Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 31 (1940)

Heft: 7

Rubrik: Communications ASE

Nutzungsbedingungen

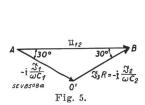
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

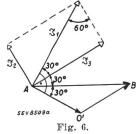
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more


Download PDF: 22.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch


$$\frac{I_2}{I_1} = \cos 60^{\circ} = \frac{1}{2} = \frac{C_2}{C_1} \qquad \boxed{C_1 = 2 C_2}$$

$$I_3 R = \frac{I_2}{\omega C_2}; \qquad \frac{I_2}{I_3} = R \omega C_2$$

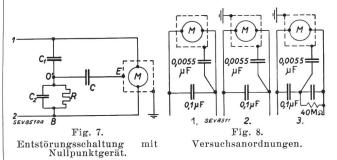
$$\frac{I_2}{I_3} = \text{tg } 30 = \frac{\sqrt{3}}{3} \qquad \boxed{R = \frac{\sqrt{3}}{3 \omega C_2}}$$
(Fig. 6.)

Ausschnitt aus dem «Soll»-Vektordiagramm.

Vektordiagramm bei richtig abgestimmten Schaltungselementen.

Durchrechnung eines praktischen Falles: $f = 50~{\rm Hz};~\omega = 314$

$$C_1 = 0.1 \; \mu ext{F} \quad C_2 = 0.05 \; \mu ext{F}$$
 $R = rac{\sqrt{3} \cdot 10^6}{3 \cdot 314 \cdot 0.05} = rac{36 \; 800 \; ext{Ohm}}{3 \cdot 314 \cdot 0.05} = rac{36 \; 800 \; ext{Ohm}}{3 \cdot 314 \cdot 0.05} = rac{190}{0.866} = 220 \; ext{V}$


Ströme von Netzfrequenz
$$\begin{cases} I_1 = 220 \cdot 314 \cdot 0.1 \cdot 10^{-6} = 6.9 \; \text{mA} \\ I_2 = 220 \cdot 314 \cdot 0.05 \cdot 10^{-6} = rac{3.45 \; \text{mA}}{3.6800} = 0.006 \; \text{A} = rac{220}{6 \; mA} \end{cases}$$

$$C_3 = 1 \,\mu\text{F};$$
 $C_{ ext{BO'},\, ext{Erde}} = rac{0,1\cdot 1}{1+0,1} = rac{0,1}{1,1} = 0,91 \,\mu\text{F}$ $C_{ ext{AO'},\, ext{Erde}} = rac{0,05\cdot 1}{1+0,05} = rac{0,05}{1,05} = 0,0477 \,\mu\text{F}$

Bei den Kondensatoren werden in der Praxis die Kapazitätswerte in den Grenzen $\pm\,10\,\%$ eingehalten. Unter der ungünstigen Annahme, dass die Kapazität $C_1\,10\,\%$ zu gross ist und die Kapazität $C_2\,10\,\%$ zu klein, während der Wider-

stand seinen Nennwert hat, ergibt sich, dass der Punkt O' gegen Erde eine Spannung von 14 V hat. Bei so kleinen Spannungsdifferenzen werden die am Anfang genannten Bedingungen eingehalten.

Eine Eigentümlichkeit der Schaltung, auf welche bei der Montage geachtet werden muss, ist die, dass die Lage des Punktes O' von der Drehrichtung des Drehfeldes abhängt. Bei der Montage muss der Punkt A der Schaltung an die Phase 1, deren Spannung derjenigen der Phase 2 um 120° voreilt, gelegt

werden (Fig. 7). Am einfachsten wird bei der Montage die Spannung des Punktes O' gegen Erde mit Voltmeter geprüft. An ortsveränderlichen Anlagen muss dafür gesorgt werden, dass eine Vertauschung der Zuleitungen durch einen Stecker nicht möglich ist

Mit einem versuchsweise zusammengebauten Nullpunktgerät wurden folgende Versuche gemacht (Störgerät: Föhn S & H) (Fig. 8).

- 1. Gehäuse ungeerdet.
- 2. Gehäuse geerdet. Die Störung ist stärker als im Fall 1.
- 3. Durch Anbringen des Nullpunktgerätes wird die Störung auf dasselbe Mass herabgesetzt wie im Fall 1

Die Wirksamkeit der neuen Schaltung ist also erwiesen. Es zeigte sich, dass im vorliegenden Fall die Störung mit einem grösseren Kondensator an Stelle des Berührungsschutz-Kondensators nicht wesentlich herabgesetzt werden konnte. Ein Nullpunktgerät ist nur in dem Fall nötig, wo zur wirksamen Entstörung gegen Gehäuse ein grösserer Kondensator als ein Berührungsschutz-Kondensator verwendet werden muss.

Technische Mitteilungen. — Communications de nature technique.

Glasgewebe, ein neues Isoliermaterial im Elektromaschinenbau.

621.315.612

Der Werkstoff Glas ist schon seit jeher als hervorragender Isolator bekannt, war aber bisher wegen seiner schwierigen Bearbeitbarkeit und Sprödigkeit auf einzelne wenige Anwendungen beschränkt. Die neueste Entwicklung der Herstellung von Glaswolle und deren Verarbeitung zu Geweben zu niedrigen Preisen hat dem Glas in der Elektrotechnik ganz neue Anwendungsmöglichkeiten erschlossen. Die heute für die Herstellung von Glasgeweben verwendeten Fäden haben einen Durchmesser zwischen 0,005 und 0,008 mm.

Herstellung und Verarbeitung. Der spinnbare Glasfaden wird heute nach zwei grundsätzlich verschiedenen Verfahren hergestellt. Zuerst wurde das Stapelfaser-Verfahren entwikkelt, bei welchem geschmolzenes Glas zusammen mit Dampf durch sehr dünne Platindüsen geblasen wird, wobei dann Fasern von 10 bis 25 cm Länge entstehen. Diese Fasern werden zu Garn weiterverarbeitet und nachher wird aus diesem Garn nach ähnlichen Verfahren, die in der Baumwollweberei üblich sind, ein Glasgewebe hergestellt. Beim zweiten, neueren Herstellungsverfahren für spinnbare Glasfasern wird mit Hilfe von Platindüsen ein endloser Faden hergestellt, wobei der Fadendurchmeser durch die Durchlaufgeschwindigkeit des Glases durch die Düse bestimmt wird. Bei beiden Verfahren wird das Glas in elektrischen Oefen geschmolzen, welche eine genaue Temperaturregelung ermöglichen und einen sauberen Betrieb ergeben. Die Verfahren sind heute so weit entwickelt, dass aus einer Glaskugel von 1,9 cm Durchmesser ein kaum sichtbarer Glasfaden von ca. 110 km

Länge hergestellt werden kann. Da gewöhnliches Glas in Wasser ganz wenig lösbar ist, was aber bei den dünnen Fadendurchmessern bereits eine Rolle spielt, wurde für die Herstellung von Glasgeweben eine neue, alkalifreie Glassorte entwickelt, welche gleichzeitig noch einen höheren Isolationswiderstand und eine geringere Temperaturabhängigkeit als Normalglas besitzt.

Handelsformen von Glasgeweben. Für Isolierzwecke ist Glas in folgenden Formen erhältlich:

- 1. Band in jeder normalen Dicke bis zur unteren Grenze von 0,075 mm für Gewebe aus endlos gezogenen Fäden und 0,25 mm Dicke für Gewebe aus Stapelfaser.
- 2. Geflochtenes Ueberzugsrohr (für nackte Drähte) in allen normalen Innendurchmessern.
- 3. Draht mit Glasisolation. Alle Grössen von Runddraht und verschiedene Sorten von quadratischem und rechteckigem Querschnitte werden montagefertig geliefert.
- 4. Stoffähnliche Gewebe aus Glasfäden in allen Dicken von 0,05 mm an aufwärts.
- 5. Kombinationen von Glasgeweben mit Glimmerschuppen.

Eigenschaften. Die mit Glaswolle oder aus Glasgeweben hergestellte elektrische Isolation zeichnet sich aus durch besonders grosse Temperaturbeständigkeit bis zu 700° C. Die Zugfestigkeit nimmt, bezogen auf den Wert bei Zimmertemperatur, bis zu 204° C eher zu. Stapelfasergewebe hat bei einer Temperatur von 426° C und Gewebe aus endlosem Faden sogar bei 538° C noch eine grössere Zugfestigkeit als Baumwollgewebe bei 25° C (s. Fig. 1). Dielektrisch verhält sich Glasgewebe ähnlich wie Asbest oder Luft, wobei aber die Glasisolation gegenüber Asbest, welches auch hohe Temperaturen aushält, den Vorteil hat, nicht hygroskopisch zu sein. So hat ein Glasgewebe nach einer Feuchtigkeitsbehandlung eine 1,5 bis 2,5mal höhere Durchschlagsspannung als eine ebenfalls der Feuchtigkeit ausgesetzte Asbestisolation, welche im trockenen Zustande elektrisch gleichwertig war. Fig. 2 zeigt die Abnahme des Widerstandes von Glasgewebe und Asbestgewebe unter dem Einfluss von Feuchtigkeit.

Anwendungsmöglichkeiten. Am ehesten wird sich Glasgewebe in der Wicklungstechnik für die Isolation von Leitern einführen. Seine Widerstandsfähigkeit gegen Wärmeeinflüsse lassen das Glasgewebe als das ideale Isoliermittel für Wick-

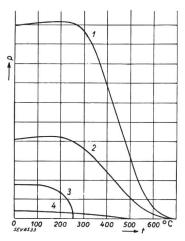


Fig. 1.
Einfluss der Temperatur (t) auf die Zugfestigkeit (p) verschiedener Isoliermaterialien.

- 1 Endloser Glasfaden.
- ? Glasfaden nach dem Stapelfaserverfahren.
- 3 Baumwolle.
- 4 Asbest.

lungen erscheinen, welche unter erhöhten Temperaturen arbeiten müssen oder welche im Betriebe gelegentlichen Ueberlastungen ausgesetzt sind. Die Verwendung von Glasgeweben hat in den letzten Monaten starke Fortschritte gemacht. Es seien beispielsweise nur die Isolierung von Erregerspulen bei verschiedenen Maschinen, insbesondere in Transportanlagen und Fahrzeugen genannt. Versuchsweise wurden mehrere glasisolierte Magnetspulen mehrere Stunden bei Temperaturen von 500° C betrieben, ohne dass sich an der Glasisolierung eine sichtbare Veränderung gezeigt hätte. Besonders gute Erfahrungen hat man mit Glasisolierungen von Eisenbahn- und Trammotoren gemacht. Glasisolierte Spulen von Magneten für die Betätigung von Steuerapparaten auf elektrischen Lokomotiven haben sich im mehrmonatigen Betriebe sehr gut bewährt. Man wird es im Zugsförderungsdienste

besonders schätzen, nun eine Isolierung zu haben, welche auf Uebertemperaturen unempfindlich ist, selbst wenn die Motoren auf normale Uebertemperaturen dimensioniert sind. Die durch Glasisolierung mögliche Temperatursteigerung ergibt bei gegebener Leistung kleinere Maschinen, geringeres Gewicht und damit vielfach eine Preissenkung pro Einheit der Leistung.

Die Glasgewebeisolation erhält nach dem Aufbringen auf den Draht meist noch eine Emailbehandlung, um die einzelnen Fasern gegen örtliche Verschiebung zu schützen.

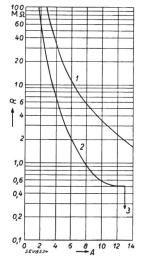


Fig. 2.

Einfluss der Feuchtigkeit auf den Isolationswiderstand (R) von Spulen mit Glasgewebeund Asbestisolation, beide mit
Lack imprägniert.

- A Anzahl der Tage, während der die Isolation bei einer relativen Feuchtigkeit von 99 % gelagert wurde.
- 1 Glas.
- 2 Asbest.
- 3 Zerfall.

Wie jedes Material, so hat auch Glasgewebe seine Grenzen. Im heutigen Entwicklungsstand wirkt sich vor allem die wesentliche Empfindlichkeit gegen scharfe Ecken hindernd aus, ferner die Tendenz des Gewebes, zu gleiten, da es seidenartige Beschaffenheit aufweist und die vorhin erwähnte Emailbehandlung sich nicht immer durchführen lässt. Es wird von der an der Entwicklung der Glasgewebe interessierten Industrie eifrig daran gearbeitet, die noch vorhandenen Mängel zu beseitigen und damit den Glasgeweben in der Elektrotechnik ein grosses Absatzgebiet zu sichern. — (R. E. Ferris und G. L. Moses, Electr. Engng., Dez. 1938, S. 480.)

Ueber die Schmierung von Wasserturbinen.

621.89:6213

Die Wissenschaft hat sich in den letzten Jahren intensiv mit dem Problem der Turbinenschmierung mittels Mineralölen beschäftigt, und eine ganze Reihe wertvoller Arbeiten sind daraus hervorgegangen. Sie suchten alle abzuklären und zu umschreiben, welche Anforderungen an solche Schmiermittel gestellt werden müssen, wenn sie ihren Zweck ideal und wirksam erreichen sollen. Von den Turbinen-Konstrukteuren und den Erbauern von Wasserkraftanlagen wurden ebenfalls wertvolle Studien und Erfahrungen beigesteuert, die den Weg zu den am besten geeigneten Schmiermitteln für die so verschiedenartigen Turbinen wiesen.

Turbinen schmiert man weitaus am häufigsten mit Umlauf-Schmierung. Durch ein System von Rohrleitungen mit mehr oder weniger grossen Verzweigungen und Sammelstellen wird das Schmiermittel immer wieder den eigentlichen Schmierstellen zugeführt; 5 bis 10mal stündlich wird das Oel in diesem geschlossenen System umgewälzt. Die Zahl der Umwälzungen, die Konstruktionsweise, Verzweigung und Grösse des Systems, die Temperaturstufen und extreme und die Konstruktionsmaterialien usw. bestimmen die Anforderungen an das Schmiermittel. Der Umlauf im Röhrensystem, die Berührung mit Luft und Wasser unter ungünstigen Bedingungen an bestimmten Stellen ergeben Schwierigkeiten, die nur ganz spezielle Oele im Dauerbetrieb bewältigen. Der häufige und rasche Temperaturwechsel beim Uebergang von stark erwärmten Zonen zu den Kühlflächen, die Verschiedenheit in den Werkstoffen, die das Schmiersystem bilden, üben grossen Einfluss aus auf das Mineralöl.

Drei Aufgaben hat das Mineralöl im Schmiersystem zu erfüllen: In erster Linie dient es dazu, einen reibungsvermindernden Oelfilm zwischen den sich reibenden Metallflächen zu bilden. Dies tritt auf Grund der konstruktiven Verhältnisse automatisch ein; Voraussetzung dazu sind keilförmige Zwischenräume, die ja innerhalb jedem Lagerspiel von Welle zu Lagerschale und zwischen Spursegment und Welle vorhanden sind.

Die Wärmeableitung ist die zweite Aufgabe eines Schmiermittels. Die von der Flüssigkeitsreibung erzeugte Wärme kann sehr gross sein und muss durch das umgewälzte Oel abgeführt werden. Grosse, hochbelastete oder für grosse Umlaufgeschwindigkeiten konstruierte Lagerstellen erhalten deshalb eine Vorrichtung zur Oelkühlung, in welcher das im Kreislauf befindliche Oel gekühlt wird.

Das Oel wird aber auch - seine dritte Aufgabe die Betätigung der Leistungs-Regulierapparate herbeigezogen. In Geschwindigkeitssteuerungen betätigt man die Kraftkolben der Regulierorgane mit Drucköl. Auch dieses Oel zirkuliert in geschlossenem Kreislauf. Dabei wird es durch die Umwälzungen und die unvermeidlichen Berührungen mit Luft-Sauerstoff stark beansprucht und unterliegt der Oxydation und Alterung.

Die Anforderungen an die Mineralöle.

Eines der wesentlichsten Momente für die Oelwahl stellt die physikalische Stabilität des Schmieröls dar, vor allem im Hinblick auf die wechselnden Betriebstemperaturen. Die Viskosität darf bei wechselnden Betriebstemperaturen nur sehr wenig ändern. Es ergeben sich dann folgende Vorteile:

- Die Oel-Umwälzungen sind regelmässiger.
 Man vermeidet Stauungen und Störungen.
 Bei niedriger Lagertemperatur ergibt sich nur eine geringe Erhöhung der Viskosität, daher
 Einsparung an Energieverlusten dank der geringen inneren Beibergeber Schwissenitteles
- Reibung des Schmiermittels.

 Bei steigenden, hohen Lagertemperaturen zeigt sich kein starker Rückgang der Viskosität, und daher

 6. gesicherte Schmierung selbst bei hohen Lauftemperaturen.

Für das Verhältnis der Viskosität eines Mineralöls zur Temperatur (die Viskositätstemperatur-Verwandtschaft) hat man einen besonderen Ausdruck geschaffen: den Viskosi-täts-Index (VI). Mineralöle, die bei steigenden Temperaturen ihre Viskosität nur wenig erniedrigen und sich nicht stark verflüssigen, anderseits in der Kälte nur geringe Tendenz zu Aufsteifung und Verdickung zeigen, besitzen den höchsten VI. Mineralöle vorzüglicher Provenienz oder sehr hohen Raffinationsgrades erreichen einen maximalen VI von ca. 100, mittelmässige Oele weisen einen solchen von ca. 50 auf; schlechte, ungeeignete Oele besitzen einen VI von ca. 20.

Mineralöle in ihrer natürlichen, unverarbeiteten Zusammensetzung neigen infolge ihres Gehaltes an gewissen Gruppen von Kohlenwasserstoffen dazu, rasch und stark Alterungsstoffe zu bilden. Daran sind vor allem die hochmolekularen aromatischen Kohlenwasserstoffe sowie sauerstoff-, stickstoff-und schwefelhaltige Kohlenwasserstoffe beteiligt. Als Alterungsstoffe bilden sich daraus die Asphaltene in Form von schwarzen Schwebestoffen sowie Teerstoffe in gelöster, dunkler Form, die dem gealterten Oel seine dunkelrote Farbe erteilen, wie auch Säuren, als niedere organische Gebilde. Alle diese Produkte entstehen durch die Einwirkung von Wärme, Zeit und Luft-Sauerstoff auf das Mineralöl. Metalle, mit denen das Oel in Berührung kommt, können diesen Vorgang beschleunigen oder verzögern.

Um das geeignete Oel mit besonderer Alterungsfestigkeit zu erhalten, stellt man seit Jahren bestimmte Produkte eigens für die Turbinenschmierung her. Man wählt diese Oele aus den besten Rohölen aus und unterwirft sie einer besonderen Raffination. Diese Oele zeichnen sich aus durch hohen Viskositäts-Index und eine sehr helle, gelbe Farbe.

Alle Mineralöle haben eine mehr oder weniger starke Neigung, mit Wasser gemischt leichte Emulsionen zu ergeben. Das Wasser verteilt sich dabei im Oel in feinste Tröpfchen. Diese Verteilung kann bei bestimmten Mineralölen sehr haltbar sein, bei anderen setzt sich das Wasser innert kurzer Zeit ab, trennt sich also vom Oel. Wie stark und schnell diese Ausscheidung erfolgt, ist für die Anwendung der Oele in Wasserturbinen wichtig, noch wichtiger allerdings für Dampfturbinen.

Das unterschiedliche Verhalten der Mineralöle ist begründet in ihrer verschiedenartigen chemisch-physikalischen Natur; es steht in engstem Zusammenhang mit der Oberflächenspannung der verschiedenen Oele. Man kann Mineralöle aus bestimmten Rohölen nach besonderen Verfahren und unter Vorsichtsmassregeln so raffinieren und reinigen, dass sie überhaupt kein Wasser in dauernder Emulsion aufnehmen. Sie verteilen sich lediglich in äusserst groben Teilen, trennen sich aber nach wenigen Sekunden wieder vom Wasser. Solche Oele sind die idealen Turbinenöle.

Zu beachten ist dabei noch, dass ganz vorzügliche Mineralöle nach längerer Lagerung ihre rasche Wasser-Separation verlieren, sich also als schlechtes Turbinenöl herausstellen. So hat sich schon gezeigt, dass die Emulgierungsteste ursprünglich ganz einwandfreier Oele nach sechsmonatiger Lagerung nicht mehr aufrechterhalten werden konnten. Das weist daraufhin, dass komplizierte und noch nicht klar überblickbare Vorgänge mit im Spiele sind. Man darf annehmen, dass eine leichte Alterung des Oels während des Lagerns diese Erscheinung bewirkt. Denn es ist bekannt, dass gealterte Oele während des Gebrauchs mehr oder weniger rasch ihre Emulgierungsfestigkeit verlieren und dazu übergehen, mit Wasser kräftige und dauerhafte Emulsionen zu bilden.

Auswahl und Anwendung der Schmiermittel.

Als Trag- und Führungslager kommen in Betracht: Hals-, Kamm- und Ringschmierlager mit festen oder losen Schmierringen, mit und ohne Druckversorgung, an vertikalen oder horizontalen Francisturbinen, Freistrahl-, Propeller- oder Kaplan-Turbinen. Hier muss in erster Linie die sogenannte Flüssigkeitsreibung erreicht werden, damit kein direkter metallischer Kontakt zwischen den reibenden Metallflächen entsteht. Dafür ist die Viskosität eines Oeles entscheidend; sie muss den mechanischen Verhältnissen entsprechend gewählt werden. Die Betriebstemperaturen in solchen Lagern können bis zu 70°C betragen und sie werden mittels Rückkühlung um 10...20° C herabgesetzt. Dabei treten oft besonders hohe Belastungen und Flächendrucke auf; es braucht also ein ausgesprochenes Qualitätsöl, um diesen schweren Anforderungen gerecht zu werden. Hier eignen sich diejenigen Mineralöle am besten, die mit einer grossen chemischen Stabilität (sie versauern nicht und bilden keinen Schlamm) eine bestimmte physikalische Stabilität verbinden. Sie sollen sich bei steigenden Temperaturen nur ganz wenig verflüssigen und bei absteigenden Temperaturen nur in geringem Masse verdicken und aufsteifen. Sie müssen also einen möglichst hohen Viskositäts-Index aufweisen. Der VI ist für die Schmierung dieser Lager der wichtigste Maßstab.

Spurlager müssen den meistens hohen Druck senkrecht stehender Wellen aufnehmen. Sie bestehen aus einer Spurplatte, auf welche sich die Welle abstützt, und einem Halslager zur seitlichen Führung der Welle. Die Spurplatte ist mit Segmenten versehen, die bei kleineren Anlagen fest, bei grösseren (Michell-Lagern) beweglich angeordnet sind, so dass sie frei kippen können. Dadurch wird ein keilförmiger Zwischenraum zwischen Segment und Welle hergestellt, in welchen sich der Oelfilm hineinziehen kann. Spurlager können auch horizontal angeordnet sein, wenn z.B. der vom Wasser auf die Turbine ausgeübte Druck seitlich aufgefangen werden soll. Das Schmieröl muss speziell mit Rücksicht darauf gewählt werden, dass es die erzeugte Wärme abführt und den Oelfilm zwischen Segment und Welle mit Sicherheit dauernd aufrecht erhalten muss. Die Viskosität ist hier vor allem wichtig; sie muss den Umlaufgeschwindigkeiten und den Druckbelastungen angepasst sein. Der Konstrukteur der Turbine muss die nötigen Angaben über die erforderliche Viskosität machen. Die üblichen Viskositäten schwanken allgemein zwischen 4...10° Engler bei 50°C. Es können aber je nach Umständen noch dickere Oele verwendet werden.

Regulatoren besorgen die Ablenkregulierung und Düsenregulierung bei Freistrahlturbinen, die Leitschaufelregulierung bei Francis- und Propeller-Turbinen, die Leit- und Laufschaufel-Regulierung bei Kaplan-Turbinen. Das zur Druck- und Kraftübertragung dienende Oel arbeitet in einem geschlossenen System, das erhebliche Längen und Verzweigungen aufweisen kann. Ist die Steuerungsvorrichtung mit dem Servomotor direkt verbunden, wie es bei kleineren Turbinenanlagen üblich ist, so sind die Leitungen kurz. Grössere Anlagen weisen ein stark verzweigtes Regulierschema auf,

da Oel-Reservoir und -Pumpe weit auseinanderliegen. Die konstruktiven Eigenheiten eines solchen Regulierschemas müssen bei der Oelwahl stets beachtet werden. Im Druckkessel befindet sich oberhalb des Oels ein Luftkissen. Infolge von Undichtigkeiten im Oelkreislauf entstehen Druckverluste, die durch Erneuerung des Luftkissens immer wieder ausgeglichen werden müssen. Die Druckölpumpe erneuert ständig das Luftkissen durch Einpressen von Luft; dadurch steht aber das Oel in ständigem Kontakt mit dem Sauerstoff der Luft. Dieser Kontakt und die immerwährende Umwälzung des Oeles im geschlossenen System bewirken eine starke Alterung des Oels. Dieser muss durch die Wahl eines besonders alterungsbeständigen Mineralöls entgegengearbeitet werden. Die hierfür verwendeten Viskositäten schwanken zwischen 3° bis 8° Engler bei 50° C.

Kaplan-Turbinen besitzen drehbare Propellerschaufeln; um eine Veränderung des Wirkungsgrades zu erzielen, muss die Flügelstellung der Wassermenge, dem Wasserdruck und der gewünschten Leistung angepasst werden. Um die Schaufelzapfen in ihren Lagerbüchsen zu schmieren, füllt man die Laufradnabe des Flügelkopfes mit Schmieröl. Besitzt die Anlage kleines Gefälle und dementsprechend geringen Druck auf die Schaufelflächen, so verwendet man ein dünnflüssiges Oel. Bei grossem Gefälle und infolgedessen höherem Druck eignet sich ein dickflüssiges Oel besser. Da der auszuhaltende Druck unter Umständen 80 bis 200 kg/cm² betragen kann, muss ein ziemlich hochviskoses Oel gewählt werden. Ein solches Oel dichtet auch besser ab. Die Beständigkeit des Oeles gegenüber dem Luft-Sauerstoff spielt hier keine wichtige Rolle, da das Oel im Innern der Nabe völlig gegen Luft abgeschlossen ist. Weil aber gelegentlich Wasser eindringen kann, sollte ein Oel gwählt werden, das eine gute Emulgierungsfestigkeit aufweist. Die hier am meisten verwendeten Viskositäten schwanken zwischen 8...40° Engler bei 50° C. Bei solchen Anlagen sind stets die Vorschriften des Konstrukteurs über das zu wählende Oel ausschlaggebend.

Abschlussorgane (Kugelschieber, Drosselklappen, Keilschieber, Gleitschutze). Bei kleineren Abmessungen werden sie von Hand betätigt, bei grossen Lichtweiten und Druckhöhen durch Elektro- oder hydraulischen Servo-Motor. Das Regulierschema eines solchen Abschlussorgans besteht aus einem Zylinder und Kolben, der durch Oeldruck betätigt wird. Dieser muss wieder in einer gesonderten Oelpumpe erzeugt werden. Derartige Anlagen befinden sich meistens im Freien und stellen ein sehr wichtiges Organ eines Kraftwerkes dar. Deshalb muss auch hier die Wahl des geeigneten Schmier- und Kraftübertragungsmittels ganz besonders genau und zweckentsprechend getroffen werden. Der Stockpunkt des Oeles ist dabei ein ausschlaggebender Faktor und vor allem auch das Viskositätstemperatur-Verhalten bei Temperaturen von -15° C ... $+10^{\circ}$ C. Da Mineralöle von gleicher Viskosität bei 50° C sich bei Temperaturen unter 0° C ganz verschieden verhalten können, ganz besonders kurz vor Erreichen ihres Stockpunktes, sind die Viskositätswerte bei verschiedenen Temperaturen zu beachten. Der Viskositäts-Index muss also so hoch als möglich sein. Ueblich sind Oele mit Viskositäten von 2 bis 3° Engler, jedoch unter Umständen auch Oele geringerer Viskosität.

Daten von Schmierölen.

Tabelle I.

Oel	Nr.	0	1	2	3	4	5	6
								_
Farbe		gelb	gelb	gelb	rot	rot	rot	rot
Fluoreszenz .		grün	grün	grün	grün	grün	grün	grün
Spez. Gewicht	bei	0.077	0.007	0.005	0.000	0.007	0.001	0.001
20° C Viskos. Engler	hei	0,877	0,897	0,895	0,898	0,897	0,891	0,901
20° C	bei	7,2	18	27	38	60	83	172
50° C		2 25	3,75		6,7	9,5	12,7	22,4
100° C		-,	1,46	1,57	1,75	1,99	2,3	3,17
Visk. Index .			80	80	80	80	90	90
Visk. Gew. K								
			190	205	220	232	245	255
Brennpunkt . Stockpunkt .	: :		232 -38	250 -26	265 -26	278 -26	290 -22	310 -10
Stockpunkt .		-40	-36	-20	-20	-20	-22	-10

Tabelle I gibt zur Orientierung über die zahlenmässigen Verhältnisse die Daten einer Serie von Schmierölen, Tabelle II Anwendungsbeispiele der verschiedenen Oele.

Anwendungsbeispiele der Mineralöle für Wasserkraftmaschinen.

Tabelle II.

Schmierstelle	Schmiersystem	Viskosität des Oeles 50° C
Trag-Führungslager, Halslager, Kamm- lager	Umlaufschmierung mit Zapfengeschw. von unter 6 m/s über 6 m/s Ringschmierung .	5 Engler° 3 Engler° 5 Engler°
Spurlager mit senk- rechten oder liegen- den Wellen, mit fe- sten oder losen Seg- menten, mit Kugel- oder Rollenlagern	Oelbadschmierung . Oelumlaufschmie-	8 Engler° 5 Engler°
Regulatoren je nach Konstruktion	Oelfüllung	35 Engler°
Kaplannaben je nach Konstruktion	Oelfüllung	840 Engler°
Abschlussorgane, hydr. Schützen, Klappen, Schieber	Oelfüllung	24 Engler°

Fette als Turbinen-Schmiermittel.

Bei vielen Turbinenanlagen gibt es gewisse Reibungsstellen, die nicht für Oel-, sondern für Fettschmierung eingerichtet sind. Die Konsistenz des Fettes muss je nach den Schmiervorrichtungen und der Länge der Zuleitungen gewählt werden. Die vielen Fette unterscheiden sich nach Herstellungsart, Grundtyp, Rohstoffen usw. und erhalten darnach ihre Kennzeichen und Qualitätsmerkmale. Die wichtigsten und wissenswertesten Anforderungen sind folgende:

1. Die Konsistenz des Fettes muss den besonderen Verhältnissen jeder Reibungsstelle angepasst sein. Weiche Fette werden leicht aus der Schmierstelle herausgepresst, zu feste

Fette ergeben zu starke innere Reibung.

2. Die mechanische Stabilität eines Fettes ist von ausschlaggebender Bedeutung. Ein mechanisch stabiles Fett muss unter den mechanischen Einwirkungen an den Reibungsstellen und bei der Umwälzung seine ursprüngliche Konsistenz dauernd beibehalten. Einfache, billige Fette erweichen im Laufe der Zeit oder verflüssigen sich sogar und fliessen aus den Lagerstellen aus.

3. Die chemische Stabilität eines Fettes ist die nächste wichtige Forderung. Chemisch stabile Fette sollen an der Oberfläche nicht verharzen, nicht eintrocknen noch verkleben. Zeigen Fette diese Eigenschaften, so verlieren sie die Schmierfähigkeit. Fette sind Kompositionen aus Seifen und Mineralölen; um erstklassige Fette zu erhalten, muss sowohl bei der Auswahl der Rohstoffe als auch bei der Verarbeitung die nötige Rücksicht auf das spätere Verhalten, die chemische Stabilität walten. Es zeigt sich immer wieder, dass billige, einfache Fette innert kurzer Zeit verharzen und eintrocknen.

4. Die Wasserfestigkeit spielt bei gewissen Reibungsstellen der Wasserturbinen eine entscheidende Rolle. Bei Wasserzutritt zu diesen Stellen darf sich das Fett nicht auflösen. Man wähle hierfür wasserfeste Fette, die sich wasserabweisend verhalten und ihre Schmierfunktion selbst bei ständiger

Gegenwart von Wasser ausüben.

5. Die Kälte- und Wärmesestigkeit ist nötig, damit sich das Fett bei steigender Betriebswärme nicht erweicht und seine ursprüngliche Konsistenz nicht verändert. Bei Kälte darf sich das Fett nicht aufsteisen und damit ein hartes,

anderswirkendes Fett ergeben. Kälte- und Wärmefestigkeit findet sich nur bei erstklassigen Qualitätsfetten.

6. Die Komposition des Fettes. Der Gehalt eines Fettes an Mineralöl und dessen Viskosität wird heute noch viel zu wenig beachtet, und doch ist diese der ausschlaggebende Faktor für das Verhalten eines Fettes gegenüber den mechanischen Beanspruchungen. Man vergisst, dass in einem Fett nur das Mineralöl das schmierende Element ist, während die Seife nur Aufsteifungsmaterial und damit eigentlich ein Fremdstoff ist. Das Mineralöl muss also so gewählt werden, dass es den mechanischen Zuständen und Anforderungen der jeweiligen Schmierstelle entspricht. Dünne, niedrigviskose Oele würde man an wichtigen Schmierstellen bei Oelschmierung nicht verwenden; sie sind daher auch in einem Schmierfett nicht geeignet. Man achte deshalb stets darauf, dass die gewählten Fette hochviskose Mineralöle enthalten, wie man sie bei Oelschmierung benützen würde. (Auszug aus den Mitt. d. Ad. Schmids Erben A.-G., Nr. 37.)

Kopex-Rohre für Hausinstallationen.

621.315.37

Neuerdings wurde in der Schweiz die Fabrikation von sogenannten Kopex-Rohren auf Grund einer siebenjährigen Entwicklungsarbeit aufgenommen. Es handelt sich um Rohre, die in Hausinstallationen unter den gleichen Voraussetzungen und Bedingungen wie armierte Isolierrohre (z. B. Bergmannrohre) verwendet werden können, wenn ihr Metallmantel aus verbleitem Eisenblech besteht. Sie weisen gegenüber armierten Isolierrohren wesentliche Vorteile auf. Die Rohre bestehen aus einem dünnen, biegsamen Rohr aus Isolierstoff, das von schmalen, während der Fabrikation gewölbten und ineinander gefalzten Metallbändern schraubenförmig umhüllt ist, ähnlich den flexiblen Metallrohren. Die Herstellung des Rohres erfolgt in einem einzigen Arbeitsgang. Es können Rohre von beliebiger Länge erzeugt werden mit lichten Weiten von wenigen bis über 1000 mm¹).

Das Kopex-Isolierrohr kann leicht von Hand bis auf einen Radius gebogen werden, der das 5fache des Rohrdurchmessers beträgt, ohne dass sich dabei der Rohrquerschnitt ändert. Deshalb ist ein sicherer und leichter Drahteinzug gewährleistet. Die mechanische Festigkeit der Rohre beträgt mindestens das 5fache der armierten Isolierrohre. Infolge der leichten Biegsamkeit und der Herstellungsmöglichkeit in jeder gewünschten Länge wird das Rohr in Ringen oder auf Trommeln geliefert; es ist also kein sperriges Gut wie die armierten Isolierrohre. Selbst lange Leitungen können ohne jeglichen Unterbruch, also ohne Verbindungsmuffen und Winkelstücke, verlegt werden. Besonders bei Unterputzverlegung bietet die Endlosigkeit und die leichte Biegsamkeit des Kopex-Rohres wesentliche Vorteile, da das Rohr sehr leicht und rasch um alle Hindernisse herum verlegt werden kann und dank seiner hohen mechanischen Festigkeit Möglichkeiten bietet, die das armierte Isolierrohr nicht kennt.

Die neuen Rohre lassen sich ohne weiteres in jede bestehende Installation einfügen, da sie die gleichen Aussendurchmesser aufweisen, wie die armierten Isolierrohre. Dabei sind jedoch speziell hiefür konstruierte Verbindungsmuffen und Endtüllen zu verwenden. Die lichte Weite des Kopex-Rohres ist etwas grösser als die des armierten Isolierrohres.

Die innere Isolationsschicht ist wärme- und kältebeständig; das Rohr lässt sich deshalb auch in geheizten Böden und Decken (Strahlungsheizungen) einbauen.

Für Räume, die korrodierende Dämpfe enthalten, werden Kopexrohre aus Messing, Kupfer, Aluminium oder andern geeigneten Metallen verwendet. Da jedoch solche Metallmäntel gegenüber verbleiten Eisenmänteln eine etwas geringere mechanische Festigkeit aufweisen, müssen sie unter Umständen noch besonders gegen Beschädigungen geschützt

Da das Kopex-Rohr nur unwesentlich teurer als das übliche armierte Isolierrohr ist und sowohl bei der Installation als auch in den Anwendungsmöglichkeiten dem armierten Isolierrohr überlegen ist, darf dieses neue Rohr das Interesse der Fachkreise beanspruchen.

¹) Die Fabrikation der Kopex-Rohre wird an der Basler Mustermesse (30. März bis 9. April) erstmals in der Schweiz gezeigt.

Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

Ein Nullpunktgerät für Radiostörung. Von W. Bloch, Zürich. (Siehe Seite 166.)

Ein elektroakustischer Führer.

Eine der Hauptsehenswürdigkeiten der Weltausstellung in New York ist das «Futurama», welches schon 1939 rund 5 Millionen Besucher verzeichnen konnte und seine Anziehungskraft auch in diesem Jahr bewahren dürfte. Es besteht aus Modellandschaften auf einer Fläche von 86 × 77 m. Ein Automobilkonzern zeigt hier ein Zukunftsbild von Autobahnen zusammen mit der Verkehrsregulierung, wobei beispielsweise 10 000 der total 50 000 Modell-Automobile in Bewegung sind. Der Besucher wird auf einer Art Berg-und-Tal-Bahn an den Landschaften vorbeigeführt und erblickt diese durch einen Fensterausschnitt wie von einem Flugzeug aus. Die Transportvorrichtung besteht aus 322 ineinandergreifenden Plattformen, von denen 23 je einen 1,5-kW-Gleichstrommotor für den Antrieb dieser 479 m langen endlosen Kette tragen. Auf den anderen Plattformen stehen je 2 gepolsterte, nach der Seite blickende Lehnstühle, also rund 600 im ganzen, die mit einer Geschwindigkeit von 0,53 m/s durch den schallisolierten und klimatisierten Besichtigungstunnel fahren. Erwähnen wir noch von den vielen mechanischen Einzelheiten, dass das Ein- und Aussteigen während der Fahrt über bewegte Hilfsplattformen erfolgt.

Besonders bemerkenswert ist nun die Lautsprecheranlage, welche die viertelstündige Reise mit Erklärungen begleitet.

Jeder Doppelsitz hat einen unsichtbaren Lautsprecher, je 2 benachbarte Lautsprecher sind parallel geschaltet und über 2 versilberte Kontaktschuhe mit zweien der 8 zwischen den Schienen liegenden Trolleydrähten verbunden, von denen einer die gemeinsame Rückleitung darstellt. Zwecks Erreichung einer guten Tonqualität wurde grosse Sorgfalt auf den Riesenphonographen gelegt, der im Dauerbetrieb den in 24 gleiche Teile aufgespaltenen Sprechtext liefert, wovon jeder einer Fahrstrecke von 20,5 m entspricht. Auf einer 3,6 m hohen Trommel sind 12 Ringe von 2,4 m @ aufgebracht, die 24 Tonfilmschleifen mit dem Text tragen. Die über 7 t wiegende Trommel hat 39 s Umlaufszeit und das mit Tonabnehmern, Verstärkern, Lagerung und Antrieb auf 20 t steigende Gesamtgewicht ruht zur Isolierung gegen Erschütterungen auf einer Kautschukmatte und auf besonderem Betonfundament. Zur Vermeidung von Verzerrungen sollte die Bewegung der Filmbänder vom genauen Kreise um nicht mehr als 0,02 mm abweichen und dies bedingt, dass neben Konstruktionsmassnahmen der ganze Raum auf konstante Temperatur und Feuchtigkeit reguliert wird. Jeder der 24 end-losen Filmstreifen wird nun durch 7 auf dem Umfang verteilte Photozellen abgetastet und deren Leistung verstärkt auf die 7 Trolleydrähte jeder 20,5-m-Teilstrecke gegeben. Auf diese Weise erhält jede Lautsprechergruppe beim Einfahren in die Teilstrecke genau den Anfang des zugehörigen Erläuterungstextes; am Ende der Teilstrecke gleitet der Kontaktschuh über ein Isolierstück auf das nächste Teilstück des Trolleydrahtes, welches mit dem richtigen Tonkopf des nächsten Filmbandes in Verbindung steht. Die Bewegung der Plattformenkette wird mit der Tontrommel durch einen besonderen Apparat im Synchronismus gehalten, indem die Geschwindigkeit der 23 Antriebsmotoren durch Regulieren der Klemmenspannung verändert wird; die Aufgabe wird da-

durch erleichtert, dass nur auf die Phasenlage innerhalb einer Teilstrecke zu achten ist. Der Synchronisierapparat besteht im wesentlichen aus zwei Kontaktschlitten, deren Bewegung den beiden zu synchronisierenden Mechanismen zugeordnet ist und deren relative Lage über Relais die Regulierung betätigen; der gleiche Apparat löst beim Anfahren auch den Beschleunigungsvorgang im richtigen Augenblick aus.

Die ganze Tonanlage ersetzt also rund 150 mitfahrende Führer. Bei Störungen können alle Tonleitungen über Relais auf eine Notanlage geschaltet werden, welche Musik oder mündliche Anweisungen übermitteln kann. — (J. Dunlop u. W. T. White, An armchair Spectator Conveyer-Guide, Electr. Engg., Dec. 1939, S. 509.) K. E. M.

Miscellanea.

In memoriam.

Johannes Forrer †. Am 13. Januar starb im Spital in Männedorf Herr Professor Dr. Johannes Forrer, Erlenbach, Vorstand des Institutes für Schwachstromtechnik an der Eidg. Techn. Hochschule, im Alter von erst 52 Jahren. Zwei Tage vorher hatte er seine letzte Vorlesung gehalten. Am Nachmittag fühlte er sich unpässlich und begab sich in Spitalpflege, um eine von den Aerzten angeratene Operation ausführen zu lassen. Eine Embolie setzte diesem erfolgreichen Leben ein plötzliches Ende.

Den Worten, mit denen Herr Professor Dr. F. Tank an der Leichenfeier den Verstorbenen ehrte und würdigte, entnehmen wir folgendes:

Forrer wurde am 22. März 1887 droben im obersten, hellen Toggenburg, in Wildhaus, geboren und besuchte dort die

Johannes Forrer 1887—1940.

Volksschule. Er blieb zeitlebens ein Sohn der Berge: stark, zuverlässig, treu, naturliebend und frohmütig. Mit 15 Jahren kam er an die Technische Abteilung der Kantonsschule St. Gallen. 1905 trat er in die Eidg. Techn. Hochschule ein, wo er Mathematik und Physik studierte. 1909 erhielt er das Diplom als Fachlehrer. Hierauf wurde der junge, für Wissenschaft und Technik begeisterte Forrer Assistent des in der Geschichte der schweizerischen Elektrotechnik wohlbekannten Professors H. F. Weber, wo er Gelegenheit hatte, im Laboratorium sein wissenschaftliches und technisches Geschick

und seine Frohnatur im Dienste des Unterrichtes zu entfalten. Bei Weber begann Forrer mit Untersuchungen über den glühelektrischen Effekt, welche jedoch infolge des 1912 eingetretenen Todes von Professor Weber unterbrochen werden mussten. Die Forschungen über diesen Effekt nahmen im Auslande in grösstem Maßstabe ihren Fortgang und führten zum Siegeslauf der Glühkathode und ihrer zahlreichen Anwendungsformen. Der Apparat, den Forrer benutzte, ist noch heute erhalten. Er besteht aus einer grossen Glühlampe mit Kohlefaden und eingeschmolzenem Platinblech. Der Apparat dient jetzt noch für Demonstrationen im physikalischen Institut der ETH.

Nachher finden wir Forrer als Assistent für Elektrotechnik bei dem damals berufenen Professor Dr. K. Kuhlmann und 1913 als Versuchsingenieur bei der Firma Trüb, Täuber & Co. in Hombrechtikon, Fabrik für elektrische Messinstrumente und wissenschaftliche Apparate. Die Mobilisation 1914 rief ihn unter die Fahnen, und 1916 entschloss er sich, als Versuchsingenieur bei der Firma Siemens & Halske in Berlin-Charlottenburg einzutreten, wo er bis 1918 blieb, um dann wieder nach Zürich zurückzukehren, seine Doktorpromotion an der ETH zu erledigen und von neuem seine Tätigkeit als Ingenieur bei der Firma Trüb, Täuber & Co. in Hombrechtikon aufzunehmen. Das Jahr 1920 wird dann für ihn in beruflicher Hinsicht zum Schicksalsjahr. Seine Lehr- und Wanderjahre sind jetzt beendet. Sein berufliches Können ist gefestigt, seine Erfahrung gereift. Im April 1920 tritt er in die eidgenössische Telegraphen- und Telephonverwaltung in Bern ein, wird am 1. Mai 1920 dort Sektionschef für elektrische Versuche und Materialprüfung, und am 1. Januar 1928 erfolgte seine Ernennung zum 1. Sektionschef. Von befreundeter Seite wird uns mitgeteilt: «Durch seine Studien an der ETH und seine praktische Tätigkeit in der Industrie hatte Herr Professor Dr. Forrer das nötige Rüstzeug, um der Sektion für elektrische Versuche und Materialprüfung, die in den primitivsten Anfängen stand, neues Leben zu geben und sie durch sein nie rastendes Temperament zu entwickeln. Sein Wirkungskreis galt vorab der Kabeltechnik, dann Schlag auf Schlag der Verstärkertechnik, der Automatik und der Entwicklung des Fernmeldewesens im allgemeinen. Keine Arbeit war ihm zu schwierig, und immer fröhlich und mit grosser Spannkraft packte er neue Probleme an und führte sie trotz mannigfaltiger Schwierigkeiten bis zum Enderfolg durch. In diesem Wirkungskreis fühlte sich Dr. Forrer glücklich.»

Seine Berufung an die ETH als Professor für Schwachstromtechnik erfolgte 1931, als nach längerer Vakanz der Lehrstuhl des verstorbenen Professors Dr. A. Tobler neu zu (Fortsetzung auf Seite 174.)

Wirtschaftliche Mitteilungen. — Communications de nature économique.

Extrait des rapports de gestion des centrales suisses d'électricité.

(Ces aperçus sont publiés en groupes de quatre au fur et à mesure de la parution des rapports de gestion et ne sont pas destinés à des comparaisons.)

On peut s'abonner à des tirages à part de cette page.

	n peut s'abo	onner a des	tirages a	part de cet	te page.			
	Nordostschweiz. Kraftwerke AG. Baden		AG. Kraftwerk Wäggital		Gas- und Elektrizitätswerk Wil (St. G.)		Elektriz	er- und itätswerk (St. G.)
	1938/39	1937/38	1938/39	1937/38	1938/39	1937/38	1938/39	1937/38
1. Production d'énergie . kWh 2. Achat d'énergie kWh 3. Energie distribuée kWh 4. Par rapp. à l'ex. préc %	435 039 580 446 750 100 881 789 680 + 9,44	421 222 810 384 496 800 805 719 610 + 8,25	41 500 000	137 000 000 31 800 000 136 000 000 — 2,5	2 631 750			48 620
5. Dont énergie à prix de déchet kWh	?	?	518 000	3 700 000	0	0	0	0
11. Charge maximum kW 12. Puissance installée totale kW 13. Lampes kW	211 200	205 600	91 000	95 000	865 6 701 29 711 1 575	826 6 348 29 338 1 549		
	1)	1)	1)	1)	29 119 142 144	26 108 115 116	2 147 349	466 2 097 340 131
16. Moteurs industriels $\begin{cases} nombre \\ kW \end{cases}$)		J	J	1 268 2 718	1 194 2 579		241 675
21. Nombre d'abonnements 22. Recette moyenne par kWh cts.	2,17	2,24	=	40 000 000 23 000 000		2 568 14,68	1 560 11,67	1 560 12 , 74
Du bilan: 31. Capital social fr. 32. Emprunts à terme » 33. Fortune coopérative » 34. Capital de dotation » 35. Valeur comptable des inst. » 36. Portefeuille et participat. » 37. Fonds de renouvellement »		49 584 000 — 97 261 767 50 407 000	23 000 000 13 822 567 — — —	78 410 547 11 981 889 — — — ?	_	495 986 544 000 —	185 000 90 000 150 000	240 000 40 000 125 000
Du Compte Profits et Pertes: 41. Recettes d'exploitation . fr. 42. Revenu du portefeuille et des participations	19 111 145 2 165 780 441 394 3 575 115 1 666 473 936 223 1 466 310 7 208 004 4 587 159 2 680 000 5	2 504 380 442 670 3 515 957 1 663 256 874 864 1 262 487 6 617 785 4 415 313	34 814 1 401 382 238 924 138 871 310 883 86 277 1 123 511	37 351 1 643 849 236 255 127 103 368 576 75 870 1 037 954	348 292	330 390 — 25 920 — 29 335 12 551 106 947 108 666 — 34 000 —	188 800 2 675 6 750 986 2 324 59 174 13 632 92 277 — 85 000 —	210 672
Investissements et amortissements: 61. Investissements jusqu'à fin de l'exercice fr. 62. Amortissements jusqu'à fin de l'exercice » 63. Valeur comptable » 64. Soit en % des investissements	96 779 006 88,72	91,76	?	?	2 489 088 2 027 088 462 000 18,60	2 334 333 1 790 333 544 000 23,1	2 057 000	2 232 000 1 992 000 240 000 10,75
2) Sans le fonds d'amortissement	de fr. 4 506 7	17.—.						

besetzen war. Die Wolken einer heraufziehenden schweren Krisis verdüsterten damals den Horizont. Die schweizerische Industrie sah sich nach neuen Arbeitsgebieten um. Die Elektrotechnik interessierte sich in erhöhtem Masse für das elektrische Nachrichtenwesen. Noch einmal begann Forrer ein aufbauendes Werk. Aus kleinsten Anfängen, mit Umsicht und Sachkenntnis, immer getragen vom Bewusstsein der Pflichterfüllung, entwickelte er an der ETH im Laufe der Jahre sein «Institut für Schwachstromtechnik», bis es endlich auf dem Stande war, den er sich wünschte. Als Lehrer war Forrer beliebt und erfolgreich; in der Technik war sein Wissen und Können hoch geschätzt. Ein schönes Beispiel klar durchdachter schöpferischer Arbeit war das aus seinem Institut und unter Mitwirkung einer Reihe schweizerischer Firmen hervorgegangene, an der Landesausstellung gezeigte Modell eines pupinisierten Kabels mit fünf verschiedenen Uebertragungskanälen, welche ganz verschiedenen Zwecken dienen. Es sollte sein letztes grösseres Werk sein!

Herr Prof. Dr. J. Forrer war Mitglied des SEV seit 1928. Grosse Dienste leistete er dem Verein besonders als Präsident der Kommission für das Studium der Störungen von Telephonanlagen durch Starkstrom. Uns allen war er ein froher, lieber, stets hilfsbereiter Freund.

Ein herbes unerforschliches Schicksal wollte es, dass er jetzt — mitten aus dem Felde reifen Wirkens — seinen Angehörigen und uns allen entrissen wurde. Für ihn war es ein schöner Abschied — uns aber wird dieser Weggang schwer. Nun ruht sein schaffender Geist. Unsere Achtung und Liebe und unser treues Gedenken werden ihm bleiben.

Persönliches und Firmen.

(Mitteilungen aus dem Leserkreis sind stets erwünscht.)

Aargauisches Elektrizitätswerk, Aarau. Nach nahezu 25 Jahren erfolgreicher Tätigkeit tritt Herr L. Balthasar, Mitglied des SEV seit 1907, als Direktor des Aargauischen Elektrizitätswerkes auf den 30. Juni 1940 zurück. Er übernahm die Leitung des AEW mit dem Tag der Betriebseröffnung, am 1. Januar 1916. Anfänglich waren dem AEW nur die Bezirke Baden, Zurzach, Bremgarten, Brugg, Lenzburg, Muri und Rheinfelden angeschlossen; jetzt versorgt das staatliche Werk sozusagen den ganzen Kanton.

Gesellschaft des Aare- und Emmenkanals, Solothurn. Der Verwaltungsrat erteilte die Prokura an die Herren Wilhelm Graber, Mitglied des SEV, und Karl Eschmann.

Maschinenfabrik Oerlikon. Der Verwaltungsrat der Maschinenfabrik Oerlikon hat die Herren Vizedirektoren A. Traber, J. U. Brunner und Werner Schindler (Mitglieder des SEV) zu Direktoren ernannt. Die Leitung der Maschinenfabrik Oerlikon liegt nun in den Händen folgender Herren:

Präsident der Direktion: Dr. Hans Schindler; Vizepräsident der Direktion: F. E. Hirt; Direktoren: A. Traber, J. U. Brunner und Werner Schindler.

BAG Broncewarenfabrik A.-G., Turgi. Die BAG erteilte die Prokura an die Herren Carl Gaiser und Erwin Humbel.

Kleine Mitteilungen.

Warnung vor Schwindelfirmen. Es gibt in Amerika Firmen, die wertlose Dokumentationen auf dem Gebiete der Elektrotechnik zu weit übersetzten Preisen in Europa vertreiben. Sie empfehlen solche Dokumentationen beispielsweise unter dem Titel «Latest Developments in Manufacture of Transformers» auf Postkarten, die sie den in Frage kommenden Firmen und Persönlichkeiten zustellen. Es wird die Voreinsendung des hohen Preises verlangt, worauf dann der Versand der «Dokumentation» erfolgt. Auf diese Tatsache werden wir von einem unserer Mitglieder mit folgendem Briefe aufmerksam gemacht:

«Nous vous remettons en annexe une carte que nous venons de recevoir de la maison ... X ... à New York. En automne 1939, nous avions déjà reçu une carte analogue, et avions commandé la documentation proposée. En réponse, et après réception de 12.50 dollars, les éditeurs nous ont envoyé un petit cahier de 28 pages, format 210×280 , tiré au multigraphe. Le contenu ne présente aucun intérêt et n'est qu'une compilation plus ou moins heureuse de 8 journaux techniques américains. Autrement dit, nous avons été trompés.

Ce genre de commerce qui est, paraît-il, fréquent en Amérique, n'est qu'un abus de confiance manifeste.

Nous pensons qu'il est dans l'intérêt des membres de l'ASE et de l'UCS d'être mis en garde contre des procédés inqualifiables, et qu'il conviendrait d'insérer dans le Bulletin une note recommandant aux lecteurs de ne pas donner suite à de telles offres.»

Bei dieser Gelegenheit machen wir unsere Leser auf den vorzüglich eingerichteten «Technischen Literaturnachweis der Bibliothek der Eidg. Techn. Hochschule» aufmerksam; auch das Generalsekretariat des SEV und VSE steht den Mitgliedern der beiden Verbände nach Möglichkeit zur Verfügung. Wir verweisen auch auf die «Zeitschriftenrundschau», die in der Regel in jeder Nummer des Bulletin des SEV enthalten ist.

Stellen an südamerikanischen Gewerbeschulen. In einem südamerikanischen Staate werden Gewerbeschulen errichtet, wofür die Regierung einige Lehrkräfte u. a. für das Gebiet der Elektrizität sucht.

Mitglieder des SEV, die sich grundsätzlich für eine derartige Stelle interessieren, mögen sich an das Generalsekretariat des SEV und VSE, Seefeldstrasse 301, Zürich 8, wenden.

Marque de qualité, estampille d'essai et procès-verbaux d'essai de l'ASE.

I. Marque de qualité pour le matériel d'installation.

pour interrupteurs, prises de courant, coupe-circuit à fusibles, boîtes de dérivation, transformateurs de faible puissance.

A l'exception des conducteurs isolés, ces objets portent, outre la marque de qualité, une marque de contrôle de l'ASE, appliquée sur l'emballage ou sur l'objet même (voir Bulletin ASE 1930, No. 1, page 31).

Sur la base des épreuves d'admission, subies avec succès, le droit à la marque de qualité de l'ASE a été accordé pour:

Prises de courant.

A partir du 15 mars 1940.

Electro-Mica A.-G., Isoliermaterial für die Elektrotechnik, Mollis.

Marque de fabrique:

Fiches bipolaires avec contact de terre $(2\,\mathrm{P}+\mathrm{T})$ pour 6 A $250\,\mathrm{V}.$

Utilisation: dans locaux secs et humides.

Exécution: corps de fiche en résine synthétique moulée noire. Tiges de fiche en maillechort.

No. 840: type 2, Norme SNV 24507.

Cessation du droit d'utiliser la marque de qualité de l'ASE.

La maison

Technische Spezialartikel S. A., Oberegg, ayant cessé d'exister a arrêté la fabrication des fichesprises et des boîtes de dérivation. Les prises de courant et les boîtes de dérivation portant la marque de

fabrique ne doivent plus être livrées munies de la marque de qualité de l'ASE.

III. Signe «antiparasite» de l'ASE.

Sur la base de l'épreuve d'admission, subie avec succès, selon le § 5 du Règlement pour l'octroi du signe «antiparasite» de l'ASE (voir Bulletin ASE, 1934, Nos. 23 et 26), le droit à ce signe a été accordé:

A partir du 1er mars 1940.

Fr. Sauter A.-G., Bâle.

Marque de fabrique: plaquette.

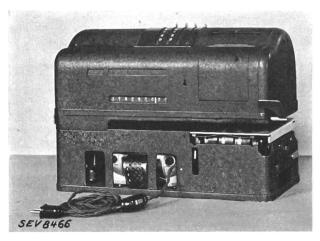
Interrupteur (transmetteur d'impulsion) Type JRW 2, pour 110 à 220 V \sim , 6 A.

IV. Procès-verbaux d'essai.

(Voir Bull. ASE 1938, No. 16, p. 449.)

P. No. 119.

Objet: Moteur série monophasé.


Procès-verbal d'essai ASE: O. No. 15753 d, du 13 février 1940. Commettant: *Rud. Weber*, fabrique de moteurs électriques, *Perles* près Bienne.

Inscriptions:

Elektromotorenfabrik WEBER, PIETERLEN/Biel Nr. 42081 Typ SE 4 2

Nr. 42081 A 0,4 Per. 50 Phas. 1 n 5000

Description: Moteur série monophasé avec régulateur de vitesse, monté dans une machine à affranchir, selon figure. Le régulateur de vitesse, composé d'une résistance et d'un interrupteur à force centrifuge, est disposé entre un des enroulements de champ et le collecteur.

Raccordement au réseau par cordon à 2 conducteurs torsadés, avec fiche et interrupteur de cordon unipolaire.

L'appareil est conforme au «règlement pour l'octroi du droit au signe antiparasite» (publ. No. 117 f).

P. No. 120.

Objet: Disjoncteurs d'installation à socle.

Procès-verbal d'essai ASE: O. No. 15363c, du 16 mars 1940. Commettant: Th. Meyer & Co., S. A., Soleure.

Inscriptions:

Type S 4 No. Amp. 6 Volt 250 ∼

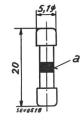
Désignation: Disjoncteurs d'installation à socle, à retardement, pour 6 A, 250 V \sim , avec sectionneur pour le neutre, type S 4, Cat. No. 416.

Description: Disjoncteurs d'installation à socle unipolaires, selon figure, à déclenchement thermique et électromagnétique. Commande par bouton tournant. Sectionneur du neutre verrouillé avec couvrebornes inférieur. Socle en matière céramique; protections et bouton en matière isolante moulée.

Les disjoncteurs sont conformes aux «conditions techniques pour disjoncteurs d'installation» (publ. No. 130 f). Utilisation: dans les installations à courant alternatif, au lieu des coupe-circuit de groupe et de distribution.

P. No. 121.

Objet:


Trois séries de fusibles pour prises de courant.

Procès-verbal d'essai ASE: O. No. 15963, du 13 mars 1940. Commettant: E. Webers Erben, Emmenbrücke.

Inscriptions:

2/250 4/250 6/250

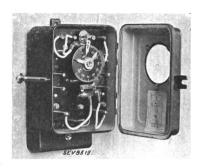
a =teinte distinctive

Description: Fusibles pour prises de courant selon croquis, conformes à la norme SNV 24480. Les fusibles sont formés d'un fil d'argent enrobé dans du sable et logés dans un tube en matière céramique; têtes de contact en laiton nickelé.

Les fusibles pour prises de courant ont subi avec succès les essais adaptés des normes pour coupe-circuit (publ. No. 121 f). Utilisation: pour le montage dans les appareils, jusqu'à 250 V.

P. No. 122.

Objet:


Interrupteur.

Procès-verbal d'essai ASE: O. No. 15888/I, du 3 février 1940. Commettant: Fabrique d'appareils électriques Fr. Sauter S. A., Bâle.

Inscriptions:

Fabrik elektrischer Apparate FR. SAUTER A.-G., BASEL (SCHWEIZ) TYPE JRW 2 AMP. 6 No. 844141 Volt 220 \sim

Description: Emetteur d'impulsions, selon figure, pour l'enclenchement et le déclenchement périodiques d'un circuit. Un moteur synchrone réversible sert à l'entraînement du

disque horaire qui agit sur un contact à mercure de 6 A fonctionnant comme interrupteur principal. Le moteur est commandé par un commutateur à mercure inséré dans le circuit de commande. Durée d'enclenchement 2 à 15 s, de

déclenchement 5 à 90 s, réglable. Coffret de tôle plombable, avec vis de mise à la terre.

L'appareil est conforme au «règlement pour l'octroi du droit au signe antiparasite» (publ. No. 117 f).

Communications des organes des Associations.

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels du Secrétariat général de l'ASE et de l'UCS.

Nécrologie.

Le 4 février est décédé à l'âge de 71 ans Monsieur Albert Frey, ingénieur, ancien directeur de l'Elektra Markgräflerland, Haltingen, membre de l'ASE depuis 1905. Nos sincères condoléances à la famille en deuil.

Un article nécrologique suivra.

Cotisations 1940 de l'ASE et de l'UCS.

Cotisation des Membres individuels et étudiants.

Nous rappelons aux membres de l'ASE que les cotisations pour 1940 sont échues. La cotisation de membre individuel se monte à fr. 18.—, celle de membre étudiant à fr. 10.—. En Suisse elle peut être réglée sans frais au moyen du buletin de versement joint à ce numéro, au compte de chèques postaux VIII 6133, jusqu'à fin avril (de l'étranger, on utilisera de préférence un mandat postal). Passé ce délai, les cotisations non payées seront prises en remboursement, frais en plus.

Pour des raisons techniques, il n'est pas possible d'envoyer des Bulletins sans bulletin de versement. Nous prions donc les membres honoraires et les membres libres, ainsi que ceux qui ont déjà payé leur cotisation, de ne pas considérer le bulletin de versement comme une invitation à payer.

Cotisation des Membres collectifs, et contribution spéciale pour l'ENS.

Nous nous permettrons sous peu d'expédier les factures pour les cotisations de 1940; les montants qui y figureront correspondent à ceux fixés à la page 36 de l'annuaire 1940.

En même temps, nous enverrons aux membres qui ne se sont pas encore entièrement acquittés de leur contribution spéciale pour l'Exposition Nationale, le décompte de leur dû. Selon décision de l'assemblée générale, cette contribution peut être versée en 4 annuités jusqu'en 1941. Cependant, nous saurions gré à tous de s'acquitter maintenant déjà du solde de leur dû, afin que nous puissions régler au plus tôt les comptes de l'Exposition Nationale. Nous prions donc chacun de verser entièrement le montant qui sera indiqué sur la facture.

Le résultat financier favorable de l'exposition ne délie pas de leurs engagements les associations qui ont souscrit des contributions à fonds perdu.

En raison du succès retentissant qu'a récolté notre Exposition Nationale, nous espérons que notre appel ne sera pas vain, et que nous pourrons sous peu régler les comptes, ayant reçu toutes les contributions encore dues.

En échange de leur payement, les membres recevront leur carte de membre pour 1940.

Journée de discussion de l'ASE sur la télémesure, le téléréglage et la télécommande.

L'ASE envisage d'organiser prochainement une journée de discussion sur le thème: «Télémesure, téléréglage, télécommande.»

Nous prions tous les membres et constructeurs qui auraient des contributions intéressantes à fournir, de nous le faire savoir dans le plus bref délai, en indiquant le contenu et la durée de l'intervention, ainsi que le nombre éventuel de diapositifs qu'ils comptent produire.

Assemblée générale 1940.

Brèves conférences.

Il est prévu de combiner l'assemblée générale, qui aura lieu au courant de l'été, avec une série de brèves conférences, comme cela fut le cas avec succès à Fribourg en 1938. De courtes conférences, de 10 à 20 minutes au plus chacune, intéressant tous les domaines de l'électrotechnique, seront suivies d'une brève discussion. Ces rapports traiteront des derniers progrès réalisés dans le calcul, la construction, les essais et l'exploitation.

Nous prions les intéressés de nous communiquer jusqu'à fin avril titre et contenu du rapport qu'ils comptent présenter, afin que nous puissions établir le programme. Comme la dernière fois, les rapports seront imprimés à l'avance, afin que les participants puissent se préparer à la discussion.

La nouvelle édition (allemande) des prescriptions sur les installations intérieures vient de paraître.

L'édition allemande des nouvelles prescriptions de l'ASE sur les installations intérieures (1940, V° édition) vient de paraître. Elle est en vente, sous la désignation «publication No. 152», au secrétariat général de l'ASE et de l'UCS au prix de fr. 4.— pour les membres de l'ASE et de fr. 7.— pour les autres personnes. Comme pour les éditions antérieures, on peut l'obtenir sous deux formes différentes:

- 1º En forme d'agenda, sous reliure solide (toile verte avec impression argent), format 11,5 × 21 cm.
- 2º Edition sans couverture, avec dos toile, pour insertion au recueil des prescriptions de l'ASE (tome A).

A défaut de spécification dans la commande, on enverra l'édition reliée, forme agenda. Pour obtenir l'édition destinée au recueil des prescriptions, il faudra donc le spécifier dans la commande (p. ex. par la mention «pour le recueil des prescriptions»). Font exception les commandes par les bulletins spéciaux adressés aux abonnés aux compléments du recueil des prescriptions; pour celles-ci, il sera sans autre expédié l'édition sans couverture.

L'édition italienne (publ. No. 152 i) paraîtra dans 2 mois environ, l'édition française (publ. No. 152 f) au cours de l'été.

Comité technique 4 du CES. Turbines hydrauliques.

Le Comité technique 4 du CES «Turbines hydrauliques» s'est constitué le 10 mars 1939 à Zurich. Le président en est M. le professeur R. Dubs qui y représente en même temps l'Ecole Polytechnique Fédérale. Le CT 4 se compose des délégués des institutions suivantes:

Technicum de Berthoud; Service fédéral des Eaux; Forces Motrices du Nord-Est Suisse, S. A., Baden; Motor-Columbus S. A., Baden; Chemins de Fer Fédéraux, Berne; Forces Motrices Bernoises S. A., Berne; Ateliers des Charmilles S. A., Genève; S. A. Th. Bell & Cie, Kriens; Ateliers de Constructions Mécaniques S. A., Vevey; Escher-Wyss, fabrique de machines, S. A., Zurich. Le CT 4 est en contact étroit avec la Société suisse des Ingénieurs et Architectes.

Comme première tâche, le CT 4 a décidé de créer des directives pour l'essai des turbines hydrauliques; les travaux préliminaires sont déjà en cours.