziehung als besonders günstig erwiesen.

dieser Wandler. Das Joch ist im Dreieck geschaltet und muss entsprechend der Aufteilung des Schenkelflusses Φ_s in die Jochflüsse Φ_j gemäss der Beziehung

$$\Phi_s = 1/3 \Phi_i$$

¹⁾ Ueber die räumliche Anordnung der Wandler in der thermischen Anlage orientiert der Aufsatz von P.F. Rollard, siehe S. 135.

bemessen sein. Eine Bevorzugung eines Schenkels bezüglich der Verteilung der Amperewindungen für die Magnetisierung, wie dies beim üblichen Kernaufbau des Drehstromtransformators der Fall ist, liegt hier nicht vor. Die gleichmässige Verteilung des Bedarfes an Amperewindungen für die Magnetisierung bedingt minimalen Leerlaufstrom.

Dazu kommt noch eine günstige Verteilung des Amperewindungsgehaltes der höheren Harmonischen des Magnetisierungsstromes. Bekanntlich ist die magnetische Stern-Dreieck-Anordnung, die im Tempeltyp verwirklicht ist, von Natur aus zur Eliminierung der höheren Stromharmonischen durch gegenseitige Kompensation von Schenkel- und Jochoberwellen sehr geeignet²).

Der symmetrische Aufbau bedingt gleiche Uebersetzungsfehler und Fehlwinkel für alle drei Phasen. Dies zeigt sich beim Anschluss der Bürdenkreise sowohl zwischen Sternpunkt und Polleiter, als auch zwischen den Polen.

Tabelle I gibt die vom Amt für Mass und Gewicht bei Drehstromanschluss gemessenen Werte der Uebersetzungsfehler f in % und der Fehlwinkel δ' .

FN 175127] $\frac{-18\ 000}{\sqrt{3}}$ / $\frac{-110}{\sqrt{3}}$ V

							Tabelle 1
Spannung	U - O		V - O		W = O		Relastung
punkt u. Pol	f %/0	б	f %	б	f º/0	б	Denustung
10 400 V 10 400 V Spannung verkettet	+0,26 -0,30 U -	+5' +4' V	+0,29 -0,29 U-	+6' + 5' + 5' w	+ 0,31 - 0,27 W -	+ 6' + 6' V	3 · 30 VA 3 · 120 VA
18 000 V 18 000 V	$^{+0,17}_{-0,2}$	$\begin{smallmatrix}&0\\-&1'\end{smallmatrix}$	$^{+0,18}_{-0,19}$	$^{+0}_{-2'}$	+0,17 -0,21	$- \frac{0}{1'}$	3· 30 VA 3·120 VA

Die graphische Darstellung Fig. 2 zeigt die Unterschiede in den einzelnen Phasen.

Fig. 3 zeigt den Verlauf des gemessenen und errechneten Leerlaufstromes. Der Berechnung wurde

²) Siehe Biermanns, ETZ, Bd. 58/I (1937), Heft 23, S. 624.

eine an einem Ringkern aufgenommene Wechselstrom-Magnetisierungskurve zugrunde gelegt. Bekanntlich muss man zu diesen Werten Zuschläge von 20...40 % machen (für Sättigungen von mehr als 14 000 Gauss fallen die Zuschläge noch höher

aus), um auf den Scheinleistungsverbrauch des geschichteten Kerns zu kommen. Die an den Wandlern ermittelte Leerlaufstromkurve liegt wesentlich tiefer als die mit den üblichen Zuschlägen rechnerisch ermittelte Leerlaufstromkurve.

b) Magnetische Rückschlussfähigkeit des Kernes

Der Nullpunkt eines mit üblichem Drehstromkern ausgeführten Spannungswandlers darf nicht an Erde gelegt werden. Bei geerdetem Nullpunkt und Erdschluss einer Phase wird die betroffene Phase spannungslos. Die anderen beiden Schenkel liegen an verketteter Spannung. Das Vektordiagramm der Spannungen und der resultierende magnetische Fluss sind in Fig. 4 dargestellt. Da der dritte Schenkel zwangsläufig spannungslos ist, so

fehlt beim Drehstromkern der magnetische Rückschluss für den resultierenden Fluss Φ_R . Dieser müsste von Joch zu Joch fliessen und würde einen hohen Strom in den Wicklungen zur Folge haben. Man hilft sich beim normalen Drehstromkern auf die Weise, dass man einen vierten oder einen vierten und fünften Schenkel anordnet und erhält die bekannte Kernform des Erdschluss-Schutzwandlers mit magnetischem Nebenschluss. Der Einbau eines solchen macht den Wandler magnetisch keineswegs symmetrischer.

Wie verhält sich in solchen Fällen der Kern des Tempeltyps? Messungen an diesen Wandlern mit verstärkten Jochen und erhöhter Windungszahl haben ergeben, dass der Rückfluss durch die im Dreieck geschalteten Joche im Vergleich zum gewöhnlichen Drehstromkern zwar begünstigt erscheint, dass aber dabei die Messleistungsfähigkeit im erdschlussfreien Betrieb stark zurückgeht. Eine einwandfreie Lösung ergab sich durch den Einbau eines magnetischen Rückschlusses. Fig. 5 zeigt die Grundrisse der Anordnung mit und ohne magnetischem Rück-

Links: Ohne magnetischen Rückschluss. Rechts: Mit magnetischem Rückschluss.

schluss. Tritt im Netz an einer Phase ein Erdschluss auf, so wird ein Schenkel (etwa V in den Figuren) magnetisch abgeriegelt, der Rückfluss — Φ_R verteilt sich nach dem Schema Fig. 6 auf die drei Rückschuss-Stege a, b und c. Voraussetzung dabei ist, dass der Nullpunkt der Oberspannungswicklung auch an Erde liegt, was ja bei Schutzwandlern nicht zu umgehen ist. Man kann mit zwei Einphasenflüssen Φ_u und Φ_w rechnen, die sich über die Joche und Rückschluss-Schenkel schliessen. Be-

zeichnet man die Flüsse in diesen mit Φ_a , Φ_b und Φ_c , so sieht man, dass $\Phi_a > \Phi_b$ und $\Phi_a > \Phi_c$ sein muss. Der Fluss Φ_a erhält nämlich Anteile von beiden Schenkeln. Unter Berücksichtigung der vektoriellen Lage von Φ_a und Φ_w erhält man

$$\Phi_a = \Phi_u \frac{\sqrt{3}}{2} = \Phi_w \frac{\sqrt{3}}{2}$$

Es verhalten sich ferner

$$rac{\Phi_a}{\Phi_b} = \sqrt{3}$$
 und $rac{\Phi_a}{\Phi_c} = \sqrt{3}$

Flussmessungen mit Hilfe von Hilfswindungen haben ergeben, dass diese theoretisch abgeleitete Beziehung praktisch eine wesentliche Aenderung erfährt. Der Fluss in a erwies sich nur um 12 % höher als der Mittelwert der Flüsse in *b* und *c*. Bei Vertauschung der erdgeschlossenen Phasen trat die gleiche Erscheinung auf. Die Ursache für die Abweichung vom theoretischen Wert liegt darin, dass die magnetischen Widerstände der Rückschluss-Schenkel Funktionen der Sättigung sind. Erhöht sich diese, so erhöht sich automatisch auch der Widerstand des betroffenen Steges, und der Rückfluss wird auf die weniger gesättigten Rückschluss-Schenkel abgedrängt. Auf diese Weise wird eine angenähert gleichmässige Verteilung des Rückflusses erreicht. Man kennt diese Erscheinung der Selbststeuerung der Flussverteilung auf Joche und Nebenjoche vom Fünf-Schenkel-Transformator her.

Fig. 7. Ansicht eines Spannungswandlers (Tempeltyp) mit magnetischem Rückschluss

Das Bild Fig. 7 zeigt den Wandler mit magnetischem Rückschluss, wobei rechts ein Rückschlusssteg sichtbar ist.

Zum allgemeinen Aufbau des Wandlers ist noch folgendes zu sagen. Die Isolation der Oberspannungswicklung wurde ausschliesslich durch Porzellan bewerkstelligt. Der Porzellankörper ist so geformt, dass Sicherheit gegen Ueberschlag über die Prüfspannung von 64 kV hinaus vorhanden ist. Zur Milderung von Stossbeanspruchung sind die Einund Ausgangsspulen mit kapazitivem Schutz versehen.

Es sei noch bemerkt, dass die Konstruktionen der Drehstromwandler mit und ohne magnetischem Rückschluss äusserlich keine Unterschiede aufweisen.

c) Die Erdschluss-Schutzschaltung

Für den Anschluss wattmetrischer Erdschlussrelais benötigt man eine Spannung für die Spannungsspulen der Relais, die im erdschlussfreien Betrieb gleich Null und bei Erdschluss einer Phase 110 V beträgt. Dieser Bedingung kann durch eine im offenen Dreieck geschaltete Hilfswicklung entsprochen werden (Fig. 8). Jeder Schenkel des Kernes (Fig. 1) erhält neben der Sekundärwicklung eine Hilfswicklung. Bei Erdschluss einer Phase entsteht zwischen den offenen Klemmen der Hilfswicklung eine Spannung $u_{e\pi}$ deren Richtung und Grösse durch das Vektordiagramm Fig. 8 ermittelt werden kann. Die Prüfung der Erdschluss-Schaltung auf richtiges Funktionieren kann gleichfalls nach der Schaltung Fig. 8 erfolgen, wobei abwechslungsweise eine Phase oberspannungsseitig an Erde gelegt wird und die Spannung an den offenen Klemmen der Hilfswicklung gemessen wird. Zur Erregung des Span-

Hilfswicklung der Spannungswandler Rechts: Spannungsdiagramm bei einpoligem Erdschluss. Links: Schema.

nungswandlers muss ein Drehstrom-Transformator, dessen Nullpunkt oberspannungsseitig von Erde isoliert ist, genommen werden. Im erdschlussfreien Betrieb wird an den offenen Klemmen der Hilfswicklung Null bzw. eine ganz geringe Spannung gemessen, die durch höhere Harmonische, wenn solche vorhanden sind, bedingt ist.

2. Stromwandler

Eine Tatsache kann als bedeutend für die Schaltanlagen in Verbois und in der Usine Thermique bezeichnet werden, nämlich dass alle Stromwandler, inklusive diejenigen für niedrige Stromstärken, als Einleiter-Stromwandler ausgeführt werden konnten. Die Strombereiche für verschiedene Stromwandlerausführungen schwanken zwischen 2500...180 A; die hohen Ströme kommen in Frage für die Kupplungsschaltungen, Generatoren und Haupttransformato-

ren (900 A), die geringen Ströme für abgehende und Verteilleitungen. Es ist einleuchtend, dass alle Stromwandler, sowohl die in den Hauptleitungen als auch die in den Nebenleitungen, bei einem Kurzschlußtromstärke des Kraftwerkes Verbois dynamisch gewachsen sein müssen. Dass der Einleiterstromwandler als Trokkenwandler unter diesen Bedingungen die gegebene Lösung darstellt, braucht keiner besonderen Erörterung.

Eine weitere Tatsache ist bemerkenswert, nämlich, dass die meisten Stromwandlerausführungen mehrkernig sind. Es kann als grosser Vorteil angesehen werden, dass man die Stromwandler, die in der gleichen Leitung für Mess-, Relais- und Schutzzwecke eingebaut werden müssen, auf der gleichen Einleiter-Durchführung anordnen kann. Man erzielt dadurch räumliche Ersparnisse und erhält eine günstige Disposition in der Schaltanlage.

Fig. 9 stellt einen Schnitt durch einen Stromwandler mit drei Kernen dar, eine Bauart, die bei den Stromwandlern für 180/5 A, bzw. 250/5 A infolge der niedrigen Stromstärken der Lösung technisch schwieriger Probleme bedurfte. Diese sollen im folgenden erörtert werden.

a) Messleistung

Es wurde für die Stromübersetzung von 250/5 A eine Messleistung von 60 VA in Kl. 0,5 verlangt (Kern I). Dieser Bedingung konnte nur durch eine Ausführung der Stromwandler mit gesteuerter Eigenvormagnetisierung nach den Patenten des Verfassers entsprochen werden.

Fig. 10 erinnert an die Prinzipschaltung mit gesteuerter Eigenvormagnetisierung³). Es würde zu weit führen, alle Variationen dieser Schaltung zu behandeln. Der Sekundärstrom I_2 durchläuft eine

Hilfswicklung w_v , zu der eine Impedanz B_h parallel geschaltet ist. Die Hilfswicklung ist in Kreuzschaltung angeordnet und erhält durch die richtige Bemessung der Impedanz, in welcher eine gesättigte Drosselspule enthalten ist, nur soviel Vormagnetisierungsstrom I_{ν} , als für die Erreichung einer maximalen und angenähert konstanten Permeabilität in den Eisenkernen a und b nötig ist. Zufolge der Kreuzschaltung wird von der Hilfswicklung kein Strom in die anderen Wicklungen transformiert, und auch umgekehrt nimmt die Hilfswicklung keinen Strom aus den anderen Wicklungen transformatorisch auf. Es liegt bereits eine zehnjährige, in der Schweiz gewonnene Erfahrung vor, mit Hilfe welcher die Berechnungsmethoden ausgefeilt und ausgeschliffen werden konnten, und es kann mit gutem Recht behauptet werden, dass die Vorausberechnung dieser vormagnetisierten Wandler nach diesen Erfahrungen heute so gut wie die-

³) Bull. SEV 1937, Nr. 16, S. 366.

jenige der Wandler in gewöhnlicher Schaltung vonstatten geht.

Bekanntlich können bei Stromwandlern ohne Eigenvormagnetisierung die Fehler und Fehlwinkel der Beglaubigungsvorschriften im untern Stromgebiet (10 % Nennstrom) nur dadurch eingehalten werden, dass die Induktion B bei Nennbürde und 100 % Strom genügend tief gewählt wird. Dies bedingt aber grosse Kerngewichte und unzulässige Baulängen der Einleiter-Stromwandler. Praktisch sind daher die Einleiter-Stromwandler der Klassen 0,5 und 0,2 nur oberhalb der Nennstromstärken von 400 A und für die Klasse 0,2 nur bei geringer Bürde in gewöhnlicher Schaltung ausführbar; für Stromwandler bei 16²/₃ Hz liegt dieser Wert noch wesentlich höher. Man half sich vor dem Kriege gewöhnlich durch die Verwendung von Nickel-Eisen-Legierungen (Mu-Metall, Permalloy und dergleichen). Nun sind diese Materialien sehr teuer und heute nicht erhältlich. Ferner besitzen alle diese Materialien eine frühe Sättigungsgrenze, ein Umstand, der ihre Verwendung in vielen Fällen wegen der ungünstigen Ueberstromcharakteristik speziell für Relaiszwecke unmöglich macht.

Die Wirkung der gesteuerten Eigenvormagnetisierung ist in zusammenfassender Ausdrucksart durch die Permeabilitätskurven nach Fig. 11 dargestellt. Die Berechnungspraxis ergab als zweckmässig, die Wechselstrompermeabilität als Quotienten

$$\mu_{\,\sim} = \frac{B_{max}}{H_{eff}}$$

einzuführen, wo H als Effektivwert in Amperewindungen/cm einzusetzen ist. Die Ermittlung der entsprechenden Permeabilitätsgrösse bei vormagnetisierten Kernen ist nicht einfach und benötigt ausgedehnte Messungen in Kunstschaltungen ⁴).

Jedoch gelingt es, nach einer speziellen Rechenmethode aus den gemessenen Fehlergrössen rückwärts die Grösse μ_{\star} bei vormagnetisierten Stromwandlern ($\mu_{\star v}$) zu ermitteln. Die Mittelwerte aus diesen Rechnungen sind in Fig. 11 in der gestrichelten Kurve eingezeichnet. Aus dem Vergleich

4) Bull. SEV 1934, Nr. 9, S. 229.

beider Kurven gehen die Vorteile der eigenvormagnetisierten Stromwandler klar hervor.

Das Eisen wird im unteren Magnetisierungsgebiet auf hohe Permeabilitätswerte gebracht. Dadurch ändert man den Charakter der Fehlerkurven sehr günstig und kommt dabei mit wesentlich geringeren Kerngewichten als üblich aus. Fig. 12

zeigt die an den Messkernen der Verbois-Stromwandler (250/5 A) mit der Schering-Brücke bei 15 und 60 VA, $\cos \varphi = 0.8$ aufgenommenen Fehlerkurven.

Die Gegenüberstellung der rechnerisch ermittelten Fehlwinkelkurven des gleichen Wandlers in gewöhnlicher Schaltung unter Zugrundelegung des gleichen Kerngewichtes in Fig. 12a und der Bürde

60 VA, $\cos \varphi = 0.8$ dient zur Illustration des Sachverhaltes. Man ersieht aus dem Vergleich, welche Gewichtsvermehrung man beim Kern in gewöhnlicher Schaltung in Kauf nehmen muss, um die Fehlerklasse 0.5 zu erreichen.

b) Ueberstromcharakteristik

Auf diesem Gebiet hat die richtige Erfassung der Vorgänge bei eigenvormagnetisierten Stromwandlern zu neuen Erkenntnissen geführt, die durch viele Messergebnisse bestätigt wurden. Ganz wie bei Stromwandlern ohne Vormagnetisierung errechnet sich die Ueberstromziffer in der VDE-Formulierung bei einer bestimmten Bürde als ein Verhältnis \ddot{u} der Induktion im Uebersättigungsgebiet $B_{\ddot{u}}$ zur Nenninduktion B_n ; es ist nämlich

$$\ddot{u}=rac{B_{\ddot{u}}}{B_n}$$

Die Ermittlung von B_{ii} muss für jedes Kernmaterial durch Rechnung an Hand der Wechselstrom-Magnetisierungskurven für hohe Amperewindungszahlen erfolgen. Die Aufnahme dieser Kurven kann nur mit grossen Prüfgeneratoren zu befriedigenden Resultaten führen, da sonst die übermässige Verzerrung der Stromkurvenform keine einwandfreien Resultate liefert.

Nach obigem ist es klar, dass man durch Bemessung der Nenninduktion B_n jede Ueberstromziffer auch bei eigenvormagnetisierten Stromwandlern erreichen kann, wenn der Kernquerschnitt (bzw. der Wert B_n) entsprechend gewählt wird.

Den Berechnungen der Ueberstromziffern der Verbois- und Usine-Thermique-Wandler — sofern es sich um eigenvormagnetisierte Wandler gehandelt hat — wurde eine auf Grund von Fehlermessungen an Wandlern mit entsprechend hohen Nenninduktionen ermittelte Permeabilitätskurve bei Eigenvormagnetisierung zu Grunde gelegt. Der Verlauf der Kurven Fig. 13 zeigt deutlich das Verhal-

ten im Ueberstromgebiet. Zum Vergleich wurde auch die Permeabilitätskurve (μ_{\star}) bei unvormagnetisiertem Kernmaterial eingezeichnet. Wie sich aus den Kurven ergibt, ändert sich der Charakter der Kurve im Ueberstromgebiet durch die Eigenvormagnetisierung nur unwesentlich. Die Erklärung ist darin zu finden, dass der Nutzmagnetisierungsstrom I_o , der durch die hohe Spannung an der Bürde im Ueberstromgebiet gefordert wird, den Eigenvormagnetisierungsstrom I_v , der durch die Steuerung in den Grenzen gehalten wird, bei weitem überwiegt.

Sofern die Wandler für Impedanzschutz vorgesehen werden, empfiehlt es sich, die Ueberstromziffer als Ausgangspunkt für die Dimensionierung zu nehmen. Die Leistung und die Messgenauigkeit sollten in solchen Fällen in zweiter Linie, als der Ueberstromziffer untergeordnete Dinge behandelt werden. So sind auch die Relaiskerne der Verboisund Usine-Thermique-Wandler (Kern II) nach den Bedingungen der Klasse S 10 bemessen und die Ueberstromziffern nach der VDE-Methode überprüft worden.

c) Erdschlußschutz-Stromwandler

Bekanntlich haben Wandler, die zur Anzeige des Erdschlußstromes dienen, immer mehr an Bedeutung zugenommen. Man pflegt diese Wandler häufig als Ringwandler, indem alle drei Phasenströme durch einen Ring, der die Sekundärwicklung trägt, geführt werden, zu bauen. Diese Bauart bedingt einen speziellen Stromwandler für Erdschlußschutz.

Die Erdschlußschutzwandler der Schaltanlagen Verbois und Usine Thermique konnten in Summenschaltung ausgeführt werden (Fig. 14). Die Se-

kundärwicklungen wurden dabei in der Holmgrenschaltung oder in einer dieser gleichwertigen Schaltung geschaltet. Diese Bauart hat den Vorteil, dass man die Erdschlußschutzwandler mit Spezialkernen auf den gleichen Durchführungen wie die anderen Wandler (Messkern und Ueberstromkern) anordnen kann und dadurch an Raum spart. So wurden die Kerne III (Fig. 9) speziell nach den vom Erdschlußschutz verlangten Gesichtspunkten bemessen. Bei der Berechnung dieser Wandler ist man stets vor folgendes Dilemma gestellt:

1. Die Wandler sollen in der Stromübertragung empfindlich sein, wenn es sich um die Anzeige des Erdschlußstromes handelt.

2. Die Wandler sollen in der Stromübertragung unempfindlich sein, wenn Kurzschlußstrom über sie hinweggeht. Es seien mit I_1 , I_2 , I_3 die primären, mit I'_1 , I'_2 , I'_3 die sekundären Ströme bezeichnet.

Für die Bedingung 1 ist die Stromgleichung

$$I_1 \stackrel{\frown}{\uparrow} I_2 \stackrel{\frown}{\uparrow} I_3 = I_e$$
 (Erdschlußstrom)

massgebend, für die Bedingung 2 sind die Gleichungen

$$I_1 \,\widehat{+}\, I_2 \,\widehat{+}\, I_3 = 0\,; \qquad I_1' \,\widehat{+}\, I_2' \,\widehat{+}\, I_3' = I_f \,\, (ext{Falsebstrom})$$

massgebend, wobei I_t bei symmetrischer Anordnung der Wicklungen und bei gleichem Verlauf der Fehlercharakteristiken im Ueberstromgebiet möglichst Null, auf alle Fälle unter dem Ansprechstrom der betreffenden Erdschlussrelais liegen soll.

Die Bedingungen 1 und 2 sind in sich entgegengesetzter Natur und verlangen grosse Vorsicht bei der Berechnung und Prüfung.

Während für die Bedingung 2 die Prüfung nach Fig. 14 bei hohen Strömen unter Berücksichtigung der Impedanz des Relaisstromkreises erfolgen muss, muss für die Bedingung 1 die Prüfung in Asymmetrie-Schaltung nach Fig. 15 mit Phasenwechsel erfolgen.

XXXV. Jahrgang

621.314.65

Bedenkt man, dass bei hochempfindlichem Erdschlußschutz (beim Verbois-Generatorschutz war als untere Grenze des Erdschlußstromes 4 A angegeben) die Stromwandler für eine Leistungsüber-

Fig. 15. Holmgren-Schaltung bei asymmetrischer Belastung

tragung auf den Relaiskreis nur wenig Amperewindungen besitzen (im erwähnten Fall nur 4 Amperewindungen), so kann man die Schwierigkeit richtig ermessen. Man konnte die gestellten Aufgaben nur durch die Wahl eines Kernmaterials, das im Anfangsgebiet der Magnetisierung eine hohe Permeabilität besitzt und das im Gegensatz zu den hochpermeablen Legierungen keine verfrühte Sättigung aufweist, meistern. Durch sorgfältige Auswahl der für die Kerne III benötigten Kernbleche des betreffenden Materials und durch richtige Wahl der Anschlüsse bei den Vorprüfungen der mit Anzapfungen ausgeführten Wicklungen konnten die gestellten Bedingungen erfüllt werden.

Zur Geschichte des pumpenlosen, edelgasgefüllten Quecksilberdampf-Mutators mit Stahlgefäss

Von Eduard Gerecke, Genf

Wiederholt wurde der Wunsch geäussert, einmal von kompetenter Seite zu hören, welche Kräfte und Interessen die Entwicklung des pumpenlosen, edelgasgefüllten Quecksilberdampfmutators mit Stahlgefäss förderten und trugen. Es zeigte sich auch das Bedürfnis, nicht zutreffende Aeusserungen richtigzustellen. Der folgende Ueberblick dürfte darüber schlüssige Auskunft geben. Es geht daraus insbesondere hervor, dass dieser neue Gleichrichtertyp eine schweizerische Schöpfung ist.

Zur Verwirklichung des pumpenlosen Quecksilberdampfmutators mit Stahlgefäss gründete W. Dällenbach im Jahre 1925 eine in der Folge von ihm geleitete schweizerische Studiengesellschaft¹) mit Sitz in Zürich. Diese stellte sich zunächst als damals erkennbare Entwicklungsaufgaben

1. eine hochvakuumdichte und gegen höhere und wechselnde Temperaturen widerstandsfähige Elektrodeneinführung, 2. eine auf einige hundert Grad ausheizbare Gefässkonstruktion,

3. ein Verfahren zur Ermittlung kleinster Undichtigkeiten.

Diese drei Aufgaben konnten gelöst werden, und zwar die erste durch Glas-Metall-Verschmelzungen, die zweite durch Verschweissen sämtlicher Wandteile des Vakuumgefässes, die dritte durch ein an Empfindlichkeit bisher unerreichtes chemisches Prüfverfahren mit Ammoniak als Prüfgas und Mercuronitrat als Indikatorstoff.

Hierauf wurde ein Quecksilberdampfgleichrichter konstruiert und gebaut, der die drei obigen Forderungen erfüllte. Die Versuche mit diesem Apparat zeigten jedoch, dass das Problem des pumpenlosen Quecksilberdampfmutators mit Stahlgefäss damit noch nicht gelöst war, denn es verblieb noch eine Gasabgabe von unbekannter Ursache.

Bei diesem Stand der Entwicklungsarbeiten beteiligte sich im Januar 1931 die S. A. des Ateliers de Sécheron in Genf massgebend an der Studiengesellschaft. Die anschliessenden Versuche führten zur Entdeckung der *Diffusion von Wasserstoff* aus dem *Kühlwasser* durch die Wände des Stahlgefässes ins Vakuum und damit zu der weiteren Forderung:

4. Verhinderung der Aufladung der Gefässteile, insbesondere der Wandungen des Stahlgefässes, mit Wasserstoff.

Dieses Problem wurde gelöst einmal durch Anwenden einer von Wasserstoffionen freien Kühlégalement souhaitable de rectifier certaines opinions erronées. Nous croyons que l'article ci-dessous apportera à ce sujet des renseignements sûrs et complets. Il ressort de ces lignes que ce nouveau type de redresseur est une réalisation suisse. flüssigkeit oder bei Wasserkühlung durch Gefässwanderungen, welche für Wasserstoffionen praktisch undurchlässig sind wie gewisse Metalle oder

Nous avons été sollicités, à plusieurs reprises, de publier

l'opinion d'une personne compétente traitant de l'intérêt et des

progrès techniques offerts et réalisés par l'évolution du re-

dresseur à vapeur de mercure et à gaz rare, fonctionnant

sans pompes à vide avec cuve en acier. Il nous semblait

wanderungen, welche für Wasserstoffionen praktisch undurchlässig sind, wie gewisse Metalle oder Metallegierungen oder Schutzschichten. Damit war das die Industrie seit Jahrzehnten beschäftigende Problem des pumpenlosen Quecksilberdampfmutators mit Eisengefäss endgültig gelöst²).

Nach Klärung dieser vakuumtechnischen Fragen wandte sich das Laboratorium der Erforschung der Entladungsvorgänge im Quecksilberdampfmutator zu. Vor allem war es die Frage der mittelfrequenten Schwingungen und der dadurch beim Stromdurchgang verursachten Ueberspannungen, welche der Lösung bedurfte. Die Untersuchungen ergaben die weitere Forderung:

5. genügend hoher Druck im Entladeraum.

1933 wurde der erste pumpenlose Quecksilberdampfgleichrichter mit Eisengefäss und einer Flüssigkeitskühlung durch Trichloraethylen³) in Betrieb genommen. Er lief von 1935 an in einer Unterstation der Genfer Strassenbahnen. Die Ueberspannungen wurden an diesem Gefäss durch genügend

²) Shand, J. Amer. Inst. Electr. Engrs., Bd. 46 (1927), Nr. 6, S. 597...602.

Aus dieser Veröffentlichung geht hervor, dass die amerikanische Westinghouse Manufacturing Co. von 1912 an ununterbrochen mit Forschungsarbeiten betreffend den pumpenlosen Grossgleichrichter beschäftigt war und diese Arbeiten im Jahre 1927 als ergebnislos aufgegeben hat.

Brown, Gen. Electr. Rev., Bd. 34 (1931), Nr. 11, S. 619.

Laut dieser Veröffentlichung konnten auch bei der amerikanischen General Electric Co. nach jahrelangen Entwicklungsarbeiten die Schwierigkeiten beim pumpenlosen Betrieb von Mutatoren nicht überwunden werden. Die weitere Verfolgung des Problems wurde wie bei der Westinghouse aufgegeben. Keine dieser grössten nordamerikanischen Firmen verfügte über ein ausreichendes Prüfverfahren für die Dichtigkeit; keine von ihnen hat die störende Wasserstoffdiffusion entdeckt.

^{1) «}Syndikat für technische Physik in Zürich.»