Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 30 (1939)

Heft: 9

Artikel: Ein Verfahren zur Messung der Lichtbogenspannung von Mutatoren

Autor: Lamm, A. Uno

DOI: https://doi.org/10.5169/seals-1058352

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Depuis sa mise en service, le 23 décembre 1938, la sous-station Lütschental a fonctionné chaque jour à pleine satisfaction.

En résumé, l'on peut affirmer à juste titre que cette première réalisation du couplage élastique de deux réseaux à courant triphasé de fréquences différentes à l'aide d'un seul mutateur satisfait à toutes les conditions posées lorsque cette installation fut projetée. Elle ouvre des voies nouvelles à la solution du problème du couplage élastique des réseaux à courant triphasé, tout en contribuant à le simplifier.

Ein Verfahren zur Messung der Lichtbogenspannung von Mutatoren.

Von A. Uno Lamm, Ludvika (Schweden) 1).

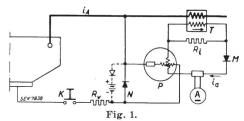
621.317.32 : 621.314.65

Es wird eine erweiterte Wattmetermethode zur Messung des Lichtbogenabfalles beschrieben. Es werden die Einzelteile der Meßschaltung zur Erreichung einer bestimmten Ge-

L'auteur décrit une méthode wattmétrique perfectionnée pour la mesure de la chute de tension dans l'arc, et détermine par le calcul les éléments du montage, de façon à obtenir une précision de mesure donnée.

nauigkeit berechnet. Bei der Bestimmung des Wirkungsgrades von

Mutatoren nach der direkten Messmethode erhält man bekanntlich Ergebnisse, die auch bei Anwendung der grössten Vorsichtsmassregeln recht unbefriedigend sind. Man sucht deshalb immer mehr, dieses Verfahren zu verlassen und bestimmt die Verluste der Mutatoranlage für ihre einzelnen Teile gesondert. Für die Mutatortransformatoren gibt es dabei einfache und leicht durchzuführende Verfahren, nicht aber für die Mutatoren selbst. Unter der grossen Zahl von Vorschlägen zur Messung der Lichtbogenverluste findet sich kaum einer, der für Abnahmemessungen wirklich geeignet wäre. Die üblichste Methode ist die oszillographische, trotz der erforderlichen teuren und unhandlichen Apparatur; sie gibt aber nicht einmal theoretisch die richtigen Ergebnisse, wenn man nicht ausserdem noch den Anodenstrom aufnimmt und die Produktkurve der beiden planimetriert. Einige Vorschläge mit Trockengleichrichter und Voltmeter sind zwar bequem durchzuführen, geben aber völlig falsche Ergebnisse, sobald Ueberlappung und Zündspannungsspitzen vorkommen. Am einfachsten und richtigsten erhält man den Lichtbogenabfall mit der Wattmetermethode. Dabei liegt die Stromspule in der Anodenleitung, die Spannungsspule zwischen Anode und Kathode. So misst das Wattmeter direkt die Lichtbogenverluste; dividiert man diesen Wert durch den mittleren Anodenstrom, so erhält man den richtigen Wert für den Lichtbogenabfall.


Die allgemeine Verwendung dieser Methode stösst aber auf das Hindernis, dass es gute Wattmeter für grosse Ströme nicht gibt. Man versuchte deshalb²), Stromwandler zwischenzuschalten und vermied die Gleichstrommagnetisierung des Wandlers dadurch, dass man ihm zwei Primärwicklungen gab, die von zwei verschiedenen Anodenströmen in umgekehrter Richtung durchflossen wurden. Die hier behandelte Methode verwendet einen vollkommen normalen Stromwandler und vermeidet seine Gleichstrommagnetisierung durch einen Trockengleichrichter. Dadurch wird das Verhalten der Anordnung durchsichtiger und unabhängig von zufälligen Unsymmetrien in den Anodenströmen. Das Verfahren geht auf einen Vorschlag von W. B. Bat-

H. Forssell und K. E. Ungerholm beigetragen.
 ²) Brown-Boveri-Mitteilungen 1931, S. 362.

ten 3) zum Oszillographieren von Anodenströmen zurück.

Beschreibung der Schaltung. 4)

Fig. 1 zeigt die Schaltung. Das Wattmeter P ist an einen normalen Stromwandler T angeschlossen. Das Gleichrichterelement M auf der Sekundärseite

Schaltung der Messeinrichtung. Die mit gestrichelten Linien gezeichnete Anordnung ist nur bei Messung an gittergesteuerten Mutatoren erforderlich.

lässt den Strom nur in der Richtung entgegen dem primären Wandlerstrom fliessen. Dadurch ist der Wandler zu Beginn jedes neuen Arbeitsintervalles fast strom- und feldfrei und die Amperewindungen können sich wie bei einem normalen Wandler bis auf den geringen Magnetisierungsstrom aufheben. Der Strom in der Wattmeterspule ist somit ein getreues Abbild des Anodenstromes in dem gewählten Maßstab.

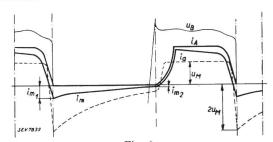


Fig. 2.

Strom- und Spannungsverlauf.

iA Anodenstrom, ia Strom durch die Messinstrumente,

uB Lichtbogenabfall, im Anfangswert des Rückstromes durch
die Sekundärwicklung, im2 Endwert dieses Rückstromes. Die
gestrichelte Linie bezeichnet die Spannung an der Sekundärwicklung des Wandlers mit dem Wert um, während des

Arbeitsintervalles.

Fig. 2 zeigt den Stromverlauf für einen Wandler mit der Uebersetzung 1:1. Infolge des Magnetisierungsstromes i_m verläuft der Sekundärstrom i_a unterhalb des Anodenstromes i_A . i_m steigt während

¹⁾ Zu dieser Arbeit haben meine Mitarbeiter J. Plöen,

Blectrical Journal, Oct. 1934, S. 418.
 Siehe auch A. U. Lamm, Teknisk Tidskrift, Elektrotechnik, Febr. 1935.

des ganzen Arbeitsintervalles entsprechend der dauernden Felderhöhung im Kern, die zur Erzeugung der nötigen Sekundärspannung erforderlich ist. Am Ende des Arbeitsintervalles verbleibt somit ein gewisser Magnetisierungsstrom i_{m1} , der nicht augenblicklich verschwinden kann. Um ihn ohne grosse, für das Gleichrichterelement schädliche Ueberspannungen abklingen zu lassen, ist dem Wandler ein Widerstand R_i parallel geschaltet. Das

Drehspulinstrument zur Messung des mittleren Anodenstromes liegt mit dem Wattmeter in Serie. Dadurch wird, wie noch gezeigt wird, der Einfluss des Magnetisierungsstromes und des Stromes im Widerstand R_i eliminiert.

Die hohe negative Sperrspannung wird von der Spannungsspule des Wattmeters durch den Gleichrichter N ferngehalten.

Tabelle I.

	Schaltung für	120° - Brenndauer		600-Brenndauer	
		Allgemein: Die Formeln gelten für den höchsten I- Wert. Die Anord- nung darf bis 1/3 dieses Wertes ver- wendet werden	Besonders empfohlen: Diese Anordnung kann verwendet werden innerhalb des Bereiches $3 > \frac{I}{m \cdot n} > 1$	Allgemein · Die Formeln gelten für den höchsten I- Wert. Die Anord- nung darf bis ¹/ ₈ dieses Wertes ver- wendet werden	Besonders empfohlen: Diese Anordnung kann verwendet we den innerhalb des Bereiches $2,1 > \frac{I}{m \cdot n} > 0,7$
Wattmeter P	Normale max. Spannung	$U_{\sf w}$	<i>U</i> _w ≌ 30 V	$U_{\sf w}$	$U_{\sf w} \cong 30 \; m V$
	Widerstand im Spannungspfad	R _w	$R_{w} \cong 1000 \; \mathrm{Ohm}$	$R_{\sf w}$	$R_{\sf w} \cong 1000~{ m Ohm}$
	Normaler max. Strom	$I_{\sf w}$	<i>I</i> _w ≌ 5 A	$I_{\sf w}$	<i>I</i> _w ≌ 5 A
	Es soll ein W	attmeter für klei	nen $\cos arphi$ verwer	idet werden	
Trocken- gleichrichter M	Belastbarkeit (Effektivwert des Stromes	$1,7 \frac{I}{m \cdot n}$	5 A	$2,4 \frac{I}{m \cdot n}$	5 A
	Bei einem Gleichstrom in Vorwärtsrichtung von	$3\frac{I}{m\cdot n}$	8,5 A	$6\frac{I}{m \cdot n}$	12 A
	misst man einen Spannungsabfall, der mit $u_{\rm M}/2$ bezeichnet wird.		$u_{M}/2 < 2,2 \; \mathrm{V}$		$u_{M}/2 <$ 2,2 V
	Wird eine Gleichspannung 2 u _M in Sperrichtung aufgedrückt, so darf der Strom nicht überschreiten	$0,02 \frac{I}{m \cdot n}$	0,06 A	$0,033 \frac{I}{m \cdot n}$	0,07 A
Stromwandler T	Uebersetzungsverhältnis	$m \ge 1.7 \frac{I}{I_{w} \cdot n}$	$m \ge 0.33 \frac{I}{n}$	$m \ge 2.5 \frac{I}{I_{w} \cdot n}$	$m \ge 0.5 \frac{I}{n}$
	Die Leerlaufcharakteristik soll bei einem Sekundärstrom	$i_{T} \leq 0,1 - \frac{I}{m \cdot n}$	$i_{T}=0.3~\mathrm{A}$	$i_{T} \leq 0.14 rac{I}{m \cdot n}$	$i_{\scriptscriptstyle T}=0,3~{ m A}$
	eine Neigung ($\mathrm{d}u_{\mathrm{I}}/\mathrm{di}_{\mathrm{I}}$) haben von $>$	$2,2 \frac{u_{M}}{i_{T}} = X$	35 Ohm	$1,16\frac{u_{M}}{i_{T}} = X$	18 Ohm
Widerstand R	Ohm	$0.5 X < R_i < 0.7 X$	20 + 2	$X < R_i < 1.3 X$	20 ± 2
Widerstand $R_{\rm v}$	Widerstand wird möglichst hoch gewählt, doch so, dass der Watt- meterausschlag nicht zu klein wird.		ca. 2500 Ohm, wenn der Lei- stungsfaktor des Wattmeters für Vollausschlag 0,1 0,3 ist.		ca. 2500 Ohm, wenn der Lei- stungsfaktor de Wattmeters für Vollausschlag 0,1 0,3 ist.
	Spannung am Widerstand	1,4 \cdot U			
Trocken- gleichrichter N	Belastbarkeit (Effektivwert des Stromes)	$1.4 \frac{U}{R_{\text{v}}}$			
	Strom in Arbeitsrichtung bei einem Spannungsabfall $< u_{\rm w}$	$1,1$ $\frac{U}{R_{v}}$			
	Wird eine Gleichspannung von 30 V in Sperrichtung aufge- drückt, so darf der Strom nicht überschreiten	$-\frac{1}{R_{\sf w}}$			

Berechnung des Messergebnisses.

Der Lichtbogenabfall u_B ist durch die Wattmeter-(P) und Amperemeterablesung (i_a) gegeben zu

$$u_{B} = \frac{P}{i_{a}} \cdot \frac{R_{w} + R_{v}}{R_{w}},$$

wo R_w der Widerstand des Wattmeters selbst und R_v der äussere Vorwiderstand ist (Fig. 1).

Es ist nun wichtig, dass irgendwelche Korrekturen mit Rücksicht auf die verwendeten Schaltelemente nicht erforderlich sind, wenn es sich darum handelt, Ergebnisse zu erhalten, deren Genauigkeit für Abnahmen genügen. Dagegen müssen die verwendeten Schaltelemente gewisse Mindestanforderungen erfüllen, die hier behandelt werden sollen und die in Tabelle I zusammengestellt sind. Die Tabelle enthält die Werte für Schaltungen mit 60° und 120° Brenndauer.

Für jede dieser Brennzeiten gibt die Tabelle in einer Spalte die allgemeine Fassung der Forderungen; in einer zweiten Spalte sind die Forderungen für eine besonders empfohlene Anordnung angegeben, die ein Wattmeter für 5 A und 30 V vorsieht.

Die Berechnungen werden hier nur für 120° Brenndauer durchgeführt und berücksichtigen den Ueberlappungswinkel. Für andere Brennzeiten geht dies auf die gleiche Weise. Der Messfehler, der vom Stromkreis und der, der vom Spannungskreis herrührt, werden getrennt behandelt.

Stromkreis während des Vorwärtsstromes.

Ist der Lichtbogenabfall während des ganzen Arbeitsintervalles konstant, so wirkt eine Abweichung des Stromes i_a von i_A auf Watt- und Amperemeter in derselben Weise ein, ist also ohne Einfluss auf den Quotienten der beiden und damit auf das Ergebnis. Auch in der kurzen Zeit am Ende, wo i_a negativ ist, gilt dies. Die Annahme eines konstanten Abfalles ist praktisch hinreichend genau erfüllt. Man kann zeigen, dass, wenn z. B. die Spannung im ersten Teil um 30 % grösser ist als in der zweiten Hälfte und gleichzeitig der Stromfehler in der ersten Hälfte a% und in der zweiten (a+10)% ist, der Messfehler kleiner als 0,75 % wird.

Stromkreis während des Sperrintervalles.

Im Sperrintervall entsteht aber durch den Rückstrom des Trockengleichrichters ein wirklicher Fehler, da dieser Strom den Wattmeterausschlag erhöht — die Spannungsspule hat ja gleichzeitig eine negative Spannung —, während er den Amperemeterausschlag vermindert. Der Spannungspfad des Wattmeters sei so ausgebildet, dass die negative Sperrspannung am Instrument nicht grösser werden kann als das 1,5fache des Lichtbogenabfalles. Der Mittelwert des Rückstromes durch das Wattmeter im Sperrintervall über eine Periode sei i_{2m} , während der Mittelwert des Arbeitsstromes $\frac{I}{m \cdot n}$ ist, mit I als Gleichstrom, m Uebersetzungsverhältnis des

Wandlers und n Anodenzahl. Der grösste Wattmeterfehler ist dann

$$\frac{1.5 \cdot i_{2m} \cdot m \cdot n}{I} 100 \%$$

und der grösste Stromfehler

$$\frac{i_{2m} \cdot m \cdot n}{I} 100 \%$$

Der Fehler im Quotienten und damit im Lichtbogenabfall wird also

$$\frac{2.5 \cdot i_{2m} \cdot m \cdot n}{I} 100 \%$$

Es soll nun ein Fehler von F % zugelassen werden und es sollen die Forderungen berechnet werden, die dann an die verwendeten Schaltelemente gestellt werden müssen. Es muss dann sein

$$i_{2m} \leq \frac{0.01 F}{2.5} \cdot \frac{I}{m \cdot n}$$

Der Trockengleichrichter M kann nicht als ein reiner ohmscher Widerstand betrachtet werden, weder im Arbeits- noch im Sperrintervall. Es soll folgende Annahme gemacht werden. In der Vorwärtsrichtung wird er vom Strom $3\frac{I}{m \cdot n}$ durchflossen; dabei habe er den Spannungsabfall u_M , in den wir uns der Einfachheit halber auch gleich die anderen Abfälle im Kreis T-M-A-W eingeschlossen denken. Im Sperrintervall soll M dagegen den konstanten Widerstand R_M haben, entsprechend dem Widerstand bei der höchsten vorkommenden Sperrspannung. Mit einer solchen Annahme liegt man bekanntlich auf der sicheren Seite, um so mehr auch, als die Kontrollmessungen am Trockengleichrichter mit Gleichstrom gemacht werden, wobei bekanntlich grössere Rückströme auftreten. Ferner wählen wir — wie später noch gezeigt wird — den Widerstand R_i so klein, dass das Maximum der Sperrspannung im ersten Augenblick höchstens $2u_m$ wird. Zur Berechnung des Stromes i_{2m} brauchen wir hier nicht den Verlauf des Rückstromes zu berechnen, sondern können davon ausgehen, dass die Sekundärspannung am Wandler keine nennenswerte Gleichstromkomponente enthalten kann. Während des Arbeitsintervalles, also während $\frac{2\pi}{3} + a$, liegt an ihm die Spannung u_M . Hier bedeutet α den Ueberlappungswinkel. Dann wird der Mittelwert der Spannung im Sperrintervall über eine Periode

$$rac{rac{2 \, \pi}{3} \, + \, lpha}{2 \, \pi} \, u_{\scriptscriptstyle M} = rac{1}{3} \Big(1 + rac{3 \, lpha}{2 \, \pi} \Big) \, u_{\scriptscriptstyle M}$$

und der Mindest-Sperrwiderstand

$$R_{\scriptscriptstyle M} \geq rac{rac{1}{3} \left(1 + rac{3 \, lpha}{2 \, \pi}
ight)}{rac{F}{2 \, 5} \cdot rac{I}{m \cdot n}} \, u_{\scriptscriptstyle M}$$

oder beim praktisch grössten Wert von a, nämlich $\frac{\pi}{6}$,

$$R_{\scriptscriptstyle M} = \frac{m \cdot n \cdot u_{\scriptscriptstyle M}}{I \cdot F}$$

Diese Forderung für R_M soll also bei der höchsten Sperrspannung erfüllt sein, und erst bei deren Bestimmung spielt der Widerstand R_i und die Wandlereigenschaften überhaupt eine Rolle.

Dimensionierung des Widerstandes R_i und des Wandlers T.

Wir kommen auf die oben gemachten Voraussetzungen zurück, nämlich, dass im Sperrintervall die sekundäre Wandlerspannung auf 2 u_M begrenzt sei. Es muss dazu der Verlauf von i_m näher untersuchtwerden, besonders die Grenzwerte i_{m_1} und i_{m_2} . Die Leerlaufinduktivität des Wandlers sei L_T ,

die Dauer des Arbeitsintervalles ist $\left(\frac{1}{3} + \frac{\alpha}{2\pi}\right) \cdot \frac{1}{f}$ Sekunden; dann ist

$$(i_{m\,1}-i_{m\,2}) \ L_T = u_M \left(rac{1}{3} + rac{lpha}{2\,\pi}
ight) rac{1}{f}$$
 $(f= ext{Frequenz}).$

Den Rückstrom im Sperrintervall können wir vernachlässigen im Vergleich mit dem wesentlich grösseren Strom durch R_i und schreiben also

$$\frac{\mathrm{d}i_m}{\mathrm{d}t} - \frac{R_i}{L_T} i_m = 0.$$

Zur Zeit t=0 ist $i_m=i_{m1}$ und zur Zeit $t=\left(\frac{2}{3}-\frac{\alpha}{2\pi}\right)$. $\frac{1}{f} \text{ ist } i_m = i_{m_2}.$

Dann ist

$$i_{m1} = \frac{5\pi}{6} \cdot \frac{u_M}{X_T \left(1 - e^{-\frac{7\pi}{6} \cdot \frac{R_1}{X_T}}\right)}$$

$$i_{m2} = i_{m1} \cdot e^{-\frac{7\pi}{6} \cdot \frac{R_1}{X_1}}$$

mit $X_T = 2\pi f L_T$ und $\alpha = \frac{\pi}{6}$, wie schon vorher.

Grössere Ueberlappung macht nämlich i_m grösser und damit das Ergebnis ungünstiger. Aus der Forderung, dass die Spannung den Wert $2u_M$ nicht überschreiten soll, also dass

$$R_i \cdot i_{m_1} \leq 2u_M$$

 $R_i \cdot i_{m1} \leq 2u_M,$ ergibt sich $rac{R_i}{X_T} \leq 0.7$, womit die obere Grenze gegeben ist. Um bei der Messung auch bezüglich der Sättigungsverhältnisse des Wandlers sicher zu gehen, bestimmen wir die Reaktanz aus der Tangente an die Magnetisierungskurve bei einem Strom entsprechend i_{m1} , d. h. die Magnetisierungskurve wird mit normalem sinusförmigem Wechselstrom bei normaler Frequenz f aufgenommen und die Tangente bei einem Strom

$$i_T = \frac{i_{m_1}}{\sqrt{2}}$$

bestimmt, und festgestellt, dass die so erhaltene Reaktanz die Forderungen erfüllt.

Bei der Festlegung von R_i und X_T muss man weiter darauf achten, dass auch i_{m1} nicht zu gross wird, um die Sättigung in normalen Grenzen zu halten und dadurch genügend grosse Reaktanzen X_T zu bekommen. Der Stromwandler wird für einen Effektivwert des Stromes von 1,7 $\frac{I}{m \cdot n}$ ausgelegt. Auf Grund vorgenommener Untersuchungen erscheint es uns geeignet, vorzuschreiben, dass der Magnetisierungsstrom 8 % dieses Wertes nicht überschreiten soll, d. h. also

$$i_{m\,1} < 0.14 \quad \frac{I}{m\cdot n}$$

Das bedeutet aber, nach dem, was weiter oben gesagt wurde,

$$X_T > 3.1 \frac{u_M}{i_{m+1}} > 22 \frac{m \cdot n \cdot u_M}{I}$$

und damit

$$R_i > 11 \frac{m \cdot n \cdot u_M}{I}$$

Wir sahen schon, dass $R_i \le 0.7 X_T$ sein muss. Machen wir eine Vorschrift für R_i , so ist X_T nach oben keine Grenze gesetzt; i_{m_1} kann dann den vorerwähnten Wert nicht überschreiten. In Tabelle I ist deshalb R_i aus der Mindestgrösse von X_T berechnet.

Das I in obiger Formel soll den grössten Gleichstromwert bezeichnen, bei dem der Wandler mit der Uebersetzung m noch Verwendung findet. Für eine gegebene Anordnung ist aber i_{m_1} unabhängig vom Belastungsstrom I, so dass die Anordnung auch für kleinere Ströme verwendet werden kann. Mit Rücksicht aber auf die Abbildung des Stromes im Arbeitsintervall, darf i_{m_1} nicht über etwa 15 % des Wertes des Gesamtstromes $i_a = 3 \frac{I}{m \cdot n}$ ansteigen, d.h.

$$i_{m1} < 0.45 \frac{I}{m \cdot n}$$
,

wo I hier den tatsächlichen Gleichstrom bei der Messung bedeutet.

Die Anordnung soll also nicht verwendet werden bei Gleichströmen, die unter 1/3 des Wertes liegen, für die R_i und X_T berechnet wurden.

Die Messgenauigkeit.

Man kann leicht Trockengleichrichter, z. B. Kupferoxydulgleichrichter, finden, die bei einem Vorwärtsstrom von 1,7 $\frac{I}{m \cdot n}$ einen Sperrwiderstand $R_m > 35 \frac{m \cdot n \cdot u_M}{I}$, bzw. einen Rückstrom von weniger als $0.06\,\frac{I}{m\cdot n}$ bei einer Sperrspannung $2u_M$ haben. In Tabelle I ist der Wert $0.02\,\frac{I}{m\cdot n}$ eingesetzt mit Rücksicht darauf, dass I dort den höchsten Wert angibt, während der Strom tatsächlich auf 1/3 des Wertes sinken darf.

Unter Verwendung des weiter oben angegebenen Zusammenhanges zwischen R_M und der Messgenauigkeit F folgt

$$F < \frac{1}{35} = 0.03$$

Wir haben also gesehen, dass bezüglich des Wattmeterstromkreises der Fehler nicht grösser werden kann als 3%, und zwar liegt dieser Fehler immer so, dass der wirkliche Lichtbogenabfall kleiner ist. Die zur Erreichung dieser Genauigkeit erforderlichen Bedingungen für die Schaltelemente sind, wie schon erwähnt, in Tabelle I zusammengestellt.

Braucht man überhaupt den Widerstand R_i ?

Fehlt R_i , so tritt an seine Stelle R_M in die Formel für i_{m1} . Die Forderung

$$R_{\scriptscriptstyle M} < 35 \frac{m \cdot n \cdot u_{\scriptscriptstyle M}}{I}$$

gilt weiter, und setzen wir z. B.

$$X_T > \frac{R_M}{0.7}$$

so wird

$$i_{m1} < 0.05 \frac{I}{m \cdot n}$$

Der ganze Strom muss als Rückstrom durch den Trockengleichrichter M. Das entspricht etwa 3 % des Vorwärtsstromes und das ist doch recht viel. Wenn wir anderseits mit 5 A Sekundärstrom rechnen, wird $X_T > 80$ Ohm, und das begrenzt uns in der Wahl des Wandlers.

Deshalb scheint es zweckmässig, in den Dimensionierungsregeln einen Wert von R_i anzugeben, was aber nicht hindert, ihn auch gelegentlich fortzulassen, wenn geeignete Wandler und Trockengleichrichter verfügbar sind.

Der Spannungspfad des Wattmeters.

Hier muss der Widerstand R_{ν} und der Trockengleichrichter N, der den Strom in der Sperrperiode führen soll, so bestimmt werden, dass einerseits der Rückstrom durch N in der Arbeitsphase keinen zu grossen Fehler verursacht, anderseits R_{ν} nicht so gross wird, dass das Wattmeter nicht mehr ordentlich ausschlägt. Normale Wattmeter werden mit Spannungsspulen nicht unter 30 Volt ausgeführt. Da nun der Bogenabfall im allgemeinen kleiner ist, ist der Widerstand R_{ν} , vom Wattmeter aus gesehen, ganz unnötig vorgeschaltet. Das Wattmeter soll für möglichst kleinen cos φ gewählt werden und zweckmässig astatisch sein.

Will man mindestens 1/4 Vollausschlag erhalten, so muss

$$\frac{q \cdot m \cdot n \cdot I_{\nu} \cdot U_{w}}{I} \cdot \frac{R_{\nu} + R_{\nu}}{R_{w}} = 100.$$

Dabei ist I_w und U_w der grösste Strom bzw. Spannung, für die die Wattmeterspulen ausgelegt sind, R_w der Widerstand zwischen den Wattmeterspan-

nungsklemmen und q der cos φ für Vollausschlag bei U_w und I_w .

Der Trockengleichrichter N muss einen Strom $\frac{1,4U}{R_{\nu}}$ in seiner Arbeitsrichtung führen, wenn U die Gleichspannung ist. Zur Vermeidung von Ueberlast für das Wattmeter im Sperrintervall, infolge des Abfalls am Trockengleichrichter N, muss er bei einem Strom $\frac{1,1U}{R_{\nu}}$ einen kleineren Abfall haben, als die höchstzulässige Spannung U_{ν} beträgt. Der Rückstrom in seiner Sperrichtung bei einer Gleichspannung von ca. 30 V darf nicht grösser sein als $\frac{1}{R_{\nu}}$. Das bedeutet, dass der Trockengleichrichter einen mehr als 30mal grösseren Sperrwiderstand hat als der innere Wattmeterwiderstand beträgt; das entspricht einem Fehler von 3,3 %. Dieser Fehler liegt in umgekehrter Richtung wie der Fehler im Strompfad, also in Richtung auf zu kleine Bogenabfälle, wodurch sich diese beiden Fehlerquellen teilweise aufheben.

Messung am gittergesteuerten Mutator.

Die Schaltung nach Fig. 1 ist nur verwendbar für ungesteuerte oder ganz wenig gesteuerte Mutatoren. Bei weiterer Steuerung wird die positive Sperrspannung so gross, dass die Spannungsspule überlastet wird. Mit einfachen Mitteln kann aber die Schaltung auch dafür erweitert werden, wie es in Fig. 1 gestrichelt angedeutet ist, wo nämlich parallel zum Trockengleichrichter N ein Kreis mit einer Batterie von etwa 40 Volt und einem Trockengleichrichter gelegt ist. Auf diese Weise ist ein Umgehungsweg auch in der anderen Richtung offen, allerdings nur, wenn die Spannung positiver ist als normalerweise der Bogenabfall.

Der oben berechnete Fehler im Spannungskreis wird durch diese Anordnung vermindert, weshalb man ohne weitere Rechnung die Messgenauigkeit für unverändert ansehen kann, wenn man nur den neuen Trockengleichrichter nach denselben Grundsätzen auslegt wie den früheren und er auch qualitativ gleichwertig ist.

Ausgeführte Messungen.

Die Schaltung wurde bei vielen Gelegenheiten im Prüffeld und auf Anlagen angewendet und die Ergebnisse bei mittleren Strömen mit einem direkt in den Anodenstromkreis eingeschalteten Wattmeter und bei höheren Strömen mit oszillographischen Aufnahmen und sorgfältiger Planimetrierung verglichen. Das Ergebnis entsprach den Berechnungen. Ferner erwies sich das Verfahren besonders einfach im Gebrauch. Die Apparatur ist dieselbe für alle Gleichrichtergrössen, nur der Stromwandler ändert sich. Die Trockengleichrichter blieben gut konstant, und die Kontrollmessungen in dieser Richtung nach jeder Prüfung erwiesen sich bald als eine völlig unnötige Formalität. Diese einfache und genaue Durchführungsmöglichkeit war die Veranlassung, diese Methode als Standardmessung für den Lichtbogenabfall in die schwedischen Stromrichterregeln aufzunehmen.