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gen nicht beschreiben können, Das Sehorgan
verfügt über keinerlei kompensatorische Einrichtung
zur Aufhebung des Flimniergefühls oder zur
Reversion einer stroboskopischen Täuschung; es ist
diesen Sinneseindrücken wehrlos ausgesetzt.
Angesichts der Yerschiedenartigkeit der menschlichen
Reaktionsweise ist es verständlich, dass es Leute
gibt, -denen diese Eindrücke Beschwerden machen.

Bei allen statistischen Zusammenfassungen
biologischer Reaktionen beim Menschen sieht man
eine Häufung und eine Streuung der untersuchten
Personenzahlen. Das gleiche gilt für das Sehorgan,
wenn es sich darum handelt, die Einwirkung einer

neuen Beleuchtung zu registrieren. In der Streuung
der Personenzahlen wird man diejenigen unterzubringen

haben, die sich durch die Eigenart der
diskontinuierlichen Beleuchtung in der Arbeit behindert

oder sonstwie belästigt fühlen, während in der
zahlenmässigen Häufung die grosse Mehrheit
derjenigen enthalten ist, die keinerlei Anstoss am neuen
Lichte nimmt.

Sollte es der Technik gelingen, bei der
diskontinuierlichen Beleuchtung das absolute Dunkelintervall

in ein relatives, wie bei der Glühlampe, zu
verwandeln, oder es ganz zu beseitigen, dann wären
damit die praktisch wichtigen Mängel behoben.

Calcul du courant de charge
dans une ligne triphasée à disposition dissymétrique

Par P. Lambossy, Fribourg 621.3.014.1:621.315.1

Lorsque les conducteurs d'une ligne triphasée occupent les
sommets d'un triangle quelconque, il circule dans chacun de
ces conducteurs, la ligne étant sous tension, des courants de
charge différents. L'objet du présent article est de préciser la
notion de «capacité par fil de phase», d'établir des formules
complètes pour cette capacité et aussi pour le courant de
charge dans chaque fil. Des exemples numériques montrent
cependant que, si l'on ne cherche pas une grande précision, des
formules plus simples permettent de calculer le courant moyen
de charge, avec une exactitude satisfaisante.

Haben die Leiter einer unter Spannung stehenden
Drehstromfreileitung gegenseitig ungleiche Abstände, so fliessen
iti ihnen verschieden grosse Ladeströme. Der vorliegende
Artikel hat den Zweck, den Begriff der «Kapazität pro Phase»
zu präzisieren, und dann für diese Kapazität sowie für den
in jedem Leiter fliessenden Ladestrom vollständige Formeln
aufzustellen. Numerische Beispiele zeigen jedoch, dass man,
wenn nicht grosse Genauigkeit gewünscht wird, den mittleren
Ladestrom mit einfacheren Formeln berechnen kann.

1° Introduction
Lorsqu'une ligne triphasée est sous tension, mais

ouverte, il circule cependant dans chacun des trois
conducteurs un courant alternatif, appelé courant
de charge, qui se ferme dans l'espace entourant les
conducteurs. Le problème est particulièrement simple

dans le cas d'une ligne symétrique, c'est-à-dire
dont les trois conducteurs occupent les sommets
d'un triangle équilatéral, l'influence de la terre
étant négligée. Tout revient, en effet, à calculer la
capacité par fil, et l'on établit pour cette capacité
C la formule suivante :

log y
r est le rayon de chacun des fils, a leur distance
mutuelle; l est la longueur de la ligne évaluée
en km.

Si maintenant U est la tension composée, U0 la
tension simple, I le courant de charge, on a

U° p; I==CùjU°-

Le cas d'une ligne triphasée dissymétrique, c'est-
à-dire dont les trois conducteurs occupent les sommets

d'un triangle quelconque, est plus difficile
à traiter. On arrive à ce résultat que les trois fils
sont parcourus par des courants de charge différents,

à supposer toujours que les trois tensions
entre fils soient rigoureusement triphasées.

Il est facile de poser les équations du problème,
même en tenant compte de l'influence de la terre
— ce sont trois équations, dites équations de Maxwell

— mais les calculs subséquents deviennent
inextricables, et il semble impossible d'en tirer des
formules pratiques maniables. Les auteurs qui se
sont occupés de la question ont été, en conséquence,
contraints de négliger certains termes très petits,
et sont arrivés à des formules approximatives pour
la capacité d'un fil d'une ligne triphasée1).

Je me propose de reprendre ce problème, sans
me permettre les approximations dont j'ai parlé,
mais par une voie nouvelle, et l'on constatera que
les calculs à aucun moment ne cessent d'être
symétriques et que les formules finales n'ont pas la
complication attendue.

2° Observations sur la définition de la capacité
II est utile tout d'abord de rappeler quelques

définitions ou formules connues, pour mettre un
peu de clarté dans le sujet, mais principalement
parce que ce qu'on appelle capacité d'un fil dans

une ligne triphasée n'est pas une capacité dans le
sens classique de ce mot.

Le terme capacité a une définition nette seulement

dans le cas d'un conducteur seul dans l'espace,
4) Consulter sur ce sujet: Induktion und Kapazität von

Leitungen, von J. Fischer-Hinnen; Bull. ASE 1917, No. 12,

p. 347—365. — Résumé pratique du calcul électrique des

transmissions d'énergie à haute tension par l'emploi d'abaques ;

par A. Blondel et Ch. Lavanchy, Rev. gén. Electr. 1923, t. II,
p. 792—795.
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ou dans le cas d'un condensateur, c'est-à-dire du
système formé de deux conducteurs isolés (armatures),

entre lesquels est localisé le champ
électrique, ce champ étant produit par des charges
égales et de signes contraires portées par les deux
conducteurs 2).

Si q est la charge d'une armature, u la différence

de potentiel entre les armatures, il y a

proportionnalité entre q et u, et le rapport constant

C - q

u

est appelé capacité du condensateur.
On sait que si trois conducteurs chargés sont en

présence, il existe entre les trois charges et les
potentiels de ces conducteurs des relations
linéaires. Si ces relations sont présentées sous la forme
de trois équations résolues par rapport aux charges,

les coefficients constants qui interviennent
comme facteurs des potentiels sont les coefficients
de capacité. On ne peut pas les appeler en toute
rigueur des capacités, ce terme ne répondant plus
à la définition signalée plus haut, savoir le
rapport constant entre la charge d'un conducteur et
son potentiel.

3° Extension de la notion de capacité
Cependant on peut se demander s'il est

possible, dans certaines conditions, d'attribuer à chaque

conducteur une constante C dépendant des
dimensions du conducteur envisagé et de sa position
par rapport aux deux autres, de telle sorte que,
pour ce conducteur on ait encore la relation

q C u

Nous pensons aux trois conducteurs d'une ligne
triphasée, lesquels forment un système très
particulier à cause des tensions triphasées que nous
supposons exister entre ces conducteurs deux à

deux.
Si cela est possible, la constante C relative à un

fil pourra s'appeler encore, par extension, capacité
de la ligne par fil, et la connaissance de cette
constante permettra de calculer très simplement
le courant de charge dans ce fil, ce qui constitue
le but pratique du problème.

Pour que la charge d'un conducteur soit
proportionnelle à son potentiel, il suffit quelquefois de
choisir comme origine des potentiels le potentiel
d'un point très particulier du champ. Mais même
quand cela ne paraîtrait pas possible, il n'est pas
interdit d'appeler capacités ces coefficients par
lesquels on caractérise cliaque fil de ligne. Ce sont
des grandeurs auxiliaires utiles dans le calcul du
courant de charge.

4U Explications sur le potentiel
Le potentiel en un point dans un champ

électrique est une fonction des coordonnées de ce point.

2) Il n'y a pas de différence essentielle entre ces deux cas.
Le conducteur isolé, chargé, et seul dans l'espace constitue
l'une des armatures, l'autre étant la sphère infinie.

Cette grandeur auxiliaire v a la propriété suivante:
Le travail effectué par les forces du champ

correspondant au transport de l'unité positive de quantité
d'électricité du point 1 au point 2 par un chemin

quelconque est égal à la différence de potentiel

Vji — v2 entre ces deux points.
La valeur de ce travail n'est pas altérée si à

cette fonction potentielle on ajoute une constante
arbitraire, ou, ce qui revient au même, si on fixe
à une valeur arbitraire le potentiel en un point
déterminé du champ. D'ordinaire on déclare nul
le potentiel en un point situé à une distance
infinie de toutes les charges du champ. Mais on peut
aussi poser v 0 pour un point du champ choisi
tel qu'on le voudra.

Nous avons dit que le potentiel est une grandeur

auxiliaire; en effet seule une différence de
potentiel peut être mesurée et peut figurer dans

une formule pratique.

5° Champ électrique d'un cylindre indéfini
uniformément chargé

Un cylindre conducteur de rayon r et de
longueur indéfinie possède une charge q (positive ou
négative) par unité de longueur, répartie
uniformément sur tout le pourtour (fig. 1). Il règne au-

Fig. 1.

Cylindre électriquement

chargé et deux surfaces

équipotentielles

tour du cylindre et sur celui-ci un champ électrique
dont les surfaces équipotentielles sont des cylindres
coaxiaux. L'intensité de ce champ à la distance
x de l'axe est donnée par

E 2q
x

(unités électrostatiques)

Si une charge + 1 est transportée du point A, situé
à la distance xv au point B, situé à la distance x2,

par un chemin quelconque, le travail effectué par
les forces du champ ou différence de potentiel
entre A et B est donné par la formule

*2

vA — vB — \—— dx 2q ln
j x xi

(2)

Xi

Cette formule est valable soit qu'on ait x2 > xx ou
au contraire x2 < xx, et quel que soit le signe de q.

6° Le courant de charge dans une ligne triphasée
à trois fils dissymétrique, en négligeant l'influ¬

ence de la terre
A la rigueur, nous pourrions aborder dès

maintenant le cas où les trois fils sont à une certaine
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distance de la terre, que l'on admet plane et
bonne conductrice; en supposant ensuite cette
distance infiniment grande, nous aurions le cas
particulier où l'influeince de la terre est négligée.
Cependant nous préférons, afin de faciliter l'exposition,

débuter par ce cas particulier.
Soit une ligne triphasée sans fil neutre,

dissymétrique, dont les trois conducteurs occupent les
sommets d'un triangle Av A2, A3 de côtés a, b, c

(fig. 2). Chaque conducteur a le même rayon r,
assez petit par rapport aux distances a, b, c de
façon à n'avoir pas à tenir compte de la distribution

inégale des charges sur les conducteurs. Ces

Ag Jeyrsoof

Fig. 2.

Les trois tils d'une ligne triphasée dissymétrique

charges par unité de longueur qx, q2, g, sont inconnues

et on doit les calculer de manière à rendre
compte des tensions rigoureusement triphasées existant

entre les conducteurs.
Nous avons tout d'abord

h + <72 + 93=0 (3)

car c'est une proposition fondamentale de l'électrostatique

que, dans un système clos, la somme
algébrique des charges est nulle.

Soit R un point du plan, provisoirement
indéterminé; r,, r2, r3 ses distances aux points Av A2, A3.
Par définition le potentiel du point R est nul.

Le potentiel c, du conducteur A1 est égal au
travail qui correspond au déplacement d'une charge
+ 1 de la surface du conducteur Ax au point R,
travail fait par les forces du champ. On aura donc,
en appliquant la formule (2) et ein observant que
le champ en question est la somme de trois champs
composants, la formule

v1 2g, ln-y 4- 2q2ln + 2g3ln LjL (4)

On a semblablement pour les potentiels des deux
autres conducteurs A„ et A3 les formules

v3 — 2q2 In -f- 2<73 ln — -f- 2g, In —

i>3 2g3 ln La. + 2g, ln ^ + 2g2 ln M
(5)

r -' b a

Déterminons le point R de telle sorte qu'on ait

'2
C

La -Ml '1

bien

b ' a c ' b

arL br2 — cr3

'2
a

(6)

On peut construire géométriquement le point R.

Puisque — il est sur le cercle lieu des points
r3 b

dont le rapport des distances aux deux points A2
et A3 est constant. Ce cercle passe par Ax et par
le point A[ du côté A2 A3 atteint par la bissectrice

de l'angle Av Son centre M est déterminé par
l'intersection de A2A3 et de la perpendiculaire élevée

au milieu de A1A[. Un second cercle, analogue
au précédent, passant par A2, coupe le premier au
point cherché R, et pour ce point on a la proportion—

—. Le 3mo cercle passe aussi par le même

3^
—, on
c

'i -
r ct.point R, puisque des égalités -2

—,
A

b
r3 " ri

déduit — — —. Ces trois cercles se coupent tou-
r2 a

jours, car chacun d'eux contient comme corde une
bissectrice du triangle A1A2A3, et le point commun

aux trois bissectrices est intérieur aux trois
cercles.

Cette étude géométrique était nécessaire, pour
que nous fussions certains de l'existence du point
R. La construction donne même deux points R;
on choisira l'un quelconque des deux.

D'après (6) les produits ar15 br2, cr3 sont égaux;
désignons par q2 leur valeur commune. On a

ML
a

ML
b

ML
c

L'équation (4) peut s'écrire

iq 2g, ln — f- 2q. In ß -f- 2g3 lnr
a r

->2

MM
b c

vi 2q, ln -— + 2 (q2 + q3) ln

et puisque, d'après (3), q2 + q3 <=—q,

v. 2q. In — 2g, In -ß—
a r 1 b c

v. ' 2g, ln —a r
En traitant semblablement les deux autres équations

(5) on obtient, en tout, les trois suivantes;

Vl 2g, ln
a r
a c

v2 — 2<72 1Q
jj r

«3 — 2g3 ln

Introduisons les constantes

1 „ 1

a b

C\ c2
2 ln

a r
2 ln a c

c3
2 ln

On aura alors

a b

c r
(8)



482 BULLETIN SCHWEIZ. ELEKTROTECHN. VEREIN 1944, Nr. 17 XXXV. Jahrgang

q i — ^l^i» 92 — C2 ^2' 93 — Csv3 (9)

Les constantes C15 C2, C3 sont les capacités des trois
fils de phase, dans le sens étendu de oe mot.

Les calculs qui suivent ont pour but de
déterminer les potentiels vx, v2, v3 en grandeur et en
phase.

Introduisons les tensions entre fils u,, m,, m,

v2 — v3
V« — V,

(10)

Puisque 9i + 92 + 93
nent

C1 ;
I C2V2 "h ('. • 0

0, les équations (9) don-

(11)

Des équations (10) et (11) on déduit

c2
ui

C3
"3

C\ -hC2 + C3 Ci + c2 + c3

C3
u2

Cl
"1

Cl H - C2 + C3 Cl + c2 + C3

Cl
"3

C2
«2

C, -h c2 4- c3 Cl + c2 + C3

(12)

Si nous supposons les tensions composées uv u2, u3
rigoureusement triphasées (amplitudes égales,
décalage 120°), les potentiels vv v2, vs sont des
grandeurs alternatives, mais seulement approximativement

triphasées. Dans le diagramme des tensions,
le point P, origine des vecteurs r1, v2, v3 qui
aboutissent aux sommets 'du triangle équilatéral ABC,
n'est pas exactement au centre (fig. 3).

Fig. 3.

Diagramme des tensions

Désignons par V1 la valeur efficace de et par
U celle de uv u2 ou u... Nous déduisons de la
première équation (12), en remarquant que l'angle
formé par u1 et — u3 est 60°,

V\
Cl-4-2 C2C, cos 60 + C\

(C, C3)2
U»

Puisque cos 60 4/2, nous avons la formule
suivante et deux formules analogues

V,

v„

yq + C2C3 --pci
Ci -f- C2 -f- C3

ycf -+- CjCg --CCI
Cj -f- C2 -)- C3

yq + c,c2-CCI

u

u

u

(13)

Ct + C2 -)- C3

Jusqu'ici toutes les grandeurs étaient évaluées
dans le système électrostatique. Mais dans les
formules (13) nous pouvons très bien supposer que les

potentiels [Fj, F2, V3 et la tension U sont des va;-
leurs efficaces exprimées en volts. Quant aux capacités,

puisque dans (13) interviennent seulement
leurs rapports, peu importe qu'on les exprime en
unités électrostatiques par unité de longueur (cm),
comme il est supposé dans les formules (8), ou
en farads pour la longueur totale de la ligne.

Pour obtenir les intensités des courants de charge
dans les trois conducteurs, il nous faut reprendre
les formules (9), les appliquer à la ligne entière
et admettre que toutes les grandeurs sont évaluées
en unités pratiques: volts, coulombs, farads.

C1 par exemple sera la capacité du fil Ax dont
la longueur est l km, et l'on aura, le symbole log
désignant les logarithmes vulgaires

C,
100000 l

9-10n.2,303 log
b c

farads

Ci
0,02413 l

log
b c

10-6F (14)

En prenant la dérivée par rapport au temps des
deux membres des équations (9), se rappelant que
dq_
dt

i, puis prenant les valeurs efficaces et enfin

désignant par co la pulsation, on a les formules
suivantes pour les courants de charge

I1 C1(oV1; L, C2ojV2; L C>jF3 (15)

7° Résumé

Pour obtenir le courant de charge qui circule
dans le fil Alf on calcule d'abord la capacité de ce
fil au moyen de la formule

0,02413 1

10_6 F
b c

106 TT
(16)

l étant la longueur de la ligne en km, a le côté du
triangle opposé au sommet Av b et c les deux
autres côtés. On calcule également les capacités C2

et C3 des deux autres fils; elles sont données par
des formules analogues. Les valeurs obtenues
permettent ensuite de se procurer la tension simple
du fil A1

y _ ]/Cl+ C2C3 + Cl u
Ci + C2 -C C3

(17)

Enfin on calcule le courant de charge du fil considéré

par la formule

/1 C>F1 (18)

8° Exemple numérique
Les trois fils d'une ligne de 40 km de longueur

forment une nappe horizontale conformément à

la fig. 4. Rayon de chaque fil 0,45 cm. Ecartement
a — 120 cm. Tension composée 17=35 000 V.
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Les capacités C1 et C3 ont pour valeur commune

0,02413-40
Ct C3

log
2 a

io-6

0,45 • a
0,9652

log

Ai

240

0,45

—4-

10-6 0,3539 - 10-6 F

As

Fig. 4.

Celle du conducteur A., est

C2
0.02413-40 10-6 F=
log

0,45 • 2a

0,9652

log
120
(L9

10-6 0,4542 - 10-6 F

On a ensuite

C1 + C2 + C3 i'162 * 10"6
C\ + C2C3 + Cl 0,49236 - 10~i2

v — V - ^ 0,49236 35 000 21135 V
1 3~ 1,162

C\ + Cl C3 + C\ 0,37582 - 10—12

F2 J35 000 18 465 V
1 1,162

Les courants de charge ont pour valeurs

/j I3 0,3539 • 10~6 • 314 - 21 135 2,350 A

I2 0,4542 - 10-6 • 314 - 18 465 2,635 A

Les formules approximatives communément
adoptées pour la capacité de chaque fil de phase
sont les suivantes (avec nos notations)

- 0,02413 l

log
]/bi

10-6 F (19)

Formules semblables pour C2 et C3. On en trouvera
la démonstration dans l'article cité de Fischer-Hinnen;

cet auteur donne d'ailleurs un grand nombre
de formules pratiques se rapportant à plusieurs fils
et aux dispositions des conducteurs les plus diverses.

Pour le calcul des courants de charge on adopte

la tension simple, soit U0 de sorte qu'ils sont

donnés par
/-L C1CoU0s h C2œU0, I3 — C3wU0 (20)

Les formules que nous avons établies au n° 6 pour
Cj, C2, C3 ne concordent pas et n'ont pas à
concorder avec celles de Fischer-Hinnen. Mais ces
dernières ont indéniablement un air d'incohérence du

moment qu'elles conduisent à des courants de
charge différents, tandis que, pour leur établissement,

on suppose ces courants de charge égaux.
Aussi Fischer-Hinnen, dans l'exemple numérique
qu'il traite (c'est d'ailleurs le même que nous
venons de donner) conclut-il en prenant la moyenne
de ces trois courants.

A notre avis, il serait préférable dans ce cas,
de préparer les formules de telle sorte qu'on
obtienne immédiatement cette moyenne. Ainsi les trois
dénominateurs des formules (19) sont différents;
si on en prend la moyenne, on obtient l'unique
formule

C
0,02413 l

log
3]/a b c

10- (21)

de sorte qu'on est naturellement conduit à la
conclusion que déduisent de leurs calculs Blondel et
Lavanchy3), savoir: Dans une ligne triphasée
dissymétrique permutée, on peut en première
approximation remplacer le triangle a, b, c par un
triangle équilatéral de côté j/abc et appliquer la
formule (1).

Appliquons la formule (21) à notre cas en
faisant

a 120 cm, b - 240 cm, c — 120 cm,
r 0,45 cm, Z 40 km.

On trouve

C
0,02413-40

_
Y1202-240

og 0,45

10-6 0,38206-10-6 F

I 0,38206-10-6 -314 -

35 000__ 2,425 A

La formule approximative que nous venons
d'employer (21) donne pour cette moyenne une valeur
remarquablement exacte, puisque la moyenne des
trois courants de charge trouvés précédemment est
2,445 A,

9" Le courant de charge dans une ligne triphasée
à trois fils dissymétrique, en tenant compte de

l'influence de la terre
Soient Alt A2, A3 les trois conducteurs d'une ligne

triphasée, TT' la terre (fig. 5). On tient compte de
l'influence de la terre en imaginant, symétriquement

placés par rapport à TT', trois conducteurs
A[, Ai, A'3 ayant des charges respectivement égales
et de signes contraires à celles des premiers. Le
champ électrique dans l'espace au-dessus de TT'
n'est pas changé par cette substitution (principe des
images de Lord Kelvin).

Nous changerons un peu nos notations. Les
distances mutuelles des conducteurs Av A2, A3 seront
désignés par cZ12, tf23, eZ13. Introduisons les distances
d'un conducteur quelconque, par exemple At, aux
trois images A[, A'2, A'3; nous les notons D11? D12,

3) 1. c. p. 795.
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D1S. Il y a au total 6 distances croisées égales deux
à deux; par exemple A1A'2 — A2Â\ D12.

Nous prenons le potentiel du point R comme
origine des potentiels; c'est le même point qui a
été déterminé au n° 6. Le potentiel i\ à la surface

Fig. 5.

Les trois fils d'une ligne

triphasée dissymétrique et

leurs images par rapport
à la terre

//////\//\/v//^y\/////A
T Du D12\ \ j*\p13 /

"^77777777

4
* \ \

\ \" *

m '
~-b

Ü2

de Ax est égal au travail qui correspond au déplacement

de la charge +1 de A1 jusqu'à R, travail
effectué par les forces du champ produit par toutes

les charges présentes.
Comme ces charges présentes sont au nombre de

six, savoir: qx, q2, q3, —qx, —q2, —q3, le champ
réellement existant est la résultante de six champs
partiels.

La partie du potentiel vx dû à qv q2, q3 est

ln ~~di
2 9i ln7"+ 2 92 ln + 2 9sr a12

Reste à écrire la partie du potentiel vt due aux
charges — q„ — q2, — q3. Pour aller de Ax à R
nous passons par S, point pour le moment
indéterminé, dont les distancés à A[, A',, A3 sont .s15 s2,

s3, de sorte que nous avons pour le parcours AXS

— 2 gj ln s,

Dil
2q2 ln3- -2qsln^-

12 13

Nous avons encore trois termes à écrire pour le
parcours SR. Nous désignons ces trois termes simplement

par v0, de sorte que v1 a pour expression

2 9i In —
T

2

2 q2 ln
D

2 q3 ln
12

13

JjL_ _L V
D ^ 0

13

(22)
Les potentiels des deux autres conducteurs donnent
lieu à des expressions semblables. Il est à remarquer

que v0 sera le même dans les trois expressions.

v2 2 <72 In ~ P 2 93 In J + 2^ Injr a23 Oj,

' 92 ln
D, q3 ln

22 D.23
'9l ln n "T" V0

12

(23)

v3 — 2 93 1° + 2 9i ln + 2 92 ln

'93 ln
D.33

— 2 ql ln
D

13

— 2
13

92 ln 2 |

D +Vo
23

(24)

On détermine le point R par les équations

r:i _ rl
do

r2 U
<*12 <*13 "23 "12 "13 "23

qui peuvent s'écrire

ri <*23 r2<*i3 — r3 d12 (25)

On détermine semblahlement le point S par les
équations

$2 5g Sg

**12 **13 **23

qui peuvent s'écrire

D12 D13 D.23

Sl**23 S2**13 — S3**12 (26)

On remarquera que, soit pour R, soit pour S, les
trois équations se réduisent à deux équations
indépendantes.

Par un examen géométrique nous nous sommes
déjà assurés de l'existence du point R. On pourrait

montrer également que le point S existe
toujours 4).

Désignons par q- la valeur commune des produits
(25) et par a2 la valeur commune des produits
(26). On a

Q2 Q2 e2

<*23 ' ri — d '
13

r3 — d12

O2 o2 Ö2

*V 52 ~ TT '
13

S3 — 2)
12

si

Les expressions (22), (23) et (24) pourront s'écrire

vx 2 qy In 6 + 2 (q2 + q3) ln 9
23 12 13

02 (j2
— 2 9iln 77n 2 (92 + 93)ln n n + vo

U\\ 23 12 13

v2 2 92 ln Ld + 2 (q3 + qx) ln - 1

13 12 23

2 92 ln n n 2 (93 + 9i)ln ^ r, + v,
**22 **13 DD 0

12 23

^3 — 2 93 ln r~r + 2 (91 + 92) ln i '
1' 12 a13 23

Ö2 tf2
— 2 93 ln n n

2 (91 + 9a)ln 77 77^ + v0
^33 ^12 13 23

Puisque qx + q2 + q3 0, ces formules se laissent
transformer. Pour 17, par exemple, nous avons

v1 — 2 ln

ö

r 2<*'lnÄ
' 9i ln

ou bien
**11 **23

rd23 "12 "13
2 ö2

-(- 2 q1 ln ^ (- v,DD 0
U\1 13

4) C'est seulement pour ne pas trop allonger cet exposé
que nous ne reproduisons pas ici la démonstration que nous
avons trouvée de l'existence du point S. Elle est un peu plus
difficile que celle qui concerne le point R. Nous l'abandonnons

au lecteur.
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U 29I Jn
^12 ^13

r d23
1„ -®12 ^13

qi D Dun u23
U

ou encore

Vl 2qi In di2 3 Ö,, P23

rd23 D12 D,g

On transforme semblablement les expressions pour
v2 et v3, et l'on aura les formules suivantes

vt — V0 2

v2 — v0 2

9i

92

Jn
^12 ^13 ^11 ^23

r d23 D12 D13

]n däs di2 ö22 ö,3 i,

r dI3 D23 D12

«V — 9 In ^13 ^23 ^33 ^12
'"o 2 93 ln rJ n nru12 13 23

(27)

On posera

C,

c2

cs

2 jn di2 d\o, Ö,, L>23

r d23 2 ö13

2 In ^2S ^12 ^2a ^13

rd13 D23 D12

2 jn dl3 d23 P33 Pl2
r d\2 öi3 ö23

(28)

de sorte que les équations (27) pourront s'écrire

(29)
91 Cj K — v0) j
92 — C2 (u2 u0)

9s C3 (u3
"o/ r

«„) J

Introduisons les différences de potentiel it„ u2, u3

supposées rigoureusement triphasées, entre les
conducteurs deux à deux. On a évidemment

K — v0)
(v2—v0)
(v3 — v0)

{v2—v0) u,
(v3 v0) u2
(Vl — Vg) —U3

(30)

Pour simplifier les écritures nous écrivons vAl, vA2,

vAs à la place des différences v,-—v0, v2—v0,
v3—v0, de sorte que les équations (29) se présenteront

sous la forme

91 — Ci *-'.4 n 92 C2vA2, 93== C3vA3 (31)

et les équations (30) sous la forme

Un — vA2 "i
VA2 U^43 1 Un

Vas — vAi u3

(32)

Vm

VA,=

Vaz

yci + C2ÇS 4- Cl

Ci + C2 + c3

|/Cf + CiC3 + Cl
Q + C2 + Q

y'cî + CiC2 + cï
Ci + C2 + c3

u

u

u

(33)

et enfin les courants de charge dans les trois
conducteurs seront donnés par les formules

—C1Ù)CAiÏ I2 — C2coCA2î f3 — C.fijU43 (34)

Ces formules (33) et (34) sont donc formellement
les mêmes que celles que nous avons obtenues dans
le cas particulier où l'on néglige l'influence de la
terre. Elles ne diffèrent qu'en ce que les capacités
C,, C2, C3 sont données par d'autres formules.

10° Résumé

Pour obtenir le courant de charge dans le fil
A± d'une ligne triphasée à disposition dissymétrique,

on calcule d'abord les capacités des trois
fils. La capacité du fil Ax, exprimée en farads pour
toute la longueur de la ligne, se déduit de la
première formule (28); on a

Ci
0,02413 l

joe dn d13 Dn P23

T d23 ö12 ö13

10-6 F (35)

Les capacités C2 et C3 s'obtiennent en transformant
les deux autres formules (28) de la même façon.

On calcule ensuite la grandeur VAl doimée p alla

première formule (33), savoir

y yci + c2c3 + Cl

c, -u c2 + c3
u

Enfin on obtiendra le courant de charge dans le
fil Ax par la première formule (34)

U CjOjF,

Ainsi écrites, ces équations (31) et (32) ressemblent
tout à fait aux équations (9) et (10) de notre
premier problème. Il sera donc inutile de répéter ici
les calculs que nous avons faits alors et nous pouvons

nous contenter de formuler les résultats.
Si donc on désigne par VAl, VA2, VAs les valeurs

efficaces de vAl, vA2, vAa, et par U la valeur
efficace commune de w,, u2, w3, on a

.41

11° Exemple numérique
Si l'on voulait tenir compte de l'influence de

la terre dans l'exemple qui a été donné au u" 8,
en supposant par exemple que la hauteur
commune des trois conducteurs soit 7 m, on trouverait
de nouveaux courants de charge, mais présentant
avec les premiers des différences tout à fait insignifiantes.

Cela provient de ce que les distances
mutuelles des fils sont petites par rapport à leur
distance à la terre.

C'est pourquoi nous considérons maintenant une
ligne existante, à haute tension, dont les câbles
sont très écartés. Ces trois câbles sont de nouveau
en nappe horizontale, disposition qui s'écarte donc
notablement du triangle équilatéral, et à cause de

laquelle les courants de charge seront nettement
différents.
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Voici des données concernant cette ligne qui
unit l'usine de Big-Creek au territoire avoisinant
de Los Angeles4).

Fil de terre au sommet du pylône
Ame d'acier: 7 fils d'une section totale de 40 mm2
Torons d'aluminium: section totale 306 mm2

Espacement des conducteurs:; 5,27 m
Hauteur au-dessus du sol: 10 m
Tension étoilée: 159,5 kV
Longueur de la ligne: 19,5 miles (31,38 km)
Fréquence: 60 Hz

D'après ces données, la section totale d'un câble
est 346 mm2, et le rayon du cercle qui a même
surface géométrique que le câble est

r 1,184 cm

Dans la théorie exposée, on a supposé que les trois
tensions entre conducteurs avaient même valeur
efficace; à cause du phénomène de capacité les
trois tensions par rapport à la terre ne peuvent
être rigoureusement égales. Vu le manque de
renseignements concernant ces tensions, nous adopterons

[7 159 500 ]/3 276 260 V.

En nous référant à la fig. 6 nous pouvons calculer
les longueurs suivantes:

527 cm; dlz 1054 cm;d12 «lg);

DX1 D22 Dzz 2000 cm ;

D12 D23 2068 cm; D13 2261 cm.

il 5,27m. AJ 5,27m 4)

il \\

Fig. 6.

Nous appliquons la formule (35), qui dans notre

cas se simplifie du moment que d12 d2Z,

D1 2 — D23.

C,
0,02413-31,38

log
1054-2000

10~6 0,2614-10-

'1,184-2261
C1 C3 0,2614-10-6 F

Pour le conducteur A2 on a de même

0,02413 l
Co,

loe ^23 ^12 ^22 ^13

r dl3 Dn D12

îo-

4) D'après R.-J--C. Wood, J. Amer. Inst, of Electr. Engrs.,
t. XLI (1922), p. 471...488. — Lire le compte-rendu de cet
article dans la Rev. gén. Electr., du 14 juillet 1923, p. 56.

Co
0,02413-31,38

log
5272-2000-2261

1,184 1054V206 82

10-6 0,3193-10-6 F

y y —
VC2 H- C2C3 C3

jT _ 39Q yyM - Cas - Ci + c2^C3
U - 165 390 V

y __ VCf-uCiC3+Cl v _ 148560 vAs~ C1 -(- c2 + c3
u - A48i>bU v

Calcul des courants de charge (co 2n 60 377)

Ix C1œVAl 0,2614 • 10-« • 377 • 165 390

Ix J3 16,30 A

I2 C2œVÂ2 0,3193 • 10-6.377.148 560

10 17,88 A

La concordance avec les valeurs trouvées par des

mesures (Ix 14,80 A; J2 15,50 A ; I3 15,10 A)
est imparfaite; ceci ne doit pas être imputé aux
formules, mais plutôt à des circonstances connues
ou inconnues dont il n'est pas tenu compte
(présence du fil de terre, flèche des câbles, etc.) et
aussi aux mesures elles-mêmes, toujours délicates.

Il est utile, pour faire une comparaison, de
négliger l'influence de la terre, et d'appliquer la
formule simplifiée (21), en substituant au triangle
très déformé constitué par trois points At, A2, A,
en ligne droite, un triangle équilatéral de côté

j/527-527-1054 664 cm

La capacité par fil est en moyenne

c 0,02413-3!,38 1()-6 _ Q,2755.10-6 F

log
664

1,184
Le courant de charge est en moyenne

1 Ca>U0 0,2755 • 10"« • 377 • 159 500 16,56 A

Cette valeur diffère fort peu de la moyenne 16,83
des trois courants de charge que nous avons obtenus
par le calcul. Ainsi donc, si on veut par un calcul
rapide être orienté sur le courant de charge moyen,
on peut négliger l'influence de la terre et imaginer
que les trois conducteurs ont la disposition
symétrique.

Cette simplification ne doit pas être inconsidérément

appliquée à d'autres cas. Si, par exemple,
seul le câble Ax est sous la tension [/„ 159 500 V,
les autres étant isolés, la terre ne doit pas être négligée.

Le courant de charge qui circule dans ce fil
et fait retour par la terre s'obtient par le calcul
suivant :

ç _ 0,02413^31,38 iq_6 __ Q 2346-1Q-6 F

log
2000

1,184

I CœU0 0,2346 • 10-6.377.159 500 14,11 A

Cette valeur concorde assez bien avec celle qui a
été trouvée par une mesure ([=13,78 A).
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