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Spannungsstoss und Fourierspektrum in der Hochspannungstechnik
Von Heinz Samulon, Zürich *) 621.3.(115.33

Einleitend wird eine Begründung für die Verwendung des
Fourierintegrals gegeben, anschliessend werden einige
Funktionen, die für die spätere Behandlung von Problemen der
Hochspannungsmesstechnik (Stossuntersuchungen) von Interesse

sind, durch Fourierintegrale dargestellt und der Einfluss
der verschiedenen Frequenzgebiete auf die Kurvenform untersucht.

Weiter werden Verzerrungen von StoBspannungen usw.
behandelt, die durch sogenannte «Verzögerungskabel» bewirkt
werden. Nachdem dann mit den gleichen Methoden noch
einige andere Fragen kurz behundelt werden, wird im
Anhang hauptsächlich über die Messungen von Konstanten eines
«Verzögerungskabels» berichtet.

Après avoir exposé les raisons qui motivent Vapplication
de l'intégrale de Fourier, l'auteur représente sous cette forme
quelques fonctions utiles à la solution de problèmes de
mesures en haute tension (essais de chocs) et examine l'influence
de différents domaines de fréquences sur la forme des courbes.

Il s'occupe ensuite des déformations de tensions de choc,
etc., provoquées par des câbles à retardement. Enfin, ayant
abordé succinctement quelques autres problèmes, l'auteur
termine par un rapport sur les mesures des constantes d'un
câble à retardement.

A. Einleitung
1. Begründung der Verwendung

des Fourierintegrals
Ein beliebiger zeitlicher Ablauf F(t) lässt sich,

von sehr speziellen Fällen abgesehen, stets darstellen

als eine — im allgemeinen unendliche —
Summe von stationären, rein sinusförmigen
zeitlichen Abläufen. Ist F(t) eine periodische Funktion
von t, so wird das zugehörige Frequenzspektrum
diskreten Charakter haben und die Amplituden werden
endlich sein, im nichtperiodischen Fall — der in
folgendem ausschliesslich interessieren soll — wird
das Spektrum kontinuierlich und die Amplituden
werden unendlich klein sein; während also der
periodische Vorgang durch die bekannte Fourier-
sche Reihe seine Zerlegung erfahren kann, ist dies
für den nichtperiodischen durch das «Fourier-
integral» möglich. Dass die Verwendung des
Fourierintegrals (oder der Laplacetransformation) für
die Lösung verschiedener physikalischer Aufgaben
ausserordentliche Vorteile bietet, ist schon einige
Zeit bekannt (vgl. [1], [2], [3]). Es sollen jedoch
hier noch kurz an einem später ausführlicher zu
behandelnden Problem einige Vorteile seiner
Anwendung aufgezeigt werden:

Am Eingang eines unendlich langen (oder mit
seinem Wellenwiderstand abgeschlossenen) Kabels
sei eine EMK F(l)0 angelegt; gefragt wird nach
dem zeitlichen Ablauf der Spannung an der Stelle
x l des Kabels, also nach F(t)x_/. Es werde weiter

angenommen, dass die Konstanten des Kabels
von Messungen her bekannt seien. Ausgehend von
den Maxwellschen Gleichungen [4] würde man zu
der bekannten partiellen Differentialgleichung
gelangen, der sogenannten Telegraphengleichung:

<92F(0* _ R.G.F(t)x+ (R.C + L.G)
ôF(t)*

1

8x2

+ LC £2F(t),
et2

<9*

(i)

wo R, G, L und C den Widerstand, die Ableitung,
die Induktivität und die Kapazität — alle pro
Längeneinheit genommen — bedeuten. Die
Anfangsbedingung würde zur Zeit t 0 Strom- und Span-
nungslosigkeit fordern, die Randbedingung wäre:

F(t),-o F(t)0 (2)
*) Eingang des Manuskriptes: 25. September 1942.

In Gl. (1) dürfen R und G (und in geringem Masse
auch L und C) jedoch nicht als konstant angesehen
werden (wie dies bekanntlich für eine stationäre,
rein sinusförmige Funktion F(t) meist geschieht),
vielmehr sind R und G von der Form von F (t.)
abhängig 1). Es ist offenbar, dass schon die approximative

Lösung dieser, nun nicht mehr linearen,
partiellen Differentialgleichung auf grösste
Schwierigkeiten stossen wird (vgl. auch [5]). Eine weitere
Komplikation liegt darin, dass uns die Messtechnik
die Koeffizienten R und G nicht in ihrer Abhängigkeit

von verschiedenen «Formen» der Funktion
F(t) liefert, sondern in Abhängigkeit von der
Frequenz stationärer, rein sinusförmiger Wechselströme

bzw. Spannungen. — Mit Hilfe des
Fourierintegrals gestaltet sich die Lösung erheblich
einfacher: Man zerlegt F(t)0 in eine unendliche
Summe sinusförmiger Schwingungen und kann dann
für jede Teilschwingung auf die längst bekannten
Lösungen für stationäre Sinusschwingungen
zurückgreifen. Gleichzeitig treten dann die Koeffizienten
R und G (respektive die Fortpflanzungskonstante
y) als Funktionen der Frequenz oo auf, so dass sich
die Resultate der Messungen direkt verwerten
lassen. Durch Summation (Integration) aller
Teillösungen erhält man sodann die gesuchte Lösung.

2. Die mathematische Form des Fourierintegrals
Das Fourierintegral, welches sich durch einen

Grenzübergang aus der Fourierreihe ableiten lässt
(vgl. [6] oder [7]), lautet:

oo -J- oo

F(t)
TT

1

7t

0 —oo

OO -f- OO

F(t)-(cos tot) dtj • (cos tot) dw

F(t) (sin tot) dtj • (sin tot) Ato (3)

oo oo (3a)
i r i r

F(() — \ fe(ctj) • (cos cot) dot \ fs(a>) • (sin cot) dto

f J w)
0 0

wo

oder

') Es sei daran erinnert, dass z.B. der Skineffekt von der
Schnelligkeit der Flussänderung (also dem Differentialquotienten

nach der Zeit) abhängt.
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+ OO +oo (3b)

fc(ai) ^ F(t) • (cos att) dt; fs(ai) ^ F(f)-(sinuit)dt
—oo —oo

Die Funktion F(t) ist damit dargestellt durch die
unendliche Summe von Cosinusfunktionen, deren
Amplitude gleich fc (co)dco und Sinusfunktionen,
deren Amplitude gleich fs(a>) dco ist; im allgemeinen

treten alle Frequenzen von Null bis Unendlich
auf2). Fasst man in bekannter Weise entsprechende
Sinus- und Cosinusglieder zusammen, so erhält man :

oo

F(t) — ^ ]/f2 (<y) + f2 (ai) • sin jait + arctg jj da» (4)

worin der Ausdruck |/fj~+~f| als das «Spektrum.»
der Funktion F(t) bezeichnet werden kann.
Eleganter lässt sich das Fourierintegral in komplexer
Form darstellen3):

F(t) Re
JZ

f(ai) • e] dco

-f- oo

f(«) i F(t) • e~ja'dt

(5a)

(5b)

B. Die Anwendung des Fourierintegrals
1. Darstellung einiger Funktionen durch das

Fourierintegral
Es soll zunächst die Zerlegung einiger, für die

Lösung der später behandelten Probleme benötigter
Funktionen erfolgen.

a) Die Darstellung einer Funktion, die für
—oo < t < 0 identisch Null ist und für 0 < t < + oo
der Gleichung:

F(t)oo 2 • e
T (6)

gehorcht (vgl. Fig. la), durch das Fourierintegral.
Es ist

-f- oo

f(a>) F(é) e~J"'dt

— oo
0 + 00

^F(Ot<oe (7a)

— oo 0

Unter Berücksichtigung der Annahmen folgt daraus

+ ~
f(a>) 2 \ e dt 2

(7b)

:+J«
2) Es sei noch bemerkt, dass F(t) und seine Ableitungen

keineswegs überall stetig sein müssen, um durch ein Fourierintegral

dargestellt werden zu können.
3) Re bedeutet hierin : Realteil von

Daraus ergibt sich

f(a>)

und somit wird:
+ jco

(7c)

F(f) - Re
2 r

-\-jco
• da»

2
co sin (a»t) + ^ cos (ait) (8a)

n 1\2
T,

da»

co

1.5

Fig. la.

Darstellung der exponentiell abklingen¬

den Stossfunktion

(Vgl. B, 1, a)

0,5 1 2'5
' r

0 0,1 0.2 0,3 0.4 0,5
S£t>/Oä3Ja

MHz

Fig. Ib.
Aniplitudenspektren exponentiell abklingender Stossfunktionen

Es sei hier noch kurz auf das Amplitudenspektrum
dieser Funktion eingegangen. Nach Gl. (4) war
das Spektrum:

s yïïTn
Setzen wir hierin die aus Gl. (8a) folgenden

Werte ein, so erhalten wir:
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S

Y i
(8b)

Berechnen wir für verschiedene Werte von T die
Grösse S als Funktion von m, so erhalten wir die in
Fig. lb gezeigten Kurvenzüge. Man erkennt daraus,
dass der Verlauf von S bei hohen Frequenzen für
die verschiedenen Werte von T der gleiche ist; dies
ist vor allem jener Teil des Spektrums, der den
allen Kurven mit verschiedenem T gemeinsamen
«Sprung» an der Stelle t 0 verursacht, während
das raschere oder langsamere exponentielle Abklingen

(kleines oder grosses T) vor allem durch die
niederen Frequenzen bedingt ist.

Häufig wird man bei der Wahl einer den
zeitlichen Ablauf charakterisierenden Funktion eine
gewisse Freiheit haben (sei es, dass nur ein Teil
der Kurve für das zu behandelnde Problem von
Belang ist, sei es, dass vom zu betrachtenden
zeitlichen Ablauf nur eine geringe Zahl von Punkten
bekannt ist) ; dann kann es vorteilhaft sein, ihn
stückweise durch eine Anzahl mathematisch
einfach darstellbarer Funktionen zu ersetzen, die derart

zu wählen sind, dass die Lösung der zugehörigen

Aufgabe möglichst einfach wird oder doch
wenigstens auf tabellierte Funktionen führt, so dass
umständliche graphische Integrationen usw.
vermieden werden können. Für verschiedene
Untersuchungen erwies sich als günstig:

2

Fig. 2.

1,5-

ü
Î

Darstellung der «idealen Stossfunktion»

(Vgl. B, 1, b)
(t Halbwertzeit)

0,5

0,5 :.5 2 t 2,5 3

b) eine Kurve (zur Abkürzung im folgenden als
«idealer Stoss» bezeichnet), die für —co < t < 0
identisch Null ist, für 0 < t < % der Gleichung :

F(t)o< t <7 2 —

und für z < t < 3 r der Gleichung:

Fw—= ï(7-3/

(9a)

(9b)

gehorcht und für 3 r < t < od wiederum identisch
Null wird (vgl. Fig. 2). x ist also hierin die Zeit,
nach welcher der Funktionswert auf die Hälfte des

Maximalwertes gesunken ist («Halbwertszeit»), Man
erkennt, dass diese Kurve der unter a) behandelten,
besonders in der Umgebung der Front recht ähnlich

ist. Die Zerlegung ergibt hier:

-}- or> 0

f(m) F(t) e-J""de=^ F(t)(<0 e J"'dt +
OO — OC > v-

0

6 7

F<0(>3rC"" dt

37
0

.e~3JOT e~j''T
f(m) - 2 j — -f— j 1- j

m TCO2 2m3r2 2oßv°-

(10a)

(10b)

damit wird :

2j [ e'"*

OO

TT T2 J

1 f ejat
dm H \ dm

,27ZT I m*
b

ja (I—3r)

dm -

00"
-M\nx22nr' a»-

h

(lia)

dm]

F(t) - I
71 J

OO

iS

2 i" sin (cot) •d co
1 f cos (cot)

tit j m2
"o

dm

1 fsin[m(v3r)] 1 f sin[m(t—r)]
dtü V dw

2 7TT2 2jZT2J CO3

0

(IIb)
Das Amplitudenspektrum, das hier für diesen

Fall nicht berechnet wird, ist dem unter a) berechneten

ähnlich, die dortigen Feststellungen gelten
entsprechend auch hier.

c) Durch Kombination zweier Kurven vom obigen

Typus mit verschiedenen Halbwertszeiten t
lässt sich leicht eine weitere Kurve gewinnen, die
für — oo <£ <C 0 und 3 r1 <C t <C ~l~co identisch Null
ist und für welche weiter gilt:

0 < t < t2: F(Oo<«t2 (2 " *-j - ^2 - ±j
='(---) (12a)

\r2 vj
(12b!

t2 < t < 3 t2: F(t)r2<(<3r2= ^2 — ~J — ^^— 3^

3 r2 < t < : F(t)3rs<(<ri= (12c)
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Tj < t < 3 t±: F(t)ri<t<3n (12d)

Fig. 3 zeigt derartige Kurven (im folgenden kurz
«Stossfunktionen» genannt) für verschiedene Werte

Fig. 3.

Darstellung verschiedener Stosstnnktionen

(durch Ueberlagerung zweier idealer

Stosstunktionen)

(Vgl. B, 1, c)

des Verhältnisses — ; ihre Darstellung durch das

_Fourierintegral lautet :

oc

VTj T2/ 7t J

cos (cot)
• da»

to°

_l_
1 ^sintco^-ST^l-sintcj^-rj)] ^

-^)ß"sin[o>(t—3r2)]-sin[to((—r2)] ^

(13)

Die Spektren dieser Stösse würden sich als
Differenzen der Spektren zweier «idealer Stossfunktionen»

mit verschiedenen Halbwertszeiten r1 und r2
ergeben.

2. Einfluss der Beschneidung des
Frequenzspektrums auf die Kurvenform von Stossfunktionen

a) Häufig wird sich die Frage stellen, welches
der Anteil einer Funktion F(t) ist, der von einem
bestimmten Frequenzband herrührt; das heisst mit
anderen Worten, dass nach dem Wert des
Fourierintegrals gefragt wird für den Fall, dass die Grenzen

desselben bestimmte, endliche Werte haben.
Physikalisch könlite man diese Frage etwa folgen-
dermassen deuten: Am Eingang eines Tiefpass-
filters (dessen Phasenmass im Durchlassbereich der
Frequenz proportional sei und das mit seinem
Wellenwiderstand abgeschlossen sei) liege eine EMK
der Form F(t). Das Filter habe für Wechselspannungen

einer Frequenz co > Q eine praktisch
unendlich grosse, für œ < Q keine Dämpfung. Welches

ist die Form der Spannung an den Endklemmen?

(Dass ein derartiges Filter nicht realisierbar
ist, ist hier belanglos.)

Ist F(t) gegeben durch das Fourierintegral:
oo -J- oo

F(t) Re p ^ jejwt dco • ^ F(t) e^'6" dtjj (5)

0 —oo

so wird sich die Ausgangsspannung durch das
folgende Integral darstellen 4) :

a +oo

*(t)fl Re {«*" dw $ F(0 • e~iot dtj (14)

b) Wendet man das eben Gesagte auf die in 16
besprochene ideale Stossfunktion an, so stellt sich
die Aufgabe, das Integral

S3 S2

n)ß
2 C sin (cot) ^

1 f c08 (,(ot)

CO TtT J CO2

«
S3 S3

da» -f-
(15)

sin[a»(t 3T)]d&j rsin[a»(t-T)]dJ

0 0

auszuwerten. Gl. (15) lässt sich durch partielle
Integration der drei letzten Glieder auf die
folgende Form bringen:

S3

/ t \ 1 f sin(wt) d coco
r\H
'/ n

t—t\21
27.

S3 S3

Çsin[w(t T)]dcj 3r^2l ^sin[o>(t—3t)] d^ ^
co CO

1 ft—r cos[o»(t—t)] 1 cos (o»t) t — 3tM
7t L CO[4 r2

cos[o>(t 3 t)] sin {cor)

4r2

~IS3

CO „ 9
cos[w(t-2T)]l (16)

2T2OT JO

Das Einsetzen der Grenzen für die letzten vier
Terme führt, da ihre Summe für co 0 zu Null
wird (vgl. Anhang, 2a) zu:

'ï-l—)-(i—1

V J 7t J CO

0

t —r\21

2r 7t

*sin[a»(t—t)] da»
co

t~3t\21 C sin[co(t—3t)]

2tn da»

o o

1 It—t cos[J2(t—t)] 1 cos(J2() (—3t

7t 14 T2 Q T

cos [ß(t—3 t)] sin (,öt)

Q 4t2

cos [Q (t — 2 t)]| (17)
Q 2 t2 ß2

Setzt man im ersten Integral cot z, im zweiten
co(t — r) z, im dritten a»(t — 3t) z, so wird:

4) Der Index S3 in ^(t)ß bedeutet, bis zu welcher

Frequenz das Integral erstreckt werden soll.
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Fig. 4.

F(f) «Ideale Stoss-
funktion»

<p(t) Entartung der
«Idealen Stossfunk-

tion» infolge Fehlens
höherer Frequenzen

im Frequenzspektrum

(/)

zeigt sich für grössere Werte von Q praktisch nur
in der Gegend der Front (d. h. der Sprungstelle der
Funktion F(t).) Man erkennt aus diesen Kurven,
dass sie um die Kurve F(t) «herumpendeln», und
zwar derart, dass die Amplituden der Abweichungen

von der F(f)-Kurve um so rascher mit der Zeit
abnehmen, je grösser Q gewählt wurde. Für Q

7t T600 — zum Beispiel, liegt bereits zur Zeit t —
v 10

die Abweichung von der F (t) -Kurve innerhalb der
Rechenschiebergenauigkeit. — Die in Fig. 5

gezeichneten Teile der «S-Kurven II, III, IV lassen
sich sehr genau folgendermassen darstellen:

Falls Q ]> — so gilt für t \ rt 5

/. t \ 1 C sinz (t — r\2l f sinz,b + (ï7)âS—
S2(t-3 r)

(t — 3r\2 1 f sin z/t 3r\2 1 Ç

Ur 7 y

Man erkennt nun, dass es sich bei den Integralen
um sogenannte Integralsinusfunktionen (Si) handelt,

die sich in verschiedenen Tabellenwerken
ausführlich berechnet finden (vgl. [8], [9], [10]).
Man kann also schreiben:

*(t)s - i(2-i)si(ß,) +(jf) [Û <<_r>]

r\2 1 1

-) — Si[ß(f—3r)]+—/ 71 7t

t — T cos[,ö(t—r)]

4 TT2

t -3r\2l
2t / 7t ' ' "7t

l cos(Qt) t— 3r cos [I2(t— 3t)]
T

Q

Q 4 t2

sin (Qt)

12

2 T2 Q2
cos [12 (t — 2 t)]}

(18a)
Für verschiedene Werte von Q wurde die Funktion
<P(t)s2 numerisch berechnet. Die entsprechenden
Ergebnisse sind in Form von Rurvenzügen in Fig. 4
und 5 niedergelegt. Fig. 4 zeigt die «ideale Stoss-
kurve» F(t) und die aus ihr durch Abschneiden

71
aller Frequenzen oberhalb Q — entstandene ent-

T
artete Stosskurve &(t)t2 (bzw. Kurve 7). (Dabei
bedeutet t, wie früher, die Zeit innerhalb welcher
F(t) vom Maximalwert auf dessen Hälfte gesunken
ist.) Fig. 5 in der der Zeitmaßstab sehr stark
gedehnt ist, zeigt, neben den bereits in Fig. 4 enthal-

7t
tenen Kurven, die Verhältnisse für 13=100

7t
T

(Kurve II), Q 300 — (Kurve III) und für Q
7t ^

600 — (Kurve IV). Ein Unterschied gegen F t)

$(t)ä ~ (2 - 1)(Si(Qt) + I) (19a)

wie aus Gl. (18a) im Anhang, 2b, abgeleitet wird;
für die Berechnung jener Kurventeile wird man
daher Gl. (19) statt (18a) verwenden. Es sei noch
bemerkt, dass aus Gl. (19) folgt, dass zur Zeit t 0

die Steilheit

'/'(O'A
J «=0

— Q

7t

1

¥7 (19b)

beträgt, falls Q —.

c) Wir wollen uns jetzt ähnlichen Betrachtungen

für die in B, lc, behandelte Stossfunktion
zuwenden. Hierbei wollen wir jedoch für die
Halbwertszeiten einige numerische Annahmen treffen.

j"
Es sei r1 50 jus und t2 0,5 jus, also — 100.

r2
Damit erhalten wir eine Kurve, die bereits in Fig. 3

dargestellt wurde. In Fig. 6 ist die Front dieser
Ktirve in stark vergrössertem Maßstab nochmals
gezeichnet (stark ausgezogene Kurve). Ein
Abschneiden des oberen Frequenzbandes wird — wie
leicht einzusehen — in erster Linie die Form der
steilen Front verändern. Aus Fig. 6 erkennt man,
dass die Frequenzen oberhalb s/4 Megahertz (d. h.

3
oberhalb Q 2 71 — MHz) auf die Form der

Kurve von sehr geringem Einfluss sind, nur an der
Stelle t 0 bewirken sie den scharfen Knick (die
Unstetigkeit des Differentialquotienten der Funktion

F(t) an der Stelle t 0). Betrachtet man die
Kurve mit dem Wert Q — 2 jt MHz genau, so
erkennt man, dass sich diese weitgehend mit der Form
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der sog. «Normalen Stoßspannung» deckt, die in
den von der Forscliungskommission für Hochspan-
nungsfragen des SEV und VSE aufgestellten
«Leitsätzen fiir den Schutz elektrischer Anlagen gegen
atmosphärische Ueberspannungen» (vgl. [11])
definiert wurde; die «Frontdauer» (vgl. die dortigen
Definitionen) beträgt auch hier ca. 1 us, die «Riik-
kenhalbwertzeit» ebenfalls ca. 50 us 5 Wir werden

+ 00

[rp(co)]x 0 - ei*'" d« •

TT

an der Stelle x — l aber:

e-J"' F(t)0 dt (20)

+ 00

also im folgenden, wenn wir kurz vom Normal-
stoss sprechen, stets die eben erwähnte Kurve mit
Q 2 MHz (resp. fgr 106 Hz) meinen.

3. Verzerrungen in einem Kabel
Es soll hier das bereits in der Einleitung

erwähnte Problem behandelt werden: Es sei nach der
Verzerrung gefragt, die eine Spannungswelle
erfährt, nachdem sie l Meter eines Kabels durchlaufen

hat, welches mit seinem Wellenwiderstand
abgeschlossen ist. (Diese Voraussetzung wird sich
nicht immer mit einfachen Mitteln realisieren
lassen, da im allgemeinen Grösse und Phase des
Wellenwiderstandes mit der Frequenz ändern und
daher auch der Abschlusswiderstand die gleiche
Frequenzabhängigkeit aufweisen muss.) Legt man eine
stationäre, sinusförmige EMK ei"1 bzw. sin œl an
den Eingang eines solchen Kabels, so ist an der
Stelle x l die Spannung bekanntermassen :

ei"'-e~yl eA"'-~ai) e-ßi bzw. e_3'sin(cot — al)

wo y iß + /a) die Fortpflanzungskonstante, a das
Phasenmass und ß das Dämpfungsmass — alle Grössen

pro Längeneinheit — bedeutet; im allgemeinen
ist y eine Funktion von co. Ist die Eingangs-EMK
F(t)0 durch ein Fourierintegral [Gl. (5)] dargestellt,

so wird für eine Tei/schwingung q> (co) an der
Stelle x 0 gelten:

5) Genau beträgt die Frontdauer der von uns betrachteten
Kurve 1,2 /us, die Rückenhalbwertzeit 50,5 /us, doch liesse sich
hier eine vollständige Uebereinstimmung durch geringfügige
Aenderung der Werte von Ti und r2 leicht erreichen.

Dadurch, dass dann — nicht mehr genau gleich 100 wäre, würde
r2

jedoch die Rechenarheit erheblich anwachsen; da anderseits
die Abweichung vom Normalstoss gering ist, hätte sich eine
Verbesserung der Uebereinstimmung kaum gelohnt.

lv(w)].v i — eiu'-e-y^1 dco\e-i"tF(t)0 dt (21)
JT

Fig. 5.

Entartungen der «idealen
Stossfunktion» F(f) infolge
Pehlens höherer Frequenzeil

im Frequenzspektruni
Die Fronten der
c£(f)0-Kurven:

I : Q y
II: Q JOO.^

III: ß MO¬

TIV: ß 600-y

F(t): ß ~

Die Gesamtspannung an der Stelle x I muss
dann sein:

OO 4" 00

F(f).v i =-[ei(at -"(u)-'>.e -/3(u)-'-dw \F(t)0 ev6J'dtl

71J J J

0 — oo

Fig. 6.

Front einer Stossfunktion mit ti 100 50 « s (vgl. B, lc und
B, 2c) sowie die Fronten der aus ihr durch Abschneiden aller

Frequenzen oberhalb Q abgeleiteten Kurven

Im allgemeinen werden e""(U)' und a(a>) l a's
Funktionen von œ aus Kabelmessungen vorliegen. Zu
relativ einfachen Resultaten kommt man meist,
wenn man die Funktionen e~@ und a^i) l stückweise

durch Geraden ersetzt; es sei also im Intervall

0 < w < cOj

e'V)' Pi — (h'0) (23a> 1

und
a(ü,)l =fi + £1-co (23b, 1)
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Im Intervall oj^ < a> < u>2 gelte:

und
e~ß(w)1 =Pi — q20J

a((o)l — $2 + Ç2'0)

(23a, 2)
:

I

(23b, 2)

usw. Damit kann Gl. (22) geschrieben werden:

<"i

F(t)x=i= —
C

• f(o»)-(p1-g1-a»)da> +7t J
0

<*»!

-f- ej(at-Ç*-Çfa>ï • i(oj) • (p2-q2 • oj) da»

CD,

^ -f" •<") f(w) • (pn qn'Cü) da» -f-

(24)
<ün-1

Fig. 7.

Kabelquerschnitt

Pb Bleimantel. Cu Kupferseele.

G Gummiisolation.

JtPt06"0 1 2 3 4 MHz

Fig. 8.

Dämpfungsmass (ß und Phasenmass (<x) eines Gummikabels
f Frequenz

Als praktisches Beispiel soll ein sogenanntes
«Verzögerungskabel» behandelt werden, wie es bei
Hochspannungsuntersuchungen häufig zwischen
Stoßspannungsgenerator und Kathodenstrahloszillo-
graph geschaltet wird, vgl. z.B. [12]. Die Länge
des Kabels, das mit seinem Wellenwiderstand (Z0
50 Ohm) abgeschlossen sei, betrage l 200 m; die

6) Herrn P.-D. Dr. K. Berger, Versuchsleiter der
Forschungskommission für Hochspannungsfragen des SEV und
VSE, danke ich auch an dieser Stelle dafür, dass er mir dieses
Verzögerungskabel sowie den später erwähnten Shunt zur
Verfügung stellte, ferner auch für die grosse Bereitwilligkeit,
mit der er mir verschiedentlich über Hochspannungsfragen
Auskunft gab.

Maße des Querschnittes sind in Fig. 7 eingetragen.
Die Konstanten eines derartigen Kabels wurden
durch Messungen (vgl. Anhang, 1) ermittelt6);
die Resultate sind in Fig. 8 dargestellt. Wie man
sieht, ist a.(a>)l eine durch den Nullpunkt gehende
Gerade, so dass eine «Phasenverzerrung» (Verzerrung

infolge Dispersion) im Kabel nicht auftreten
wird. Wir können somit bei der Berechnung der
Verzerrung auf die Berücksichtigung des Phasenmaßes

verzichten. Der Ersatz der '-Kurve
durch gerade Linien (gestrichelt in Fig. 9 einge-

'.o

0.5

0,4

0.3

0,2

0,1

1 2 3 ^ 4 MHZ

Fig. 9.

Die Funktion e für 2 200 m

zeichnet) ergab für die Gleichungen (23a), (23b)
usw. die folgenden Koeffizienten:

Pi 1, P2 0.962, p3 0,88, Pi 0,76

qx 0,636 jus, q2 0,03 /us, q3 0,017 jus,
qt 0,0106 jus,

wobei
2 jt

£0, MHz, w, 2 i MHz, a>o 6 TT MHz,
100 3

to4 12 7i MHz ist.

Wir können nun, da wir, ohne an der Form der
Kurven etwas zu ändern, das lineare Phasenmass
fortlassen dürfen, die Gl. (24) für die Rechnung
etwas umformen:

a i «a2

F(t)x=l eif(o») + ei f(«) da» —

o o
0),

— ^ eim f(a>) da»J> -j-
o

0)n CÖn-1

-|- — | ^ ei"' f(a>) da» — ^ eiot f(a>) da»j -+-•••

a>- dot

0

a> 2

_92 [
7t |

0

(On

7t \)
0

hin -1

— ^ eiwt f(a») • oj • da» | -f- (25)
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Für den Ausdruck

ö>„

1 c
— \eia*3

f(w) dw hatten wir in B,

2 a, die Bezeichnung eingeführt und wollen

nun neu für den Ausdruck — \ eiü" f(w) to • dw den
7t

Buchstaben verwenden; dann können wir
schreiben :

(26)
F(0.v ; =Pi 'I'(t)wl+p2{'I>(t)a2—'I>(t)lvl} +ps { ] +

- qt - q2 {ntu-nu -q3\ i -

0,5 1|IS

Fig. 10.

Die Verzerrung am Ende eines 200 m langen Kabels
a Spannung am Anfang des Kabels, b Spannung am Ende

des Kabels.

a) Am Eingang des Kabels liege eine EMK von
der Form der in 2, b mit «IV» bezeichneten Kurve
(vgl. Fig. 5 und 10), also dargestellt durch das
bestimmte Integral:

12ff
_

12jr (27)
T,

2 f sin cot 1 f cos cot
12jrMHz= \— - dw -\ \ —dw-f-

71 1 10 T 71 ] "
0

r 7t co2

0

12 ff
1 |Psinw(t—3r) — sin co (t—r)

2ttr2\ dwj

Es wird sich dann die Spannung an der Stelle
x l nach Gl. (26) ergeben zu:

(28)

WWmhz],_, ^>m27T+^U(t) - <i<(t)2A+
71 Too l Tool

<7iff^2* ffl ~'27t nn 71 I 2
100

<74
'

Da die Grössen 'l'(t)2?r, 'l'(t) 'P(t) und <IHt)
Tod 12îr

bereits in 2, b ermittelt wurden und auch p±, p2,
ps, Pi und qv q2, qz, qv bekannt sind, sind nur
noch die in Gl. (28) vorkommenden Ausdrücke
W(t) zu berechnen. Nach Gl. (25) und (15) ist:

12

m,
2 f— \sin 3

12

i r cos cjt
sin cot dw -\ \ dw -\-

TtT J W

0

+ "

sin w (t — 3 t) — sin w (t — r) dwl (29)

Durch Integration und partielle Integration
erhält man:

12

t —3rfcosw(t—3r)
9 2 \ d"~
2ttV2 J (0

0

12 12

t—r r
IttT2 J

cosw(t—t)
W

*
COS Cüt

7ZT
k
\ CO

+
2 coswt sinwT „

'

— 1 —cosw(t—2 t)
7t 7t T£ W

dw +

(30)

Durch einige Umformimgen und das Einsetzen der
Grenzen lässt sich dies folgendermassen darstellen
(Ableitungen, vgl. Anhang 2, c) :

12 (t — 3t)
t—3 t P cos z—1

nho-92-\ d*-
2 Tz7t Z

S2 (t — r)
t— T f COS Z—1

2 T2jt
dz -)-

12t

1 f cos z—1

7tT
dz-

7t t
(1—cos Qt) +

sinJ?T „ v
1

+ cos Q(t—2 t)
7tT2 Q 7t T

(31)

Die hier enthaltenen Integrale sind (vgl. [13])
darstellbar als die Summe eines Logarithmus und einer
sogenannten Integralcosinusfunktion (Ci) (die
gleichfalls ausführlich tabelliert ist, vgl. [8], [9],
[10]), und zwar ist:

cos y—1
dy Ci(a)— Ina —k

Setzt man diesen Ausdruck in Gl. (3) ein, so fällt
k fort, und man erhält:
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—— jci[.<?(f-3r)]—ln[ß(t—3r)]| —

/Ci [i? (t - t)] —In [Q (t — t)]

2 JT- T-

t—r
2 jr- r2 |

H /ci \Qt\—In [i?t] \ -| (1—cos Qt) -\-
jrr\ jrt
sin fir - „ 1

cos Q (t — 2 r)
jz r2 L' jtt

(32)

Fig. 11 und 12 zeigen den verzerrten Normalstoss
an der Stelle x — 200 m. Wie man sieht, ist die
durch ein derartiges Verzögerungskabel von 200 m
Länge bewirkte Verzerrung nicht beträchtlich.

4. Normalstoss und Schivingkreis

Es sei nach dem Strom in einem Serieresonanz-
kreis (Fig. 13) gefragt, an dessen Klemmen eine
EMK liege von der Form des «Normalen Spannungs-
stosses». Für die Lösung ist es sehr bequem, den
Normalstoss darzustellen als Kombination zweier
Kurven von dem in B, 1, a behandelten Typus

Fig. 11.

Verzerrung- der Front des

«Normalen Spannungs-

stosses am Ende eines 200 m

langen Verzögerungskabels

a unverzerrte Spannung.

b verzerrte Spannung.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1p

Hiermit sind also auch die Ausdrücke zu
berechnen, so dass sich die Form der Spannungswelle

an der Stelle x l nun ohne mathematische
Schwierigkeiten (allerdings mit ziemlich grossem
Aufwand an Rechenarbeit!) aus Gl. (28) finden
lässt, vgl. Fig. 10.

b) Besonders interessieren wird die Verzerrung,
die der «Normale Spannungsstoss» längs eines
derartigen Kabels erfährt. Da sich dieser zusammensetzen

lässt aus zwei Kurven von der Art der so-

(also nicht wie bisher durch Kombination zweier
«idealer Stossfunktionen» unter Weglassung aller
Frequenzen grösser als 1 MHz) 8). Es würde also
gelten :

0 für — oo < t < 0

@ ~ @2

/ --M
,M)

fi T,
\e — e /fur 0< t< -)-oo

Die Lösung soll zunächst für die EMK (5, erfolgen

50 (is

eben betrachteten, so bereitet die Berechnung
seiner Verzerrung keine neuen Schwierigkeiten7).

') Da das Frequenzband des Normalstosses, wie wir
früher gesehen haben, nur bis zu einer Frequenz /max lMHz
reicht, verringert sich die Zahl der Glieder gegenüber der
in B 2,a behandelten Funktion, deren Frequenzband sich bis j

6 MHz erstreckt, ganz erheblich.

Fig. 12.

Verzerrung eines «Normalen

Spannungsstosses am Ende

eines 200 m langen Verzö¬

gerungskabels

a unverzerrte Spannung.

b verzerrte Spannung.

8) Trotzdem der Normalstoss genauer durch die in B 2,c
besprochene Kurve dargestellt werden kann, wurde diese
Darstellung gewählt, da sie für die folgenden Ableitungen
grosse Vorteile bietet. Dazu sei weiter bemerkt, dass anderseits

die Darstellung durch Gleichung (34) für die in B 2 und
3 angestellten Untersuchungen eine sehr starke Komplizierung

gebracht hätte.
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(für den Spezialfall T1 c>o ist die Lösung z. B. bei
[2] zu finden). Es lautet die Darstellung von ©j
durch das Fourierintegral [vgl. Gl. (8) ] :

-ftï ejm
dco

+ jo>

(8)

Die Impedanz des Kreises ist für die Kreisfrequenz

w:

L

Fig. 13.

Serieresonanzkreis
(Vgl. B, 4)

3 R+j'wL-l-—-
jcoC

Dieser Ausdruck lässt sich umformen in:

8 -r~ (j<°—Qi) (jv—Qi)

(35)

(36)

wo:
R

el ~iI±J
R

KV (37>

Der Quotient stellt die Dämpfung p, des Krei-
2L

ses dar, der Ausdruck 1/ — seine Eigen-
\ LC \2L)

frequenz co0. Somit können wir schreiben:

Qi=— (37a)

Aus Gl. (8) und (36) folgt der Strom zu:
oo

2 f eimjb)-A(o

R

& •h
ir.

711
o (joj—ßx) (joJ—Qz) {j°J

(38)

oder, indem wir substituieren jco z:
oo

ezt-z-dz
3,

nLj J
(«—öi) (z~62) \z Ti

(39)

Nimmt man eine Partialbruchzerlegung vor, so
erhält man:

R. ezt d • 6Z Ma e
(40)^ 2

jtLj J z —ê»! Q2 2+ Ti'
wo:

A öi

(ft—Ös) (<?i + ^-)
(41a)

B Q2

(102 ßj) £>2

Ï1!

c — 1

(41b)

(41c)

Die Lösungen dieser Integrale sind bekannt, vgl.
z. B. [16], und zwar erhält man (für t >0)

t

& AjA.eeit+R.ee2'+C.e~^J
*42)

Mit Gl. (37a), (42) und (41) ergibt dies nach einigen

Umformungen:

nlllfi-lX+coi-MÔ)

r^+Ml-^-
e-fit

Mn

T
— sinw0t +

H cos t
Ti

— e '•)
Ti J

(43)

Für t < 0 ist 5i 0. Die nähere Betrachtung
der Gl. (43) zeigt, dass der durch die Spannung ©j
bewirkte Strom Si sich — wie zu erwarten war —
zusammensetzt aus einem Strom von der Form der
gedämpften Eigenschwingung des Kreises (die beiden

ersten Glieder in der geschweiften Klammer)
und einem Strom von der Form der angelegten
EMK (dritter Term in der geschweiften Klammer).
Die Amplituden dieser Teilströme hängen von den
Konstanten des Kreises einerseits, von der Form der
EMK (resp. der sie charakterisierenden Grösse Tt)
anderseits ab. Ob ein sogenanntes «Ueberschwin-
gen» (Vorzeichenwechsel des Stromes) eintritt,
hängt somit von den Konstanten p, co„ und 7\ ab.

Der Gesamtstrom 3, der durch die Spannung
© ©-L — ©2 [vgl. Gl. (34)] hervorgerufen wird,
stellt sich als Differenz der Ströme 3i und 32 dar:

3 3i- 32 (44)

(3?2 erhält man, indem man in Gl. (43) die
Konstante T1 durch T2 ersetzt.)

5. Einige Probleme bei der Messung des
«Normalen Spannungsstosses»

Mit Hilfe der in B, 2, c gemachten Feststellungen
über die frequenzmässige Zusammensetzung des
Normalstosses lassen sich jetzt einige Fragen
beantworten, die bei Hochspannungsmessungen auftreten
können :

a) Häufig werden in der Hochspannungsmesstechnik

sogenannte gemischte, kapazitiv-ohmsche
Spannungsteiler — vgl. [14] und [15] — verwendet,

wie in Fig. 14 dargestellt; hierin bedeutet Ce

die — eigentlich verteilte — Erdkapazität. Bei be-
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kanntem R und Ce 1 iisst sich die Frage beantworten,

wie die Parallelkapazitäten zu bemessen seien,
damit ein «Normaler Spannungsstoss» praktisch
verzerrungsfrei geteilt wird. Es ist nach Zinke [14]
das Verhältnis der totalen Spannung zur Teilspannung:

• I, N\
1 "h a (A^)2

uN sinh (gl\)
it —

u. sinh g
N

l+_L(gjV)«.—+•
6

y ' w
WO

(gN)2 j u N2 R Ce

1 -(- j io R C

N ist hierin die Zahl der Stufen des Teilers, g die
Fortpflanzungskonstante einer einzelnen Stufe. Damit

nun der Stoss unverzerrt geteilt werde, muss für

"HF—FF
[to

ill IIe' T
=c

=c

=c

=c

u
=c

—C

=c

"il II 1
[to

ill IIe' T'II II i
c 0" 1

ill II « Y
"II II i

c 0* H
iii il ' Y
'il II I

c 0« H
ni il ' Y
'il il 1

c 0" H
iil ir* Y
'il II I

c D" H
iii MG T
m H în*

SCV'OB.t i

1

-c u,

i

Tig. 14.

Kapazitiv-ohmscher
Spannungsteiler

alle in ihm enthaltenen Frequenzen der Spannungsteiler

sich angenähert frequenzunabhängig verhalten.

Lassen wir zu, dass der Absolutwert von ü

maximal um 1 % ändert, so gelten die beiden
Bedingungen :

,lx co2N2R2Ce.C 1
(1 < —

l + w2R2C2 15

(2)
>NRC.

1 + W2R2C2
< 1

Die Bedingung (1) muss für die höchste
auftretende Frequenz (hier also: o>max — 2 n MHz)

erfüllt sein, während Bedingung (2) für a>*
R C

für welches der Ausdruck ———1 maximal[l+ ùt'R'C/
wird, erfüllt sein muss (falls co* nicht grösser als
die maximal auftretende Frequenz wmux ist).

b) Auch die Frage der Brauchbarkeit eines
Shunts für Messungen des Normalstosses (parallel
zum Kathodenstrahloszillographen), lässt sich leicht
entscheiden: es muss von einem derartigen Shunt
gefordert werden, dass er bis ca. 1 MHz praktisch
frequenzunabhängig ist, d. h. dass sowohl sein
Blindwiderstand wie sein Wechselstromwirkwiderstand

(durch Induktivität und Skineffekt bewirkte
Widerstände) bei 1 MHz noch erheblich unter dem

Gleichstromwiderstand bleiben. Diese Forderung
ist — wie Messungen 9) ergaben — für bestimmte
Meßshunts der Bauart FKH dank einer sinnreichen
Konstruktion erfüllt.

c) Parallel zu dem das Verzögerungskabel
abschliessenden Wellenwiderstand liegen die
Ablenkplatten des Kathodenstrahloszillographen
(C 50 pF) ; die Zuleitungen stellen eine mit dieser
Kapazität in Serie liegende Induktivität von ca.
L^2-10"7 H dar. Wird die Messung des Normalstosses

durch das Vorhandensein dieses
Serieresonanzkreises verfälscht? Selbst für die höchste
auftretende Frequenz von 1 MHz ist die Impedanz

-)- j to L stets noch kapazitiv, und zwar ca.
jtoC
60mal grösser als der Wellenwiderstand. Daher ist,
wie leicht einzusehen, der Einfluss des
Kathodenstrahloszillographen auf die Messimg unbedeutend.

d) Ausdrücklich sei darauf hingewiesen, dass
dann, wenn die Stoßspannung zu einem plötzlichen
Durchschlag und damit zu einem äusserst raschen
Absinken derselben (in weniger als Vio jus) führt,
das Frequenzspektrum durchaus von dem des
normalen Spannungsstosses abweicht10). In diesem
Falle sind auch Frequenzen von mehr als 1 MHz
noch von grosser Bedeutung. Die Fragen von B, 5 a,
b, c müssten also für diesen Fall noch gesondert
untersucht Werden, bieten jedoch keine neuen
prinzipiellen Schwierigkeiten.

Fig. 15.

Schaltschema der Kabelmessung mit Hochfrequenz-Messbrücke
(Vgl. C, 1)

C. Anhang
1. Messungen am Verzögerungskabel

Nach dem bekannten Zusammenhang

tgh {yl) \j 3k

f Ot

wo 3k die Kurzschlussimpedanz und 3 z. die
Leerlaufimpedanz ist, kann yl bestimmt werden.

°) Die Messungen am Shunt FKH 14 wurden in der
gleichen Schaltung ausgeführt wie die Messungen der Kurz-
schluss- und Leerlaufimpedanzen des Verzögerungskabels,
vgl. Fig. 15. Die Messungen, die sich bis ca. 4 MHz recht
genau ausführen liessen, ergaben eine (frequenzunabhängige)
Induktivität L 0,010 /<H, bei einem Gleichstromwiderstand
von 0,225 Ohm.

10) Eine Stoßspannung, die, kurz bevor sie ihren maximalen

Wert erreichen würde, infolge Durchschlags zusammenbricht,

liesse sich z. B. durch das Spiegelbild der in B, lb,
behandelten «idealen Stossfunktion» in erster Näherung
darstellen.
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Zu diesem Zwecke wurden 3 a; und 3/. des zu
messenden Gummikabels — vgl. Fig. 7 — in einer
Brückenschaltung, gemäss Prinzipschema Fig. 15,

gemessen. Verwendet wurden eine Hochfrequenzmessbrücke,

ein modulierter Hochfrequenzgenerator
und als «Nullinstrument» ein Allwellenempfänger.
Die Messungen liessen sich zwischen 100 kHz

und 4 MHz mit guter Genauigkeit ausführen. Die
Resultate sind aus Fig. 8 und 9 ersichtlich. — Zur
Kontrolle, ob auch unterhalb 100 kHz das Phasen-
mass linear von co abhänge, wurde für zwei weitere

Werte von a eine andere Art der Messung

gewählt. Indem nämlich für Leerlauf cosh yl —
Via

ist, kann durch Messung des Verhältnisses der
Spannungen am Anfang und am Ende des Kabels und
ihrer Phasendifferenz auf yl und also auch auf a
geschlossen werden. Ue und lla wurden mittels
Röhrenvoltmeter gemessen, die Phasendifferenz erhielt
man aus Form und Lage der Ellipse, die der
Kathodenstrahl auf dem Schirm des Oszillographen
zeichnete, wenn VLe und lla auf die zueinander
senkrechten Ablenkplattenpaare gegeben wurden.
Die beiden Messungen lieferten eine Bestätigung für
den geradlinigen Verlauf der Funktion auch unterhalb

der Frequenz 100 kHz.

2. Einige mathematische Ableitungen und Beweise
zu Ziff. 2 und 3 des Abschnittes B

a) Zum Beweis der Behauptung (von B, 2, b),
dass

t — x cos[w(t — r)] 1 cos(wt) t—3t
T4 T2 CO

cos[w(t — 3r)] sin (cor)

CO 4 T2

cos [w(t — 2r)]
co 2 t2 w2

sei, nehmen wir an, co sei so klein, dass:

co212

0

0) 0

cos cot 1
2

cos co (t— t) 1 —

cos co (t — 2 t) 1

cos co (t—3 t) 1-

sin cor — cot

co2 (t—r)2

co2(t—2 t)2

co2 (t — 3 t)2

sei. Dies eingesetzt, erhalten wir nach Zusammenfassen

und Ordnen der Glieder:

| t — t co(t — x)2 1 cot2 t—3t co (t—3t)2
4 T2 t 2 4 t2

1 co (t — 2r)2|
2t

'
2 j

Für co 0 wird dieser Ausdruck — wie zu
beweisen war — zu Null.

b) Zur numerischen Berechnung von Kurven,
die Gl. (18a) gehorchen, ist es von Vorteil, einiges
über das Verhalten der Funktion S1(t) zu wissen.
So ist Si(:r) x falls |t| « 1. Ferner gilt für ein

IT COS X
|x| » 1: Si (+*) (wobei der Fehler

2 x
für |x| > 37t nur noch < 1% ist); mit dieser
Beziehung können wir, wenn Ti(t— r) [und damit
selbstverständlich auch Ti(t—3t)] kleiner als —3n
ist, schreiben:

<Ht)a - 2— Si(ßt) (t-rf
7t \ Tj 4i7tX2

(t—3t)2[~ 7t cos i?(t—3t)"

2 S(t-3 t)4ttt2

7t cos Q(t-r)
2 Q(t-r) _

1 cos Sit

7tX Ti

+ t—r cos Ti (t — t) t — 3t cosi2(t—3t)
4 7i r2

sin Ti x

7t 2 X2 Ti2

Ti 4 7t x2

cos Ti (t —2 t)

Ü

Nach Zusammenfassung und Ordnung der Glieder
erhält man:

Si (Ti1)

7t

1 "I CO!

2 J 7t

cos Tit
xTi

sin Ti x • cos Ti (t— 2 t)
2 7t x2 Q2

5 7t
Für Q > " muss die Summe der beiden letzten

T. 1
Glieder kleiner als — sein und kann daher ver-
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nachlässigt werden; man erhält somit:

ma= 2- Si (Tit)
(19a)

Für sehr kleines t wird Si (Tit) Tit und

demnach
^-7(2-v)(ßl+y)

(*'^=0=^-7-7t ZT
(19b)

c) Die in Gl. (30) enthaltenen Integrale werden
nach Einsetzen der Grenzen unendlich; wir formen
sie daher etwas um:

t—3t f cos co(t—3t)jt—3t f

0

+ Uc^d I

7tX J 0) J

àoj -
t — x Ç cos co(t—t) dw +

co

1
• lim/(t—3 t)

7t-2-T2 <5>o\
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[cos a>(t — 3 t) — 1] dw + do>
(t — t)

0)
6

q a
f[cos co (t-r)—1] dw + do»

^ rf [cos wt— 1 ]dw+dm)
3 CO J to J

S i
Nach Ordnung der Glieder erhalten wir:

ß ß ß

iz2lC..._|__LC...\
n t2 3 2 TT tr2 3 nr 3 J

t—3T
2

o

û
t—3tP cosco(t—3r)—1— 3T f
5jtt2 j

do>-
t—T

2 7t T2 3 w 2 TT T2

0
42 £

1 f coswt—1f COSftj(t T) 1
d(0+

3 CO 7tT ÜJ

dco -4 V — da»

0 0

Die Integrale der rechten Seite geben auch für die
untere Grenze (a> 0) endliche Werte. Substituieren

wir weiter im ersten Integral co(t—3r) z,
im zweiten co(t—r) z, im dritten cot z, so
erhalten wir Gl. (31).

Hrn. Prof. Dr. F. Tank möchte ich hier noch für
die Anregung zu dieser Arbeit, für seine Ratschläge
und sein freundliches Interesse herzlich danken.

D. Literatur
[1] Wallot, Theorie der Schwachstromtechnik (Springer

1932).
[2] Wagner, Operatorenrechnung (J. A. Barth 1940).
T3] Droste, Die Lösung angewandter Differentialgleichungen

mittels Laplacescher Transformation (Mittler & Sohn
1939).

[4] Frank-v. Mises, Differentialgleichungen der Physik (Vie-
weg & Sohn 1930).

f51 Enzyklopädie der mathematischen Wissenschaften II,
3,1, Nr. 20 (Teubner).

[6] Joos-Kaluza, Höhere Mathematik für den Praktiker (J.
A. Barth).

[7] Doetsch, Theorie und Anwendung der Laplace-Transfor-
mation (Springer 1937).

T8] Jahnke und Emde, Funktionentafeln (Teubner 1938).

[9] Brit. Ass. Ad. Sc., Mathematical tables, Vol. I (London
1931).

[10] Tani, Tables of si(i0 and ci(>) (Meguro, Tokyo 1931).
[11] Leitsätze für den Schutz elektrischer Anlagen gegen

atmosphärische Ueberspannungen, Bull. SEV, Bd. 33

(1942), S. 291.

[12] D.Gabor, Kathodenoszillograph, Forschungshefte der
Studiengesellschaft für Höchstspannungsanlagen, 1. Heft
(Verlag der Vereinigung der Elektrizitätswerke, Berlin
1927).

[13]-N. Nielsen, Theorie des Integrallogarithmus (Teubner
1906).

[14] Zinke, Frequenzunabhängige kapazitiv-ohmsche Span¬

nungsteiler für Messzwecke, ETZ, Bd. 60 (1939), S. 927.

[15] R. Eisner, a) Die Messung steiler Hochspannungsstösse
mittels Spannungsteilers, Arch. Elektrotechn., Bd. 33

(1939), S. 23. b) Die Berechnung der Spannungsverteilung

an einem Mehrfachkettenleiter, Wissenschaftliche
Veröff. aus dem Siemens Konzern, Bd. 20 (1942), S. 83.

[16] Làska, Sammlung von Formeln der Mathematik (Vie-
weg & Sohn, 1888/94).

Ein neuer Oelstrahlschalter für Mittelspannung
Von A. Roth, Aarau

Aufbau und Wirkungsweise eines ölarmen Schalters für
Nennspannungen unter 45 kV werden unter Hinweis auf die
Vorteile gegenüber anderen Schaltertypen beschrieben. Das
zu lösende Problem lag in der Reduktion der seitlichen
Abmessungen; der Erfolg ergab sich durch ein neues Prinzip in
der Ausbildung von Oelgefäss und Löschkammer.

621.316.57.064.25
Construction et fonctionnement d'un interrupteur à

remplissage cPhuile restreint, pour tensions nominales inférieures
à 45 kV. Avantages par rapport aux autres types d'interrupteurs.

Le problème consistait à réduire les dimensions
latérales. Il a été résolu par un nouveau système de cuve à huile
et de chambre d'extinction.

Die Zeit, wo die Schalter in Hochspannungsanlagen
einen Punkt der Beunruhigung für die Leiter

von Betrieben mit grösserer Kurzschlussleistung
bildeten, liegt kaum 15 Jahre zurück. Seither hat
die Einführung der ölarmen und Druckluft-Schalter,
aber auch die Vervollkommnung der Kesselölschal-
ter auf Grund der Forschung Abhilfe geschaffen.
Merkwürdigerweise hat bis heute in unserem Lande
für Betriebsspannungen bis 30 kV in Anlagen mit
kleiner Schalterzahl der ehrwürdige Oelschalter
seinen Platz zähe behauptet. Der Grund liegt wohl
darin, dass für solche Anlagen die Verwendung
der Druckluftschalter mit ihrer kostspieligen, und
als automatische Einrichtung immerhin empfindlichen

Drucklufterzeugungsanlage nicht in Frage
kommt, Schalter mit durch den Abschaltmechanismus

erzeugter Druckluft1) zu kostspielig sind, oder
dann ihr Abschaltvermögen unterhalb des durch
unsere Verhältnisse erforderlichen Wertes von 200
MVA (bei 8 kV) liegt. Eine Ausnahme bilden die

») Roth, Bull. SEV 1939, S. 658.

für Unterbrechung des Betriebsstromes gebauten
Lastschalter2), welche aber Kurzschlußströme nur
in Verbindung mit Sicherungen beherrschen können.

Es lag darum nahe, den Oelstrahlschalter,
welcher ursprünglich nur für Freiluftanlagen gedacht
war, sich dann aber dank seiner Einfachheit und
Robustheit auch für Innen-Anlagen von 45 kV und
darüber immer mehr durchsetzte, auch für
niedrigere Spannungen zu entwickeln. Die ersten
Studien zeigten bald,, dass dieses Prinzip gerade für
diesen Verwendungszweck verschiedene zusätzliche
Vorteile aufweist. Der hauptsächlichste besteht in
der Möglichkeit, damit Schaltanlagen in einer
Ebene auszulegen3), mit dem grossen Vorteil der
einfachen Leitungsführung und der damit verbundenen

Klarheit und Uebersichtlichkeit der ganzen
Anlage, der Einsparung an umbautem Raum und
der Verhütung von Bedienungsfehlern und Un-

2) Ebenda, S. 655.
3) Scherb, Bull. SEV 1939, S. 659ff.
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