Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 30 (1939)

Heft: 14

Rubrik: Schweizerische Landesausstellung 1939 Zürich = Exposition Nationale

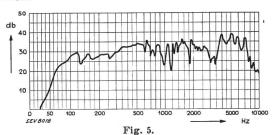
Suisse 1939 Zurich

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

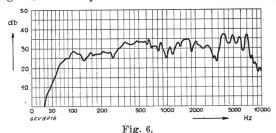
Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus


Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025


ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Durch Einsetzen in die Formel (7) ergab sich ein Gehäusevolumen von 7,9·10⁴ cm³, so dass die Abmessungen des Kastens zu 56·56·25 cm bestimmt wurden.

Geschlossener Kasten, ohne Dämpfung.

Die mit diesem Einbau erhaltene Frequenzkurve zeigt Fig. 5. Die Wiedergabe bei 80 Hz ist gegenüber der gleich grossen Schallwand (Fig. 1) um etwa 8 db verbessert worden. Dagegen sind zwischen 500 und 2000 Hz starke Unregelmässigkeiten aufgetreten, die von Reflexionen an der Rückwand des Kastens herrühren. Die Dämpfung bei der Resonanzfrequenz ist genügend gross, so dass es nur nötig ist, die Frequenzen über 500 Hz zu absorbie-

Geschlossener Kasten, 3 cm Glaswolle.

ren, was am besten mit einem porösen Schluckmaterial erfolgt. Fig. 6 zeigt den Einfluss einer 3 cm starken Glaswollematte, Fig. 7 den einer 6 cm starken Schicht desselben Materials. Es ist deutlich zu sehen, wie die erwähnten Unregelmässigkeiten im mittleren Frequenzgebiet mit zunehmender Absorption verschwinden, ohne dass die gewollte Resonanz bei 80 Hz merklich gedämpft würde.

Ein Vergleich mit der Frequenzkurve in der grossen Schallwand (Fig. 2) zeigt, dass trotz den bedeutend kleineren Abmessungen (3100 cm² gegen 10 000 cm²) die Wiedergabe im Frequenzbereich von 70 bis 120 Hz um etwa 3...5 db verbessert wurde.

Eine Impedanzmessung (Strom bei konstant gehaltener Spannung) des in den Kasten eingebauten Lautsprechersystems zeigt deutlich die durch das Luftpolster von 45 auf etwa 80 Hz gestiegene Re-

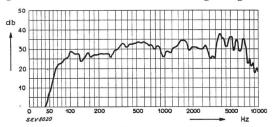


Fig. 7. Geschlossener Kasten, 6 cm Glaswolle.

sonanzfrequenz (Fig. 4, Kurve 2). Man hat damit gleichzeitig ein einfaches Mittel in der Hand, die vorstehend beschriebene Methode, bei der die Bestimmung von m_e etwas umständlich ist, zu umgehen, indem man vorerst einen Kasten von beliebigem Volumen baut, die sich einstellende Resonanzfrequenz mit einer Impedanzmessung bestimmt und dann das für die gewünschte Resonanzfrequenz nötige Volumen durch Umrechnung erhält. Dabei ist allerdings zu beachten, dass m_e frequenzabhängig ist, so dass diese Methode nicht sehr genau ist.

Literatur.

N. W. McLachlan, Loud Speakers, Oxford 1934.

Schweizerische Landesausstellung 1939 Zürich — Exposition Nationale Suisse 1939 Zurich

Die vollelektrifizierte Molkerei.

Im Dörfli kann man jeden Tag die vollelektrifizierte Grossmolkerei in Betrieb sehen. Sie umfasst eine Milchzentrale mit Reinigungszentrifugen, Pasteurisierungs- und Kühlapparaten, Lagerungstanks und automatischer Kannenwaschmaschine, ferner eine Zentralbutterei mit Plattenpasteurisierungsmaschine, grossen Gefässen zur Säuerung des Rahms und zur Züchtung von Reinkulturen, Butterfertiger, Modelliermaschinen und Kühlraum, sowie eine Abteilung für Spezialprodukte wie Flaschenmilch, Ice-Cream usw. Diesen Einrichtungen für den Betrieb schliessen sich ein Kontroll- und Untersuchungslaboratorium und eine Michbar an.

In der Molkerei sind rd. 70 Lampen installiert, die 10 kW aufnehmen. Die Kühlanlage umfasst 11 Motoren von zusammen 65 kW. Im Betrieb sind weitere 36 Motoren vorhanden, mit einem Gesamtanschlusswert von 67 kW. Die Milchbar weist an elektrischen Apparaten einen Grill von 7 kW, eine Kaffeemaschine von 8,5 kW und ein Schokoladeschmelzgefäss von 5 kW auf.

Schliesslich verdient der mit $3\times 6000~\rm V$ gespeiste Elektro-Dampfkessel, der allein 700 kW aufnimmt, besondere Erwähnung.

Aus dem Programm der Abteilung Elektrizität.

(Die Vorträge finden im Kino je um 20 h statt. Eintritt frei.)

Freitag, den 7. Juli: Vortrag von Herrn O. Rüegg (Z.f.L.) über gute Beleuchtung, mit Film.

Samstag, den 8. Juli: Vortrag von Herrn A. de Quervain (ETH) über Fernsehen, mit Demonstrationen.

Sonntag, den 9. Juli: Filmvorführungen.

Montag, den 10. Juli: Filmvorführungen und Demonstrationen im Höchstspannungsraum.

Dienstag, den 11. Juli: Vortrag von Herrn L. Hartmann über Unfallversicherung und Unfallverhütung.

Mittwoch, den 12. Juli: Vortrag von Herrn A. de Quervain (ETH) über Fernsehen, mit Demonstrationen.

Donnerstag, den 13. Juli: Vortrag von Herrn Prof. P. Scherrer über künstliche Atomumwandlungen.

Freitag, den 14. Juli: Demonstration des Wasserbaumodells. Samstag, den 15. Juli: Vortrag von Herrn C. Bodmer (MFO) über Grosslokomotiven.

Sonntag, den 16. Juli: Filmvorführungen.

Montag, den 17. Juli: Vortrag von Herrn Prof. Imhof (Micafil) über den *Tensator*. Dienstag, den 18. Juli: Filmvorführungen und Demonstrationen im Höchstspannungsraum.

Mittwoch, den 19. Juli: Vortrag von Herrn Dr. Fröhlich (Landis & Gyr) über Tarife und Spezialzähler.

Donnerstag, den 20. Juli: Vortrag von Herrn A. de Quervain (ETH) über Fernsehen, mit Demonstrationen.

Freitag, den 21. Juli: Vortrag von Herrn Dr. K. Berger über Blitzforschung, mit Demonstrationen.

Samstag, den 22. Juli: Demonstration des Wasserbaumodells. Sonntag, den 23. Juli: Filmvorführungen.

Montag, den 24. Juli: Filmvorführungen und Demonstrationen im Höchstspannungsraum.

Dienstag, den 25. Juli: Vortrag von Herrn Dr. H. Kappeler (Micafil) über Kondensatordurchführungen, mit Film. Mittwoch, den 26. Juli: Conférence de M. Dr J. J. Müller sur la Télévision, avec démonstration.

Technische Mitteilungen. — Communications de nature technique.

Die Petersen-Erdschlußspule in den Vereinigten Staaten von Amerika.

Wie bei vielen grundlegenden Erfindungen hat die allgemeine Anerkennung auch hier lange Zeit in Anspruch genommen. Während sich diese in Europa durch eine Reihe von Patentumgehungen zuerst anzeigte, schwieg sich die amerikanische Praxis über die anerkannte, weitgehende Verbesserung der Betriebssicherheit der Hochspannungsnetze einfach aus. Wenn übrigens eine Patentumgehung z. B. etwa viermal so viel Material verwendet als die Petersen-Spule, dann ist für sie in der heutigen Zeit kein Platz mehr vorhanden. Wenn dazukommt, dass Leistungsschalter mit Trennern nötig werden, so ergibt sich die heutige völlige Nutzlosigkeit der Patentumgehung, selbst wenn die technischen Vorteile bei beiden gleich wären.

dass rund 73 % aller Erdschlüsse wahrscheinlich durch atmosphärische Entladungen hervorgerufen wurden.

Die Amerikaner und Engländer nahmen ihre Zuflucht zum festgeerdeten Nullpunkt, um hochfrequente Schwingungen mit starken Ueberspannungen bei Erd- oder Kurzschlüssen mit der Leiterkapazität im Hauptschluss zu vermeiden, tauschten aber die schweren mechanischen und thermischen Beanspruchungen bereits bei jedem Erdschluss dagegen ein, von Aussertrittfallen der Synchron-Maschinen bei schwereren Fällen ganz zu schweigen. Ausdrücklich sei hervorgehoben, dass fast ohne Ausnahme alle amerikanischen Netze von 110 000 Volt und darüber keine Widerstandserdung des Nullpunktes haben. Der Widerstand würde nämlich sowohl in der Beschaffung als auch im Unterhalt sehr teuer, vor allem aber würde die sichere Abschaltung bei Erdschluss durch die hohen kapazitiven Ströme der gesunden Leiter in Frage

Determine Endeally Consider in der Versinisten Staaten von Amerika

Pete	ersen-Erdscl	rtußspulen	in den V	ereinigten	Staaten von Amerika	Tahelle I.
Elektrizitätswerk	Einbau- Datum	Zahl der Erd- schluss- spulen	Netz- spannung kV	Geschützte Länge der Hochspan- nungsfrei- leitungen in km	Mastmaterial	Bemerkungen
Alabama Power Co	1921	1	44	149	Holzmaste	130 km Erdseil
Georgia Power Co	19291)	1	38	206	Holz- und Eisenmaste	155 km Holzmaste, keine Erdseile
Consumers Power Co	1931	2	140	420	Eisenmaste	Nur 64 km ohne Erdseile
Central Maine Power Co	1935	1	33	896	Holzmaste	Keine Erdseile
Public Serv. Co. of Indiana Public Serv. Co. of Denver,	1936	1	33	256	Holzmaste	Keine Erdseile; 1290 m Dreileiterkabel
Colorado	1937	1	95	299	Holz- und Eisenmaste	50 km Holzmaste; 156 Eisenmaste, keine Erdseile
Public Serv. Co. of Indiana	1937	4	33	2080	Holzmaste	Keine Erdseile
Metropolitan Edison Co Public Service Co. of New	1937	3	66	512	Holz- und Eisenmaste	203 km Holzmaste; 194 Eisenmaste
Hampshire	1937	1	33	192	Holzmaste	Keine Erdseile
Light and Power Co Southern California Edison	1937	1	33	48	Holzmaste	Keine Erdseile; 914 m Drei- leiterkabel
Co	1938	_2	230	416	Eisenmaste	2 Erdseile
		Gesamt 17			,	*
1) Potamon Spule fuilbon eingehout in Alchane Power Co.						

¹⁾ Petersen-Spule früher eingebaut in Alabama Power Co.

Vier Jahre waren seit der Patenterteilung auf die Petersen-Erdschlußspule vergangen, als die «Alabama Power Co.» eine Erdschlußspule - die erste in den Vereinigten Staaten von Amerika — in ihrem 44-kV-Netz im Jahre 1921 einbauen liess (Tabelle I). Trotz der erzielten guten Ergebnisse trat das beinahe Unglaubliche ein, dass im Jahre 1929 diese Spule ausgebaut wurde und bei der «Georgia Power Co.» in einem 38-kV-Netz eingebaut wurde.

Die grossen Freileitungsnetze, die in den letzten Jahrzehnten gebaut wurden, zeigten bekanntlich eine grosse Verwundbarkeit gegen atmosphärische Entladungserscheinungen. Ein Bericht über die Betriebserfahrungen von 27 grossen Hochspannungsnetzen der USA 1) kommt zu dem Ergebnis, dass von allen Fehlern dieser Netze im Mittel 69 % auf Erdschluss zu setzen sind. Eine weitere Zusammenstellung²) der Betriebszahlen von Netzen von 26 kV bis 220 kV gibt an,

gestellt. Feste direkte Erdung schafft positive, kurzzeitige Abschaltung, die dort höher bewertet wird als die Gefahren der grossen Strom- und magnetischen Beanspruchungen und ergibt eine zunächst festliegende dielektrische Beanspruchung.

Wenn aber 70...80 % aller Abschaltungen durch eine einfache, betriebsichere und billige Apparatur vermieden werden können, sollte man es da bei den «praktischen» Amerikanern nicht als selbstverständlich annehmen, dass sie diese sofort für ihre Netze beschafften? Tabelle I³) besagt das Gegenteil. Und dabei beachte man die bisher erzielten, geradezu hervorragenden Betriebsergebnisse:

Die «Consumers Power Co.» hat seit 1931 zwei Petersen-Erdschlußspulen in ihrem 140-kV-Netz für 420 km Länge in Betrieb. In fünf Jahren wurden 242 Netzfehler registriert, von denen 171 von den Petersen-Spulen ohne Betriebsunterbrechungen behoben wurden.

AIEE Transactions, Bd. 50 (1931), S. 892.
 AIEE Transaction, Bd. 56 (1937).

s) E. M. Hunter, Einige technische Daten der Petersen-Erdschlußspule und ihre Anwendung, AIEE Transactions, Bd. 57, Jan. 1938.