Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 35 (1944)

Heft: 18

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.12.2025

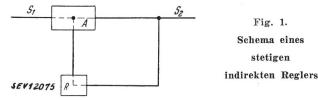
ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Stadt, welche zugleich auch durch die mitbetriebene Altstätten - Gais-Bahn befahren wird, bleibt der Strassenbahnbetrieb vorläufig noch aufrecht erhalten.

Der kombinierte Strassenbahn/Trolleybusbetrieb hat sich bei näherer Prüfung als wirtschaftlichste Uebergangslösung ergeben, weil auf diese Weise einerseits die sich noch in gutem Zustand befindlichen Anlageteile der Bahn ausgenützt werden können und anderseits derjenige Teil des Personals, der sich für eine Umschulung auf den Trolleybus nicht mehr eignete, insbesondere betrifft dies das ältere Strassenbahnpersonal, auch weiterhin im Betrieb verwendet werden kann.

Die gesamten Bauaufwendungen für die vorläufig 10,4 km lange Trolleybusstrecke Altstätten-Heerbrugg-Berneck betragen per Ende 1943 Fr. 848 030.—. Ueber die Entwicklung der Frequenzen und der Betriebseinahmen kann gesagt werden, dass die Zunahme der beförderten Passagiere im Jahre 1943 gegenüber dem Jahre 1939 als dem letzten Betriebsjahr vor der Umstellung total 85 % beträgt, während die gesamten jährlichen Betriebseinnahmen in der gleichen

Zeit um 80,5 % zugenommen haben. Nun ist ohne weiteres zuzugeben, dass diese erfreuliche Zunahme nicht allein der Betriebsumstellung auf Trolleybus zuzuschreiben ist. Die Zunahme ist vielmehr zum Teil auch auf die infolge der Drosselung des motorisierten Strassenverkehrs bei allen öffentlichen Transportanstalten eingetretene, mehr konjunkturbedingte, Frequenzvermehrung zurückzuführen.


Auf alle Fälle darf gesagt werden, dass die Gegend durch die Korrektion der Staatsstrasse Altstätten-Heerbrugg-Berneck und die gleichzeitige Betriebsumstellung der Strassenbahn auf den schienenfreien, elektrisch betriebenen Trolleybus nicht nur eine gut ausgebaute, staubfreie Strasse erhalten hat, sondern zugleich auch eines raschen, bequemen und billigen Transportmittels teilhaftig geworden ist. Die Strassenkorrektion hat aber nicht nur direkt zu einer Verschönerung des Strassenbildes geführt, sondern befruchtete insbesondere auch die private Bautätigkeit der Strassenanstösser, so dass einzelne Partien der Strasse vor und nach dem Umbau fast nicht mehr zu erkennen sind.

Nachrichten- und Hochfrequenztechnik — Télécommunications et haute fréquence

Untersuchung der Stabilitätsbedingungen bei verzögerter Regelung

[Nach D. Stein, Elektr. Nachr.-Techn., Bd. 20 (1943), Nr. 9, S. 205...213]

Von einem Uebertragungssystem, das derart konstruiert ist, dass der Wert der Ausgangsgrösse S2 möglichst unabhängig von dem der Eingangsgrösse S1 ist, sagt man, dass es eine Regelung besitzt. Bei einem solchen System muss der Uebertragungsfaktor $(A = S_2/S_1)$ demnach variabel sein, um Aenderungen von S1 so ausgleichen zu können, dass S2 gar nicht oder nur schwach ändert. Je nachdem, ob der Regler

(R), der die Grösse von A im erforderlichen Sinne variiert, von den Aenderungen der Eingangsseite (\Delta S_1) oder denjenigen der Ausgangsseite (A S2) gesteuert wird, hat man es mit direkter oder indirekter Regelung zu tun. Die Steinsche Arbeit beschränkt sich auf die indirekte Regelung (Fig. 1), bei der also $A = f(S_2)$ ist. Der Fall der unverzögerten Regelung dieser Art ist bereits ausführlich von Küpfmüller u. a. untersucht worden. Es gilt hierbei für kleines \(\Delta \) S2:

$$\frac{\Delta S_2}{S_2} = \frac{1}{1+k} \frac{\Delta S_1}{S_1} \tag{1a}$$

$$k = -S_1 \frac{\partial A}{\partial S_2} \tag{2}$$

Nennt man $\left(\frac{1}{1+k}\right)$ den Regelfaktor R, so wird $\frac{\Delta S_2}{S_2} = R \frac{\Delta S_1}{S_1}$

R gibt also an, um wieviel die relative Aenderung der Aus-

R gibt also an, um wieviel die relative Aenderung der Ausgangsgrösse $\left(\frac{\Delta S_2}{S_2}\right)$ kleiner ist als die relative Aenderung der Eingangsgrösse $\left(\frac{\Delta S_1}{S_1}\right)$. (Ein kleines R bedeutet demnach starke Regelung, R=1 bedeutet Fehlen einer Regelung.) Der Vorgang der Regelung selbst wird beschrieben durch die Integraled is burge. Integralgleichung:

$$y(t) + k \int_{0}^{t-t} \varphi'(t-\tau) y(\tau) d\tau = P(t)$$
 (3)

wo y (t) den tatsächlichen zeitlichen Verlauf der Ausgangsgrösse, P(t) den Verlauf derselben ohne Regelung und $\varphi(t)$ die aus den Untersuchungen von Schaltvorgängen bekannte Uebergangsfunktion darstellt. Die Grösse k ist durch Gl. (2) - Von dieser Integralgleichung ausgehend, berechnete Küpfmüller die kritischen Regelfaktoren (Ro), d. h. jene Regelfaktoren, bei denen das System instabil zu werden beginnt, und zwar in Funktion des Verhältnisses $t_{\bar{u}}/t_{L}$ gemäss Fig. 2. Hierin bedeutet t_{\perp} die Laufzeit des Uebertragungssystems und t_{a} seine Uebertragungszeit. Der Verlauf von R_{0} lässt sich gut annähern durch die Funktion

$$R_0 = \frac{t_{\rm L}}{t_{\rm i} + t_{\rm L}} \tag{4}$$

Fig. 2 zeigt, dass eine starke Regelung (kleines R) nur dann stabil arbeiten kann, wenn $t_{\bar{u}} \gg t_{L}$ ist.

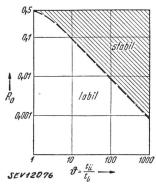


Fig. 2. Verlauf des kritischen Regelfaktors in Ahängigkeit von der Uebergangszeit $[R_0 = f(\vartheta)]$

Voraussetzung der Stabilitätsbetrachtung war, dass k (in Gl. 3) im betrachteten Gebiet der Regelung konstant ist. Wenn

$$k = -S_1 rac{\partial A}{\partial S_2} = rac{S_2}{A} rac{\partial A}{\partial S_2} = ext{konst.}$$

so muss

$$A = \frac{c}{S_2^k} \tag{5a}$$

sein, wo c die Integrationskonstante darstellt. (Da diese Funktion für $S_2 \to 0$ nach unendlich strebt, was physikalisch nicht realisierbar ist, werde der Verlauf von A für $S_2 < 1$ hier offen gelassen und die Regelung nur für den Fall $S_2 \ge 1$ (5b) behandelt.)

Bei der verzögerten Regelung soll nun im Gegensatz zum oben kurz besprochenen unverzögerten Falle die Regelung nicht bereits bei kleinsten Amplituden einsetzen, sondern erst dann, wenn S_2 einen bestimmten Wert U_{v} überschritten hat (dies wird bekanntlich bei der automatischen Fadingregulierung dadurch erreicht, dass der die Regelvorspannung liefernden Diode eine negative Vorspannung gegen Kathode gegeben wird). Es wird also jetzt

$$A = \frac{c}{(S_2 - U_1)^k} \tag{6}$$

sein, d. h. die neue A-Kurve wird gegen diejenige bei unverzögerter Regelung um U_v nach rechts verschoben (Fig. 3).

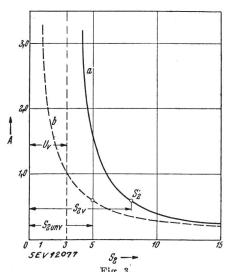


Fig. 3. $A = \mathbf{f}(S_2)$ bei verzögerter (a) und unverzögerter (b) Regelung

Wie ändert sich nun k infolge der Verschiebung der $A = f(S_2)$ -Kurve? Nach Gl. (2) galt

$$k = -S_1 \frac{\partial A}{\partial S_2}$$

Unter Berücksichtigung der Gl. (5a und 6) erhält man:

$$k_{v} = k_{u} \cdot \left(1 + \frac{U_{v}}{S_{2, u}}\right) \tag{7a}$$

wo der Index u für unverzögerte, der Index v für verzögerte Regelung verwendet wird. Setzt man

$$1 + \frac{U_{v}}{S_{2, u}} = n \tag{7b}$$

so wird:

$$k_{\mathsf{v}} = n \cdot k_{\mathsf{u}} \tag{7c}$$

Man erkennt aus Gl. (7a) dass k nun nicht mehr konstant. sondern von der Ausgangsgrösse S_2 abhängig ist. Es lassen sich hier die früher angegebenen Stabilitätskriterien nicht mehr ohne weiteres anwenden, da ihre Ableitung unter der Voraussetzung konstanter k-Werte erfolgte. Durch Ersatz der tatsächlichen k-Kurve, die durch Gl. (7a) gegeben ist, durch eine Treppenkurve, für die k zwischen zwei Sprungstellen jeweils konstant ist, kann man nun für jede einzelne Stufe die Küpfmüllersche Bedingung für die Stabilität der Regelung anwenden; es wird genügen, die Untersuchung für den ungünstigsten Fall, das Einsetzen der Regelung bei S2, v, min $=S_{2, u, \min} + U_v$ anzustellen, da dort n und damit k_v maximal wird. Der kritische Regelfaktor (R_0) war bei unverzögerter Regelung in Abhängigkeit von $\frac{t_0}{t_L}$ gegeben durch Gl. (4).

Ordnet man R_0 ein kritisches k_0 zu $\left(R_0 = \frac{1}{1 + k_0}\right)$, so kann die Stabilitätsbedingung also auch folgendermassen formuliert werden: $k_0 \leq \frac{t_0}{t}$. Im Fall der verzögerten Regelung muss

$$k_{0,\,\mathrm{V}} \leqslant t_{\bar{0}}/t_{\mathrm{L}} \tag{8a}$$

oder mit Gl. (7c)

$$k_{\text{O, u}} \leqslant \frac{1}{n_{\text{max}}} \left(\frac{t_{\hat{\text{U}}}}{t_{\text{L}}} \right)$$
 (8b)

Damit wird der kritische Regelfaktor des Systems beim Fehlen der Verzögerung:

$$R_{\text{o,u}} = \frac{1}{1 + \frac{1}{n} \cdot \frac{t_{\text{o}}}{t_{\text{o}}}} \tag{9a}$$

oder mit Gl. (7b):

$$R_{0,u} = \frac{1}{1 + \left(\frac{1}{1 + \frac{U_{v}}{S_{2,u,\min}}}\right) \cdot \frac{t_{\bar{u}}}{t_{L}}}$$
(9b)

Die graphischen Darstellungen dieser Gleichungen (Fig. 4, 5 und 6) geben ein anschauliches Bild von den Wirkungen der Regelungsverzögerung auf die Stabilität des Ueber-

$$0,01$$
 $0,01$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$
 $0,001$

Fig. 4.

$$R_{0,u} = f\left(\frac{t_0}{t_L}\right)$$
mit U_v als Parameter

a) $U_v / S_{2,u, min} = 0$
b) = 1,5
c) = 3,0
d) = 5,0

tragungssystems. Man erkennt aus Fig. 4, dass eine Vergrösserung der Verzögerung U_{v} eine Vergrösserung von $R_{0_{\mathsf{v}}}$. d.h. eine Verminderung der Regelung im unverzögerten Fall, verlangt, sofern stabiles Arbeiten gewährleistet sein soll. Nun

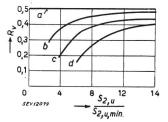
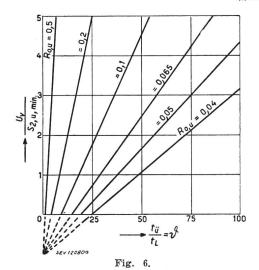



Fig. 5.
$$R_{V} = f(S_{2,U}) \text{ mit } U_{V} \text{ als}$$
 Parameter für $k_{0,U} = 1$

ist zwar das Ausmass der tatsächlichen Regelung nicht durch

ist zwar das Ausmass der tatsachlichen Regelung nicht durch
$$R_{0,u}$$
, sondern durch R_v

$$R_v = \frac{1}{1+n \cdot k_{0,u}} = \frac{1}{1+\frac{n}{n_{\max}} \frac{t_{\bar{u}}}{t_{L}}} = \frac{1}{1+\frac{1+\frac{U_v}{S_{2,u,\min}}}{1+\frac{U_v}{S_{2,u,\min}}} \cdot \frac{t_{\bar{u}}}{t_{L}}}$$
(10)

 $U_{\mathsf{v}} = \mathbf{f}\left(\frac{t_{\mathsf{\bar{u}}}}{t_{\mathsf{L}}}\right)$ mit R_{0} als Parameter

bedingt, und demnach ist für $S_2 = S_{2,min}$ der Regelfaktor R_1 unabhängig von der Grösse der Verzögerung, doch ändert sich dies mit wachsendem S_2 immer mehr, da $R_{\rm v}$ sich dann dem Werte R_0 nähert, wie man aus Fig. 5 für $k_{\rm 0,u}=1$ ersieht. Fig. 6 zeigt, dass für gegebenes $R_{\rm 0,u}$ die Verzögerung um so grösser gewählt werden darf, je grösser $t_0/t_{\rm L}$ ist.

Abgeschen von der bereits bekannten Tatsache, dass sich eine Erhöhung der Uebertragungszeit auf die Stabilität des Systems günstig auswirkt, lehrt die Steinsche Darstellung, dass man mit der Verringerung der Verzögerung (sofern der genaue Wert derselben nicht vorgeschrieben ist) ein weiteres Hilfsmittel zur Erhöhung der Stabilität besitzt.

Am Ende seiner Ausführungen zeigt der Autor noch die

praktische Anwendung des Gesagten auf die Regelpenthode EF 11. Unter Annahme bestimmter Betriebsverhältnisse ergibt sich ein Verlauf der $A = f(S_2)$ -Kurve (also der Steilheit als Funktion der Gittervorspannung), der von den den Ableitungen zugrunde liegenden Hyperbeln höherer Ordnung stark abweicht und ein k_v liefert, das für steigende Werte der Ausgangsgrösse zuerst abnimmt, um dann aber wieder anzusteigen, so dass nicht nur für $S_{2, \min}$, sondern auch für $S_{2, \max}$ die Frage der Stabilität untersucht werden muss. Abgesehen davon macht die Anwendung der Theorie hier keine Schwierigkeiten. H.S.

Miscellanea

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Elektrizitätswerk Biel. Nach 42 Dienstjahren tritt Direktor O. Türke, Freimitglied des SEV, auf Ende 1944 in den Ruhestand. Der Gemeinderat sprach dem hochverdienten Demissionär den Dank der Stadt aus.

A.-G. Brown, Boveri & Cie., Baden. W. Walty, Mitglied des SEV seit 1929, bisher Vorstand der Verkaufsabteilung 4: elektrische Antriebe für Industrie, Gewerbe und Landwirtschaft, wurde zum Vizedirektor ernannt. Neuer Vorstand der Verkaufsabteilung 4 wurde Stephan Hopferwieser, Mitglied des SEV seit 1936, bisheriger Gruppenchef der Abt. 4 c.

Jubiläumsfonds ETH 1930

Dem Jahresbericht 1943 dieses Fonds, zu dessen Aeufnung seinerzeit auch der SEV und der VSE beigetragen haben, entnehmen wir folgendes:

Es wurden 12 Beitragsgesuche behandelt, denen ohne Ausnahme entsprochen werden konnte. 9 Beiträge dienen der Unterstützung der wissenschaftlichen Forschung an der ETH, indem entweder Kredite zum Ankauf von Instrumenten, Apparaten und anderem Material für die Durchführung der Forschungsarbeiten, oder Beiträge zur Honorierung von wissenschaftlichen Mitarbeitern der Gesuchsteller bewilligt wurden. Ein Kredit findet Verwendung als Beitrag an die Kosten der Drucklegung einer wissenschaftlichen Abhandlung. Der Gesellschaft zur Förderung der Forschung auf dem Gebiete der Technischen Physik an der ETH (GTP) wurden für die Jahre 1944, 1945 und 1946 wiederum jährliche Beiträge von je Fr. 5000.— bewilligt. Ein im Berichtsjahre nochmals bewilligter Beitrag von Fr. 2000.— dient der erneuten Unterstützung schweizerischer wissenschaftlicher Zeitschriften.

Unsere Leser werden folgende bewilligte Beitragsgesuche besonders interessieren:

- 1. Das Physikalische Institut der ETH (Professor Dr. P. Scherrer) besitzt in der van-de-Graaff-Hochspannungsanlage eine moderne, zuverlässig arbeitende Hochspannungsquelle für künstliche Atomumwandlung, welche fast ununterbrochen im Betriebe steht und die Durchführung sehr interessanter experimenteller Arbeiten gestattet. Zur Bedienung dieser komplizierten Apparatur, bei der Hochspannungs- und raffinierteste Vakuumtechnik vereinigt sind, namentlich aber zur Bedienung der hochempfindlichen Messanordnungen, bei denen die Prozesse am Einzelatom registriert werden müssen, sind vor allem bestqualifizierte Mitarbeiter erforderlich. Das Kuratorium bewilligte zur Honorierung solcher wissenschaftlicher Mitarbeiter Kredite von je Fr. 6000.— für die Jahre 1943
- 2. Im Institut für Motorenbau der ETH (Prof. Dr. G. Eichelberg) waren Fragen der Kurbelwellenlagerung von Flugmotoren zu bearbeiten. In diesem Zusammenhang ergab sich die Möglichkeit, die Oelfilmtheorie der Traglager auf Lager endlicher Breite mit seitlichem Oelabfluss und auf einige Fälle periodischer Belastung auszudehnen. Prof. Eichelberg beabsichtigt, diese Arbeit, die zahlreiche Abbildungen und Formeln enthält, als «Mitteilung des Institutes für Motorenbau der ETH» erscheinen zu lassen, da sie durch die

Behandlung der auch in der Literatur schon lange aufgegriffenen Oelfilmtheorie von Traglagern im Maschinenbau auch für die Industrie von praktischem Interesse ist. Das Kuratorium bewilligte für die Drucklegung dieser Arbeit einen Kredit von Fr. 3 800.—.

3. Die allgemeine Entwicklung der Kohlenverwertung geht dahin, die Kohle als wichtigen Rohstoff nicht zu verbrennen, sondern chemisch zu verarbeiten und in Produkte zu zerlegen, welche die Wirtschaft nötig hat. Das am meisten angewendete Verfahren zur Kohlenveredlung ist die Verkokung, wobei neben Koks, Teer, Benzol, Ammoniak und Schwefel auch Koksofengas gewonnen wird, das von den Gaswerken und Kokereien fortgeleitet und in Haushalt und Industrie Verwendung findet. Seit einigen Jahren sind Bestrebungen im Gange, auch das Koksofengas chemisch auszuwerten. Die Verfahren sind technisch gelöst und werden im Auslande zum Teil grossindustriell verwertet.

Der Schweiz. Wasserwirtschaftsverband hat den technischen Teil der Frage, ob nicht auch für die Schweiz die Anwendung dieser Verfahren bei der weiteren Entwicklung der Kohlenveredlung im Zusammenhang mit der Energiewirtschaft volkswirtschaftlich wünschbar wäre, durch ein Gutachten von Prof. Dr. Guyer (ETH) abklären lassen. Zur Prüfung der wirtschaftlichen Seite dieser Probleme sind weitere Studien notwendig, für welche eine kleine Kommission unabhängiger Fachleute gebildet wurde, welche die Aufgabe hat, mit den Gaswerken und der chemischen Industrie Fühlung aufzunehmen und gemeisam diese Fragen weiter zu verfolgen.

An die rund Fr. 5000.— betragenden Kosten der Arbeiten dieser Kommission haben der Studienfonds des Schweiz. Wasserwirtschaftsverbandes Fr. 3000.— und der Landesausstellungsfonds Fr. 1000.— übernommen. Das Kuratorium bewilligte an die Kosten ebenfalls einen Beitrag von Fr. 1000.—.

- 4. Die im Jahre 1936 gegründete Gesellschaft zur Förderung der Forschung auf dem Gebiete der Technischen Physik an der ETH (GTP) bezweckt durch ihre Tätigkeit die Aufrechterhaltung bestehender und die Einführung neuer Industrien oder Industriezweige. Im September 1943 unternahm die GTP eine dritte Finanzaktion, womit sie sich die Mittel zum weiteren Betrieb der Abteilung für industrielle Forschung des Institutes für Technische Physik (AfiF) zu sichern beabsichtigte. In der AfiF werden in vier verschiedenen Abteilungen unter der Oberleitung von Prof. Dr. F. Fischer zurzeit vor allem Forschungen auf dem Gebiete der Fernseh-Grossprojektion, der Ultrakurzwellen-Vielfachtelephonie, des Röhrenbaues und neuer Werkstoffe betrieben. Mit Rücksicht auf den Umfang und die Wichtigkeit der von der AfiF in Angriff genommenen Forschungsarbeiten ersucht die GTP die jetzigen Donatoren um die Bewilligung weiterer Jahresbeiträge mindestens in der bisherigen Höhe. Das Kuratorium stellte zu diesem Zwecke für die Jahre 1944, 1945 und 1946 jährliche Beiträge von je Fr. 5000.— zur Verfügung.
- 5. Für das Cyclotron des Physikalischen Institutes der ETH benötigte Prof. Dr. P. Scherrer leistungsfähige Hochvakuumpumpen. Eine von ihm entwickelte Oeldiffusionspumpe weist eine ausserordentlich hohe Sauggeschwindigkeit auf, höher als alle andern bisher bekannten Modelle. Die gewonnenen Erfahrungen möchte Prof. Scherrer auch zur Verbesserung der Quecksilber-Diffusionslampe verwenden. Es handelt sich bei der Verbesserung der Quecksilber-Diffusionslampe um eine Forschungsarbeit, die für die Industrie von grosser praktischer Bedeutung ist. Das Kuratorium bewilligte

(Fortsetzung auf Seite 520)

Extrait des rapports de gestion des centrales suisses d'électricité

(Ces aperçus sont publiés en groupes de quatre au fur et à mesure de la parution des rapports de gestion et ne sont pas destinés à des comparaisons.)

On peut s'abonner à des tirages à part de cette page.

	Elektrizitätswerk Basel		Service de l'Electri- cité de la Ville de Lausanne		Gemeindewerke Rüti, Rüti (Zürich)		Gemeindewerke Horgen	
	1943	1942	1943	1942	1943	1942	1943	1942
1. Production d'énergie . kWh 2. Achat d'énergie kWh 3. Energie distribuée kWh 4. Par rapp. à l'ex. préc % 5. Dont énergie à prix de	171 158 111	113 842 747	54 321 700	75 319 400 29 644 300 102 744 200 + 3,7	8 643 385	12 400 8 882 940 8 003 195 + 13	5 065 647	862 380 4 419 250 4 834 358 — 1,94
déchet kWh	62 650 160	30 072 750	13 723 000	7 370 000	1 739 700	2 882 415	_	-
11. Charge maximum kW 12. Puissance installée totale kW	54 100 299 621 841 462	265 818 834 515	163 623 597 900	153 110 589 200	10 480 28 500	1 790 10 474 28 000	11 530	1 203 10 950 41 120
13. Lampes	37 428 3 200					1 400 110		1 500 269
14. Cuisinières { kW	23 981 23 057	19 115 22 589	42 324	31 243	771	647 255	1 826	1 517 504
15. Chauffe-eau { kW	46 563	45 182	31 675	30 113	272	252	687	615
16. Moteurs industriels . $\binom{nombre}{kW}$	31 426 93 008	29 731 88 724	11 595 19 675		1 425 4 835	1 421 4 833	1 260 3 241	1 205 3 138
21. Nombre d'abonnements 22. Recette moyenne par kWh cts.	107 905 4,91	106 798 5,13	52 025 6,11	53 400 6,35	4 350 6,6	4 300 6,2	3 533 9,32	3 450 9,3
Du bilan:								
31. Capital social fr. 32. Emprunts à terme » 33. Fortune coopérative » 34. Capital de dotation » 35. Valeur comptable des inst. » 36. Portefeuille et participat. » 37. Fonds de renouvellement »	889 430 5 446 625 5 755 001 14 092 241	6 279 600 5 497 579	8 818 308 3 788 512	9 599 246 3 8 3 1 658	4	4 4 294 127	560 391 272 005 7 000	496 554 257 005 7 000
Du compte profits et pertes:							-	
41. Recettes d'exploitation . fr. 42. Revenu du portefeuille et des participations » 43. Autres recettes » 44. Intérêts débiteurs » 45. Charges fiscales » 46. Frais d'administration » 47. Frais d'exploitation » 48. Achats d'énergie » 49. Amortissements et réserves » 50. Dividende »	2 931 750	325 086 465 958 56 165 330 339 2 142 218 1 726 187 2 069 533	518 154 138 649 738 557 2 713 576	553 616 137 450 619 894 2 227 112 734 076	144 310 — 54 212 44 777 294 242	528 073 — 101 364 — 50 097 55 934 293 573 1 988	503 940	448 468 7 992 19 386 824 26 537 98 863 175 378 41 193
51. En % % 52. Versements aux caisses pu-	_	_	_	_	-	_	_	_
bliques fr.	5 000 000	5 398 413	2 526 150	2 437 300	93 010	92 520	85 142	75 057
Investissements et amortissements:								
61. Investissements jusqu'à fin de l'exercice fr.	50 503 607	50 101 561	35 341 070	35 076 585	1 564 907	1 555 226	1 842 197	1 779 670
62. Amortissements jusqu'à fin de l'exercice » 63. Valeur comptable »	54 147 072	52 121 964	26 423 671	25 477 339 9 599 246	1 564 803			1 522 665 257 005
64. Soit en % des investisse- ments	9,3	10,8	25,0	28,4	0	0	14,8	14,4
	1		ų.			١		

Données économiques suisses (Extrait de "La Vie économique", supplément de la Feuille Officielle Suisse du commerce.)

(2010)	t do "La vio coononiiqae , supprement de la realite	_	
No.		Juillet	
		1943	1944
1.	Importations)	134,4	85,4
	(janvier-juillet) en 106 frs	(1118,1)	(838,0)
	Exportations	166,4	54,1
	(janvier-juillet))	(946,6)	(765,1)
2.	Marché du travail: demandes	(230,0)	(100,1)
2.	de places	4400	3862
3.	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	204	209
٥.	Index du cout de la vie Juillet Index du commerce de 1914	204	20)
	gros = 100	217	223
	Prix-courant de détail (moyenne	21.	220
	de 34 villes)		
	,		
	Eclairage électrique	044(60)	04.4(60)
	cts/kWh Gaz cts/m ³ (Juln 1914)	34,4 (69)	34,4 (69)
	$\frac{\text{Gaz}}{\text{Cts/m}^3} = \frac{\text{cts/m}^3}{\text{cts/m}^3} = \frac{100}{100}$	30 (143)	30 (143)
	Coke d'usine à gaz		
	frs/100 kg	16,05 (320)	16,63 (332)
4.	Permis délivrés pour logements		
	à construire dans 30 villes .	432	521
	(janvier-juillet)	(3259)	(4553)
5.	Taux d'escompte officiel . %	1,50	1,50
6.	Banque Nationale (p. ultimo)		
	Billets en circulation 106 frs	2670	3028
	Autres engagements à vue 106 fra	1394	1441
	Encaisse or et devises or 1) 106 frs	3850	4527
	Couverture en or des billets		
	en circulation et des autres		
	engagements à vue $^{0}/_{0}$	93,26	99,68
7.	Indices des bourses suisses (le		
	25 du mois)		
	Obligations	134	137
	Actions	185	190
	Actions industrielles	307	304
8.	Faillites	14	24
	(janvier-juillet)	(95)	(131)
	Concordats	6	2
	(janvier-juillet)	(27)	(19)
			, , ,
9.	Statistique du tourisme	Ju	in
	Occupation moyenne des lits	1943	1944
	existants, en %	15,8	16,1
	,		in
10.	Recettes d'exploitation des	1943	11n 1944
10.	CFF seuls	1010	1011
		00.075	05.040
	Marchandises	23 815	25 848
	(janvier-juin) (en }	(138 827)	(139 740)
	Voyageurs	15 299	16 514
	(janvier-juin) /	(89 554)	$(102\ 141)$

¹⁾ Depuis le 23 septembre 1936 devises en dollars.

Pouvoir calorifique et teneur en cendres des charbons suisses

Les données suivantes sont tirées des notices de l'Office de guerre pour l'industrie et le travail:

1º Anthracite

Teneur en cendres dans la règle 20 à 40 %. L'anthracite valaisan d'une teneur en cendres de 20 %, possède un pouvoir calorifique d'environ 5600 kcal/kg. Chaque augmentation de 5 % de la teneur en cendres correspond à une diminution du pouvoir calorifique d'environ 400 kcal/kg.

2° Lignite

Teneur en cendres environ 10 à 30 %. Pouvoir calorifique entre 7000 et 3500 kcal/kg.

3° Lignite feuilleté

Le pouvoir calorifique varie suivant la teneur en eau et en cendres entre 900 et 2700 kcal/kg.

für die Durchführung der Arbeiten zur Verbesserung der Quecksilber-Diffusionspumpe einen Kredit von Fr. 8000.—.

Es wird ferner über die Schlussberichte und die Schlussabrechnungen, die vom Kuratorium genehmigt wurden, für das Jahr 1943 Bericht erstattet. Darunter sind zu erwähnen:

a) Prof. Dr. E. Meyer-Peter, Direktor der Versuchsanstalt für Wasserbau der ETH, erhielt mit Beschluss des Kuratoriums vom 23. Dezember 1941 einen Kredit von Fr. 2000.— für die Eichung eines Limnigraphen beim Pont de Beaucul in der Baye de Montreux. Die Hochwassermengen am fraglichen Gewässer sind mit Limnigraphen, da sie nicht fliessend, sondern schiessend in dem unregelmässigen Profil daherkommen, nicht mehr zuverlässig messbar. Aus diesem Grunde mussten Modellversuche in der Versuchsanstalt für Wasserbau der ETH zur Eichung des Limnigraphen ausgeführt werden. Der zur Verfügung gestellte Kredit diente zur Erstellung des Modells sowie zur Durchführung der eigentlichen Modellversuche.

b) Der Druckverlustkommission des Schweiz. Ingenieurund Architektenvereins (SIA) bewilligte das Kuratorium am 16. Juli 1936 einen Kredit von Fr. 15 000.— und am 15. Juli 1938 einen solchen von Fr. 8 500.—. Die Forschungs- und Versuchsergebnisse der von Ing. Erwin Hoeck durchgeführten Arbeiten wurden in einer Promotionsarbeit der ETH unter dem Titel «Druckverluste in Druckleitungen grosser Kraftwerke» 1) veröffentlicht.

Literatur — Bibliographie

338(494)

Nr. 2373

Handbuch der schweizerischen Produktion 1944/45. Herausgegeben von der Schweiz. Zentrale für Handelsförderung Zürich und Lausanne. Zürich, Verlag: Schweiz. Zentrale für Handelsförderung, 1944; 16 × 24 cm, LXXXIV + 992 S., 20 Abb., 1 Karte. Preis: geb. Fr. 12.—.

Im Verlag der Schweizerischen Zentrale für Handelsförderung Zürich und Lausanne ist soeben eine neue Ausgabe dieses detaillierten und umfassenden Nachschlagewerkes über die gesamte schweizerische Produktion aus Industrie, Gewerbe und Landwirtschaft erschienen. Das mit Genehmigung des Eidg. Volkswirtschaftsdepartementes herausgegebene Werk umfasst: ein Warenverzeichnis, in welchem ca. 7700 verschiedene Artikel und deren Produzenten nach Branchen zweckmässig geordnet sind, ein alphabetisches Fabrikanten-Verzeichnis, welches die Adressen von ca. 7400 Firmen enthält, einen Handelsteil, in welchem die bedeutendsten Export- und Transithandelsfirmen, Banken, Transport- und Versicherungsgesellschaften, Auskunftbureaux usw. Erwähnung gefunden haben, und ein Markenregister. Vor den einzelnen Branchen des Warenverzeichnisses sind Industriekärtchen eingeschaltet, die interessante Hinweie über die geographische Verteilung der einzelnen Industrien geben. Den Interessenten für Schweizerwaren im Inland und Ausland, wird dieses Adressbuch, das in gewissen Zeitabständen auch in französischer, englischer und spanischer Sprache erscheinen wird, vorzügliche Dientse leisten.

621.791.75

Nr. 2361

Leitfaden für das Lichtbogen-Schweissen von F. R. Ulrich und K. Gloor. Zürich, Verlag Berichthaus, 1943; A₅, 76 S., 97 Fig., 11 Tafeln. Preis: brosch. Fr. 4.50.

Das Elektroschweissen verdient die volle Aufmerksamkeit der metallverarbeitenden Industrie. In Verbänden und Fachschulen, speziell aber in Kreisen der Metallarbeiter erkennt man immer mehr die Bedeutung dieses Verfahrens, und so mehren sich ständig die Anfragen über die Möglichkeit, das Elektroschweissen erlernen zu können.

Leider ist diese aber, im Verhältnis zur Wichtigkeit des Gebietes, in der Schweiz noch sehr gering, und so muss nur zu oft der Weg des Anlernens von Mann zu Mann in der Werkstatt beschritten werden. Die Nachteile dieser Methode sind bekannt.

In Ermangelung von Kursen sucht der Lernbegierige einschlägige Literatur. Die bisher erhältlichen, auch für den Arbeiter erschwinglichen Schriften sind mit wenigen Aus-

¹⁾ Bull, SEV 1944, Nr. 2, S. 53.

nahmen ausländischer Herkunft und nicht sehr für die Praxis, jedenfalls nicht für den Lernenden geschrieben. So begrüsst man um so mehr den vorliegenden, auf unsere Verhältnisse zugeschnittenen, neuen Lehrgang. Da die ausländischen Erzeugnisse heute überhaupt nicht mehr erhältlich sind, ist diese Schrift um so wertvoller.

Dieser Leitfaden kann dem angehenden Elektroschweisser als Wegleitung dienen und darf auch zum Selbststudium empfohlen werden, wobei immerhin einige Kenntnisse über die Materialeigenschaften vorausgesetzt werden müssen. Allerdings sind Kurse von viel grösserem Wert, da dort der Schüler unter Kontrolle steht, denn wie Prof. M. Roš von der EMPA in seiner Abhandlung «Gütebewertung von Schweissungen im Stahlbau» schreibt, ist das Schweissen eine Kunst, die hohe Anforderungen an die Schulung, Erziehung, Disziplin und das Geschick des Schweissers stellt. In dieser Hinsicht stellen die Verfasser das Elektroschweissen vielleicht als allzu leicht dar, wenn sie u. a. schreiben, dass dessen Erlernung ein Mindestmass an Zuverlässigkeit erfordere. Die Auslese für qualifizierte Schweisser ist in der Industrie gerade in dieser Beziehung sehr scharf.

Einleitend besprechen die Autoren die bekanntesten Schweissmethoden, gehen dann über zu den Anwendungsgebieten, Werkstätteneinrichtungen, Elektrodenarten und erklären vorgängig der eigentlichen Uebungen kurz das wesentliche über die elektrische Energie, ein Abschnitt, der leider stark verunglückt ist, sowie die Schweissapparate selbst. Vermisst wird dabei eine zeichnerische Darstellung einer Umformergruppe mit entsprechenden Erklärungen. Die Erläuterung von Dauer- und Nennstromstärke ist begrüssenswert, wenn ihr auch die letzte Klarheit fehlt.

In der Anleitung für die Uebungen gehen die Verfasser schrittweise nach einer bestimmten, jedenfalls selbst erprobten Methode vor. So wie viele Wege nach Rom führen, so gibt es auch viele Methoden, die zum Schweissen führen können. Man findet weder in Kursen noch in Büchern eine durchgehend einheitliche Anleitung, nach der gelernt wird.

Jedenfalls kann hier mit Genugtuung festgestellt werden, dass sich die Führung der Elektroden auf einige wenige einfache Führungsarten beschränkt; denn man sieht oft in den Büchern die kompliziertesten Hieroglyphen, deren Anwendung die Schweisser nur verwirren. Man dürfte in der Vereinfachung sogar noch weiter gehen und überall — mit verschwindend kleinen Ausnahmen — mit der einfachsten Führungsart, der Zugnaht, auskommen.

Geteilter Auffassung kann man über die Entlastung des Schweisskabels sein, das die meisten Schweisser über die Achsel legen, statt, wie im vorliegenden Leitfaden empfohlen wird, mit der linken Hand zu fassen, die gleichzeitig den Schild halten muss. Das Schweissen von V-Nähten mit Gegenlage verfolgt wohl den Zweck, die Schüler auf die Wirkung der Schrumpfkräfte aufmerksam zu machen und diese einschätzen zu lernen. Für die Praxis aber kann diese Art nur in den seltensten Fällen angewendet werden. Im Vergleich mit der Praxis und der Stromtabelle scheinen die für die Uebungen empfohlenen, einzustellenden Stromstärken eher etwas hoch zu sein, denn die Möglichkeit von Einbrandkerben und von erhöhtem Temperatureinfluss wird dadurch gefördert. Es ist für den Schüler später verführerisch, wenn er mit höheren Stromstärken als allgemein üblich schweissen gelernt hat. Eine kurze Begründung der Stromstärke-Einstellung wäre jedenfalls, speziell wenn der Leitfaden zum Selbststudium verwendet wird, wertvoll.

Die Schweissungen aller vorkommenden Nahtformen und Lagen werden in 30 Uebungen durchgenommen. Jede Uebung ist klar aufgeteilt in die Abschnitte: Vorbereitung, Arbeitsgang, Fehlermöglichkeit und erläuternde Bemerkungen. Die Erklärungen sind von instruktiven Skizzen unterstützt, Ferner geben noch zwei Tafeln die Bilder von guten und schlechten Schweissnähten zum bessern Verständnis wieder. Dass die Uebungen mit den in der Praxis am meisten vorkommenden Elektrodenstärken durchgeführt werden, ist erfreulich und gereicht dem Schüler zum Vorteil.

Besondere Abschnitte sind dem elektrischen Schneiden und der Grauguss-Schweissung gewidmet. Ferner wird auf die richtige Vorbereitung der Werkstücke und die immer wieder vorkommenden Schweissfehler aufmerksam gemacht. Auch ist das wichtige Kapitel Schrumpfung und Schrumpfspannungen eingehend behandelt. Im Anschluss daran würden jedoch einige Erläuterungen über die schädigende Wirkung von Kerben sicher dankbar aufgenommen, da oft von diesen die Rede ist. Heute sind ja solche Kerben als Ursache vieler Konstruktionsdefekte festgestellt worden, weshalb diesem Gebiet gerade der Schweisser erhöhte Aufmerksamkeit schenken sollte.

Zum Schluss weisen die Verfasser noch auf die Unfallverhütung hin und geben dann eine Wegleitung für die Kalkulation von Schweissarbeiten.

Eine Tabelle, die ähnlich den bekannten Schweiss-Schiebern über die Beziehung zwischen Schweissarbeit und deren Kosten Aufschluss gibt, erleichtert die Kalkulation von solchen Arbeiten und bildet einen wertvollen Bestandteil des Leitfadens, zumal die Handhabung der Tabelle noch eingehend erklärt ist und darauf hingewiesen wird, wie die Zahlen errechnet werden.

Einige Tafeln behandeln noch die verschiedenen vorkommenden Nahtformen, und zuletzt ist eine übersichtliche allgemeine Stromtabelle zusammengestellt.

Da die Kosten des Leitfadens nicht allzu hoch sind, dürfte er einen weiten Kreis von Interessenten finden. Ki.

Communications des Institutions de contrôle de l'ASE

Accidents mortels causés par la manipulation de lampes transportables non conformes aux prescriptions

(Communiqué de l'Inspectorat des installations à courant fort)

Par une communication parue dans le Bulletin ASE 1944, No. 13, p. 355, l'Inspectorat des installations à courant fort a attiré l'attention des entreprises électriques sur une circulaire destinée à leurs abonnés. Cette circulaire, dont un exemplaire se trouvait dans le dit bulletin, devait permettre d'orienter le plus grand nombre possible d'usagers sur les dangers que présentent les lampes tranportables (baladeuses) non conformes aux prescriptions.

Entre temps, l'Inspectorat a reçu de nombreuses commandes et ces dernières continuent d'affluer. Il est cependant nécessaire de fixer le nombre définitif des circulaires à livrer afin d'en déterminer le tirage. L'Inspectorat prie donc les entreprises électriques qui n'ont pas encore pris de décision d'annoncer sans retard le nombre de circulaires qu'elles désirent recevoir.

Ajoutons qu'à fin août deux baladeuses non conformes ont de nouveau causé la mort de deux personnes dans une ville et un village de la Suisse romande. Sb.

Estampilles d'essai et procès-verbaux d'essai de l'ASE

I° Marque de qualité

Pour interrupteurs, prises de courant, coupe-circuit à fusibles, boîtes de jonction, transformateurs de faible puissance, douilles de lampes, condensateurs

--- Pour conducteurs isolés

Sur la base des épreuves d'admission, subies avec succès, le droit à la marque de qualité de l'ASE a été accordé pour:

Interrupteurs

A partir du 15 août 1944 Machines-outils «TAUCO», O. S. Jaccard, l'Auberson.

Marque de fabrique: INTER. O.MATIC

Interrupteurs à pied pour 500 V 10 A.

Utilisation: dans les locaux secs.

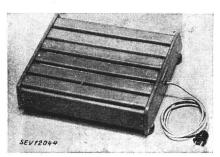
Exécution: interrupteur dans boîtier en métal léger.

Contacts en argent.

Modèle A: interrupteur ordinaire tripolaire. Modèle B: inverseur du sens de rotation tripolaire.

IV. Procès-verbaux d'essai (Voir Bull. ASE 1938, No. 16, p. 449)

P. No. 349.


Objet:

Chauffe-pieds

Procès-verbal d'essai ASE: O. No. 18268a/II, du 31 juillet 1944. Commettant: Calora S. A., Küsnacht.

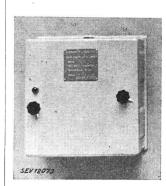
Inscriptions:

Calora A.G. Küsnacht Volt 220 Watt 50 Best.N. 872

Description: Chauffe-pieds en bois dur, selon figure, ayant les dimensions suivantés: $95 \times 310 \times 340$ mm. Le corps de chauffe se compose d'un cordon chauffant cousu entre deux pièces de tissu grossier et est protégé vers le haut par une

plaque de tôle et vers le bas par une plaque d'amiante. Une plaque de preßspan, fixée sous l'appareil, sert de protection contre les contacts fortuits. Raccordement au réseau au moyen d'un cordon rond à deux conducteurs, muni d'une fiche.

Ce chauffe-pieds a subi avec succès les essais relatifs à la sécurité. Utilisation: dans les locaux secs.


P. No. 350.

Objet: «Amplificateur à basse fréquence

Procès-verbal d'essai ASE: O. No. 18491, du 14 août 1944. Commettant: *Autophon S.A. Soleure*.

Inscriptions:

 $\begin{array}{c} {\rm Autophon~A.-G.,~Solothurn} \\ {\rm Verst.~Type~V.V.~401~No.~L~188087} \\ {\rm 50~Hz} & {\rm 110-250~V} & {\rm umschaltbar} \\ {\rm Netzaufnahme} & {\rm 40~VA} \end{array}$

Description: Amplificateur pour appareils d'intercommunication Vivavox, selon figure, pour station principale, secondaire et station pour dicter à distance. Cet amplificateur comprend un transformateur d'alimentation à enroulements séparés, un transformateur d'entrée et de sortie et un régulateur de puissance. Le boîtier est métallique.

Cet amplificateur est conforme aux «Prescriptions pour les appareils de télécommunication» (publ. No. 172 f).

Vereinsnachrichten

Die an dieser Stelle erscheinenden Artikel sind, soweit sie nicht anderweitig gezeichnet sind, offizielle Mitteilungen der Organe des SEV und VSE

Nécrologie

Le 18 août 1944 est décédé à l'âge de 67 ans Monsieur *Emile Beck*, fondé de pouvoirs des Câbleries et Tréfileries de Cossonay. Nous présentons nos sincères condoléances à la famille en deuil et aux Câbleries et Tréfileries de Cossonay.

Le 20 août 1944 est décédé des suites d'un accident, Emile Spycher, chef d'exploitation des laminoirs et fondé de pouvoirs de la Société des Usines de Louis de Roll S. A., membre collectif de l'ASE. Nous présentons nos sincères condoléances à la famille en deuil et à la Société des Usines de Louis de Roll S. A.

Comité Technique 2/14 du CES Machines électriques et transformateurs

Le CT 2/14 a tenu sa 16e séance le 8 août 1944, à Zurich, sous la présidence de M. le professeur E. Dünner, président. Il a discuté de la question de la tension d'essais et de la sécurité générale des transformateurs, soulevée par les entreprises électriques, et à propos de laquelle les représentants des entreprises électriques et des fabricants avaient présenté des exposés. Il fut constaté que la tension de 2 $U+1000~
m{V}$ est en principe suffisante, mais qu'il faudra tenir compte des exigences de la coordination. Pour les transformateurs dans l'air raccordés à des réseaux souterrains, l'essai peut être le même que pour les transformateurs à bain d'huile, tandis que ceux qui sont raccordés à des réseaux aériens devraient être essayés comme les appareils à haute tension. La discussion générale du chapitre «Transformateurs de puissance, de tension et d'intensité» du 5° projet des règles et des commen-taires sur la coordination des isolements, a abouti à l'adoption presque intégrale de ce projet. Le CT 2/14 a toutefois transmis au CT 28 quelques propositions au sujet du dimensionnement de l'isolement des transformateurs.

Comité Technique 12 du CES

Radiocommunications

Le CT 12 a tenu ses 10° et 11° séances le 25 août 1944, avec deux groupes d'invités. Après avoir pris note des mutations intervenues depuis la dernière séance, le CT 12 a nommé comme nouveau président M. le professeur W. Druey, Winterthour, en remplacement de M. le professeur F. Tank, qui avait assumé avec beaucoup de compétence la présidence du CT 12 depuis son institution en 1936 et qui en fut sincèrement remercié au nom du CT, du CES et de l'ASE.

A la 10° séance, qui se tint durant la matinée, le CT a pris connaissance de la publication des Prescriptions concernant la protection des appareïls électriques de transmission et de reproduction du son et de l'image et des appareïls de télécommunication et de télécommande. Un projet de commentaires sera élaboré pour la prochaine séance. Il fut décidé de normaliser les coupe-circuit d'appareïls. La question des propriétés radioélectriques des récepteurs devra être discutée en se basant sur les normes américaines. La question de l'influence réciproque des récepteurs sera étudiée au début de 1945. Le CT 12 a pris note que le CT 25 prépare une liste des symboles littéraux utilisés en haute fréquence. Pour traiter de questions relatives aux appareïls à haute fréquence, des spécialistes seront adjoints au CT 13. Enfin, le CT 12 constata le besoin de normaliser les câbles à haute fréquence et leurs armatures.

A la 11e séance, qui eut lieu l'après-midi, le CT 12 discuta en détail des installations téléphoniques à haute fréquence utilisées par les entreprises électriques. Les représentants des entreprises électriques, des PTT et des fabricants furent tous d'avis qu'il y aurait lieu de mettre au point des Recommandations au sujet de ces installations, afin d'éviter qu'il ne se produise à l'avenir des interférences. Le président du CT 12 et le secrétariat du CES ont été chargés de préparer l'étude de cette question avec un sous-comité.