Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 33 (1942)

Heft: 14

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

genügen. Bei Regulierantrieben, ebenso für die Anlauf- und Bremsperiode, sollte aber stets der Verlauf des statischen Drehmomentes über der Drehzahl angegeben werden, ausgedrückt in mkg und gemessen an der anzutreibenden Welle. Es kann auch in $^{0}/_{0}$ des Nenn-Drehmomentes, das der Antriebsleistung bei einer bestimmten Drehzahl, in der Regel der obern, entspricht, festgelegt werden. Eine zeichnerische Darstellung ähnlich Fig. 1 a bis 1 h, begleitet von einer kurzen Erläuterung, wird das Verständnis erleichtern.

- 4. Das Schwungmoment (GD^2) der bewegten Massen, bezogen auf die Antriebswelle oder eine andere Welle von bekannter Drehzahl. Ist es veränderlich, z. B. bei Zentrifugen, die im Anlauf gefüllt werden, so ist der Verlauf des GD^2 während der verschiedenen Arbeitsperioden anzugeben. Die Angabe des GD^2 ist überall dort unerlässlich, wo in bezug auf dynamische Vorgänge bestimmte Bedingungen gestellt werden (Sanftanlauf, Schweranlauf, Gleichlauf, Bremsen, Umkehren usw.). Bei allen diesen Untersuchungen wird auch das GD^2 des Motors selbst und der Uebertragungsteile mitzuberücksichtigen sein.
- 5. Der zeitliche Ablauf des Arbeitsvorganges, nicht nur zu unterscheiden nach Dauerbetrieb, aussetzender Betrieb, Dauerbetrieb mit aussetzender Belastung, unter Angabe der relativen Einschaltoder Belastungsdauer (bezogen auf ein Arbeitsspiel von 10 min Dauer), sondern auch anzugeben für die verschiedenen Perioden eines Spieles (z. B. den Anlauf, Drehmomentverlauf über die Zeit, Bremsung usw.).

Ein Beispiel für eine solche Darstellung, die alle Elemente für die Grössenbestimmung des Antriebsmotors enthält, gibt Fig. 3 für eine Maschine mit zyklischem Arbeitsspiel (Zentrifuge) Hierin sind nur die primären Bestimmungsgrössen eingetragen. Die für die dynamischen Vorgänge des Füllens, Beschleunigens und Bremsens nötigen Drehmomente lassen sich aus den angegebenen Grössen errechnen und sind nicht angedeutet. Sache des Maschinenbauers ist es, diese primären Bestimmungsgrössen bekanntzugeben.

Ergänzt man diese Angaben, zu denen stets auch die Bezeichnung der anzutreibenden Maschine gehört, mit der Art der Kraftübertragung (Kupplung, Riemen, Zahnrad usw.), der Art der Montage (der Motor-Bauform), den Platz- und Raumverhältnissen (Temperatur, Feuchtigkeit, Verunreinigungen,

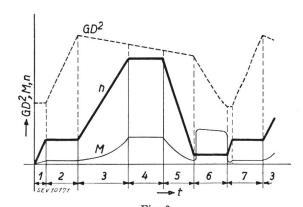


Fig. 3.
Elemente für die Grössenbestimmung eines Arbeitsmotors mit zyklischem Spiel.

1 Anlauf. 2 Füllen. 3 Beschleunigen auf Schleuderdrehzahl.
 4 Schleudern. 5 Bremsen. 6 Leeren (Auskratzen). 7 Füllen.

korrosive oder entzündbare Gase), der gewünschten Leitungsverlegung, den Anforderungen in bezug auf die Bedienung (von Hand, von Ferne, selbsttätig, allfällige Abhängigkeiten von andern Maschinen oder Apparaten) und schliesslich mit den Daten des zur Verfügung stehenden elektrischen Netzes (Spannung, Frequenz, allenfalls Leistung, Anschlussbedingungen), so wird es auf Grund eines solchen vollständigen Bildes möglich sein, einen Antrieb zu erstellen, der restlos befriedigt. Bei der Genauigkeit, mit der die elektrischen Maschinen und Apparate vorausberechnet werden können, lassen sich dann auch die heikelsten Regulier- und Gleichlaufprobleme fehlerlos lösen. Die verständnisvolle Zusammenarbeit der Fachleute des mechanischen und elektrischen Teiles, gegebenenfalls auch des Betriebes, ist gerade für die Erstellung elektromotorischer Antriebe eine unerlässliche Voraussetzung.

Technische Mitteilungen — Communications de nature technique

Zur Frage der Dekalumenstaffelung der Glühlampen

[Nach W. Geiss, Das Licht, Bd. 11 (1942), Nr. 11, S. 212]

Bis anfangs der zwanziger Jahre wurden die Glühlampen mit Kerzen (Einheit der Lichtstärke, in horizontaler Richtung gemessen) bezeichnet. Sie hatte den Nachteil, dass die horizontale Lichtstärke kein einwandfreies Mass der Lichtleistung einer Lampe für allgemeine Beleuchtungszwecke hildet.

Vor etwa 15 Jahren ging deshalb die Glühlampenindustrie dazu über, die Lampen mit Watt (Einheit der elektrisch aufgenommenen Leistung) zu bezeichnen. Damit entstand eine Situation, die den Techniker nicht befriedigen konnte. Bei jeder Maschine und jedem Apparat besteht nämlich die Regel, unter Nennleistung die abgegebene Leistung zu verstehen. Die Nennleistung einer Glühlampe war nun aber die aufgenommene Leistung. Kaufte man ein 40-Watt-Lampe, so kaufte man also einen Apparat, der je nach Fabrikat ver-

schiedene Lichtleistung abgab. Der Käufer wollte aber — ohne dass ihm das wohl bewusst war — keinen Energieverbraucher, sondern einen Lichterzeuger kaufen, also einen Apparat, der so und so viel Licht gibt, nicht einen Apparat, der so und so viel Energie verbraucht. Bei der Watt-Bezeichnung der Lampen fehlte also die wichtigste Grösse, der Lichtstrom.

In den folgenden 10 Jahren ist man allgemein dazu übergegangen, die Photometerbank durch das Kugelphotometer zu ersetzen; statt der Lichtstärke in Kerzen misst man nun den Lichtstrom in Lumen. Es bahnten sich zwischen verschiedenen nationalen Ausschüssen, Vertretern der Elektrizitätsversorgung und Vertretern der Glühlampenindustrie Verhandlungen an, um eine befriedigende Lösung der Lampenbezeichnung zu vereinbaren. Die Wattbezeichnung der Glühlampen war als eine Notmassnahme anzusehen. Man kam zur Auffassung, dass auf jeden Fall der abgegebene Lichtstrom und die aufgenommene Leistung aufzustempeln seien.

Die zweite Frage war die, ob die bisherige Wattstaffelung beibehalten und die Lichtleistung nur beigefügt werden sollte, oder ob die Lampen nach Lichtstrom gestaffelt und die aufgenommene Leistung beigefügt werden sollte.

Die Lampenfabriken konnten dabei völlig neutral bleiben. Die Herstellung kommt auf das gleiche heraus, ob die Lampe mit einer Wendel von 40 W, 42 Dlm oder mit einer solchen von 40 Dlm, 38 W zu bauen ist. Die Wendelberechnung ist sehr einfach; sie geht nach der Formel

$$P = c \cdot \Phi^{\alpha}$$

wo P die aufgenommene Leistung in Watt, Φ den Lichtstrom in Dekalumen (1 Dlm = 10 lm) und c und α Konstanten sind. α hat im allgemeinen für verschiedene Fabrikate denselben Wert; c, die Fabrikationskonstante, ist das Mass für die Güte in bezug auf die anfängliche Lichtausbeute Φ/P . Im genannten Beispiel hat α den Wert 0,780 und c = 2,046. Die Lichtausbeute ist um so besser, je kleiner c ist. Jede Fabrik, die für ihre Produkte α und c kennt, kann ohne weiteres die Leuchtkörperdaten berechnen, gleichgültig, ob die Lampen nach Φ oder nach P gestaffelt sind.

Anders ist es für den Lampenkäufer und für den Beleuchtungsingenieur. Dieser hat die Aufgabe, eine geforderte Beleuchtungsstärke zu erzeugen. Die Rechnung nach der

$$\phi = egin{array}{c} E_{ exttt{m}} \cdot A & \phi & ext{Lichtstrom in lm} \ E_{ exttt{m}} & ext{Verlangte Beleuchtungsstärke} \ A & ext{Gebrauchsfläche in m}^2 \ \eta & ext{Wirkungsgrad der Anlage} \end{array}$$

gibt ihm den aufzuwendenden Lichtstrom. Beleuchtungstechnisch ist also der Lichtstrom die primäre, ja die einzig nötige Grösse der Glühlampe.

Ergibt die Rechnung z. B. $\Phi = 950$ Im und sind die Lampen nach Watt gestaffelt, so muss an Hand der Fabriklisten die aufzuwendende elektrische Leistung berechnet werden. Wenn man bedenkt, dass der Lichtstrom für Lampen gleicher Leistungsaufnahme verschiedener Herkunft um 30 % auseinanderliegen kann, abgesehen von der Abhängigkeit der Lichtausbeute von der Spannung, so steht der projektierende Ingenieur vor einem unlösbaren Problem. Bei Dekalumenstaffelung ist die Sache dagegen sehr einfach: Für 950 lm ist eine 100-Dlm-Lampe zu wählen, unabhängig von Fabrikat und Spannung, und für alle Zeiten. Aufgabe der Lampenfabriken ist es, dafür zu sorgen, dass der verlangte Lichtstrom so wirtschaftlich als möglich erzeugt wird.

So beschloss die IFK (internationale Installations-Fragen-Kommission) im Jahr 1936:

- 1. Glühlampen gleichen Typs sind solche mit gleichem Lichtstrom.
- 2. Genormte Werte für den Nennlichtstrom sind 15, 40, 65, 100, 125, 150, 200 Dlm. (1939 wurde die Reihe ergänzt durch 300, 500, 800, 1250, 2000, 3000 Dlm.)

In der Schweiz wurden die Glühlampen schon ab 1935 nach Dekalumen gestaffelt 1); allerdings wurde für die wattgestaffelten Lampen das Prüfzeichen auch noch erteilt, sofern die hiefür geltenden Technischen Bedingungen erfüllt waren²). Die im Jahre 1939 durchgeführte Revision der «Technischen Bedingungen» führte zum Fallenlassen der wattgestaffelten Lampen ³). Ab 1. Januar 1942 wird das Prüfzeichen nur noch für nach Dekalumen gestaffelte Lampen erteilt 4).

Ein Doppeljubiläum der Glühlampe

9:621.326

Sechzig Jahre sind es jetzt her, dass 1882 auf der «ersten internationalen elektrotechnischen Ausstellung» in München die vielseitigen Verwendungsmöglichkeiten des elektrischen Lichtes mit Kohlefadenlampen bestaunt werden konnten. Werner von Siemens, unter massgeblicher Mitwirkung seines Sohnes, hatte in diesem Jahr mit der fabrikatorischen Her-

stellung der Glühlampe begonnen, und im gleichen Jahr war versuchsweise die Beleuchtung der Kochstrasse in Berlin erfolgreich mit Glühlampenlicht gelungen.

Zwar hatte Edison die erste brauchbare Glühlampe schon drei Jahre vorher gebaut, und 25 Jahre früher hatte der aus Springe bei Hannover nach Amerika ausgewanderte Heinrich Goebel eine gebrauchsfähige Lampe erfunden und in geschickter Handarbeit selbst angefertigt. Weil es noch keine Dynamomaschinen gab, wurde sie mit einer Batterie galvanischer Elemente betrieben.

Vierzig Jahre sind es jetzt her, dass Auer von Welsbach die erste Glühlampe mit einem Leuchtfaden aus Metall geschaffen hat. Diese im Jahre 1902 auf den Markt gebrachte Osmium-Lampe hatte allerdings kein langes Dasein, denn schon vier Jahre später folgte die erste Verwendung des heute noch in Gebrauch stehenden Wolframmetalls für den Leuchtdraht. Seitdem sind in forschender Arbeit weitere wesentliche Fortschritte, wie die Gasfüllung und die Doppelwendel, erzielt worden, wodurch die Lichtausbeute von ursprünglich etwa 3 lm/W auf die heutigen Werte von 12 lm/W gesteigert werden konnte.

Die Trolleybusse in der Schweiz Ende 1941

Ueber den Stand der Einführung der Trolleybusse in der Schweiz gibt folgende Tabelle Auskunft:

	Strecken- länge km	Betriebs- eröffnung des ersten Teil- stückes	Fahr- draht- span- nung (Gleichstr.) V	Zahl der Troll e y- busse	Bemerkungen
Lausanne	19,4	1932	650	35	
Winterthur	7,2	28.12.38	600	8	Bahnhof – Wülf- lingen (1938): 3,0 km. Bahnhof – Seen (1941): 4,2 km. 1 weiter. Wagen kommt am 1.10. 42 in Betrieb
Zürich	3,128	27.5 39	600	6	Im Bau befindet sich eine weitere Strecke von 4,8 km mit 9 Trol- leybussen
Neuenburg	2,280	16.2.40	630	3	
Rheintalische Strassenbahnen	10,4 davon 8,15 km doppelspurig und 2,25 km elnspurig	8.9.40	1100	5	Ueberland- betrieb Strecke Altstätten Rat- haus — Heer- brugg SBB — Berneck
Biel	3,4	19.10.40	550	7	7. Wagen wurde Ende Mai 1942 in Betrieb ge- nommen
Bern	5,912	25.10.40	600	13	Linie 8: Hauptbahnhof— Schosshalde 2,687 km. Linie B: Insel—Bümpliz Sternen 3,325 km
Basel	3,9	31.7.41	600	3	
Luzern	4,305	7.12.41	600	6	Der Trolleybus trat an Stelle d. AutobuslinieAll- mend—Bahnhof — Halde
Total	59,925			86	

Neue Trolleybuslinie in Zürich

629.113.62(494.341)

Am 19. 6. 1942 wurde auf der Strecke Albisriederplatz-Spyriplatz der Linie A der Trolleybusbetrieb aufgenommen. Diese zweite zürcherische Trolleybuslinie hat eine Länge von

¹⁾ Technische Bedingungen zur Führung des Prüfzeichens des SEV für elektrische Glühlampen zu allgemeinen Beleuchtungszwecken, abgestuft nach Lichtstrom. Bulletin SEV 1935, Nr. 20, S. 581.
2) Bulletin SEV 1935, Nr. 3, S. 579.
3) Technische Bedingungen für gewöhnliche elektrische Glühlampen für allgemeine Beleuchtungszwecke. Bulletin SEV 1940, Nr. 3, S. 71, Publ. Nr. 150.
4) Bulletin SEV 1941, Nr. 17, S. 424. Bulletin SEV 1942, Nr. 1, S. 28,

4,84 km; die Fahrleitung für zwei Fahrspuren kostete ca. 260 000 Fr. Der Preis eines Fahrzeuges, das 9,2...9,4 t wiegt, beträgt 110 000 Fr. Vorläufig stehen erst 3 Wagen zur Verfügung. In den nächsten Wochen werden drei weitere Fahrzeuge in Betrieb kommen, wodurch der Fahrplan verbessert wird. Die neuen Trolleybusse haben ein Fassungsvermögen für 70 Personen. Sie sind mit Doppelfalttüren für den Einstieg und mit zwei Türen in der Mitte und vorn für den Ausstieg ausgerüstet. Der Fahrgastwechsel wird sich bei diesen neuen Wagen ähnlich wie bei den neuen Strassenbahnwagen ruhiger vollziehen als beim Autobusbetrieb und bei den Wagentypen älterer Bauart. Die Landesversorgung mit Autoreifen wird jedoch die ganztägige Führung nicht bis Spyriplatz gestatten. Ebenso muss die Verkehrsdichte in den Berufsverkehrszeiten auf das Nötigste beschränkt bleiben.

Zürich wartet nun auf den Trolleybus nach Witikon; das Material für die Fahrleitung ist bereit, die Trolleybusse stehen nächstens zur Verfügung, aber die zuständigen Bundesbehörden haben ihr Veto gegen diese — für den Trolleybus prädestinierte — Strecke eingelegt. Die Fachkreise sind allerdings der Auffassung, dass hier vorhandenes Kupfer am falschen Ort gesperrt wird.

Vereinheitlichung im deutschen Obus-Bau

(Nach Elektrizitätswirtschaft vom 25.5.1941, S. 264)

1937 gab es in Deutschland erst sechs Trolleybusanlagen mit 23 Wagen. Trotz dieser geringen Wagenzahl war die technische Ausführung sehr verschieden. Während die BVG in Berlin Wagen mit einem Fassungsvermögen von 66 bis 70 Fahrgästen einsetzte, begnügten sich die übrigen Städte (Idar, Oldenburg, Insterburg u. a.) mit kleinern Einheiten für 41, bzw. 44...47 Fahrgäste. Für den Trolleybusbetrieb bestanden sechs, für die Steuerung fünf Ausführungen nebeneinander. Die Trolleybusse waren mit vier verschiedenen Motorenarten ausgerüstet: die Motorleistung betrug bei zehn Wagen 1×64 kW, bei fünf Wagen 2×40 kW, bei je zwei Wagen 1×89 bzw. 1×112 kW und bei vier Wagen 2×50 kW. Diese uneinheitliche Entwicklung wurde durch das Fehlen von geeigneten Vorbildern bedingt, so dass bei fast jeder Neuanlage neue Ausführungen erprobt wurden. Die Errichtung neuer Trolleybusanlagen stiess aus diesen Gründen auf grosse Schwierigkeiten.

Hier setzte nun, wie E. Kühn ausführt 1), im Frühjahr 1937 die Arbeit des «Obus-Ausschusses» ein. Dieser versuchte erst einmal, die verschiedenen Kräfte gleichzurichten, um dann allmählich zu einer einheitlichen Ausführung zu kommen. In diesem Sinne wurden für den Bau von neuen Trolleybussen Richtlinen aufgestellt und nach und nach immer mehr eingeengt. Mit Bezug auf die Wagengrösse wurde im Sommer 1939 ein Fassungsvermögen bis zu 45 Fahrgästen Grösse I —, bis zu 60 Fahrgästen — Grösse II — und bis zu 75 Fahrgästen — Grösse III — festgelegt. Die Wagen der Grösse I und II waren als Zweiachser und die der Grösse III als Dreiachser vorgesehen. Beim Fahrgestell wurden die Hauptabmessungen sowie die Ausführung und Grösse der Einzelteile festgelegt. Entsprechend den drei Wagengrössen wurden auch drei Motorengrössen gewählt, und zwar für Grösse I eine Stundenleistung von 60...65 kW, für Grösse II 85...90 kW und für Grösse III 120 kW. Die Stundendrehzahl aller Motoren liegt bei ungefähr 1500/min. Der Motor wird als Reihenschluss-Doppelkollektor-Eingehäusemotor gebaut, was eine Gewichtsersparnis (gemeinsames Gehäuse beider Motoren), eine Energieersparnis (Anfahrt in Reihenparallelschaltung) und eine grössere Wirtschaftlichkeit (Geschwindigkeitsstufe für Halbfahrgeschwindigkeiten) ermöglicht. Die Motoren aller Herstellerfirmen sind gegeneinander austauschbar. Die Steuerung ist heute fast durchweg als Feinstufensteuerung in nicht selbsttätiger Ausführung für Anfahren in energiesparender Reihenparallelschaltung mit unmittelbarem Fussantrieb ausgebildet. Dadurch ist die elektrische Ausrüstung wesentlich vereinfacht.

Eine Gegenüberstellung der frühern und der neu entwickelten Trolleybusse ergibt folgendes Bild und zeigt damit, dass die Aufgabe des «Obus-Ausschusses», den Trolleybus-Bau zu vereinheitlichen, als in der Hauptsache gelöst betrachtet werden kann:

				 	-	\mathbf{f}	rüher	jetz	zt .
Antrieb .							6	1	Ausführungen
Steuerung							5	2	Ausführungen
Motorausfü	ihr	un	g				4	1	Ausführungen

Diese bereits vor Kriegsausbruch 1939 abgeschlossene Entwicklung hat den verstärkten Trolleybus-Bau im Kriege erst ermöglicht. Welche Bedeutung der Einführung von Trolleybussen beigelegt wird, zeigt der augenblickliche Auftragsund Lieferungsbestand der deutschen Firmen. Dieser beträgt zurzeit (1941) über 370 Trolleybusse.

Beleuchtung, Produktion und Rentabilität

[Nach E. Wuhrmann, Schweiz. Bau-Zeitung, Bd. 119 (1942), Nr. 13, S. 153]

Aus vielfältigen Versuchen, die in Fabriken der ganzen Welt durchgeführt wurden, geht immer wieder hervor, dass gute Beleuchtung in Bureaux und Werkstatt die Arbeitsleistung und die Produktion bei gleichen übrigen Verhälnissen steigert. Wuhrmann berichtet über Untersuchungen von W. A. Durgin in verschiedenen Fabriken, von John Magee in einer Fabrikabteilung, wo Kolbenringe hergestellt werden, und von D. P. Hess und Ward Harrison in der Prüfabteilung einer Kugellagerfabrik.

Die Untersuchungen der Kolbenringsabrik wurden während 15 Monaten durchgeführt. Jede Beleuchtungsstufe wurde während ungefähr 4 Monaten durchgeprobt. Die durchschnittlichen Ergebnisse waren:

Beleuchtungsstärken	Erhöhung der Produktion
13 lx ursprünglich	0 %
70 lx	13 %
97 lx	17,9 %
150 lx	25,8 %

Die maximale Erhöhung der Beleuchtungskosten betrug etwa 48 % der ursprünglichen Lichtkosten, entsprechend 2 % der Löhne. Allein die Ersparnisse durch weniger Ausschuss und Unfälle gleichen die höhern Beleuchtungskosten aus.

Die 10wöchigen Versuche in der Prüfabteilung einer Kugellagerfabrik, bei denen mehr als 7 Millionen Arbeitsstücke geprüft wurden, ergaben folgendes:

Beleuchtungsstärken	Erhöhung der Produktion
21,5 lx ursprünglich	0 %
64,5 lx	4 %
140 lx	8 %
215 lx	12,5 %

Die entsprechenden Beleuchtungskosten betrugen 0,3 %, 0,8 %, 1,6 %, 2,4 % der Löhne.

Verhältnis der Beleuchtungsstärken zur Fabrikausbeute:

	Bele	uchtungst	ärken
	64,5	140	215 lx
Pro Person und Stunde geprüfte Stückzahl	424	440	458
duktion ,	4,0	8,0	12,5
Beleuchtungskosten in Prozent der Löhne	0,8	1,6	2,4
Prozentuale kostenlose Erhöhung der Produktion	3,2	6,4	10,1
Verhältnis der Produktionserhö- hung zu den prozentual auf die Löhne bezogenen Beleuchtungs-			
kosten	5	6	5,2

In allen Fällen wurde also durch die Verbesserung der Beleuchtung eine recht bedeutende Steigerung der Produktion erzielt. Es ist aber nicht nur die Erhöhung der Produktion massgebend, sondern auch die mit besserer Beleuchtung verbundene Verminderung der Unfallgefahr, die Verminde-

J) «Die technische Obusentwicklung während der letzten drei Jahre». Verkehrstechnik, Heft 5 vom 5. März 1941.

rung von Ausschuss, die Schonung der Augen, die gesteigerte Leistungsfähigkeit und das Wohlbefinden der Arbeiter, Vorteile, die auch Geldwert besitzen, weil sie die Rentabilität des Betriebes erhöhen, wenn sie sich auch nur schwer in Ziffern umrechnen lassen.

Neues aus der Elektrotechnik

621.34:621.974.2

Elektrohämmer mit biegsamer Welle. Ein leistungsfähiger und dennoch leichter und handlicher Elektrohammer fehlte bisher. Die marktgängigen Elektrohämmer sind für viele Zwecke zu schwer, insbesondere im Werkstatt- und Montagebetrieb, auch im Baugewerbe, weil ihr Einsatz eine freihändige Leitung voraussetzt.

Eine deutsche Gewerkschaft schuf neue Elektrohämmer für leichtere und mittelschwere Arbeiten in Gewerbe, Industrie und Bauwesen. Ihr wesentliches Kennzeichen ist der neue Antrieb durch eine biegsame Welle. Die Trennung von Motor und Werkzeug unter Zwischenschaltung einer biegsamen Welle hat stets ein handliches und doch leistungsfähiges Elektrowerkzeug geschaffen. So ist denn auch bei diesen Hämmern die hohe Leistung bei geringstem Gewicht des eigentlichen Schlagwerkzeugs das hervorstechendste Merkmal. Man kann diesen neuen Elektrohammer jeder Hand selbst in stundenlangem, pausenlosen Dauerbetrieb zumuten. Der Rückstoss ist sehr gering. Die Schlagzahl der Hämmer ist unveränderlich, sie liegt etwa bei 3000 Schlägen pro Minute. Der Einzelschlag ist kräftig und durchdringend, so dass eine kräftige Spanabhebung selbst beim Meisseln in Stahl möglich ist. Rasch treibt ein solcher Elektrohammer den Stein- und Maurermeissel durch Gestein, Beton und Mauerwerk. Die aufgenommene Leistung ist etwa 400 W. Der Wirkungsgrad ist sehr hoch. Die neuen Hämmer werden zusammen mit biegsamer Welle und passenden Motoren in allen möglichen Ausführungen geliefert: Motoren mit Fuss, stehend, mit Traggriff, oder hängend mit Aufhängebügel, oder fahrbar auf Säule mit praktischem Ablegetisch, Ausführungsarten, die auch bei andern Biegewellenwerkzeugen bekannt sind. Die Elektrohämmer sind universell anwendbar in allen Industrien, Gewerben und insbesondere auch im Bauwesen. Es lassen sich damit Meisselarbeiten in Stahl und allen Metallen, Nietarbeiten, Stemmarbeiten im Kessel-, Schiff- und Behälterbau u.a.m. ausführen. Besonders geeignet erscheint dieses neue Werkzeug zum Entfernen von Kesselstein, selbst härtester Kruste und von Rückständen aus Retorten, Behältern, Oefen usw. Auch an Bord der Schiffe werden diese Elektrohämmer zum Freihämmern der Eisenteile von Rost benützt werden. Andere Verwendungsmöglichkeiten sind: Gussputzen, Entgraten von Pressteilen, Eintreiben, Auftreiben, Durchschlagen in der Montage, Lockern festsitzender Teile, Schlagen von Mauerdurchbrüchen. Ueberall, wo eine Faust den Hammer schwingt, ist der Elektrohammer am Platze.

621.34:621.9.02

Elektrowerkzeug zum Versteifen von Blechrändern. Es kommt im Flugzeugbau und in andern Blech verarbeitenden Industrien häufig vor, dass Blechränder versteift werden müssen oder dass kreisrunde, ovale oder rechteckige, in Blech geschnittene Löcher eine Randverstärkung erhalten sollen. Bisher waren für derartige Blecharbeiten Geräte üblich, die von Hand bedient wurden. Jetzt ist dafür von einer deutschen Werkzeugmaschinenfabrik ein Elektrogerät entwickelt worden, das für Blechkanten in beliebiger Länge und für Löcher von 80 mm Durchmesser an eingesetzt werden kann. Zum Antrieb dieses Gerätes dient ein sogenannter Hand-motor mit etwa 80 W Leistung. Das Gerät trägt zwei Rollen, die auf zwei parallel zueinander gelagerten Achsen sitzen und die je nach der gewünschten Formgebung leicht auswechselbar sind. Eine der beiden Rollen lässt sich entsprechend der Blechstärke bequem verstellen. Ein verstellbarer Anschlag sorgt dafür, dass der versteifte Rand der Blechlöcher und -kanten immer gleich breit ausfällt. Beim Umranden schwieriger Formen ist es mitunter erwünscht, den Arbeitsvorgang schnell zu unterbrechen, ohne dass der Motor ausgeschaltet wird; dies erfolgt durch Betätigung eines Druckknopfes, der im Getriebekopf eine Kupplung steuert und dadurch die Rollen sofort zum Stillstand bringt. Die Arbeitsgeschwindigkeit des Gerätes beträgt etwa 4 m/min. Die Leistung reicht für Bleche aus Leichtmetall (Duraluminium) bis 1 mm Stärke, für Eisenblech bis 0,9 mm, je in einem Arbeitsgang. In zwei Arbeitsvorgängen können Aluminiumbleche bis 1,5 mm und Eisenbleche bis 1,2 mm umrandet werden.

621.365.4:621.785.34

Grossdimensionaler elektrischer Blankglühofen. Deutschland wurde kürzlich der grösste Tunnel-Blankglühofen zur Wärmebehandlung gezogener Metallstücke dem Betrieb übergeben. Der Ofen hat eine Länge von 32 m bei einem Nutzquerschnitt von 1000×500 mm und einer Heizleistung von 560 kW. Die Betriebstemperatur kann bis auf 950 Grad erhöht werden. Die Glühkammer ist mit Luftführungsblechen ausgestattet; an der Decke sind Luftumwälzvorrichtungen angebracht. Der Rollengang, der die zum Glühen bestimmten Metallstücke aufzunehmen hat, ist in mehrere unabhängige Einheiten unterteilt, die mit verschiedenen Geschwindigkeiten laufen können. In einer besondern Anlage wird für diesen Ofen teilweise verbranntes, zusätzlich entschwefeltes Leuchtgas als Schutzgas erzeugt. An jeder Stirnseite des Ofens ist eine Hubschleuse angebracht, die eine sehr gute Abdichtung der Beschickungs- und Entnahme-Vorrichtung ermöglicht, so dass der Schutzgasverbrauch niedrig gehalten werden kann. — (AEG Pressedienst Reichsbahn Nr. 47/1941.)

656.25(43

Die induktive Zugsicherung in Deutschland. Von den 30 565 km Gesamtlänge des deutschen Eisenbahnnetzes sind 6783 mit induktiver Zugbeeinflussung ausgerüstet, d. h. rund 70 % aller Strecken, die überwiegend mit Geschwindigkeiten bis 160 km/h, zu einem kleinen Teil mit max. 120 km/h befahren werden können. Die induktive Zugbeeinflussung umfasst bereits rund 14 400 Gleismagnete. Die Arbeiten werden trotz des Krieges fortgesetzt. 62 % der deutschen Schnellzugsdampflokomotiven sind mit Dreifrequenzeinrichtungen versehen, die sich definitiv durchgesetzt haben, auch bei sämtlichen Schnelltriebwagen. Nur noch die bescheidene Zahl von 65 Lokomotiven weist noch die alten Einfrequenzanlagen auf. Man glaubt, bis Ende des Jahres 76 % aller Schnellzugs-Dampflokomotiven und 50 % sämtlicher elektrischen Schnellzugslokomotiven mit den Installationen für die induktive Zugbeeinflussung auszurüsten, ferner 460 Personenzugslokomotiven. Bei dem in Deutschland angenommenen System wird dem Lokomotivführer zuerst ein akustisches oder optisches Signal übermittelt, wobei die automatische Bremsung erst dann einsetzt, wenn dem Signal keine Folge gegeben wird. Die Wachsamkeit des Personals wird also nicht ausgeschaltet, sondern eine Vernachlässigung dieser Wachsamkeit tritt offen durch das automatische Stillsetzen des Zuges in Erscheinung. - (Umschau in Wissenschaft und Technik 9/42.)

536.521.5:621.43

Die Photozelle hilft Explosionsmotoren prüfen. Im Institut für Kraftfahrwesen und Fahrzeugmotoren der Technischen Hochschule Stuttgart wurde ein neues Messverfahren entwickelt, um den Temperaturverlauf während eines Arbeitsspieles im Zylinder eines Viertaktmotors verfolgen zu können. Jedem Liter Kraftstoff werden mindestens 0,02 g Kalium zugesetzt. Bei der Verbrennung im Zylinder werden nun die Kaliumatome zur Ausstrahlung ihrer Spektrallinien angeregt. Diese Ausstrahlung wird auf eine Photozelle gelenkt. Der entstehende Photostrom wird über einen Verstärker einem Kathodenstrahl-Oszillographen zugeführt. Da die Stärke der Strahlung eine genau bestimmte Funktion der Temperatur ist, kann man mit dieser Methode die Temperaturvorgänge im Innern des Zylinders genau verfolgen. Die Untersuchungen haben bereits ergeben, dass man mit jenem Kraftstoffgemisch die grössten Leistungen erhält, das im Zylinder die höchsten Temperaturen entwickelt. (Pressedienst Reichsbahn Nr. 48/1941.)

Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

Anwendungsbeispiele für die Gegenkopplung

[Nach: Some Applications of Negative Feedback with Particular Reference to Laboratory Equipement by Terman, Buss, Hewlett and Cahill, Proceedings of the Inst. Radio Engrs. 1939 (27), Oct., No. 10.]

621.396.645.22

Einleitung

Die allgemeinen Bezeichnungen und Definitionen 1) für einen Verstärker mit «Rückkopplung», bei dem ein Teil der Ausgangsspannung der Eingangsspannung superponiert wird,

U_E [V] Eingangsspannung ohne Rückkopplung

U' [V] Eingangsspannung mit Rückkopplung

Verstärkungsfaktor ohne Rückkopplung

Verstärkungsfaktor mit Rückkopplung

UA [V] Ausgangsspannung

UR [V] Rückkopplungs-Spannung

Rückkopplungs-Koeffizient

Rückkopplungs-Faktor

$$\mathfrak{v}=\mathfrak{U}_{\mathtt{A}}/\mathfrak{U}_{\mathtt{E}}'\,;\qquad \mathfrak{U}_{\mathtt{E}}'=\mathfrak{U}_{\mathtt{E}}+\mathfrak{U}_{\mathtt{R}}$$

Definition:

$$\begin{array}{ll} \underline{\mathfrak{r}\,=\,\mathfrak{U}_{\text{R}}/\mathfrak{U}_{\text{A}}}\;; & \quad \mathfrak{U}_{\text{E}}'\,=\,\mathfrak{U}_{\text{E}}\,+\,\mathfrak{r}\,\mathfrak{v}\,\mathfrak{U}_{\text{E}}'\\ & \quad \mathfrak{U}_{\text{E}}\,=\,\mathfrak{U}_{\text{E}}'\,(1-\mathfrak{r}\,\mathfrak{v}) \end{array}$$

$$\mathfrak{v}' = \mathfrak{U}_{A}/\mathfrak{U}_{E} = \mathfrak{v}/(1-\mathfrak{r}\,\mathfrak{v})$$

Definition:

$$\mathfrak{q} = \mathfrak{v}'/\mathfrak{v} = 1/(1-\mathfrak{r}\,\mathfrak{v})$$

Wird die Verstärkung mit Rückkopplung grösser, so spricht man von einer eigentlichen «Rückkopplung», im andern Falle von einer «Gegenkopplung»:

$$|\mathfrak{q}|=q=\sqrt{q_{\mathrm{r}}^2+q_{\mathrm{r}}^2}\,\left\{egin{array}{l}>1=\mathrm{R\"{u}ckkopplung}\ <1=\mathrm{Gegenkopplung} \end{array}
ight.$$

Der Klirrfaktor ist proportional q.

NF-Verstärker

Während in normalen Tonverstärkern die Gegenkopplung lediglich zur Herabsetzung der Endstufen-Verzerrung angewandt wird, ist bei Laboratoriumsverstärkern die generelle Anwendung von vielfachem Erfolg begleitet. Macht man

so folgt daraus

$$\mathfrak{v}' \approx -1/\mathfrak{r} \neq \Phi(\mathfrak{v})$$

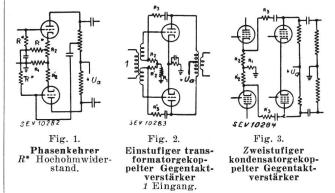
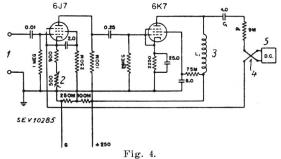

Ist weiter die Schaltungsanordnung so getroffen, dass der Rückkopplungskoeffizient r nicht von der Röhrencharakteristik abhängt, was leicht zu erreichen ist, so ist die Verstärkung nur proportional r, wie obige Gleichung zeigt, und wird weder von Röhren-Alterung oder -Ersatz, noch von den Betriebsspannungen wesentlich beeinflusst. Ist ausserdem r frequenzunabhängig, so wird praktisch der Verstärkungsfaktor p' in einem weiten Bereich ebenfalls frequenzunabhängig und der Phasengang gering.

Tabelle I zeigt einen Vergleich zwischen zwei Verstärkern gleicher Spannungsverstärkung ohne und mit Gegenkopplung. Sie besitzen für eine mittlere Frequenz fo einen Verstärkungsfaktor von $v_0 = 50$ je Stufe und der zweite einen Rückkopplungsfaktor von $q_0 = 1/50$ je 2 Stufen, wodurch der Aufwand für den gegengekoppelten Verstärker doppelt so gross wird. Die dagegen eingetauschten Vorteile sehen folgendermassen

Qualitätsvergleich zweier Verstärker
Tabelle I.

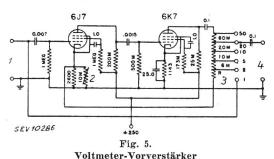
	Ohne Gegenko	Mit opplung
Gesamte Verstärkung	2500	2500
Verstärkungszunahme durch Aenderung der Röhren oder der Betriebsspannungen .	25% = 1,94 db	0.8 % = 0.07 db
Maximale Abweichung von der mittleren Verstärkung über einen Frequenzbe- reich von 15 Hz30 kHz . Phasengang beim gleichen Bereich	$\begin{cases} -50 \% = \\ -6 \text{ db} \end{cases}$	$ \begin{cases} +4 \% = \\ +0.33 \text{ db} \\ 4^{\circ}40' \end{cases} $
Frequenzbereich für eine max. Verstärkungsstreuung von 50 % = 6 db	15 Hz30 kHz	5 Hz95 kHz
Klirrfaktor bei 100 % Aussteuerung	2 %	0,04 %


Gegenkopplung kann zweckmässig auch angewendet werden zum Symmetrieren von Phasenkehrern (Fig. 1) und Gegentakt-A-Verstärkern (Fig. 2 und 3). Bei diesen Anord-

nungen ruft Unabgeglichenheit einen Strom durch den Widerstand R_1 hervor, der die zentrierende Gegenkopplungsspannung erzeugt. R_2 und R'_2 bewirken die normale Gegenkopplung, die durch R_3 und R'_3 geregelt werden kann.

Voltmeter-Verstärker

Fig. 42) zeigt einen zweistufigen Tonfrequenzvoltmeter-Verstärker in Verbindung mit einem Vakuum-Thermokreuz-


Voltmeter-Verstärker

Kondensatoren in μF , unbezeichnete Widerstände in Ω , $M = k\Omega$; $MEG = M\Omega$. 1 Eingang. 2 Gegenkopplungs-Regelung. 3 100 H bei 10 mA. 4 Thermokreuz. 5 Gleichstrom-Instrument.

¹⁾ Es werden einheitliche Bezeichnungen vorgeschlagen, die auch in einem später erscheinenden Aufsatz des Referenten über «Die Berechnung von Verstärkern mit Hilfe des kom plexen Verstärkungsfaktors» Anwendung finden. Die Frakturbuchstaben deuten an, dass die betreffenden Grössen als (meist frequenzabhängige) Zeiger der komplexen Darstellungsebene aufzufassen sind, womit deren Betrag und Phase festliegen.

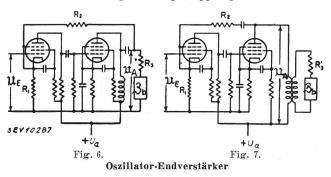
 $^{^{2})}$ Die amerikanischen Bezeichnungen bedeuten: M. A. = mA; M = k\Omega; MEG = M\Omega; die unbezeichneten Widerstände sind in $\Omega,$ die Kapazitäten in μF angegeben.

Anzeigeinstrument. Die Anzeige ist dieselbe wie bei einem quadratischen Röhrenvoltmeter; diese Anordnung ist aber fest eichbar und braucht keine Nullpunktskorrektur. Praktischerweise konstruiert man den Verstärker so, dass die Endröhre kurz oberhalb des Instrumenten-Endausschlages (bei 3 V Eingangsspannung) übersteuert wird, damit bei zufälliger Ueberlastung das Thermokreuz nicht gleich durchbrennt. Der regelbare $500 \cdot \Omega$ -Widerstand in der Kathodenleitung beeinflusst die Gegenkopplung und erlaubt daher eine einfache Kalibrierung. Der Widerstand R_1 und die Drosselspule L_1 begrenzen den Ladestrom zum Kondensator C_1 , der sonst dem Thermokreuz gefährlich werden könnte.

1 Eingang. 2 Gegenkopplungs-Regelung. 3 Siehe Text!
4 Ausgang.

Fig. 5 zeigt einen Vorverstärker zur Erweiterung des Messbereiches. Der maximale Verstärkungsfaktor ist v'=50; kleinere Werte können am Ausgangsspannungsteiler abgegriffen werden. R ist so zu bemessen, dass der Widerstand zwischen Punkt 2 und Erde $4\,\mathrm{k}\Omega$ beträgt.

Charakteristik zweier Voltmeter-Verstärker


Tabelle II.

Maximalwerte	Verstärker Fig. 4 Fig. 5			
Spannungsabfall bei 40 Hz Spannungsabfall bei 20 kHz	1 °/o 1 °/o	1 º/c		
Verstärkungsänderung bei einer Anodenspannungsabweichung von -44 % +60 %	— 1 º/o	1/2 ⁰ /		
+60 % Heizspannungsabweichung von -16 %; +19 %	+ 1 0/0			

Oszillator-Endverstärker

Die Hauptverzerrung bei einem gut konstruierten Laboratoriumsoszillator tritt im Endverstärker auf, besonders, da dieser unter den verschiedensten Bedingungen von Leerlauf bis Vollast benutzt wird.

Hier hilft eine Widerstandskombination nach Fig. 6 oder 7. R_3 bzw. R'_3 verhindert Kurzschluss und der Spannungsteiler R_1+R_2 besorgt die Gegenkopplung.

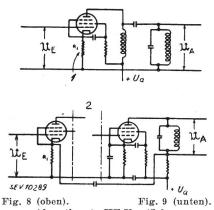
Eine Berechnung für das Schaltschema Fig. 6 fordert für maximale an die Belastungsimpedanz 3, gelieferte Leistung

$$R_3 = Z_b$$

und

$$\frac{(R_1+R_2)\,R_3}{R_1+R_2+R_3}=Z_a,$$

der günstigsten Anodenanpassung bei Verstärkung ohne Gegenkopplung. Beträgt dabei die Leistung $P_{\rm a}$, so beläuft sich die maximal lieferbare Leistung bei Gegenkopplung zu

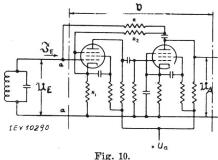

$$P_{ extsf{b}} = rac{P_{ extsf{a}} (R_1 + R_2)}{4 (R_1 + R_2 + R_3)}$$

oder da praktisch $(R_1 + R_2) \rangle R_3$ gewählt wird:

$$P_{\rm b} \approx P_{\rm a}/4$$

Abgestimmte HF-Verstärker

Die Schaltungen Fig. 8 u. 9 zeigen einen Weg, abgestimmte HF-Verstärker weitgehend von den Röhrencharakteristiken und Arbeitsspannungen unabhängig zu machen. Der Strom, der durch den Schwingkreis fliesst, erzeugt eine Gegenkopplungsspannung an R_1 , die frequenzunabhängig und bei genügend starker Gegenkopplung auch stabil ist. Die Verstärkung ist dann allein vom Schwingkreis abhängig.



Abgestimmte HF-Verstärker 1 Gegenspannung. 2 Kondensator- oder Bandfilter-Kopplung.

Die Anordnung Fig. 9 (mit Kondensator- oder Bandfilter-Kopplung zwischen den strichpunktierten Linien) hat gegenüber der von Fig. 8 den Vorteil grösserer Verstärkung auch bei starker Gegenkopplung. — Sehr wertvoll sind diese Verstärker in Feldstärkemessgeräten mit fester Eichung.

Hohe Selektivität durch Gegenkopplung Stabilisierter negativer Widerstand

Zur Erhöhung der Resonanzschärfe kann ein durch Gegenkopplung stabilisierter negativer Widerstand eingeführt werden, der zur Rückkopplung dient. Der Zweiröhrenverstärker in Fig. 10 erzeugt an den Punkten a-a einen negativen Widerstand, der weitgehend unabhängig von den Röhrencharakteristiken und Speisespannungen ist.

Stabilisierte Rückkopplung

v Verstärkungsfaktor.

Bezeichnet man die Spannung am Schwingkreis mit $\mathfrak{J}_{\mathsf{E}}$ und den herausfliessenden Strom mit $\mathfrak{F}_{\mathsf{E}}$, so ist (vgl. Fig. 10):

$$\mathfrak{J}_{\text{E}} = \frac{\mathfrak{U}_{\text{E}} - \mathfrak{U}_{\text{A}}}{\mathfrak{R}} = \frac{\mathfrak{U}_{\text{E}} - \mathfrak{v} \, \mathfrak{U}_{\text{E}}}{\mathfrak{R}} = \frac{\mathfrak{U}_{\text{E}}}{\mathfrak{R}/(1-\mathfrak{v})}$$

wenn $\mathfrak{U}_{\mathbb{A}}$ die Ausgangsspannung des Verstärkers, \mathfrak{y} sein Verstärkungsfaktor und \mathfrak{R} sein Rückkopplungswiderstand ist. Bei der vereinfachenden Voraussetzung, dass $\mathfrak{U}_{\mathbb{A}}$ mit $\mathfrak{U}_{\mathbb{E}}$ in Phase sei und \mathfrak{R} rein ohmisch, wird R und v reell und damit der Widerstand

$$R_{\mathsf{E}} = R/(1-v)$$

ebenfalls, und zwar negativ, da v \rangle 1 ist. Diese Rückkopplung hat gegenüber der normalen den Vorzug, ausserordentlich stabil zu sein. Bei einem ausgeführten Verstärker betrug q=1/100, die Resonanzschärfe des Schwingkreises ohne Entdämpfung $\varrho_0=100$ und mit Entdämpfung $\varrho=2000$. Die durch einen Anodenspannungsanstieg von 167% bedingte Steigerung der Resonanzschärfe betrug dabei nur 10%.

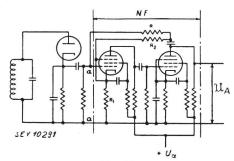
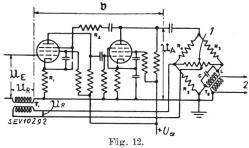


Fig. 11.


Dioden-Entzerrung

NF NF-Verstärker.

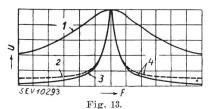
Fig. 11 zeigt die Anwendung des stabilisierten negativen Widerstandes als Dioden-Shunt, um das Verhältnis Impedanz zu Widerstand zu verbessern, womit der Klirrfaktor herabgesetzt wird.

Frequenzabhängige Gegenkopplung

Die zweite Methode der Resonanzschärfen-Erhöhung bedient sich der frequenzabhängigen Gegenkopplung in der Art, dass die Gegenkopplung steigt mit zunehmender Verstimmung. Die in Fig. 12 gezeigte Brücke z.B. ist im Gleich-

Frequenzabhängige Gegenkopplung mit Brücke v Verstärkungsfaktor. 1 Regelung der Resonanzschärfe. 2 Transformator-Ausgang.

gewicht bei der Schwingfrequenz des Kreises *LC*. Die am Brückenwiderstand abgreifbare Gegenspannung ist in diesem Fall gleich Null, wächst aber stark bei zunehmender Verstimmung. Die Rechnung gibt die erhöhte Resonanzschärfe zu


$$\varrho = (1+\mathfrak{p}\,\mathfrak{v})\,\varrho_{\scriptscriptstyle 0}\,; \quad \ \mathfrak{p} = \frac{\mathfrak{R}_{\scriptscriptstyle 5}}{\mathfrak{R}_{\scriptscriptstyle 4}+\mathfrak{R}_{\scriptscriptstyle 5}}$$

Bei rein ohmschen Widerständen und phasenreiner Verstärkung kann man

$$1 + pv = 10...30$$

leicht erreichen, womit bei Tonfrequenz und Langwellen das ϱ bis zu 5000 getrieben werden kann. Fig. 13 zeigt die Aenderung der Resonanzkurve bildlich; dabei ist der verhältnismässig niedrige Wert $\mathfrak{pp}=10$ zugrundegelegt. Greift man die Spannung statt an LC (über den Transformator T_2) am Ausgang des Verstärkers bei $\mathfrak{U}_{\mathsf{A}}$ ab, so hat der Spannungsverlauf

bei grosser Verstimmung keinen Resonanzkurven-Charakter mehr, sondern erreicht asymptotisch den $(1+\mathfrak{pp})^{\text{ten}}$ Teil des Resonanzwertes (gestrichelte Kurve).

Resonanzkurven der Schaltung Fig. 12 1 Resonanzkurve des Schwingkreises allein. 2 Ausgang bei $\mathfrak{U}_{\mathsf{A}}$ 3 Ausgang bei T2. 4 Resonanzkurven für $\mathfrak{pv}=10$. f Frequenzwerte. U Spannungswerte.

Fig. 14 bringt den Ersatz der Brücke durch ein einfacheres überbrücktes T-Glied. Die Gleichgewichtsbedingung lautet:

$$R=rac{\pi}{2}\,arrho_0\,L\,f_0=R_{ ext{ iny res}}/4$$

Eine wichtige Eigenschaft der Schaltungen Fig. 12 und 14 ist die, dass der Absolutwert der Resonanzspannung durch



Fig. 14.

Frequenzabhängige Gegenkopplung mit überbrückten T-Glied

1 Regelung der Resonanzschärfe.

Aenderung der Gegenkopplung nicht beeinflusst wird, sondern nur die Resonanzschärfe.

Tonspektrometer

Die eben besprochenen Schaltungen Fig. 12 und 14 ermöglichen die Konstruktion eines verhältnismässig einfachen Tonspektrometers, dessen Blockschema Fig. 15 zeigt. Der zu untersuchende Ton wird nach Gegentakt-Vorverstärkung mit einer Oszillatorschwingung gemischt. Durch den darauf folgenden Detektor wird die Differenzfrequenz mit dem zu bestimmenden Oberton herausgesiebt und in einem zwei- bis

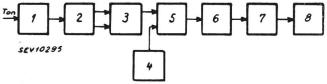


Fig. 15.

Blockschema eines Tonspektrometers

Dämpfungsglied.
 Phasenkehrer.
 Gegentaktverstärker.
 Oszillator.
 Mixer.
 Detektor.
 Verstärker mit Selektivitäts-Regelung.
 Anzeige-Instrument.

vierstufigen selektiven Verstärker nach Schaltung Fig. 14 verstärkt, wobei eventuell noch vorhandene unerwünschte Komponenten unterdrückt werden. — In allen Teilen der Anordnung wird zweckmässig weitgehend Gegenkopplung angewendet, wodurch die Eichung des Gerätes praktischen Wert bekommt.

Oszillatoren

Widerstands-Stabilisation

Fig. 16 zeigt einen Oszillator mit Widerstands-Gegenkopplung in der Kathodenleitung, der sich durch kleinen Klirrfaktor und Frequenzstabilität auszeichnet.

Will man dagegen das Aeusserste an Verzerrungsfreiheit erreichen, so muss man die Schwingungserzeugung von der Amplitudenbegrenzung trennen, wie z.B. Fig. 17 zeigt. Hier wird die Nichtlinearität einer Diodencharakteristik zur Amplitudenbegrenzung herangezogen; die Verzögerungsspannung bestimmt den Einsatzpunkt.

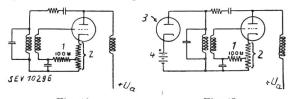


Fig. 16. Fig. 17. Oszillatoren mit Widerstands-Stabilisation 1 Gittervorspannung. 2 Gegenspannung. 3 Amplitudenbegrenzer. 4 Verzögerungsspannung. $M = k\Omega$.

Zur überschläglichen Berechnung der durch die Diode bedingten Verzerrung macht man von der Tatsache Gebrauch, dass der Strom durch die Diode aus sehr kurzen Impulsen besteht.

Es ist daher die Amplitude i_{s2} der zweiten Harmonischen dieser Impulse im wesentlichen gleich der Amplitude i_{s0} der Grundwelle. Der Dämpfungswiderstand der Diode für die Grundfrequenz f_0 beträgt

$$R=lpha\,R_{
m res}$$
; $R_{
m res}=arrho_0\,R_0=arrho_0\,\sqrt{L\,C}$

 α ist eine Konstante, $R_{\rm res}$ ist der Resonanzwiderstand des Kreises und ϱ_0 seine Resonanzschärfe.

Der Klirrfaktor beträgt demnach

$$k_2 = u_{s_2}/u_{s_0} = 2/(3 \alpha \varrho_0)$$

 ϱ_0 liegt im Bereich von 50...200 und α kann bei genügender Gegenkopplung zu 100 gemacht werden. Der daraus folgende Klirrfaktor ist daher in der Grössenordnung von nur 1/100 %.

Spulenloser Oszillator

Mit Hilfe der Gegenkopplung ist es möglich, einen Oszillator herzustellen, dessen Frequenz durch ein Widerstands-Kondensator-Netzwerk gegeben ist (Fig. 18). R_1 ; C_1 ; R_2 ; C_2 bilden den Rückkopplungsspannungsteiler zur Erzeugung der Schwingungen, R_3 ; R_4 bilden den Gegenkopplungsspannungs-

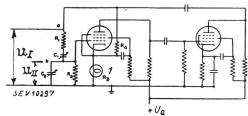


Fig. 16.
Spulenloser Oszillator
1 Heissleiter.

teiler zur Erzeugung einer möglichst reinen Sinus-Form. R_3 wird zweckmässig als Heissleiter ausgebildet zur Amplitudenbegrenzung, damit die Verstärker als reine A-Verstärker mit kleinstem Klirrfaktor arbeiten.

Wählt man

$$R_2 = R_1 = R$$
 und $C_2 = C_1 = C$

so ändert sich das Spannungsverhältnis $\mathfrak{U}_I/\mathfrak{U}_{II}$ in der Art einer Resonanzkurve, wie Fig. 19 zeigt. Beim Maximum dieser Kurve beträgt die Frequenz

$$f_0 = 1/(2 \pi RC)$$

und die Spannungen sind in Phase. Die Schwingungen tendieren daher zur Frequenz f_0 .

Benutzt man gekoppelte Drehkondensatoren, die in Radio-Empfängern üblich sind, so kann man mit einer Drehung einen Frequenzbereich von 1:10 bestreichen. Für mehrere Bereiche werden zweckmässig die Widerstände mit einem Dezimalschalter geändert.

Bei einem praktisch ausgeführten Tongenerator nach Schaltung Fig. 18 betrug die maximale Ausgangsspannungs-Differenz 10% und der Klirrfaktor nur ¼%. Prüfungen der Frequenzstabilität ergaben eine Abweichung von höch-

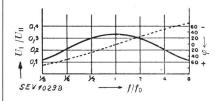


Fig. 19.

Spannungs- und
Phasengang der
Schaltung Fig. 18

f/fo Frequenzwert.

U₁ /U₁ Spannungsverhältnis.

P Phase in Grad.

stens $^{1}/_{10}$ % selbst bei grossen Speisespannungs-Aenderungen. — Oszillatoren dieser Art arbeiten bis über 2 MHz einwandfrei.

Schluss

Mit den oben aufgezählten Anwendungsbeispielen für die Gegenkopplung sind die Möglichkeiten dieses Schaltungsprinzips keineswegs erschöpft. Die Beispiele genügen aber zur Orientierung und zeigen, dass hauptsächlich für Laboratoriumsgeräte die Gegenkopplung von grösstem Nutzen ist.

E, d, G

Radio-Schweiz im Jahre 1941

Dem Jahresbericht dieser Gesellschaft entnehmen wir:

Die Radio-Schweiz hat im Jahre 1941, ihrem 20. Geschäftsjahr, den Höhepunkt ihrer bisherigen Tätigkeit erreicht. Die Ausschaltung einzelner Draht- und Kabelwege sowie die allgemeinen schweren Hemmungen im internationalen Verkehr führten zwangsweise zu einer vermehrten Beanspruchung der Radioverbindungen, wodurch unserem Lande rasche, direkte und unabhängige Nachrichten-Verbindungen mit dem Ausland erhalten blieben.

Die Gesellschaft, die Anfang April 1922 als erste Verbindung den Verkehr mit London aufnahm und im ersten Geschäftsjahr rund 100 000 Depeschen beförderte, übermittelte im vergangenen Jahre 1 670 780 Telegramme, wovon etwa die Hälfte auf aussereuropäische Länder entfiel.

Für den Ausbau der Anlagen wurde in den letzten Jahren fast ausschliesslich die schweizerische Radio-Industrie herangezogen

Gegenwärtig unterhält die Radio-Schweiz drahtlose Verbindungen mit Japan, China (Shanghai und Chengtu), Nordamerika, Südamerika (Buenos Aires und Rio de Janeiro), Syrien, Aegypten (für das Rote Kreuz), ferner über London mit andern aussereuropäischen Ländern. In Europa bestehen Verbindungen mit Grossbritannien, Spanien, Portugal, Dänemark, Sowjet-Russland, Schweden und der Türkei. Neuerdings ist mit Rücksicht auf die grossen schweizerischen Interessen im ostasiatischen Kriegsgebiet eine direkte Verbindung mit Thailand (Bangkok) aufgenommen worden. Mit New York bestehen zwei direkte Verbindungen; es werden aber auch die Leitwege der amerikanischen Kabelgesellschaften Western Union Telegraph Co. und Commercial Cable Co., deren Verkehr von Radio-Schweiz zwischen Bern und London drahtlos übermittelt wird, benützt.

Eine starke Vermehrung des Nachrichtenaustausches brachte die Tätigkeit des Internationalen Roten Kreuzes in Genf und die Uebernahme zahlreicher Interessen von am Krieg beteiligten Staaten durch den schweizerischen Bundesrat

rat.
Vermittels einer Flugplatz-Radiostation der Gesellschaft wurde der drahtlose Verkehr mit den unter schweizerischer Flagge fahrenden Schiffen aufgenommen. Der Flugradiodienst hingegen war immer noch sehr beschränkt, da gegenwärtig nur eine einzige schweizerische Fluglinie mit dem Ausland besteht.

Die Völkerbundsstation ist auf Anfang Februar 1942 durch Kauf vollständig in das Eigentum der Radio-Schweiz übergegangen.

Die Betriebseinnahmen betrugen im Jahre 1941 4 790 485 Franken (im Vorjahr 4 127 479 Fr.), ihre Zunahme beträgt rund 16 %. Die Betriebsausgaben stiegen von 1569 417 Fr. auf 1883 623 Fr. im Jahre 1941 und vermehrten sich also um 20 %.

An konzessionsgemässen Gebührenanteilen wurden an die PTT 2 491 133 Fr. (Vorjahr 2 155 139 Fr.) abgeliefert. Der gesamte Einnahmenüberschuss der Betriebsrechnung beträgt 436 090 Fr. (1940 Fr. 422 297.—). Die Bilanz schliesst mit einem Gewinn von 192 450 Fr. ab, gegenüber 189 761 Fr. im Vorjahr. Die Personalausgaben betrugen im Berichtsjahr 1 036 937 Fr. (1940 Fr. 870 706.—). Die Gesellschaft beschäftigte Ende 1941 261 Personen, während es im 1. Geschäftsjahr (1922) nur 34 waren; 1940 betrug der Personalbestand 249.

Für Neuanlagen wurden verwendet: 95 000 Fr. für einen Sender in Münchenbuchsee, 60 000 Fr. für Empfangsmaterial in der Station Riedern, 50 000 Fr. für den Ausbau der Antennen-Anlagen (neue Rhombus-Riehtantennen in Münchenbuchsee und Riedern) und über 20 000 Fr. für Anschaffungen für das Betriebsbureau Bern (Streifendrucker usw.). Damit entsprechen die Anlagen bis auf geringe Ausnahmen dem modernsten Stand der Technik, und wesentliche Neu-Investierungen sind auf einige Zeit hinaus nicht mehr nötig.

Kleine Mitteilungen

Weltrundspruch in Zahlen 1). Eine Statistik der Union Internationale de Radiodiffusion in Genf gibt für Anfang dieses Jahres folgende Zahlen:

	Zahl der Stationen	Gesamt- leistung der Stationen kW	Durchschnitts- leistung der Stationen kW
Afrika	75	304,49	4.06
Nordamerika	1122	5 706,85	5,09
Zentralamerika	279	276,56	0,99
Südamerika	471	1 666,39	3,54
Asien	179	1 045,34	5,84
Australien und Ozeanien	172	423,65	2,46
Europa	470	12 156,45	25,86
	2768	21 579,73	7,80

Es geht daraus hervor, dass Nordamerika die weitaus grösste Zahl von Sendern, Europa hingegen eine hohe Ueberlegenheit der Senderleistung aufweist. Die Ursache liegt in der Verschiedenheit der Organisationsformen. Während in Europa der Rundspruch vorwiegend unter staatlicher Kontrolle steht, ist er in den meisten andern Kontinenten dem freien Wettbewerb privater Gesellschaften und Unternehmer unterworfen; erst im Laufe der letzten Jahre beginnt sich auch hier ein Wandel der Anschauungen zu zeigen.

Die Entwicklung des Kurzwellenrundspruchs geht aus der Statistik nicht hervor. Wie sehr dieser im Laufe der Jahre angewachsen ist, wird erst nach dem Kriege bekannt werden. Sicher ist, dass der Kurzwellenrundspruch ein gewaltiges Ausmass angenommen hat.

Nicht vergessen werden darf auch der frequenzmodulierte Rundspruch, dessen Ausbau zwar durch die Kriegsereignisse unterbrochen wurde, dem jedoch dank seiner besondern Eigenschaften eine grosse Entwicklung bevorsteht. Genannt sei besonders die hervorragende Störfreiheit und die engbegrenzte, lokale Reichweite, was die Möglichkeit gibt, zahlreiche Sender auf einem beschränkten Gebiet, etwa einer grössern Stadt mit ihrer Umgebung, einzusetzen und verschiedene Programme mit beträchtlicher Energie auszustrahlen, ohne einander zu stören. In den Vereinigten Staaten, von wo aus dieses Sendesystem seinen Ausgang genommen hat, ist die Senderleistung auf 50 kW festgesetzt. Man denkt dort daran, nicht nur zahlreiche private Rundspruchsender mit Programmen von lokaler Bedeutung aufzustellen, sondern auch Schulen, Universitäten, gemeinnützige Institutionen mit frequenzmodulierten Sendern auszustatten. Daneben sollen Elektrizitätswerke, Wasserwerke, Lebensmittelversorgungsbetriebe, Aerztezentralen usw. solche Sender erhalten, um sich mit ihren Arbeitsequipen, Unterabteilungen und sonstigen Interessenten ständig in Verbindung setzen zu können.

Auch das Fernsehen wird eine bedeutsame Veränderung im Bilde des Weltrundfunknetzes ergeben. Wird das Fernsehen der Zukunft durch zahlreiche Lokalsender oder durch Drahtnetze, vielleicht aber durch beide Methoden verbreitet werden? Wird nicht der Drahtrundspruch, der in der Schweiz besonders hohe Bedeutung errungen hat, eine noch ungeahnte Entwicklung nehmen? In England denkt man beispielsweise daran, nach dem Krieg das Starkstromnetz zu verwenden, um Rundspruchprogramme zu verbreiten. Die technischen Schwierigkeiten sind bereits überwunden, und so ist es nicht von der Hand zu weisen, dass in jeder Wohnung, die Anschluss an das Starkstromnetz zu Beleuchtungszwecken gefunden hat, dereinst auch der Drahtrundspruchempfänger stehen wird.

Wirtschaftliche Mitteilungen — Communications de nature économique

Bundesratsbeschluss über Massnahmen zur Erhöhung der Produktion der Wasserkraft-Elektrizitätswerke

(Vom 16. Juni 1942)

Der schweizerische Bundesrat,

gestützt auf Art. 3 des Bundesbeschlusses vom 30. August 1939 über Massnahmen zum Schutze des Landes und zur Aufrechterhaltung der Neutralität,

beschliesst:

Art. 1.

Das Post- und Eisenbahndepartement wird ermächtigt, von sich aus oder auf Gesuch der Werke alle Massnahmen anzuordnen, um die Energieerzeugung der bestehenden Wasserkraft-Elektrizitätswerke zu erhöhen. Es ist insbesondere ermächtigt:

- a) den provisorischen Höherstau bei Laufkraftwerken anzuorden:
- zuordnen;
 b) die Wasserabgabe für Fischtreppen vorübergehend zu
 beschränken oder einzustellen;
- c) die Wassermengen, die konzessionsgemäss in genutzten Gewässerstrecken zu verbleiben haben, vorübergehend zu beschränken oder ganz wegfallen zu lassen;
- d) die provisorische Zuleitung von nicht konzessioniertem Wasser zu gestatten;

- e) die Stauerhöhung oder -absenkung von natürlichen Seen anzuordnen;
- f) die in den Verleihungen und Vereinbarungen enthaltenen Vorschriften für die Füllung von Speicherseen, die der Kraftgewinnung dienen, abzuändern oder aufzuheben;
- g) den Inhabern der Verleihung für Speicheranlagen die Höherstauung der Speicherseen zu gestatten.

Die beteiligten Kantone sind, wenn immer möglich, über die vorgesehenen Massnahmen anzuhören.

Zur Verfügung von Massnahmen im Rahmen dieser Ermächtigung ist das Post- und Eisenbahndepartement endgültig zuständig.

Art. 2.

Reglementarische Vorschriften, Verleihungsbestimmungen, Verträge oder Rechte, die mit den im Rahmen dieser Ermächtigung vom Post- und Eisenbahndepartement verfügten Massnahmen in Widerspruch stehen, werden auf den Zeitpunkt des Inkrafttretens solcher Verfügungen und für deren Dauer unwirksam.

Art. 3.

Entstehen aus der Anwendung von Art. 1 und 2 Schäden, so haben die Werke, die aus den getroffenen Massnahmen Nutzen gezogen haben oder ziehen, hiefür Entschädigung zu leisten. Ziehen aus einer Massnahme mehrere Werke Nutzen, so haben sie an die Entschädigung im Verhältnis ihres Nutzens beizutragen.

¹⁾ Aus Schweiz. Radio-Ztg.

Für Schäden, die vom Geschädigten leicht hätten vermieden werden können, wird keine Entschädigung geleistet.

Bleibt nach Bezahlung allfälliger Schäden dem Werk ein wesentlicher Nutzen, so kann dem für die Verleihung zuständigen Gemeinwesen ein angemessener Anteil zugesprochen werden.

Wenn die Beteiligten sich über Ansprüche aus Abs. 1 bis 3 nicht direkt verständigen können, so sind diese an das Post- und Eisenbahndepartement zu leiten, das vorerst zu vermitteln sucht.

Art. 4.

Die Fälle, in denen das Post- und Eisenbahndepartement keine Einigung erzielt, unterbreitet es einem Schiedsgericht von fünf Mitgliedern, das unter Ausschluss jeder andern Gerichtsbarkeit nach freiem Ermessen entscheidet. Sein Entscheid ist einem rechtskräftigen Urteil des Bundesgerichtes gleichgestellt.

Der Präsident des Bundesgerichtes ernennt den Obmann und zwei Mitglieder, die Verleihungsbehörde und der Konzessionsinhaber je ein Mitglied des Schiedsgerichtes.

Art. 5.

Das Verfahren vor Schiedsgericht wird von seinem Obmann bestimmt und soll rasch zu einem Entscheid führen.

Die Kosten des Schiedsverfahrens werden angemessen auf die Parteien und den Bund verteilt.

Art. 6.

Dieser Bundesratsbeschluss tritt am 20. Juni 1942 in Kraft und ersetzt den Bundesratsbeschluss vom 10. Februar 1942*) in gleicher Sache. Er findet auch Anwendung auf die nach dem aufgehobenen Bundesratsbeschluss getroffenen Verfügungen.

Das Post- und Eisenbahndepartement ist mit dem Vollzug beauftragt. Es kann seine Befugnisse einem Kommissär übertragen.

Bern, den 16. Juni 1942.

Im Namen des schweizerischen Bundesrates: Der Bundeskanzler: G. Bovet. Der Bundespräsident: Etter.

Preise für Zinn und hochlegierte Zinnprodukte

Die Eidgenössische Preiskontrollstelle hat am 30. Juni 1942 die Verfügung Nr. 561 B/42 1) erlassen, durch welche mit Wirkung ab 1. Juli 1942 neue Preise für Zinn und hochlegierte Zinnprodukte festgesetzt wurden. Die neue Verfügung ersetzt die Verfügung Nr. 561 A/42 vom 28.2.1942 ²). Die Verfügung Nr. 560 und Weisung Nr. 1 vom 4.11.1941 betreffend Preisausgleichskasse für Zinn 3) bleiben bestehen.

Verfügung Nr. 4 des Kriegs-Industrie- und -Arbeits-Amtes betreffend Produktions- und Verbrauchslenkung in der Bauindustrie

(Abänderung der Verfügung Nr. 1 betreffend Zementrationierung)

(Vom 25. Juni 1942)

Mit Wirkung ab 1. Juli 1942 wurde Art. 2 der Verfügung Nr. 1 des KIAA vom 31.12.1941 über die Zementrationierung 4) aufgehoben und durch einen neuen Art. 2 ersetzt. Dieser bestimmt, dass Abgabe von Zementmengen bis zu 4 Säcken pro Monat an Gewerbebetriebe sowie Bezug durch diese, ferner Abgabe und Bezug von Zementmengen bis zu einem Sack pro Monat für den Eigenbedarf von der Bezugsscheinpflicht des Art. 1 ausgenommen sind 5).

Zahlen aus der schweizerischen Wirtschaft (aus «Die Volkswirtschaft», Beilage zum Schweiz. Handelsamtsblatt)

No.		M a 1941	1942	
-			1012	
1.	Import) [159,7	211,5	
	(Januar-Mai) 106 Fr.	(758,6)	(859,6)	
	Export	120,5	126,5	
	(Januar-Mai)	(554,3)	(592,9)	
2.	Arbeitsmarkt: Zahl der Stel-		, , , ,	
	lensuchenden	7 857	7 602	
3.	Lebenskostenindex \ Juli 1914 \	171	192	
	Grosshandelsindex $\int = 100$)	181	209	
	Detailpreise (Durchschnitt von			
	34 Städten)			
	Elektrische Beleuchtungs-			
	energie Rp./kWh Gas Rp./m³ (Juni 1914	34,9 (70)	34,4 (69	
		29 (138)	30 (143)	
	Gaskoks Fr./100kg)	15,63 (312)	15,99 (31	
4.	Zahl der Wohnungen in den			
	zum Bau bewilligten Gebäuden in 30 Städten	407	0.41	
		427 (1614)	$\frac{241}{(1571)}$	
5.	(Januar-Mai)	1,50	1.50	
6.	Nationalbank (Ultimo)	1,30	1,30	
•	Notenumlauf 106 Fr.	2115	2237	
	Täglich fällige Verbindlich-	2110	220.	
	keiten 106 Fr.	1520	1622	
	Goldbestand u. Golddevisen¹) 106 Fr.	3569	3571	
	Deckung des Notenumlaufes			
	und der täglich fälligen			
_	Verbindlichkeiten durch Gold ⁰ / ₀	63,08	89,18	
7.	Börsenindex (am 25. d. Mts.)			
	Obligationen	126	143	
	Aktien	156	182	
	Industrieaktien	292	304	
8.	Zahl der Konkurse	18	15	
	(Januar-Mai)	(97)	(83)	
	Zahl der Nachlassverträge	5	2	
9.	(Januar-Mai)	(35)	(29)	
۶۰	Bettenbesetzung in % nach	1941 Ap	ril 1942	
	den verfügbaren Betten	23,6	25,9	
	den verragbaren betten			
0.	Betriebseinnahmen der SBB	Ap		
	allein	1941	1942	
	aus Güterverkehr .)	22 931	22 177	
	(Januar-April) in	(86 500)	(78 392)	
	aus Personenverkehr	14 230	15 573	
	(Januar-April)	(48 234)	$(51\ 801)$	

Unverbindliche mittlere Marktpreise

je am 20. eines Monats.

	Juni	Vormonat	Vorjahr
Cents p. Ib.	11.25	11.25	62/0/08
Cents p. Ib.	_	_	26/10/03
Cents p. lb.	6.50	6.50	25/0/03
Schw. Fr./t	464	464.—	495.50
Schw. Fr./t	464	464.—	495.50
Schw. Fr./t	96.50	96.50	96.50
Schw. Fr./t	96.50	96.50	96.50
Schw. Fr./t		_	_
Schw. Fr./t	74.40	74.40	70.—
Schw. Fr./t	652.50	652.50	652.50
Schw. Fr./t	644.—	644.—	644.—
Schw. Fr./t	992.50	992.50	677.—
d/lb		_	_
	Cents p. Ib. Cents p. Ib. Schw. Fr./t	Cents p. lb. Cents p. lb. 6.50 Schw. Fr./t 464.— Schw. Fr./t 96.50 Schw. Fr./t 99.250	Cents p. lb. 11.25 — 6.50 Schw. Fr./t 96.50 Schw. Fr./t 74.40 Schw. Fr./t 652.50 Schw. Fr./t 652.50 Schw. Fr./t 74.40 Schw. Fr./t 652.50 Schw. Fr./t 644.— 3644.— 3644.— 3644.— 3644.— 3644.— 3644.— 36644.— 36644.— 3669.50 Schw. Fr./t 992.50 Schw. Fr./t 992.50 Schw. Fr./t 992.50

Bei den Angaben in amerik. Währung verstehen sich die Preise f. a. s. New York, bei denjenigen in Schweizerwährung franko Schweizergrenze (unverzollt).

1) Bei Bezug von Einzelwagen.
2) Bei Bezug in Zisternen.
3) Lst./1016 kg, f.o.b. London.

^{*)} Bull. SEV 1942, Nr. 3, S. 78.

1) Vollständiger Text mit Preisliste s. Schweiz. Handelsamtsblatt Nr. 148 (30. 6. 1942), S. 1504.

2) Schweiz. Handelsamtsblatt Nr. 49 (2. 3. 1942), S. 485, und Bull. SEV 1942, Nr. 5, S. 139.

3) Schweiz. Handelsamtsblatt Nr. 259 (4. 11. 1941) und Bull. SEV 1941, Nr. 24, S. 679.

4) Schweiz. Handelsamtsblatt Nr. 5 (9. 1. 1942), S. 69, und Bull. SEV 1942, Nr. 1, S. 22.

5) Schweiz. Handelsamtsblatt Nr. 148 (30. 6. 1942), S. 1502.

Miscellanea

In memoriam

Conrad Matschoß †. Am 21. März 1942 starb in Berlin im 71. Lebensjahr Conrad Matschoß, Ehrenmitglied des Vereins deutscher Ingenieure. Aus der Feder dieses weit über die Grenzen Deutschlands hinaus bekannten Ingenieur-Historikers sind ausser dem berühmten zweibändigen Werk über die Geschichte der Dampfmaschine mehrere Lebensbeschreibungen grosser Männer der Technik, wie Werner Siemens, Robert Bosch, Gottlieb Daimler hervorgegangen. Bekannt ist auch sein bereits 30 Bände umfassendes Jahrbuch «Beiträge zur Geschichte der Technik und Industrie», das seit 1933 unter dem Titel «Technikgeschichte» herausgegeben wird. Der VDI, dessen Direktor der Verstorbene während vieler Jahre war, verliert in ihm eine seiner markantesten Persönlichkeiten.

Persönliches und Firmen

(Mitteilungen aus dem Leserkreis sind stets erwünscht)

Kummler & Matter A.-G., Aarau. Herr A. Lüscher, bisher Direktor, wurde zum Mitglied des Verwaltungsrates gewählt.

Lonza Elektrizitätswerke und Chemische Fabriken A.-G., Basel. Herr E. Schenker, bisher Direktor, wurde zum Generaldirektor, und die Herren P. Bohner, E. Häuselmann, E. Hess, W. B. Heuscher. Dr. Th. Lichtenhahn und R. Waldner, bisher Prokuristen, wurden zu Vizedirektoren ernannt. Ferner wurden zu Prokuristen ernannt die Herren M. Hafen, P. Mühlethaler, Mitglied des SEV seit 1936, Dr. S. Ruosch und Dr. G. Trümpler.

Kleine Mitteilungen

Schweizerische Unfallversicherungsanstalt (SUVAL) Luzern. Nach dem Jahresbericht 1941 dieser Anstalt waren Ende 1941 51 326 Betriebe der obligatorischen Unfallversicherung unterstellt. Neu unterstellt wurden im Berichtsjahre 2101 Betriebe und 1544 von der Betriebsliste gestrichen. Bis Ende März 1942 wurden der Anstalt 141 519 Unfälle des Jahres 1941 gemeldet; davon waren 100 893 Betriebs- und 40 626 Nichtbetriebsunfälle. Dazu kommen 70371 Bagatellschäden, die keine die zweitägige Karenzzeit überschreitende Arbeitsunfähigkeit zur Folge hatten. Von den Unfällen im Berichtsjahre waren 623 Todesfälle (349 Betriebs- und 274 Nichtbetriebsunfälle). Für Unfallverhütung wurden 322 000 Franken ausgegeben. Die Versicherungsleistungen betrugen für Betriebsunfälle 319 Millionen Franken und für Nichtbetriebsunfälle 116 Millionen Franken.

Mitteilungen aus den Technischen Prüfanstalten des SEV

Vergleichsversuche über die Dauerstandfestigkeit von Zink, Aluminium und Kupfer

(Mitteilung der Materialprüfanstalt des SEV)

539.434:621.315.5

Im Aufsatz «Zink in Hausinstallationen?» im Bulletin SEV 1942, Nr. 12, wurde darauf hingewiesen, dass Zink eine sehr geringe Dauerstandfestigkeit aufweist. Dieser schwerwiegende Nachteil hat die Hausinstallationskommission des

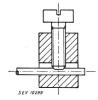


Fig. 1. Anschlussklemme mit angeschlossenem Leiter.

SEV und VSE dazu bewogen, Zink für Leiter für Hausinstallationen vorläufig nicht zuzulassen.

Als Dauerstandfestigkeit wird die Zugkraft in kg/mm² bezeichnet, bei der die Dehnungsgeschwindigkeit zwischen der 25. und 35. Stunde der Zugbeanspruchung 10 · 10-4 %/h beträgt und die bleibende Dehnung in der 45. Stunde kleiner als 0,2 % sein soll.

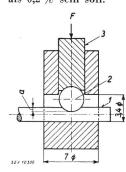
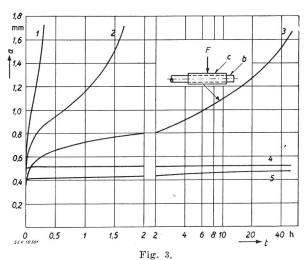



Fig. 2. Prüfeinrichtung für den Nachweis des Fliessens des Leitermetalls.

- Leiter 2,5 mm².
- Stahlkugel von 3,15 mm Durchmesser.
- Druckstempel.
- F Druck.
- a Eindrucktiefe.

Masse in mm.

Eine zu geringe Dauerstandfestigkeit des Leitermaterials wirkt sich in der Weise aus, dass der gemäss Fig. 1 an eine Anschlussklemme angeschlossene Leiter dem Druck der Leiterbefestigungsschraube im Verlaufe mehrerer Stunden oder Tage so lange ausweicht, bis der spezifische Schraubendruck unter den Dauerstandfestigkeitswert gesunken ist. Erfahrungsgemäss genügt bei den üblichen Anschlussklemmen der verbleibende Druck nicht mehr zur Gewährleistung eines guten Kontaktes. Die Kontaktschwierigkeiten lassen sich durch genügende Vergrösserung der Kontaktfläche beheben. Es ist jedoch nötig, dass die Druckübertragung federnd erfolgt und dass die Härte der Federung richtig gewählt ist.

Fliesskurven von Leitern aus Zink, Kupfer und Aluminium.

- 2 Zinkleiter, Zinkleiter mit Röhrchen aus Eisen. Kupferleiter. Aluminiumleiter.
 - Eindrucktiefe. Druckdauer.
- Druck. Zinkleiter. Röhrchen aus Eisen. C
- Zeitmaßstab der Abszissenachse bis 2h linear, ab 2h logarithmisch.

Bei den durch die Materialprüfanstalt des SEV vorgenommenen Versuchen handelte es sich nicht darum, die Zahlenwerte der Dauerstandfestigkeit zu ermitteln, sondern es sollten die Unterschiede im Verhalten der Leiter aus Zink, Aluminium und Kupfer bei radialer Druckbeanspruchung, die beim Anschliessen der Leiter an die Anschlussklemmen entsteht, in augenfälliger Weise gezeigt werden.

Die Versuche wurden mit einer Prüfeinrichtung nach Fig. 2 durchgeführt. Der konstant bleibende Druck F auf den Leiter 1 wurde durch eine Stahlkugel 2 übertragen und derart gewählt, dass im Leiter ein Anfangseindruck a von etwa 0,4...0,5 mm Tiefe entstand. Mittels einer mit dem Druckstempel 3 in Verbindung stehenden Messuhr wurde die Eindrucktiefe a in Funktion der Druckdauer t für Zink-, Aluminium- und Kupferleiter von 2,5 mm² Querschnitt (ca. 1,8 mm Durchmesser) bestimmt.

Aus Fig. 3 ist der Verlauf der Eindrucktiefe a in Funktion der Druckdauer t ersichtlich.

Die Kurven 1 und 2 charakterisieren zwei Zinkleiter aus der Legierung Zn-Al1 verschiedenen Fabrikates. Nach einer Druckdauer von 20 min bzw. etwas mehr als 11/2 h waren die Leiter vollständig abgeschert. Weitere Untersuchungen an Leitern aus anderer Fabrikation haben zwischen den Kurven 1 und 2 liegende Werte ergeben.

Versuchsweise wurde der Leiter nach Kurve 1 in der Anschlussklemme mit einem 10 mm langen Röhrchen aus Eisen von 0,3 mm Wandstärke versehen. Durch diese Massnahme konnte das Fliessen des Drahtes stark verlangsamt, jedoch nicht verhindert werden (Kurve 3); das Zink floss in der Längsrichtung aus dem Röhrchen heraus.

Kurve 4 wurde an einem Kupferleiter ermittelt. Im Beharrungszustand, welcher sich nach etwa 20 h einstellte, wurde eine Zunahme der Eindrucktiefe von 28/1000 mm festgestellt.

Das Verhalten eines Aluminiumleiters ist aus Kurve 5 ersichtlich. Nach 2-, 5-, 10-, 20-, 40- und 70stündiger Belastungsdauer hatte die Eindrucktiefe um 38-, 52-, 60-, 67-, 73und 76/1000 mm zugenommen. Der Verlauf der Kurve lässt erkennen, dass das Fliessen des Leiters zum Stillstand gelangen wird, bevor die Vergrösserung der Eindrucktiefe den Wert von ¹/₁₀ mm erreicht.

Zusammenfassung. Die Versuche haben gezeigt, dass bei Kupferdrähten nur ein sehr schwaches Fliessen auftritt. Etwas stärker fliessen Drähte aus Aluminium. Früher durchgeführte Untersuchungen haben jedoch ergeben, dass Kontaktschwierigkeiten selbst beim Anschliessen solcher Drähte an Anschlussklemmen, die nicht federnd ausgebildet sind, nicht befürchtet werden müssen. Die Dauerstandfestigkeit des Zinks hingegen ist derart gering, dass Drähte aus diesem Metall für den Anschluss an nicht federnde Anschlussklemmen völlig ungeeignet sind.

Qualitätszeichen, Prüfzeichen und Prüfberichte des SEV

I. Qualitätszeichen für Installationsmaterial

für Schalter, Steckkontakte, Schmelzsicherungen, Verbindungsdosen, Kleintransformatoren.

für isolierte Leiter.

Mit Ausnahme der isolierten Leiter tragen diese Objekte ausser dem Qualitätszeichen eine SEV-Kontrollmarke, die auf der Verpackung oder am Objekt selbst angebracht ist (siehe Bull. SEV 1930, Nr. 1, S. 31).

Auf Grund der bestandenen Annahmeprüfung wurde das Recht zur Führung des Qualitätszeichens des SEV erteilt für:

Schmelzsicherungen

Ab 1. Juni 1942

Appareillage Gardy S. A., Genève.

Fabrikmarke:

Sicherungselemente für Schraubsicherungen.

Ausführung: Sockel aus Porzellan, Deckel aus Kunstharzpreßstoff. Mit Nulleiter-Abtrennvorrichtung.

Nr. 07542: zweipolig, 25 A 500 V. Nr. 07544: dreipolig, 25 A 500 V. Nr. 07644: dreipolig, 60 A 500 V.

Isolierte Leiter

Ab 15. Juni 1942

Schweizerische Isola-Werke, Breitenbach.

Firmenkennfaden: schwarz, weiss, verdrillt.

Fassungsader Cu-ThFg und ThFs, Ein- und Zweileiter.

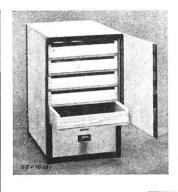
Seile flexibel 0,75...1,5 mm² Cu.

Sonderausführung mit thermoplastischer Aderisolation.

IV. Prüfberichte

(Siehe Bull, SEV 1938, Nr. 16, S. 449.)

P. Nr. 241.


Elektrischer Dörrapparat Gegenstand:

SEV-Prüfbericht: A. Nr. 17255 vom 29. Juni 1942.

Auftraggeber: Gebh. Müller, Kaltbrunn.

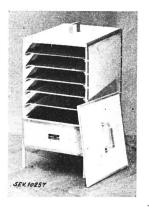
Aufschriften:

Gebh. Müller, Elektr. Heizungen Kaltbrunn, St. Gallen No. 1167 V 220

Beschreibung: Elektrischer Dörrapparat gemäss Abbildung. Gestell Eisen, Verschalung aus Lignat. Fünf Hurden mit Drahtgitter. Apparatestekker für den Anschluss der Zuleitung.

Der Apparat hat die Prüfung in sicherheitstechnischer Hinsicht bestanden.

P. Nr. 242.


Gegenstand: Elektrischer Dörrapparat

SEV-Prüfbericht: A. Nr. 17155a vom 15. Juni 1942.

Auftraggeber: Chr. Schweizer, Thun.

Aufschriften:

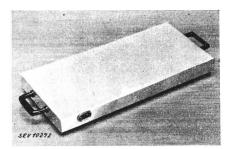
THUNA Fabr. No. 9500 Volt 220 Watt 750

Beschreibung: Elektrischer Dörrapparat gemäss Abbildung. Gestell aus Eisen, Verschalung aus Lignat. Fünf Hurden aus Drahtgitter. Netzanschluss mit zweiadriger Gummiaderschnur. Erdungsklemme vorhanden.

Der Apparat hat die Prüfung in sicherheitstechnischer Hinsicht bestanden.

P. Nr. 243.

Elektrische Wärmeplatte Gegenstand:


SEV-Prüfbericht: A. Nr. 17182a vom 23. Juni 1942.

Auftraggeber: Electro-Ideal, Olten.

Aufschriften:

ELECTRO-IDEAL Volt 220 Watt 320

Beschreibung: Elektrische Wärmeplatte aus Aluminiumblech gemäss Abbildung. Flacher Heizkörper mit Blechmantel eingebaut. Handgriffe und Füsse aus Kunstharzpressstoff. Apparatestecker für den Anschluss der Zuleitung. Plattenabmessung: $500 \times 235 \times 42$ mm. Fusshöhe: 22 mm.

Die Heizplatte hat die Prüfung in sicherheitstechnischer Hinsicht bestanden.

P. Nr. 244.

Gegenstand: Elektrischer Warmwasserapparat

SEV-Prüfbericht: A. Nr. 17245 vom 29. Juni 1942.

Auftraggeber: A. Thurnherr, Basel.

THUBA Warmwasser-Spender Aufschriften: Thuba Elektr. Apparate Basel 15 No. 1018 V 220 W 75

Beschreibung: Kleiner Heisswasserspeicher für Wandmontage gemäss Abbildung, mit einem Nutzinhalt von ca. 5 l. Das Wasser muss oben eingefüllt werden. Heizelement und Temperaturregler mit Temperatursicherung unten eingebaut. Apparatestecker für den Anschluss der Zuleitung.

Der Apparat hat die Prüfung in sicherheitstechnischer Hinsicht bestanden.

Vereinsnachrichten

Die an dieser Stelle erscheinenden Artikel sind, soweit sie nicht anderweitig gezeichnet sind, offizielle Mitteilungen der Organe des SEV und VSE

Totenliste

Am 31.1.1942 starb in Luzern im Alter von 47 Jahren Herr Arnold Wehrli, technischer Beamter bei den SBB in Luzern, Mitglied des SEV seit 1923. Wir sprechen der Trauerfamilie unser herzliches Beileid aus.

Am 25.6.1942 starb in Blonay sur Vevey im Alter von 65 Jahren Herr *Louis Dénéréaz*, Ingenieur, Prokurist der Société Romande d'Electricité und Vorstand der elektrischen Betriebe Vevey-Montreux. Wir sprechen der Trauerfamilie und der Société Romande d'Electricité, Clarens, unser herzliches Beileid aus. - Ein Nachruf folgt.

Verwaltungsausschuss des SEV und VSE

Der Verwaltungsausschuss des SEV und VSE hielt am 25. Juni 1942 unter dem Vorsitz von Herrn Direktor R. A. Schmidt, Präsident des VSE, in Zürich seine 74. Sitzung ab.

Er befasste sich vor allem mit internen Fragen und besprach eingehend die finanzielle Lage der Gemeinsamen Geschäftsstelle und der Technischen Prüfanstalten sowie die Ordnung der Beitragsleistungen an die Verbände und die Technischen Prüfanstalten. Der Jahresbericht des General-sekretariates des SEV und VSE und derjenige der Technischen Prüfanstalten für das Jahr 1941 wurden durchberaten.

Anmeldungen zur Mitgliedschaft des SEV

Seit 26. Juni 1942 gingen beim Sekretariat des SEV folgende Anmeldungen ein:

a) als Kollektivmitglied:

Henry Baumann, Elektrotechn. Furnituren, Stauffacherquai Nr. 40, Zürich.

b) als Einzelmitglied:

b) als Einzelmitglied:
Girtanner M. F., Ingenieur, Weinbergstr. 92, Kilchberg bei Zürich.
Kuhn Th., Kaufmann, Sportstr. 11, Wettingen.
Ritzenthaler J., Elektrotechn., Forchstr. 16, Uster.
Favre M., ingénieur-radioélectricien, Albertstr. 15, Wettingen.
Hofer G. E., Direktor, Standard Telephon & Radio A.-G.,
Bubenbergplatz 10, Bern.
Isay G., Elektroingenieur ETH, Fliederstr. 8, Zürich 6.

Abschluss der Liste: 10. Juli 1942.

Vorort

des Schweiz. Handels- und Industrievereins

Unsern Mitgliedern stehen folgende Mitteilungen und Berichte des Schweiz. Handels- und Industrievereins zur Einsichtnahme zur Verfügung:

Clearing-technische Behandlung von Anzahlungen und Vorauszahlungen.

Verhandlungen mit Spanien. Wirtschaftliche Beziehungen mit Italien.

Kurzvorträgeveranstaltung des SEV

Der SEV veranstaltet wieder eine Kurzvorträge-Veranstaltung, die in der zweiten Hälfte des Monats September abgehalten werden soll.

Gegenstand

der Vorträge kann irgendein freigewähltes Thema aus der Elektrotechnik sein. Die Veranstaltung soll den

Elektrizitätswerken

und sonstigen Abnehmern von Industrieprodukten Gelegenheit geben, ihre Bedürfnisse für Neuerungen auf dem Gebiete der Erzeugung, Verteilung und Anwendung von Elektrizität auseinanderzusetzen und zur Diskussion zu stellen, und, vor allem, über interessante Betriebserfahrungen zu berichten. Die in der

Wissenschaft

Tätigen können über neue Forschungsergebnisse zuhanden der Industrie und der Werke referieren. Endlich kann die

Industrie

ihre neuesten Untersuchungen, Konstruktionen und Ideen der Oeffentlichkeit bekanntgeben.

Der Vorstand des SEV hat bereits beschlossen, ein oder zwei Vorträge der Technik der elektrischen Raumheizung zu widmen.

Vortragsdauer

darf 15 Minuten, in Ausnahmefällen 20 Minuten, nicht überschreiten. Daran schliesst sich je eine Diskussion.

Anmeldungen

Wir bitten alle unsere Mitglieder, die ein Referat halten wollen, uns dies spätestens bis zum 15. August bekanntzugeben, dabei soll der Inhalt des Vortrages in wenigen Stichworten mitgeteilt werden. Der Vorstand des SEV wird am 8. September die Anmeldungen behandeln und das Programm aufstellen.

Vor der Veranstaltung sind die Referate wieder in Form von

Vorabzügen

erhältlich; diese Vorabzüge sollen die Diskussion vorbereiten. Der zu druckende Text darf ausführlicher sein als der zum Vortrag kommende Text.

Wir erwarten zahlreiche Beteiligung und hoffen auf ein interessantes Ergebnis.