Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 30 (1939)

Heft: 13

Artikel: À propos des interrupteurs. Der Einfluss des Schalters auf die

wiederkehrende Spannung und sein Verhalten im Netz

Autor: Puppikofer, H.

DOI: https://doi.org/10.5169/seals-1058364

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

zusammenfassend die wichtigsten Gedanken wiederholen:

- 1. Man besitzt heute das Rüstzeug, um den Schwingungsverlauf der wiederkehrenden Spannung an irgendeiner Stelle feines Netzes zu berechnen, und es existieren experimentelle Methoden, mit denen man den berechneten Schwingungsverlauf ohne Ausführung von Kurzschlüssen nachprüfen kann.
- 2. Die Eigenfrequenzen der wiederkehrenden Spannung sind im allgemeinen um so kleiner, je höher die Spannung ist und je weiter man sich im Netz vom Kraftwerk entfernt. Eine wichtige Ausnahme bilden relativ schwache Abzweige über Transformatoren oder Drosselspulen.
- 3. In den nächsten Jahren sind Regeln für den hochfrequenten Teil der wiederkehrenden Spannung bei Abschaltprüfungen zu erwarten. Dabei muss nicht nur die Eigenfrequenz oder die Steilheit der wiederkehrenden Spannung festgelegt werden, sondern auch der Scheitelwert der hochfrequenten Schwingung. Der vom Netz bedingte Schwingungs-

verlauf wird durch Rückwirkung des Schalters verändert. Man sollte daher die wiederkehrende Spannung bei Verwendung eines Normalschalters oszillographieren, der möglichst kleine Rückwirkung zeigt. Hiefür eignet sich m. E. am besten der Druckluftschalter (ohne Dämpfungswiderstand).

4. Es gibt sog. indirekte Prüfmethoden, die durch Einführung irgend einer Zusatzspannung die Leistungsfähigkeit von Schalterprüfanlagen künstlich erweitern. Sie sind aber kein vollwertiger Ersatz für direkte Prüfungen und kommen daher nicht in Betracht im Leistungsbereich bestehender Anlagen, sondern nur dann, wenn keine genügend grossen Prüfanlagen zur Verfügung stehen. Die indirekten Methoden eignen sich am besten für Schalter, die die wiederkehrende Spannung wenig beeinflussen und die eine sehr kurze Lichtbogendauer haben.

Der Vorsitzende verdankt das Referat Herrn Dr. Wanger bestens. Der Herr Referent hat die Frage der wiederkehrenden Spannung äusserst interessant dargestellt und am Schluss eine vortreffliche Zusammenfassung des heutigen Standes der Erkenntnis gegeben.

Der Einfluss des Schalters auf die wiederkehrende Spannung und sein Verhalten im Netz.

Referat, gehalten an der Diskussionsversammlung des SEV vom 26. November 1938 in Bern, von H. Puppikofer, Zürich-Oerlikon.

Anhand von Oszillogrammen wird der Verlauf des Stromes und der Spannung beim Löschen eines Lichtbogens im Schalter erklärt. Der Einfluss des Schalters auf die wiederkehrende Spannung wird definiert und anhand von Versuchen, die im Kurzschlusshaus ausgeführt wurden, erklärt. Versuche in grossen Netzen zeigen das Verhalten des Schalters im Betrieb; sie bestätigen die Theorie und die auf dem Versuchsstand gewonnenen Erfahrungen. Besonders behandelt wird das Abschalten von leerlaufenden Transformatoren und das Abschalten von Kurzschlüssen hinter langen Leitungen. Eine Zusammenfassung gibt die für die Nutzanwendung der Untersuchungen nötigen Schlussfolgerungen.

L'auteur explique par des oscillogrammes l'alture du courant et de la tension lors de l'extinction de l'arc dans un interrupteur. Il définit l'influence de l'interrupteur sur la tension de rétablissement et l'explique à l'aide d'essais exécutés en plateforme à haute puissance. Les essais faits dans de grands réseaux montrent de quelle façon l'interrupteur se comporte en service; ils confirment la théorie et les résultats des essais en plateforme. L'auteur étudie en particulier le déclenchement de transformateurs à vide et la coupure de courts-circuits à l'extrémité de longues lignes. Un résumé groupe les conclusions pratiques de cette étude.

A. Verlauf des Stromes und der Spannung beim Löschen eines Lichtbogens.

Die Erkenntnis, dass der Schalter einen wesentlichen Einfluss auf den Verlauf der wiederkehrenden Spannung ausüben kann, stammt aus der jüngsten Zeit. Erst die Benützung des Kathodenstrahloszillographen zur Zerlegung des zeitlichen Ablaufes der Vorgänge bis in die Millionstel-Sekunde gab in den letzten 5 Jahren 1) Auskunft über den äusseren Mechanismus des Erlöschens des Lichtbogens. Was die inneren Vorgänge anbetrifft, den Energieaustausch zwischen Lichtbogen und umgebendem Medium und die eigentliche Entionisation der Schaltstrecke, d. h. die erstaunliche Fähigkeit der Bogenstrecke, sich in Zeiten von der Grössenordnung von einer Mikrosekunde von einem Leiter niederen Widerstandes in eine Isolierstrecke mit beinahe unendlich hohem Widerstande zu verwandeln, so ist noch vieles in Zusammenarbeit mit dem Physiker abzuklären.

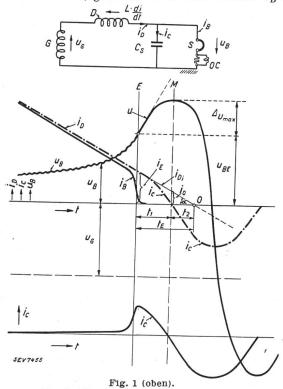
Eine wesentliche Rolle spielt bei diesem Vorgange die Kapazität des Schalters und der zunächstliegenden Anlageteile.

Im Ersatzschema Fig 1 sei C_s die unmittelbar an den Klemmen des Schalters konzentriert gedachte Kapazität der zunächstliegenden Anlageteile sowie des Schalters selbst. Der Stromkreis bestehe aus einem Generator G, der eine rein sinusförmige Spannung abgeben soll, einer Drosselspule D und dem Schalter S. Auf der Seite des Schalters, die des Potentials der Messgeräte wegen geerdet werden muss, ist die Stromspule OC des Kathodenoszillographen angedeutet. Der durch die Drosselspule D fliessende Strom i_D ist immer gleich der Summe vom Lichtbogenstrom i_B und dem Strom i_C durch die Kapazität C_s

$$i_D = i_B + i_C$$
.

Solange nun die Lichtbogenspannung u_B klein ist, bleibt auch der Kapazitätsstrom i_C gegenüber dem Lichtbogenstrom i_B verschwindend klein, und der gesamte durch den Generator G gelieferte Strom i_D folgt einer Sinuslinie. Auf dem zum bessern Ver-

¹⁾ van Sickle: Electr. Eng. Febr. 1935, S. 178: «Breaker Performance studied by Cathode Ray Oszillograms.»


ständnis leicht stilisierten Kathodenoszillogramm Fig. 2 würde der undeformierte, ideelle Strom i_{Di} im Punkte O die Zeitaxe schneiden. Die Lichtbogenspannung nimmt mit abnehmendem Strom hyperbelartig zu nach der Gleichung von Ayrton

$$u_B = \frac{a}{i} + b$$
, wo $a = \alpha + \gamma l$
 $b = \beta + \delta l$

Die Parallelkapazität nimmt unter dieser Spannung resp. ihrer Aenderung den Strom auf

$$i_C = C_s \cdot \frac{\mathrm{d}u_B}{\mathrm{d}t}$$

Da mit abnehmendem Strom die Lichtbogenspannung und mit ihr der Lichtbogenwiderstand stark zunehmen, geht der Wert des Stromes i_B im

Ersatzschema eines Kurzschlusskreises.
Fig. 2 (unten).
Verlauf von Strom und Spannung bei der Abschaltung eines Wechselstromlichtbogens.

selben Masse zurück wie der Strom i_C anwächst. Schliesslich kann der Lichtbogen bei einem bestimmten Momentanwert i_E seines Stromes, d. h. bei einer bestimmten Steilheit der Spannung $\frac{\mathrm{d}u_B}{\mathrm{d}t}$ nicht mehr bestehen: Er erlischt und der ganze Strom i_D geht über die Kapazität C_s . Die noch vorhandene magnetische Energie der Induktivitäten des Kurzschlusskreises geht über in potentielle Energie des Parallelkondensators C_s unter Erhöhung der Spannung über die Lichtbogenspannung u_{BE} im Löschmoment hinaus bis zum Umkehrpunkt M.

Bei diesem, wie ein Kippvorgang vor sich gehenden Ueberwerfen 1) 2) 3) des Stromes hat der Lichtbogenstrom einen ähnlichen zeitlichen Verlauf wie die Linie i_{B} des obern Teiles der Fig. 2, während der Verlauf des Kapazitätsstromes i_{C} in der untern Kurve dargestellt ist. Der Strom i_{D} folgt, wenn man vom Einfluss der Lichtbogenspannung absieht, einer 50periodigen Schwingung. Der Strom i_{C} hingegen schwingt mit der übergelagerten Eigenfrequenz des geöffneten Stromkreises. Die Kurve des Stromes i_{C} schneidet die Zeitaxe zur Zeit t_{2} vor dem ideellen Nulldurchgang 0. Der Lichtbogenstrom i_{B} dagegen geht um die Zeit $t_{1}+t_{2}=t_{E}$ vorher vom Wert i_{E} auf Null. Zur völligen Auswertung der Versuche kann man die fehlende Zeit t_{2} aus dem Oszillogramm nach einer vereinfachten Methode bestimmen 3).

$$t_2 = \frac{L \cdot i_0}{u_{BE} + u_G} = \frac{2 \Delta u_{max} \cdot t_1}{3 (u_{BE} + u_G)}$$

Da sich t_1 und Δu_{max} aus den Oszillogrammen lesen lassen, kann nach diesem Verfahren die Lage des Nulldurchganges des Lichtbogenstromes in bezug auf die ursprüngliche Sinuslinie festgestellt werden.

Hier muss eine kurze Bemerkung über die Aufnahme-Technik der vorliegenden Kathodenoszillogramme eingeflochten werden. Um in der zur Verfügung stehenden Filmbreite von 128 mm doch ca. 2 Halbwellen des 50periodigen Stromes aufnehmen zu können, lässt man mit Hilfe eines von K. Berger konstruierten Zeitablenk-Relais den Strahl das Blatt mit praktisch konstanter Geschwindigkeit von beispielsweise 267 m/s von links nach rechts überschreiben. Am rechten Blattende angekommen, wird der Strahl mit so grosser Geschwindigkeit nach links zurückgeworfen, dass er nicht mehr schreiben kann. Eine Halbwelle des 50periodigen Stromes, die sonst ein Band von über 2,5 m brauchen würde, wird dadurch in 20 Stücke zerschnitten (Fig. 3), die auf demselben Blatt geschrieben werden und durch Aneinanderreihen wieder den vollständigen Linienzug ergeben. Diese Aufnahmeart hat ausserdem den Vorteil, dass der Abszissenmaßstab für die Zeit konstant bleibt, so dass mit einiger Uebung die Oszillogramme mit Leichtigkeit gelesen werden können.

Im Stromoszillogramm wird infolge der Lage der Stromschleife des KO nur der Strom im Lichtbogen aufgenommen. Während des Ueberwerfens des Stromes vom Lichtbogenpfad auf den parallelen Kondensator C_s geht die Schaltstrecke vom Zustand als Leiter in den Zustand eines Isolators über. Nun kann aber der Strom im Lichtbogen nicht rascher abnehmen als er im Kondensator zunimmt. Die Eigenfrequenz des Kreises, bestehend

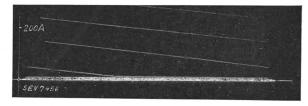
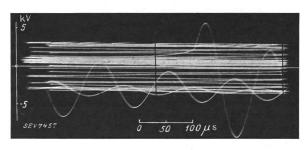
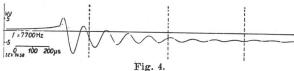


Fig. 3.
Kathodenoszillogramm eines Wechselstromes.


aus Lichtbogen im Schalter und Kondensator C_s , ist sehr gross. Sie kann aus verschiedenen Kathodenoszillogrammen des Stromes geschätzt werden (z. B. Fig. 3). Es treten dort mitten im Verlauf nach der Sinuslinie kleine Schwingungen auf, die wir nur


²) Kesselring u. Koppelmann: Schaltproblem der Hochspannungstechnik, Arch. Elektrotechn. Bd. XXX, 2. H., 18. Febr. 1936

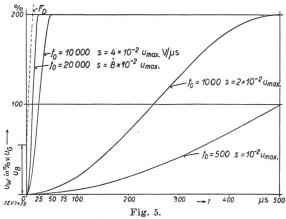
³⁾ Puppikofer: Rapport 141 Conférence des Grands Réseaux, Paris 1937.

darauf zurückführen können, dass der Lichtbogen so lange gestreckt wurde, dass einzelne Teile zusammenschlagen und sich dadurch kurzschliessen. Diese plötzliche Veränderung des Widerstandes im Lichtbogen erzeugt Stromschwingungen, die Frequenzen aufweisen von 250 000 bis vielleicht 500 000 Hertz. Die dabei auftretenden Stromspitzen rühren vom Entladestrom der Parallelkapazität C_s her, die sich jeweils entsprechend der Spannungsdifferenz des Lichtbogens über denselben entladet.

Das Oszillogramm Fig. 4 zeigt den besprochenen Verlauf der Spannung bei der Löschung sehr deutlich. Die dort auftretende Eigenfrequenz wurde zu $f_0 = 7700$ Hz bestimmt. Während der Effektivwert der Betriebsspannung 2150 V betrug (Scheitelwert 3060 V) stieg die Summe der Lichtbogenspannung $u_{BE} + \Delta u_{max}$ auf den relativ hohen

Kathodenoszillogramm der wiederkehrenden Spannung (oben) und zusammengesetzte Kurve (unten).

Wert von 5800 V. Zur Erleichterung der Betrachtung wurden im unteren Bildteil die einzelnen Kurventeile in einem anderen Maßstabe zum vollständigen Verlauf aneinandergefügt.


Während die vom Generator gelieferte Spannung im Löschmoment als konstant angesehen werden kann, wird der Anteil der Spannung Δu_{max} über die Lichtbogenspannung im Löschpunkte E von den Induktivitäten des Kurzschlusskreises geliefert. Ein Mass hiefür gibt der Strom i_E im Löschmoment E. Je grösser die unmittelbar an den Klemmen des Schalters liegende Kapazität C_s ist, um so grösser werden i_E und t_E und damit der negative Spannungsausschlag $(u_{BE}+\Delta u_{max})$. Damit wächst auch die Steilheit des Spannungsanstieges an der gelöschten Lichtbogenstrecke, da die Spannung mit der Eigenfrequenz f_o auf den Wert von — $(u_G+\Sigma u_{BE}+\Delta u_{max})$ aufschwingt. Es ist $u_G=u_{max}$, wenn die Phasenverschiebung des Kurzschlusskreises gross war. Die mittlere Steilheit des Anstieges nach Juillard würde dann betragen

$$\frac{\mathrm{d}u}{\mathrm{d}t} = f_o \cdot 4 \cdot (u_{max} + \Sigma u_{BE} + \Delta u_{max}).$$

Je grösser die Kapazität C_s wird, desto kleiner wird die Eigenfrequenz

$$f_0 = \frac{1}{2 \pi \sqrt{L C_s}}$$

des dem Schalter zunächst liegenden Anlageteiles und damit auch destoweniger steil wird der Anstieg der wiederkehrenden Spannung. Die Vergrösserung der Zeit t_E und die daraus resultierende Erhöhung der Spannung u_{max} nimmt zu mit der Kapazität C_s , während die Steilheit nur mit der Wurzel von C_s abnimmt. Es erschwert daher die Kapazität C_s bei kleinen Strömen die Abschaltung. Wie stark die dielektrische Beanspruchung der Schaltstrecke durch die wiederkehrende Spannung bei sinkender Eigenfrequenz des Netzes abnimmt, ist aus Fig. 5 zu ersehen. Die Kurve F_D , die den Verlauf der Zunahme der dielektrischen Festigkeit der Schaltstrecke darstellt, muss natürlich stets über die Kurve der in Frage kommenden wiederkehrenden Spannung liegen. Es ist aber völlig unwirtschaftlich, einen Schalter, der nur bei $f_0 = 500$

Beanspruchung der Schaltstrecke bei verschiedenen Eigenfrequenzen.

s mittlerer Spannungsanstieg = $4f_0$ u_{max} . Spannungsanstieg = $2\pi f_0$ u_{max} . Spannungsanstieg = $2\pi f_0$ u_{max} . $S=1.57 \cdot s$ 500 $u_{\text{s}}=\frac{1}{2000}$ s.

Hz schalten muss, mit einer Schaltstrecke für $f_o = 20~000$ Hz zu versehen. Ausserdem wird der derart überbemessene Schalter bei kleinen Strömen eine zu wirksame Löscheinrichtung haben.

Die Erfahrung bei den zahlreich durchgeführten Versuchen zeigte, dass i_E und t_E verschwindend klein werden, sobald die abgeschalteten Ströme grössere Werte annehmen (1000 A und darüber) und infolge der bekannten Lichtbogen-Hysterese die Leitfähigkeit der Strecke bis zum Schluss hoch und damit die Lichtbogenspannung klein blieb.

B. Der Einfluss des Schalters auf die wiederkehrende Spannung.

Es kann nun der Einfluss des Schalters und seiner Lichtbogenlöscheinrichtung wie folgt definiert werden. Je wirksamer letztere ist, um so höher steigt die Lichtbogenspannung an. Damit wird nicht nur die im Lichtbogen umgesetzte Energie grösser, es kippt deshalb auch der Strom früher vom Lichtbogen auf die Kapazität über, unter Erzeugung höherer Spannungswerte. Was man früher bei den Schleifenoszillogrammen als Löschspitze bezeichnete, zeigt sich dann im grösseren Zeitmaßstab des Kathodenoszillogrammes als eine auf die Lichtbogenspannung im Löschmoment aufgesetzte Schwingung der wiederkehrenden Spannung.

Ein Schalter, dessen Löscheinrichtung übermässig wirksam ist, erschwert sich selbst die Abschaltung durch Erzeugung eines höheren Anstieges der wiederkehrenden Spannung. In der Regel kann jedoch derselbe Schalter infolge der rascheren Deionisation seiner Unterbrechungsstrecke auch eine grössere Steilheit der wiederkehrenden Spannung aushalten. Fig. 6 zeigt zwei Abschaltungen, die mit demselben Druckluftschalter gemacht wurden, der für die relativ hohe Abschaltleistung von 200 mVA bei 10 000 V gebaut war. Das eine Mal (Fig. 6 oben) betrug der Effektivwert der Betriebsspannung 2070 V und der Abschaltstrom 150 A. Die allzu

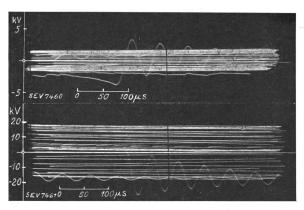


Fig. 6. Einwirkung der Lichtbogenlöscheinrichtung auf die wiederkehrende Spannung.

kräftige Kühlung des Lichtbogens hatte eine Erhöhung der Lichtbogenspannung weit über die Betriebsspannung zur Folge. Bei der andern Schaltung (Fig. 9) war der Effektwert der Spannung auf 5620 V erhöht worden, bei einem Abschaltstrom von 5200 A. Die Lichtbogenspannung ist jetzt sehr klein im Vergleich zur Spannung des Netzes. Die Eigenfrequenz betrug in beiden Fällen 18 500 Hz.

Kann ein solcher Schalter die Steilheit der wiederkehrenden Spannung nicht aushalten, so tritt eine Rückzündung des Lichtbogens ein. Der Strom

Strom i_{Di} ihr Vorzeichen und geht auf die andere Seite über. Befinden sich diese Rückzündungen noch vor dem Nulldurchgang von i_{Di} , so werden nach jeder Rückzündung der Strom i_E und die Zeit t_E und damit die Spannungserhöhung u_{max} immer kleiner. Die Löschung wird dadurch erleichtert. Speziell bei Oelschaltern treten Rückzündungen nie allein, sondern in der Regel gruppenweise auf. Der Strom i_E hat sich kaum wieder gebildet, so kippt er wieder auf die Parallelkapazität über und in der ersten Welle des Anstieges von u erfolgt der neue Zusammenbruch. Es scheint, dass der Lichtbogenraum im Oelschalter eine vor-

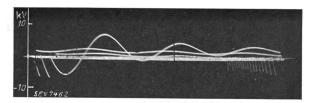
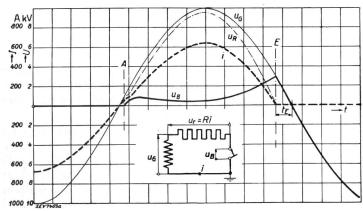



Fig. 7. Rückzündungen.

zügliche Kühlung aufweist, während dagegen die Zunahme seiner elektrischen Festigkeit offenbar geringer ist als z. B. beim Luftschalter. Das Oszillogramm Fig. 7 zeigt eine Reihe von Rückzündungen, die alle vor dem Nulldurchgang von i_{Di} liegen.

Die beiden Fragen des Einflusses des Schalters auf den Verlauf der wiederkehrenden Spannung und des Verhaltens des Schalters in einem gegebenen Netz sind voneinander kaum zu trennen. So müssen wir, bevor wir den Einfluss der durch den Schalter verursachten Dämpfung betrachten, zuerst den Verlauf der Abschaltung eines Netzteiles mit dem Leistungsfaktor 1 untersuchen. Fig. 8 zeigt die idealisierte Wiedergabe des Schleifenoszillogrammes einer solchen Abschaltung. Die Generatorspannung u_G muss sowohl den Abfall $R \cdot i$, als auch die Lichtbogenspannung u_B überwinden. Da sich der Lichtbogenwiderstand zum Widerstand R der Netzbelastung direkt addiert, muss mit

 i_B fliesst wieder und die Lichtbogenspannung u_B erscheint an Stelle der Schwingung der wiederkehrenden Spannung. Je nachdem die Rückzündung vor dem Nulldurchgang des ideellen Gesamtstromes i_{Di} oder nach dem Nulldurchgang eintritt, bleibt die neue Lichtbogenspannung auf derselben Seite der Zeitaxe oder wechselt mit dem

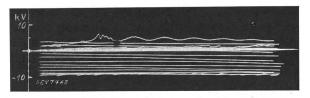
Fig. 8. Prinzipieller Verlauf einer Wechselstrom-Abschaltung bei $\cos \varphi = 1$.

 $U_{\text{eff}} = 7070 \text{ V}; R = 150 \Omega$, Kapazität parallel zum Schalter = 0.

A Beginn der Trennung der Kontakte.

E Ende der Abschaltung.

 $u_{\mathsf{G}} - u_{\mathsf{R}} - u_{\mathsf{B}} = 0$, $u_{\mathsf{G}} = U \sin \omega t$; $u_{R} = R \cdot i$.


dann, wann die Lichtbogenspannung u_B gleich

der Generatorspannung u_G ist. Trotzdem ist,

 $u_B = f(i, a, b, v)$, wo a und b nach Ayrton und v = Geschwindigkeit des bewegten Kontaktes.

seiner Zunahme der Strom i des Kreises abnehmen. Die Stromwelle wird deformiert. Der Nulldurchgang erfolgt weit früher (um t_E) als es der normalen Sinuswelle entsprechen würde, nämlich in gleicher Weise wie bei der Gleichstromausschaltung

wegen des Fehlens von Induktivitäten, kein Ueberschwingen der Spannung zu konstatieren. Die Spannung ist im Löschmoment nicht Null, sondern hat noch einen bestimmten Wert. Sie nimmt aber entsprechend der Sinuskurve in der Zeit t_E immer noch ab, so dass die Schaltstrecke für ihre Entionisierung und Verfestigung eine äusserst wertvolle Zeit gewinnt. Die effektiv aufgenommenen Oszillogramme der Fig. 9 bestätigen, dass die wiederkeh-

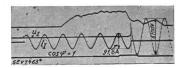


Fig. 9. Oszillogramme einer Abschaltung mit $\cos \varphi = 1.$

rende Spannung nicht durch Null geht, sondern sich noch relativ längere Zeit auf der Seite der Lichtbogenspannung befindet. Die Eigenfrequenzen des Kreises sind nur noch an kleinen Amplituden

Es wird bei nahezu allen Schaltungen in den Netzen nicht zu vermeiden sein, dass zum abzuschaltenden Netzteil, der mit oder ohne Fehler behaftet sein kann, andere Verbraucher parallel geschaltet sind. Es ist daher von Interesse, den Einfluss der Parallellast auf den Abschaltlichtbogen zu kennen.

Dieser Netzzustand lässt sich im Hochleistungsprüffeld leicht nachahmen durch Parallelschalten eines Widerstandes zu den Klemmen eines Schalters. Die Oszillogramme Fig. 10 zeigen den Verlauf der wiederkehrenden Spannung, wenn der Parallelwiderstand so gewählt wird, dass der Schwingungskreis gedämpft ist. Die wiederkehrende Span-

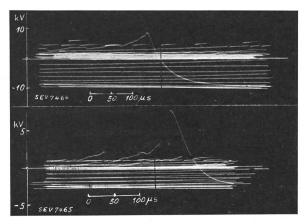


Fig. 10. Abschaltungen mit Parallelwiderstand.

nung läuft daher auch nach einer Exponentialkurve in die 50periodige Betriebsspannung über. Im unterem Bilde ist bei kleinem Abschaltstrom von 293 A noch das Ueberschwingen infolge des vorzeitigen Nulldurchganges zu sehen. Zur Kenn-

zeichnung des Einflusses der Dämpfung auf die elektrische Beanspruchung der Schaltstrecke ist der Verlauf der wiederkehrenden Spannung, der in den verschiedenen Versuchen festgestellt wurde, in der Fig. 11 zusammengetragen worden.

Die Kurve 1 ist die theoretische Sinusschwingung mit der Frequenz gleich der Eigenfrequenz des abgeschalteten Netzteils, die nur dann möglich wäre, wenn keine Lichtbogenspannung und keine Dämp-

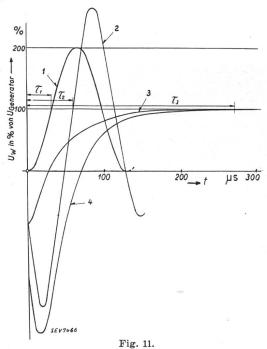


Fig. 11.

Einfluss der Dämpfung der wiederkehrenden Spannung auf die Beanspruchung der Schaltstrecke.

Einschaltschwingung ohne Dämpfung und mit Lichtbogenspannung Null (änhlich Fig. 6 unten).

Einschaltschwingung mit kleiner Dämpfung, mit Lichtbogenspannung und Ueberschwingen (Fig. 4 oben).

Gedämpfter Verlauf der wiederkehrenden Spannung mit Lichtbogenspannung entsprechend Fig. 10 oben.

Gedämpfter Verlauf der wiederkehrenden Spannung mit hoher Lichtbogenspannung und Ueberschwingen entsprechend Fig. 10 unten.

fung auftreten würde. Tritt, wie im eingangs gezeigten Oszillogramm Fig. 4, eine hohe Lichtbogenspannung und ein Aufschwingen infolge des vorzeitigen Löschens auf, dann folgt die Spannung der Kurve 2 mit weit grösserer Steilheit und Amplitude. Und trotzdem wird ein moderner Schalter nicht versagen, da ihm auch das Anwachsen der sog. Rückkehrzeit auf τ_2 die Verfestigung seiner Schaltstrecke ermöglicht.

Mit Parallelwiderstand und ohne vorzeitige Löschung geht die Spannung, wie Kurve 3 zeigt, ohne Schwingung und mit langer Rückkehrzeit τ_3 in die Betriebsspannung über. Auch wenn der Abschaltstrom sehr klein und daher seine Lichtbogenspannung hoch ist, so dass er vorzeitig löscht, tritt nach Kurve 4 kein Ueberschwingen mehr auf.

Nicht nur der max. Spannungsanstieg wird reduziert, aber speziell der mittlere, wenn man hier überhaupt von einem solchen reden darf. Jedenfalls ist der verbleibende max. Anstieg konzentriert auf die Zeit, in welcher die Spannung vom Wert der entgegengesetzten Lichtbogenspannung noch

abnimmt, so dass er für den Schalter völlig ungefährlich ist. Schliesslich findet auch keine Ueberschwingen auf den doppelten Maximalwert oder gar darüber statt.

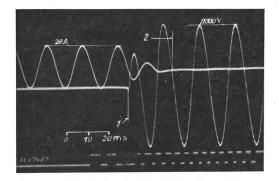


Fig. 12.
Schleifenoszillogramm einer Widerstandsabschaltung mit einem Wasserschalter (Typ WS 46.6, 10 kV, 600 A).

1 Beginn der Oeffnung der Kontakte
2 Ende der Abschaltung.

W Stufe

W Stufe

Aus

Fig. 14.

Druckluftschalter mit Doppeldise ohne (links) und mit Widerstandsstufe (rechts).

W Widerstand.

K Widerstandskontakt.

Fig. 13 (links).

Druckluftschalter mit Elnfachdüse mit Widerstandsstufe.

W Widerstand.

K Widerstandselektrode.

Die logische Ueberlegung führt zum Schluss, dass vom Standpunkt der kleinsten Beanspruchung der Schaltstrecke aus der Abschaltvorgang zweckmässig in zwei Stufen erfolgen sollte. In der ersten Stufe würde ein Widerstand in den Kreis eingeschaltet; in der zweiten Stufe würde der Reststrom bei $\cos\,\varphi\!=\!1$ unterbrochen. Diesen Weg hat die Natur schon von selbst beschritten, indem oft der den Lichtbogen umhüllende Raum eine Leitfähigkeit annimmt, die nicht den Lichtbogengesetzen folgt und nach Erlöschen des Lichtbogens noch kurze Zeit fortbesteht.

Als eigentlicher Schalter mit Widerstandsstufe zeigt sich der Wasserschalter in einem bestimmten Bereich seines Arbeitsgebietes (Fig. 12, Abschaltung von 28 A bei 6000 V). Durch die Bewegung des Schaltstiftes in der Flüssigkeit mit bestimmter Leitfähigkeit wird ein zeitlich zunehmender Widerstand in den Kreis eingeschaltet.

Im Oelschalterbau haben die Konstrukteure die Stufenwiderstände seit Jahrzehnten angewendet. Sie waren aber eine sehr unangenehme Beigabe, komplizierten den Schalter ganz wesentlich und brachten neue Isolationsschwierigkeiten mit sich. Als

man daher durch syste-matische Versuche in Netzen und Hochleistungsanlagen lernte, mit dem Oelschalter immer höhere Abschaltleistungen steilere Spannungsanstiege zu meistern, liess man die Stufenwiderstände schleunigst verschwinden. Die modernen Hochleistungs-Oelschalter und ölarmen Schalter arbeiten alle ausnahmslos mit Löschkammern und haben daher den grossen Vorteil, dass der wirksame Druck und damit auch die Strömungsgeschwindigkeit des Löschmediums in Funktion des abzuschaltenden Stromes zunimmt. Sie passen sich also den Anforderungen des Netzes selbsttätig an.

Die Niederdruck-Luftschalter, die mit Drücken von ca. 2 kg/cm² blasen, müssen auf ihrem ganzen Arbeitsbereich mit Stufenwiderständen arbeiten. Die Widerstände werden durch den sich bewegenden Lichtbogen selbst in den Stromkreis geschaltet.

Bei den Druckluftschaltern, die mit fremderzeugtem Druck von 10...15 kg/cm² arbeiten, ist die

Löschwirkung so intensiv, dass ohne weiteres hohe Spannungsanstiege, d. h. grosse Frequenzen und Abschaltleistungen bewältigt werden können. Es kommen aber Verhältnisse vor, wo es wirtschaftlicher wird, auch bei diesen Druckluftschaltern mit einer Widerstandsstufe zu schalten, statt den Druck und die Luftmenge zu erhöhen. Unsere Versuche haben gezeigt, dass eine einzige Widerstandsstufe in allen Fällen genügt. Fig. 13 zeigt einen Druckluftschalter mit Einfachdüse und Widerstandsstufe, die durch den fortgeblasenen Lichtbogen selbst eingeschaltet wird. Die Druckluftschalterkonstruktion mit Doppeldüse eignet sich sehr gut für den Einbau eines Widerstandes, wie Fig. 14 zeigt. Links ist der Schnitt eines Schalters ohne, rechts eines Schalters mit Widerstandsstufe dargestellt. Bei dieser Lösung ist die Einschaltung des Stufenwiderstandes in den Kurzschlusskreis zwangsläufig. Die in den zwei Schaltstufen entstehenden Lichtbogen

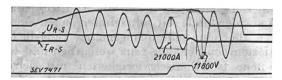
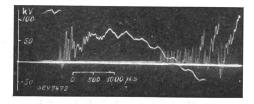
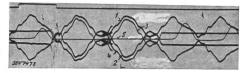



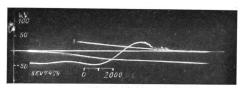
Fig. 15. Oszillogramm einer Abschaltung von 500 MVA bei 10 000 V mit Doppeldüsen-Druckluftschalter mit Widerstandsstufe. (Zahlenangaben in Effektivwerten.)

können nicht gleichzeitig bestehen und die Lichtbogengase der ersten Schaltstrecke werden nicht in die zweite Schaltstrecke hineingeblasen. Diese Konstruktion eignet sich auch für den Einbau von hochohmigen Stufenwiderständen zur Einschaltung von Transformatoren. Fig. 15 zeigt die Oszillogramme einer Abschaltung von 500 mVA bei 10 000 mit einem solchen Schalter.

C. Das Verhalten des Schalters im Netz.

Die bisher erwähnten Versuche im Hochleistungsprüffeld haben grundsätzlich Auskunft gegeben über den Einfluss der verschiedenen Eigenfrequenzen, über den Einfluss des Leistungsfaktors des abzuschaltenden Kreises und über den Einfluss der Dämpfung durch Parallellasten. Damit besitzen wir die Elemente zur Beurteilung der meisten in



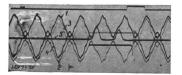

Fig. 16.

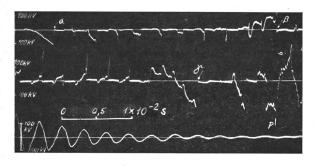
Abschaltung eines leerlaufenden Transformators von 18 000 kVA auf der Oberspannungsseite.

1 Linienspannung rot, 1 mm = ca. 17 100 V
2 Schalterspannung grün 1 mm = ca. 12 900 V
3 Schalterspannung grün, 1 mm = ca. 12 900 V
4 Linienspannung grün, 1 mm = ca. 17 100 V
5 Strom, Phase rot, 1 mm = ca. 27,7 A.

den Netzen möglichen Fälle. Die Versuche, die wir in den Netzen durchzuführen Gelegenheit hatten, bestätigen die Richtigkeit der Ueberlegungen.

Auch das Abschalten von leerlaufenden Transformatoren gegenüber dem Abschalten eines stark induktiven Kreises zeigt grundsätzlich nichts neues. Die vorzeitige Löschung wird aber durch die geringe Grösse der abzuschaltenden Leerlaufströme und ausserdem noch durch die Verzerrung ihrer Kurvenform begünstigt. Diese Verhältnisse steigern sich, wenn man den Transformator kurz nach dem Einschalten wieder ausschaltet, solange der Leerlaufstrom noch völlig asymmetrisch verläuft. Aus einer grossen Zahl von Schaltversuchen an grossen Transformatoren in Netzen seien zwei typische Oszillogramme herausgezogen. Fig. 16 zeigt den erwarteten Verlauf mit zahlreichen




Fig. 17. Wie Fig. 16 (auch die Maßstäbe).

Rückzündungen und einer maximalen Spannung gleich dem zweieinhalbfachen der Betriebsspannung. Die Unterbrechung erfolgte in der Nähe des Maximums der Spannungskurve; das Löschen beim Versuch nach Fig. 17 erfolgte in der Nähe des Nulldurchganges der Generatorspannung, daher keine Rückzündungen und ruhiges Einschwingen der wiederkehrenden Spannung. Ist die asymmetrische Stromkomponente abgeklungen, d. h. ist der Transformator schon eine Zeitlang unter Spannung, so ist die Wahrscheinlichkeit des Auftretens von Rückzündungen grösser. Wir konnten aber dabei keine grösseren Spannungen als 2- bis 2,5mal die Betriebsspannung feststellen, mit Halbwertszeiten von einigen hundert Mikrosekunden 4). Diese Spannungen sind von derselben Grössenordnung wie die Erdschlussüberspannungen und müssen von der Anlagenisolation ohne Schaden ausgehalten werden. Wir sind zur Zeit daran, diese Fragen durch weitere eingehende Versuche noch mehr abzuklären.

Eine weitere Erscheinung tritt hinzu beim Abschalten von Kurzschlüssen hinter langen Leitungen. Die erste bekannt gewordene Feststellung dieser Art haben wir vor 10 Jahren gemacht, anlässlich von Abschaltversuchen im 132-kV-Netz der SBB. Die Erklärung wurde mit Hilfe von Herrn Dr. Berger und seinem Kathodenoszillographen gefunden. Er hat im Bull. SEV 1929, Nr. 20, darüber berichtet, so dass wir uns hier kurz fassen können. Es handelt sich um die Ueberlagerung eines Wanderwellenvorganges über den mit der Eigenfrequenz

⁴⁾ Freiberger: Ueberschläge in Schaltanlagen beim Abschalten von Transformatoren in VDE-Fachberichte 1935, S. 32.

des Netzes vor sich gehenden Einschwingvorgang der wiederkehrenden Spannung. Bei jeder Rückzündung tritt eine Entladewelle in die den Kurzschluss speisende Leitung hinein, die an deren anderem Ende an den Auftransformatoren reflektiert wird. Nach viermaligem Durchlaufen der Leitung kommt diese Stromwelle mit negativem Vorzeichen zurück und subtrahiert sich vom Kurzschlußstrom, so dass der Lichtbogen infolge Strommangels verlöscht, um sofort wieder zu zünden, da die Schaltstrecke noch nicht genügend isoliert. Die Wanderwellenschwingung kann für die erste Rückzündung nicht verantwortlich gemacht werden. Sie verursacht lediglich eine Wiederholung in einem bestimmten Takt, bis die Schaltstrecke genügend isoliert. In Fig. 18 ist der dadurch entstehende, vom bisher gezeigten abweichende Verlauf der Rückzündungen sichtbar. Der Vollständigkeit halber wurden damals diese Abschaltversuche mit den damals für die Spannung von 132 000 V erhältlichen Schalterarten, nämlich mit einem Löschkammerschalter und einem Schalter mit Vielfachunterbrechung, wiederholt, wobei sich dieselben Erscheinungen zeigten. Durch richtige Bemessung der Löscheinrichtung des Schalters werden auch diese Störungsfälle ohne Gefahr für Schalter und Anlage geschaltet.

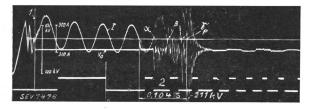



Fig. 18. Abschaltung eines Kurzschlusses hinter einer langen 132-kV-Leitung.

Oben Kathodenoszillogramm, unten Schleifenoszillogramm.

1 Beginn des Kurzschlusses.
2 Abschaltzeit 0,104 s.

Das Abschalten von leerlaufenden Leitungen wird dadurch wesentlich erleichtert, dass die Kapazität der Leitung die im Löschmoment aufgedrückte Spannung, die in der Regel mit dem Scheitelwert der Wechselspannung übereinstimmt, noch eine Zeitlang beibehält. Die Schaltstrecke wird daher gerade im ausschlaggebenden Zeitmoment, d. h. bei Beginn der Isolierung, nur mit der Differenzspannung beansprucht. Voraussetzung für das korrekte Schalten von leerlaufenden Leitungen und im allgemeinen von Kapazitäten, ist die präzise Funktion des Schalters in allen drei Phasen und die rasche Entionisierung der Schaltstrecke, da infolge der Weiterdrehung der Spannungsvektoren die Spannung am erstlöschenden Pol auf 3mal U_p anwächst. Es erklärt dies das beim Schalten von Kondensatoren immer wieder feststellbare Versagen von Luftschaltern, die ohne oder mit ungenügendem Druck arbeiten.

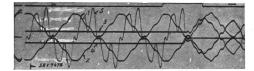


Fig. 19. Abschaltung einer leerlaufenden 60-kV-Leitung.

- Linienspannung rot, 1 mm = ca. 17 000 V Linienspannung grün, 1 mm = ca. 17 000 V Schalterspannung rot, 1 mm = ca. 12 800 V Schalterspannung grün, 1 mm = ca. 12 800 V Strom, Phase rot, 1 mm = ca. 1,71 A.

Die wiederkehrende Spannung im Beispiel der Fig. 19 läuft ohne hochfrequente Schwingungen in die Netzspannung über. Das starke Ausprägen der höheren Harmonischen in der Stromkurve kann sogar dazu führen, dass der Strom in einer Einsattelung verlöscht, da wo die Grundwelle ihr Maximum hätte.

D. Schlussfolgerungen.

Zur Erleichterung der Nutzanwendung scheint uns eine kurze Zusammenfassung notwendig:

1. Die Versuche zeigen, dass bei kleinen Strömen die Löschung eines Lichtbogens in einem Leistungsschalter, gleich welcher Bauart, etwas vor dem Nulldurchgang des nach einer Sinuslinie verlaufenden Stromes erfolgt, wobei die Amplitude der mit der Eigenfrequenz f_0 schwingenden wiederkehrenden Spannung entsprechend erhöht wird. Diese Voreilung des Löschens gegenüber dem ideellen Nulldurchgang ist um so grösser, je grösser die Parallelkapazität, bzw. je kleiner der Strom ist.

Solange die Eigenfrequenz des schwingenden Netzteiles nicht besonders hoch ist, resultiert daraus noch keine gefährliche Steilheit des Spannungsanstieges. In den weitaus meisten Fällen sind übrigens die Schalter an solchen Stellen im Netz eingebaut, wo sie immer nur einen bestimmten Teil dieses Netzes abschalten und daher stets die Impedanz der Nutzlast der andern Netzteile parallel geschaltet haben. In einem Netze mit der Spannung von 6000 V und den Konstanten der Versuchsanlage würde schon die recht bescheidene parallele Netzlast von 75 kW genügen, um die Schwingung der wiederkehrenden Spannung völlig zu dämpfen.

Zahlreiche Schalter bei parallelen Leitungen oder in Maschennetzen haben beim Oeffnen stets nur die Last auf den parallelen Stromzweig überzuwerfen und sind daher absolut nicht beansprucht. Dies alles erklärt, warum heute noch so viele ungenügende Schalter im Betriebe sind, ohne Störungen zu veranlassen.

- 2. Bei grossen Strömen, über 1000 A oder in der Nähe der Nennabschaltleistung des verwendeten Schalters, verliert diese Erscheinung jede praktische Bedeutung.
- 3. Auf dem grossen Bereich der Betriebsströme, die für die grösste Zahl der Schaltungen wohl in Betracht kommen, ist stets der Leistungsfaktor so viel höher als im Kurzschlusskreis, dass der bei diesen Vorgängen auftretende Verlauf der wiederkehrenden Spannung so stark gedämpft ist, dass sozusagen keine hochfrequenten Schwingungen und nur ganz ungefährliche Amplituden entstehen können.
- 4. Der einzige Fall im Betriebe, der noch Bedeutung haben könnte, wo sehr steile und hohe Spannungsschwingungen möglich sind, tritt, wie allgemein bekannt ist, bei der Abschaltung von leerlaufenden Transformatoren auf.

Von diesen Spannungen werden neben dem Schalter selbst nur der Transformator und die allernächsten Anlageteile der Ober- und Unterspannungsseite betroffen. Es war bisher üblich, die Transformatoren wegen der Beanspruchung durch die Sprungwellen atmosphärischen Ursprungs derart zu bauen, dass sie die Abschaltspannung ohne weiteres ertragen. Sollten irgendwo doch Schwierigkeiten auftreten, so könnte wieder das frühere Mittel des Stufenwiderstandes angewendet werden. Jedenfalls empfiehlt es sich, für Transformatoren Schalter zu verwenden, deren Löscheinrichtungen nicht überbemessen sind und ausserdem die Leerausschaltung auf der Unterspannungsseite vorzunehmen, wo die Leerlaufströme die höheren Werte annehmen.

5. Die Bauart der verwendeten Schalter spielt eine grosse Rolle auf das vorzeitige Verlöschen des Lichtbogens, obgleich im Verhalten der verschiedenen Schaltertypen keinerlei prinzipielle, sondern nur graduelle Unterschiede vorhanden sind. Je wirksamer die Löcheinrichtung eines Schalters ist, um so grösser wird der Anstieg der Lichtbogenspannung, um so grösser der Strom i_E und die Zeit t_E sein. Die kleinsten Werte weist der Oelschalter auf; mit ähnlichen Werten folgt der Wasserschalter und mit höheren Werten der Luftschalter.

Aus denselben Gründen ergibt sich, dass ein Schalter, der für eine höhere Nennspannung gebaut ist als die Betriebsspannung des Netzes, in welchem er verwendet wird, bei kleinen Strömen zu vorzeitiger Löschung neigt. Dasselbe ist der Fall, wenn Schalter, die für sehr hohe Abschaltleistungen bemessen sind, kleine Ströme abschalten müssen. Praktische Bedeutung erhält diese Tatsache jedoch nur bei der unter 4. erwähnten Abschaltung leerlaufender Transformatoren.

Zum Schluss möchten wir unseren verbindlichsten Dank denjenigen Elektrizitätswerken aussprechen, die uns die Vornahme solcher Untersuchungen in ihren Netzen erlaubt und zum grossen Teil bei der Durchführung mit Eifer mitgeholfen haben. Es betrifft dies in erster Linie die Schweiz. Bundesbahnen, das Elektrizitätswerk der Stadt Zürich und das Elektrizitätswerk der Stadt Basel. Bei diesen Versuchen zeigte sich, dass unter Beachtung der entsprechenden Vorsichtsmassnahmen Kurzschlüsse, ohne Störungen zu verursachen, mitten im Betriebe durchgeführt werden können. Wir hoffen, dass diese Feststellung den andern grossen Werken den Entschluss zur Ausführung gleicher Versuche erleichtern wird.

Der Vorsitzende dankt Herrn Oberingenieur Puppikofer bestens für den Vortrag. Herr Puppikofer hat die Ausführungen von Herrn Dr. Wanger in schönster Weise ergänzt; er hat besonders auch das Gebiet der kleinen Ströme behandelt und ist damit auf eine sehr aktuelle Frage eingetreten.

Der Vorsitzende eröffnet die

Diskussion

in der vielleicht u. a. folgende Punkte zur Sprache kommen sollten: die Einführung einer Bestimmung über die wiederkehrende Spannung in die Vorschriften für Schalter, die direkte Prüfmethode und die Wahl der Schalter in Abhängigkeit von der Eigenfrequenz.

Herr Dr. A. Roth, Direktor der Sprecher & Schuh A.-G., Aarau: Es freut mich, dass die Frage der indirekten Prüfmethode zur Diskussion gestellt wurde. Sie ist schon lange mein Steckenpferd. Untersuchungen über die Möglichkeiten, Schalter ohne grosse Kurzschlusshäuser zu prüfen, wurden gemacht in Italien, in Holland, in Deutschland. Die Frage muss gelöst werden. Man braucht heute zur Schalterprüfung 10- oder 20mal zu grosse Maschinen. Die Maschine sollte eigentlich nur die Lichtbogenleistung liefern müssen. Die ganze Sache kommt einem noch irgendwie unheimlich vor. Wir dürfen Herrn Dr. Wanger zu seinen initiativen Untersuchungen gratulieren. — Die Frage der wiederkehrenden Spannung in Vorschriften aufzunehmen ist verfrüht. In 5 oder 10 Jahren darf man vielleicht daran denken.

Herr Dr. W. Wanger, Referent 1): Herr Dr. Roth hat in der Diskussion sehr anerkennende Worte für die bei meiner Firma durchgeführten Forschungen über «indirekte» Schalterprüfungen gefunden. Er beurteilt aber diese Prüfmethode m. E. viel zu optimistisch, so dass es mir unbedingt nötig scheint, einzelne seiner Behauptungen, oder besser gesagt: Erwartungen, mit Hilfe der zur Verfügung stehenden Versuchsresultate zu widerlegen. Wenn ich an der Versammlung selber Herrn Dr. Roth nichts erwidert habe, so deswegen, weil eine Diskussion über dieses Thema gar nicht möglich war, nachdem man mich durch Beschränkung der Redezeit genötigt hatte, den betreffenden Abschnitt meines Vortrages wegzulassen.

Herr Dr. Roth hat darauf aufmerksam gemacht, dass Kurzschlußstrom und wiederkehrende Spannung nicht zu gleicher Zeit vorkommen und dass es daher unverantwortlich sei, die Kurzschlußleistung der Prüfanlage gleich dem vollen Produkt aus Kurzschlußstrom und wiederkehrender Spannung zu wählen. Da gleichzeitig mit dem Kurzschlussstrom nur die Lichtbogenspannung aufgebracht werden müsse, würde eine vielleicht 20mal kleinere Spannung der Anlage genügen. Man könnte daraus schliessen, dass man durchweg mit 20mal kleinerer Maschinenleistung, als man bisher für erforderlich hielt, einen Schalter vollwertig prüfen könnte. Aber so extrem liegen denn die Verhältinsse doch nicht.

Zunächst einmal ist die Lichtbogenspannung nicht durchweg nur ½0 der wiederkehrenden Spannung, sondern sie erreicht bei gewissen Schaltertypen sogar die gleiche Grössenordnung wie die wiederkehrende Spannung. Sodann genügt eine treibende Spannung, die nur gleich der Lichtbogenspan-

¹⁾ Beitrag nachträglich schriftlich eingesandt.