Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 31 (1940)

Heft: 22

Artikel: Chauffage hivernal à l'aide d'énergie estivale

Autor: Seehaus, P.

DOI: https://doi.org/10.5169/seals-1058026

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

6. Allgemeine Bemerkungen.

Einige Fragen, die bei diesem Mutatortyp von Interesse sein könnten, Frequenzbereich, Kommutierung usw., werden später beantwortet. Der Grund dieses Mangels ist in dem Umstand zu suchen, dass in erster Linie die physikalischen Grundlagen dieser neuen Theorie und die für eine mathematische Durchdringung des Problems erforderlichen Rechenmethoden bekanntgegeben werden mussten.

In der allgemeinen Theorie wurde der Einfluss der Entionisierungszeit auf das Kippen des Mutators nicht berücksichtigt. Die ohne diese Berücksichtigung durchgeführten Rechnungen lassen sich als richtig beweisen, wenn man sich der Tatsache erinnert, dass bei Betriebsfrequenzen bis ca f=500 Hz und Normallast eine einwandfreie Kommutierung gewährleistet ist. Auch der Aufbau und das Verschwinden magnetischer Felder $(\cos\varphi)$ im Sinne einer Verzögerung des Stromüberganges und einer Veränderung der Kommutierungszeit bedarf einer noch eingehenderen Betrachtung.

Für den Fall, dass die Spannung der Gleichstromquelle nicht einen rechteckförmigen Verlauf aufweist, wie er bisher vorausgesetzt wurde, ist eine Erweiterung der Theorie erforderlich. Sie wird sich mehrheitlich in einer vermehrten Anwendung der mathematischen Hilfsmittel bemerkbar machen.

Da uns der Stromverlauf bei den Ausgleichvorgängen bekannt geworden ist, kann nun auch dach den *Ueberspannungen*, die gleichzeitig auftreten, gefragt werden. Die hier ermittelten Gleichungen liefern uns unmittelbar die Teilspannungen, deren Grösse erheblich über demjenigen bei Normalbetrieb liegen kann.

7. Zusammenfassung.

In der vorliegenden Untersuchung handelt es sich um die Erfassung der elektromagnetischen Vorgänge von Gleichstrom-Wechselstrom- und Wechselstrom-Wechselstrom-Mutatoren (Um- und Wechselrichtern) mit Kondensatorkommutierung bei beliebiger Belastung. Die Kondensatorkommutierung wurde gewählt, um den möglichst generellsten Fall des Mutators zu behandeln.

Dass die bisherigen Rechenverfahren die zum Teil recht komplizierten Ausgleichsvorgänge im System nicht befriedigend zu erfassen vermochten, ist bekannt, weshalb man neue Ansätze suchen musste. Für das Auffinden und die Ableitung dieser Ansätze diente die folgende Anschauung. Man denkt sich den Mutator so, als wirke er als Schalter, nicht aber als Ventil. Die Differentialgleichungen des Systems werden abgeleitet, als würde eine Gleichstromquelle der Spannung U_g auf ein System von Widerständen, Kapazitäten und Induktivitäten im Takte der Steuerfrequenz geschaltet. Die Lösung der unter diesem Gesichtspunkt abgeleiteten Differentialgleichungen erfolgt mittels der Laplaceschen Transformation. Kommutierung und Instabilitätserscheinungen lassen sich eindeutig erfassen, sofern die gegenseitige Beeinflussung der zwei im Spiele stehenden Anodenkreise einbezogen wird. Die zum Teil recht komplizierten Ausgleichsvorgänge, die durch eine starke Verstimmung des Systems zustande kommen, lassen sich mittels der Berechnungsmethode, ohne für die Differentialgleichungen erleichternde Randbedingungen annehmen zu müssen, bestimmen.

Um den Unterschied zwischen der neuen und der älteren Rechenmethode zu zeigen, sind einige Ergebnisse angeführt und diese mit den neuen verglichen. Der Ersatzstromkreis, welcher als Grundlage für die Berechnung dient, ist in einem speziellen Kapitel behandelt.

Die Diskussion der Gleichungen, bzw. Lösungen ermöglicht uns, diese in drei Gruppen einzuteilen, wobei jede einem Betriebszustand entspricht. Die Ergebnisse sind durch oszillographische Messungen der Anodenströme verifiziert. Algebraische Bedingungsgleichungen grenzen den Gültigkeitsbereich einzelner mathematischer Gleichungen ab.

Chauffage hivernal à l'aide d'énergie estivale.

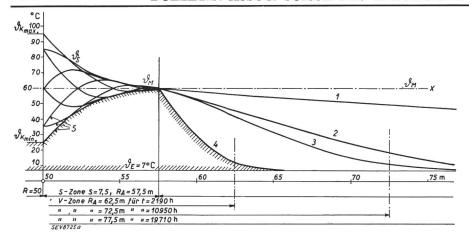
Par P. Seehaus, Mitlödi. (Bull. ASE 1940, No. 15.)

Pour répondre à de nombreuses demandes, nous avons fait faire un résumé en français de la remarquable étude de M. Paul Seehaus «Winterheizung mit Sommerenergie». Ce résumé est joint à ce numéro du Bull. ASE sous forme d'un supplément de 4 pages. Il peut également s'obtenir séparément auprès du Secrétariat général de l'ASE et de l'UCS, au prix de fr. 1.50.

Errata.

Nous profitons de l'occasion pour rectifier quelques erreurs d'impression qui se sont glissées dans le texte allemand (Bull. ASE 1940, No. 15). Le résumé en français en tient compte.

Page 323, colonne de droite, la dernière équation doit s'écrire:


$$\vartheta_s \ = \ \varDelta \, \vartheta_{s \; max} \cdot \, e^{\, - \, s} \, \sqrt{rac{\pi}{a \, T}} \, \cdot \, \sin \, \left(2 \, rac{\pi}{T} \, t - s \, \sqrt{rac{\pi}{a \, T}}
ight)$$

Page 329, colonne de gauche, à la 7° ligne au-dessus de la figure 5, l'indication $0.04^{\circ}\,\mathrm{C}$ doit être remplacée par $1.4^{\circ}\,\mathrm{C}$.

Page 329, colonne de droite, tableau VII. Les trois dernières lignes de ce tableau doivent se lire:

Maximal-Amplitude in 7,5 m Tiefe = 1,4° C Wellenlänge = Weg in 8760 h = 14,84 m Fortpflanzungsgeschwindigkeit der Wellen = 0,00169 m/h

Page 330: Les oscillations représentées sur la figure 6 s'étendent sur toute la zone des oscillations. La figure correcte est reproduite ci-contre.

Fig. 6.

Temperaturverlauf in der Sund V-Zone.

- x Axe der Temperaturschwingungen in der S-Zone.
- 1 ϑ_V . Stationär, $t = \infty$.
- 2 ϑ_V , t = 19710 h (2. Betriebsperiode).
- 3 ϑ_V , t = 10 950 h (1. Betriebsperiode).
- 4 ϑ_V , t = 2190 h (Anheizen).
- 5 Zeitliche Verschiebung je $^{1/8}$ T = 1095 h.

Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

Hochfrequenter Drahtrundspruch.

[Nach E. Buchmann, Siemens-Z. Bd. 17 (1937), Nr. 5, S. 197.]

Im Gegensatz zum Mehrfach-Fernsprechen über Leitungen ¹), bei dem meist nur ein Seitenband mit der Trägerfrequenz übertragen wird, beschickt man beim hochfrequen Drahtrundspruch (DR) die Leitungen mit normal modulierter Hochfrequenz, also Träger mit zwei Seitenbändern, wodurch Empfang mit normalen Radioapparaten möglich ist.

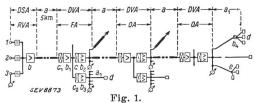
Wahl der Leitung.

Wegen seiner Dichte wird man das Telephon-Leitungsnetz benutzen; spezielle Leitungen von geringer Länge brauchen dann nur selten verlegt zu werden. Bei den Kabeln ergibt sich aus der geschirmten und symmetrischen Konstruktion geringe Störanfälligkeit.

Wahl der Trägerfrequenzen.

Die Telephonkabel sind speziell für Niederfrequenz gebaut. Die Dämpfung wächst mit der zu übertragenden Frequenz. Man wird die Trägerfrequenz also möglichst niedrig wählen, aber doch so hoch, dass sie mit Radioapparaten empfangen werden kann. Aus wirtschaftlichen Gründen kommt daher nur der Langwellenbereich in Frage. Die Dämpfung von Stammleitungen erreicht hier je nach Drahtdurchmesser maximal 1 Neper pro Kilometer; im Mittelwellenbereich ist sie mehr als doppelt so hoch. Da der Frequenzabstand von Telephonie auch gegenüber Langwellen sehr gross ist, genügen einfache und billige Weichen zur Trennung am Sendeund Empfangsort.

Zahl der Programme.


Eine einwandfreie Programm-Trennung ist bei einem Trägerfrequenz-Abstand von 30 kHz bei den meisten Empfängern garantiert. Ausgenommen sind die in der Schweiz wenig verbreiteten Einkreis-Empfänger, die aber schon mit einem billigen, vorgeschalteten weiteren Abstimmkreis (1 in Fig. 2) die nötige Trennschärfe erhalten. Im Frequenzbereich von 150 ... 300 kHz sind so 5 Programme unterzubringen.

$Das\ Drahtrund spruch-Netz.$

Als Ausgangspunkt eines DR-Netzes (Fig. 1) wählt man nach Möglichkeit eines der Rundspruch-Verstärkerämter (RVA), die sich in den Fernverbindungen der Rundspruchsender unter sich zwecks niederfrequentem Programmaustausch befinden. Die dort zur Verfügung stehenden Programme (1...3) können zur Modulation der DR-Sender dienen. Es entsteht so ein Drahtrundspruch-Sendeamt (DSA). Die Rundspruch-Verstärkerämter stehen mit den Telephon-Fernämtern (FA) in Verbindung und um diese gruppieren sich (oft auch in Serieschaltung) die Telephon-Ortsämter (OA).

In den Fern- und Ortsämtern sind DR-Verstärkerämter (DVA) untergebracht. Bis zu den Ortsämtern muss die Ueber-

tragung über die Leitung a sehr gut sein, da sich durch die Serieschaltung der vielen Verstärker die Fehler summieren. In der Leitung a_1 vom Ortsamt zum Abonnenten d kann dagegen keine Verzerrungshäufung mehr auftreten.

Drahtrundspruch-Netzgruppe.

Im Sendeamt befindet sich ein für alle Programme gemeinsamer Verstärker b. In den Verstärkerämtern unterscheidet man die Empfangsseite mit dem Steuerverstärker b_1 und die Seite der Weiterleitung, einmal mit dem Leitungsverstärker b_2 nach den weiteren Verstärkerämtern, andermal mit dem Leistungsverstärker b_3 zur Versorgung der Abonnenten d. Die entsprechenden Vorentzerrer c bzw. c_2 sind auf eine mittlere, nachfolgende Leitungslänge a bzw. a_1 eingestellt. Auf jedem Verstärkeramt ist dazu noch ein Nachentzerrer c_1 aufgestellt, der die Reste der Verzerrungen individuell behebt. Die Abonnenten haben Einzel- oder Sammelanschlüsse e, bei grösseren Gruppen über einen Verstärker b_4 .

Pegelverhältnisse auf den Ortsverbindungs-Leitungen.

Der Sendepegel auf den Ortsverbindungs-Leitungen ist durch die Dämpfung der Leitung und den durch die Störspannungen gegebenen Empfangspegel bedingt. In Versuchsnetzen ergab z.B. für den unmodulierten Träger eine Empfangsspannung von 25 mV auf Kabeln und eine von 500 mV auf Freileitungen ausreichenden Abstand vom Störpegel. Danach kann man mit 0,5 W pro Träger bei 250 kHz durch Kabel von 0,8 mm Durchmesser 8 km, von 1,4 mm 14 km und auf Freileitungen 50 km im Mittel überbrücken, was als ausreichend angesehen werden kann.

Pegelverhältnisse auf den Anschlussleitungen.

Die Spannung beim Abonnenten-Anschluss richtet sich nicht nur nach dem Störpegel, sondern auch nach der Empfänger-Empfindlichkeit: Bei einem Einkreiser ohne Rückkopplung kommt man so auf die gleiche Spannung von 25 mV; für Freileitungen müssen 100 mV gefordert werden.

Pro Träger und Einzelanschluss braucht man 10 mW, um 5 km mit Kabeln oder 50 km auf Freileitungen zu überbrücken. Teilt man die Abonnenten-Anschlüsse in Gruppen je nach Entfernung vom Ortsamt bis maximal ca. 5 km, so kommt man z. B. bei 5000 Abonnenten im Mittel auf einen Leistungsbedarf von 8 W, den man aus betriebstechnischen Gründen mehreren Verstärkern kleinerer Leistung entnimmt. Liegt eine Gruppe weiter als 5 km vom Ortsamt entfernt,

¹⁾ Vgl. Bull. SEV 1940, Nr. 4, S. 104.