Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 30 (1939)

Heft: 20

Artikel: Rapports présentés par les fabricants : comment choisir les

interrupteurs dans les installations modernes à haute tension?

Autor: Roth, A.

DOI: https://doi.org/10.5169/seals-1058411

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ASSOCIATION SUISSE DES ÉLECTRICIENS

BULLETIN

RÉDACTION:

Secrétariat général de l'Association Suisse des Electriciens et de l'Union des Centrales Suisses d'électricité, Zurich 8 ADMINISTRATION:

Zurich, Stauffacherquai 36 * Téléphone 5 17 42 Chèques postaux VIII 8481

Reproduction interdite sans l'assentiment de la rédaction et sans indication des sources

XXXe Année

 $N^{o} 20$

Vendredi, 29 Septembre 1939

A propos des Interrupteurs.

Compte-rendu

de la journée de discussion de l'Association Suisse des Electriciens (ASE) du 26 novembre 1938, au Kursaal Schänzli à Berne.

Suite du No. 14, p. 369.

IV^{me} Partie. Rapports présentés par les fabricants.

Comment choisir les interrupteurs dans les installations modernes à haute tension?

Par A. Roth, Aarau.

621.316.57

Après un aperçu général de la genèse des interrupteurs, l'auteur expose les qualités que possède un interrupteur: sécurité en service, simplicité d'entretien, durée de coupure, forme et encombrement. Il étudie ensuite comment les différents types d'interrupteurs à bain d'huile, à faible volume d'huile, à air comprimé (avec et sans compresseur) remplissent ces conditions. Finalement, il établit des directives pour le choix du type d'interrupteur.

Nach einem allgemeinen Ueberblick über die Entwicklung der Schalter werden die Eigenschaften, nach welchen ein Schalter beurteilt werden muss, erörtert: Betriebssicherheit, Einfachheit des Unterhaltes, Abschaltzeit, Form und Abmessungen. Die Art, wie der klassische Oelschalter, der ölarme Schalter und der Druckluftschalter (mit und ohne Kompressor) diesen Bedingungen genügen, wird auseinandergesetzt. Zum Schluss werden allgemeine Richtlinien für die Schalterwahl aufgestellt.

Vous souvenez-vous encore d'un temps pas très lointain, où l'exploitant ayant besoin d'un disjoncteur H. T., commandait sans réfléchir un instant, un «interrupteur à huile»? Tout au plus s'excitait-il sur la question «pot d'explosion ou rupture ouverte». L'heureux fabricant, de son côté, avait une seule série d'appareils, toujours du même type, pour les différentes tensions, intensités et pouvoirs de rupture. Qu'ils nous semblent déjà loins, ces temps heureux et paisibles! Aujourd'hui, le pauvre exploitant reçoit les propositions les plus diverses, la diversité se référant tant aux caractéristiques qu'au principe de fonctionnement des appareils. Quand il a pris sa décision, il lui reste souvent un certain malaise, car il se demande s'il a bien fait son choix dans un domaine dont il ne peut pas connaître tous les éléments. Le fabricant de son côté, est obligé de tenir à la disposition de ses clients des séries diverses d'appareils, correspondant aux caractéristiques fort différentes que demande un art avancé et raffiné. Cette diversité bien entendu, va à l'encontre d'une fabrication et d'un stockage rationnels.

Cette multitude de modèles est-elle une nécessité ou plutôt le signe d'une de ces périodes où les solutions techniques foisonnent, parce que l'expérience résultant d'une longue exploitation dans les conditions si diverses de la pratique n'a pas encore amené une décision? Je n'ose pas donner une réponse nette à cette question, ce que je peux dire, c'est que je ne crois pas que nous reverrons l'ancien temps heureux du type unique, à moins qu'un système idéal surgisse, réunissant les avantages de tous les types actuels.

Vu cet état de choses, je me suis donné pour but dans cette conférence de fournir à l'exploitant les éléments qui doivent déterminer son choix. Je crois pouvoir démontrer qu'en se laissant guider par quelques réflexions simples, il ne pourra guère se tromper. Je peux du reste affirmer que tous les types d'interrupteurs, classiques ou modernes, présentés aujourd'hui par des maisons sérieuses, présentent, des différents points de vue et surtout de celui de la sécurité, une très grande perfection par rapport aux types d'autrefois.

Celui qui doit faire un choix se laisse toujours guider par les caractéristiques de l'objet à choisir. Quelles sont les caractéristiques qu'un disjoncteur peut posséder? Je ne parle pas de l'intensité nominale, de la tension nominale, du pouvoir de rupture et de fermeture, de la tension d'essai, ces caractéristiques étant prescrites dans chaque cas particulier, indépendamment du type employé. Ils font en outre l'objet de directives de l'ASE. Les points de vue par contre, sous lesquels les types peuvent différer, sont les suivants:

- 1° La sécurité qu'ils présentent en exploitation.
- 2° Les facilités d'entretien.
- 3° Le temps de rupture.
- 4° Leurs formes et dimensions.

La sécurité en exploitation est le facteur prépondérant. En parlant de cette sécurité, on pense à la sécurité contre l'explosion en cas de rupture d'un court-circuit ou de fermeture sur court-circuit, ou bien à la sécurité contre l'incendie dans les mêmes circonstances. A ce point de vue il existe des différences bien nettes entre les différents systèmes. J'ai toutefois l'impression qu'on a été un peu trop fasciné par ce côté de la question et qu'on a souvent oublié qu'il y a aussi une question de «sécurité en service normal». Une panne mécanique empêchant le fonctionnement de l'appareil au moment voulu peut avoir des conséquences graves pour l'exploitation. On devra toujours se rendre compte que plus le mécanisme d'un appareil est compliqué, plus il sera délicat et exposé à ces pannes.

Les progrès faits dans le domaine de la sécurité contre l'incendie et l'explosion sont énormes, surtout pour les types modernes, mais aussi pour ceux du type classique. Pour cette raison, le poids de ce facteur a un peu diminué, surtout dans les cas où il s'agit d'endroits avec faible concentration d'énergie, caractérisée par des pouvoirs de rupture de l'ordre de 100 MVA. Il existe une certaine analogie avec l'état actuel de la construction de l'automobile: Quoiqu'il se présente encore des cas rares d'incendie du réservoir d'essence, on n'accepterait que dans des cas particuliers des améliorations qui auraient pour but d'augmenter encore la sécurité contre l'incendie, si elles risquaient d'augmenter le nombre de pannes ordinaires.

Les facilités d'entretien ont une grande importance. Là les progrès sont très grands pour les types modernes. Les volumes d'huile énormes des appareils du type classique à très haute tension (4600 litres pour un pôle de 150 kV) ont disparu ou ils sont réduits à un minimum (quelques dizaines de litres par pôle), les contacts qui ne supportaient pour de grandes intensités de court-circuit que 3 déclenchements, résistent aujourd'hui à des dizaines de fonctionnements sans nécessiter de retouches ou un remplacement.

La réduction du temps de rupture peut avoir une grande importance pour des appareils de 50 kV et plus. Munis de relais spéciaux ultrarapides ou même de dispositifs de refermeture rapide après rupture d'un court-circuit passager, des disjoncteurs à fonctionnement rapide peuvent éviter la perte du synchronisme dans des systèmes comportant plusieurs centrales de production d'énergie. Les appa-

reils modernes avec leurs parties mobiles légères et de bonne conception mécanique représentent un grand progrès dans ce sens. On constate cependant depuis quelque temps une tendance à l'exagération. En se rendant compte qu'une rapidité de fonctionnement trop poussée rend l'appareil plus délicat, on se gardera de prévoir la rupture très rapide dans des cas où elle n'a pas sa raison d'être. Il n'est par exemple pas intéressant d'abaisser le temps de fonctionnement d'un interrupteur en dessous de ½ 10 s, si le relais qui commande le déclenchement met déjà plusieurs dixièmes de s pour actionner l'appareil. Des cas pareils me rappellent le Monsieur qui se sert d'une voiture de course pour ses promenades dominicales.

La forme des appareils peut avoir une grande influence sur la disposition du tableau. Les appareils modernes du type intérieur sont jusqu'à 30 kV presque tous disposés dans un seul plan avec entrées par le haut et sorties par le bas ou inversément. Tous ces appareils modernes sont construits avec une logique séduisante: Tandis que les dimensions des pôles des appareils du type classique augmentaient avec la tension dans les 3 sens, les pôles des appareils modernes augmentent dans le seul sens de la hauteur. Le diamètre des pôles est grosso modo uniquement fonction de l'intensité de rupture.

Ayant ainsi indiqué les éléments qui seront à la base de la critique d'un interrupteur quelconque, nous allons maintenant faire passer en revue les différents types existants en examinant les propriétés de chacun. Nous terminerons en montrant que le poids de chacune de ces propriétés est tout différent d'un cas à l'autre.

La fig. 1 montre l'interrupteur de charge (type autocompresseur). Cet appareil possède un pouvoir de rupture limité, qui est de l'ordre de grandeur de l'intensité nominale, c'est-à-dire de quelques centaines d'ampères. A lui seul il ne pourra donc pas couper des courts-circuits. Répandu surtout pour 10 kV et 20 kV, il est employé jusqu'à 60 kV. Etant un appareil à air comprimé, il ne peut produire ni explosion, ni incendie. Vu la simplicité de son mécanisme et le fait que l'air comprimé est produit par un simple piston, actionné par un ressort, sa sécurité mécanique est également très grande et atteint presque celle du simple sectionneur. L'appareil est disposé dans un seul plan, il peut être monté dans n'importe quelle position, ce qui facilite la disposition des tableaux. Ajoutons que le pouvoir de rupture de ces appareils dépend fortement de la fréquence propre du circuit à couper. Il est donc à préconiser d'indiquer le pouvoir de rupture pour le cas défavorable. Pour d'autres cas il sera plus élevé. La fig. 2 montre cet appareil muni de coupe-circuit à grand pouvoir de rupture. Cet ensemble peut remplacer avantageusement le disjoncteur à des endroits où les courts-circuits sont rares. Fig. 3 représente le même ensemble muni de relais directs, ces derniers, avec leur haute précision, se chargeant des surintensités faibles. Dans le cas exceptionnel d'un court-circuit, ce sont les coupe-circuit qui fondent avant que les contacts de l'interrupteur ne se soient séparés. L'emploi des interrupteurs de charge du type autocompresseur est limité aux installations intérieures.

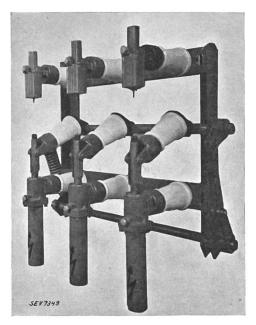


Fig. 1. Interrupteur de charge 10 kV, 350 A.

La fig. 4 montre l'interrupteur à huile classique. Je crois que pour des tensions de 10 et 20 kV cet appareil ne disparaîtra pas de si tôt. Il a toujours sa raison d'être à des endroits où les disjoncteurs sont

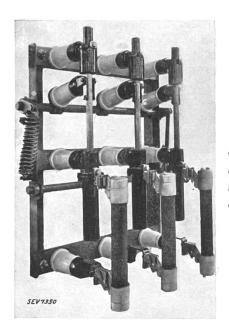


Fig. 2.

Interrupteur
de charge 10 kV,
aveccoupe-circuit
à grand pouvoir
de rupture 60 A,
250 MVA.

montés en petit nombre, surtout si le pouvoir de rupture demandé n'est pas trop élevé (100...200 MVA). Il est exact que la possibilité d'explosion et d'incendie existe, toutefois les perfectionnements apportés dans la construction de ces appareils l'ont

réduit à une faible fraction et limité au cas des pannes mécaniques. Par contre, ces disjoncteurs sont d'une simplicité mécanique telle que des pannes en service normal sont presque exclues. Leur désavan-

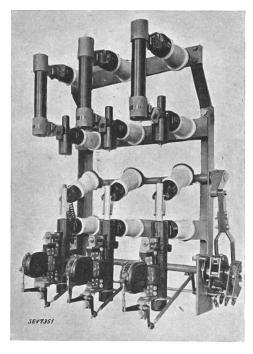


Fig. 3.

Interrupteur de charge 10 kV, avec coupe-circuit à grand pouvoir de rupture et relais directs 10 A.

tage est le soin à donner au maintien de la bonne qualité de l'huile. S'il est encore supportable pour les appareils de 10 et 20 kV avec leurs 100 et 230

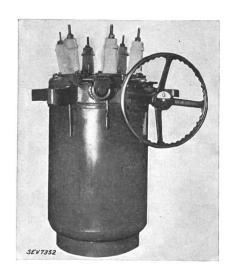


Fig. 4. Interrupteur à huile 10 kV, 350 A, 200 MVA.

litres d'huile et surtout aux endroits où les courtscircuits sont rares, il devient une lourde charge pour des appareils à tension plus élevée (50 t d'huile pour 220 kV!) et pour ceux qui sont souvent appelés à fonctionner sous court-circuit ou sous intensité nominale, c'est-à-dire où l'huile se noircit rapidement. Dans ce cas les contacts doivent également être remplacés après quelques ruptures. Le temps de rupture des types classiques est relative-

Fig. 5.

Disjoncteur orthojecteur 50 kV, 600 A, 750 MVA, pour montage intérieur.

ment long (11...14/100 s pour 10 kV, 30/100 s pour 220 kV); pour l'emploi indiqué (petits postes) c'est néanmoins sans importance aucune. La forme de ces appareils nécessite la disposition des conducteurs du

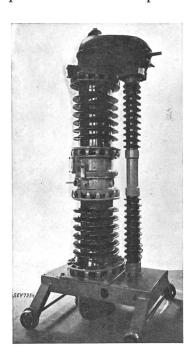


Fig. 6.

Disjoncteur orthojecteur
50 kV, 600 A, 750 MVA,
pour montage en plein
air.

tableau en deux plans. Les interrupteurs à huile du type classique s'adaptent particulièrement bien à l'emploi en plein air, l'isolement à huile évitant tous les phénomènes d'eau de condensation et de glace.

Les difficultés d'entretien de l'huile ont conduit à la construction des disjoncteurs à volume d'huile

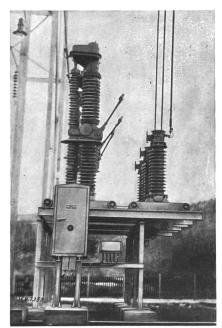


Fig. 7.

Disjoncteur
orthojecteur
150 kV, 600 A,
1250 MVA,
pour montage en
plein air.

réduit. Les fig. 5 et 6 montrent le disjoncteur orthojecteur, comme représentant de cette classe. Ces appareils sont construits aujourd'hui pour les tensions à partir de 30 kV. La sécurité que ces appareils présentent au point de vue incendie et explosion est très grande, le développement de gaz étant à peine ½0 de celui des types classiques, le volume d'huile très restreint (l'appareil fig. 5 contient 18 l/pôle). La simplicité de leur construction mécanique et, partant, leur sécurité contre les pannes en service normal est seulement égalée par l'interrupteur à huile classique. Du point de vue usure des contacts et de l'huile, c'est-à-dire du nombre des fonctionnements admissible sans revision, ils lui

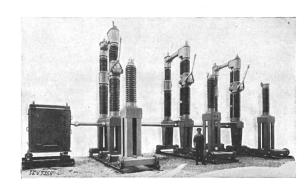


Fig. 8.

Disjoncteur orthojecteur 220 kV, 600 A, 2500 MVA, pour montage en plein air (Delle).

sont bien supérieurs. La faible masse des pièces mobiles de ces appareils permet de satisfaire à toutes les exigences concernant le temps de rupture. L'isolement à huile fait de ce type la construction préférée pour l'emploi en plein air (fig. 6). Son prix se rapprochant sensiblement de celui du type classique, on peut prétendre que ce dernier n'a plus

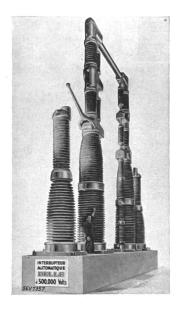


Fig. 9.

Disjoncteur orthojecteur 500 kV, 500 A, 5000 MVA, pour montage en plein air (Delle).

de raison d'être pour des tensions au delà de 30 kV. Aussi toutes les maisons ont développé des appareils à volume d'huile réduit jusqu'à 220 kV. Les différents modèles se ressemblent déjà beaucoup, au moins extérieurement, ce qui est toujours le signe du perfectionnement d'une construction.

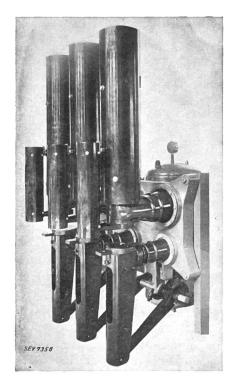
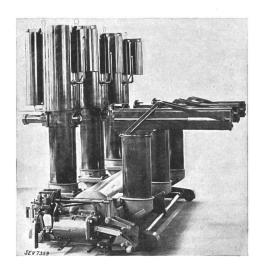



Fig. 10.

Interrupteur
à air comprimé
10 kV, 600 A,
275 MVA, 5 kg/cm².

Pour de très hautes tensions il sont accouplés mécaniquement avec un sectionneur formant partie intégrale de l'appareil (fig. 7, 8, 9); on peut toutefois prévoir qu'il va disparaître.

Il y a 10 ans on a commencé à aller encore plus loin dans la suppression de l'huile, en créant des appareils qui utilisent l'air comprimé comme fluide d'extinction (fig. 10 et 11). On obtient ainsi des appareils qui en cas de rupture de courts-circuits ne présentent plus aucun danger d'explosion et évitent presque complètement toute possibilité d'incendie. Par contre, ces appareils, dont la marche dépend du fonctionnement impeccable de soupapes et d'une installation de compression d'air, fatalement automatique, et dont les lignes de fuites de l'isolement sont exposées à l'action de l'eau de condensation sont un peu plus délicats, et demandent un entretien soigné. Cet entretien ne présente néanmoins pas de difficultés exagérées pour un personnel bien formé et expérimenté. D'autre part l'entretien est beaucoup facilité par l'absence d'huile: pas de remplacement, pas de filtrage. La tenue des contacts est remarquable, et pour des intensités normales et pour

 ${\bf Fig.~11.}$ Interrupteur à air comprimé 50 kV, 600 A, 500 MVA, 4 kg/cm².

les courts-circuits. Un autre avantage consiste dans la visibilité des pièces de coupure, ce qui réduit la possibilité de fausses manœuvres. Leur partie mécanique légère, construite d'après les principes d'une bonne mécanique, permet d'obtenir des temps de rupture très courts, si les nécessités de l'exploitation l'exigent. Toutes ces qualités font de cet appareil l'interrupteur idéal pour les centrales ou les sous-stations intérieures à grande concentration d'énergie et qui disposent d'un personnel qualifié, surtout si les déclenchements sont fréquents.

Pour l'emploi en plein air par contre, ce principe est moins indiqué. En effet, ses côtés faibles (difficultés, pas insurmontables, mais existantes, dues à l'eau de condensation et conduisant même à la formation de glace, soit dans le mécanisme, soit sur les lignes de fuite de l'isolement; nécessité d'un système de tubes à air; mécanisme compliqué) ne trouvent pas de contrepartie, les avantages (sécurité contre l'incendie) n'ayant pas grande importance en cas d'emploi en plein air.

Les appareils à air comprimé sont jusqu'à 30 kV presque toujours disposés dans un seul plan, ce qui correspond à la disposition moderne des tableaux.

J'aimerais encore dire un mot sur le choix de la pression d'air, adoptée pour les appareils à air comprimé. S'il est possible de construire dans l'état actuel de la technique des compresseurs, des installations et des soupapes pour 15 ou même 30 kg/cm², il n'est pas moins vrai que les difficultés pratiques augmentent fortement dès que la pression dépasse une certaine limite, qui se trouve dans les environs de 10 kg/cm². Cette pression de 10 kg/cm² est de l'ordre de grandeur de celle employée dans la plupart des installations à air comprimé industrielles (usines, garages, ateliers de peinture, chemins de fer, chantiers, etc.). Au delà de cette limite, les appareils et l'installation deviennent plus délicats, les compresseurs à piston par exemple doivent être construits en deux étages avec refroidissement de l'air entre les deux étages. Je suis de l'avis que ce fait devrait être pris comme point de départ pour la conception des installations. La pression dans l'interrupteur luimême doit bien entendu être plus basse que dans le réservoir du compresseur. Ceci tient à la nécessité d'emmagasiner une réserve d'air comprimé, dont on a besoin en cas de fonctionnement des appareils à courts intervalles. Dans ce cas le compresseur ne pourrait pas fournir à temps la quantité d'air demandée, à moins qu'il ne possède une capacité disproportionnée aux exigences du service normal. On a également besoin de cette réserve en cas de panne du compresseur ou de ses appareils de réglage. Or, la réserve d'air est égale au produit du volume du réservoir par la différence temporaire des pressions admissibles dans ce réservoir. La limite supérieure de cette dernière est donnée par la pression du compresseur, sa limite inférieure par celle que l'interrupteur demande pour son fonctionnement. Donnons un exemple: pression du compresseur 10 kg/cm², de l'interrupteur 4,5 kg/cm², volume du réservoir 500 l. On pourra donc emmagasiner (10—4,5) 500 = 2750 l d'air aspiré (tous les chiffres réduits à la pression atmosphérique), ce qui représente pour des interrupteurs consommant 200 l par cycle de fonctionnement, une réserve suffisant à 14 cycles. Si les interrupteurs travaillent par contre à 8 kg/cm², le volume nécessaire du réservoir pour le même nombre de cycles monte à 1375 l, c'est-à-dire il est presque 3 fois plus grand. Pratiquement, la pression du compresseur doit être plus élevée pour tenir compte de la marge nécessaire au fonctionnement du régulateur automatique. Cette marge est d'env. 1 kg/cm². En effet avec un régulateur réglé à 10/11 kg/cm², il peut y avoir, après charge complète du réservoir, des déclenchements d'interrupteur faisant baisser la

pression dans le réservoir jusqu'à 10,1 kg/cm², sans que le compresseur intervienne. Ce sont ces raisonnements qui nous ont fait choisir la pression de service de nos interrupteurs dans les limites de 4 à 6 kg/cm².

Mentionnons encore l'appareil autocompresseur (fig. 12) qui produit son air lui-même au moment de l'ouverture. Malheureusement cet appareil, qui réunit les avantages des appareils à air comprimé avec une simplicité très grande et qui est construit pour un pouvoir de rupture de 10 000 A pour des tensions jusqu'à 15 kV, est d'un prix prohibitif dans la plupart des cas.

Pour terminer, je veux essayer de donner une ligne de conduite générale pour le choix des différents systèmes d'appareils, correspondant à l'état actuel de la technique. Elle ne peut bien entendu

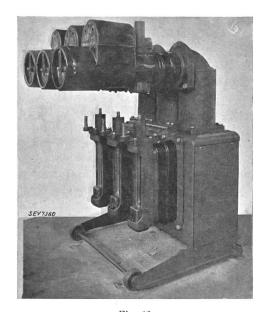


Fig. 12.

Interrupteur autocompresseur 10 kV, 200 A, 150 MVA.

pas être une recette, les conditions de l'exploitation, les dispositions particulières et même les expériences et l'opinion personnelle de l'exploitant et du fournisseur influençant le choix dans un sens ou dans l'autre. Ce qui est par contre indispensable, c'est qu'on tienne compte en faisant son choix des avantages et des désavantages inhérents aux principes d'après lesquels les appareils sont construits et tels qu'ils sont présentés plus haut.

Pour commencer par les installations en plein air, l'emploi de l'huile s'impose à cause de la robustesse, de la simplicité mécanique et de la sécurité électrique des appareils respectifs. A partir de 50, peut-être 30 kV, tous les avantages sont du côté du type à volume d'huile réduit, tandis que pour des tensions plus faibles des considérations de prix feront pencher la balance du côté du type à huile classique.

Pour des installations intérieures, nous distinguons entre les endroits à grande concentration d'énergie et ceux où cette concentration est faible. Les premiers, c'est-à-dire les centrales ou les centres de distribution importants où l'on dispose d'un personnel suffisant et qualifié et où les disjoncteurs sont appelés à fonctionner fréquemment, forment le domaine par excellence des interrupteurs à air comprimé, caractérisés par l'absence presque absolue de danger d'explosion ou d'incendie. Néanmoins, pour des tensions plus élevées, les appareils à volume d'huile réduit, avec leur simplicité sans égale et leur grande régularité de fonctionnement, leur sont souvent préférés.

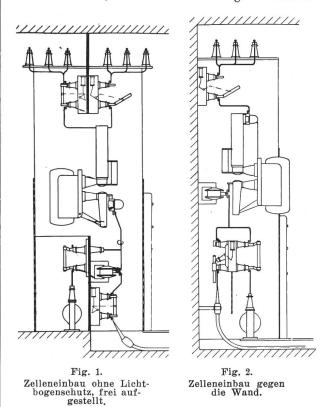
Pour des endroits à concentration d'énergie moindre, c'est-à-dire les sous-stations de transformation, les petites stations de distribution ou d'accouplement, où il n'y a pas de surveillance continue ou tout au plus un personnel réduit et souvent peu expérimenté, ce sont les types les plus simples et les plus robustes qui seront choisis: l'interrupteur de charge avec coupe-circuit et le disjoncteur à huile classique pour les tensions jusqu'à 20 kV, le disjoncteur à volume d'huile réduit pour des tensions au-dessus de 30 kV.

Pour terminer, je me permettrai de rappeler que, lors du choix d'un interrupteur, l'essentiel est de se rendre compte des avantages et des inconvénients de chaque système, donc de prendre sa décision en toute connaissance des faiblesses inhérentes à la solution choisie, comme dans tous les problèmes que l'ingénieur est appelé à trancher.

Ueber den Einfluss der modernen Schalter auf die Gestaltung der Innenraumanlagen.

Von E. Scherb, Aarau.

621.316.57:621.316.26


Es werden neue, einfache und sichere Schaltanlagentypen beschrieben, die durch die modernen Schalterbauarten möglich geworden sind. L'auteur décrit quelques types nouveaux, simples et sûrs d'installations de couplage rendues possibles par les constructions modernes d'interrupteurs,

Die Eigenschaften und Bauformen der modernen Schalter beginnen immer mehr einen bestimmenden Einfluss auf die Gestaltung und Einrichtung der Schaltanlagen auszuüben. Eine Anlage wird man nach folgenden Gesichtspunkten beurteilen: Schutz des Bedienungspersonals, Betriebssicherheit, einfache, übersichtliche Bedienung, Zugänglichkeit und leichte Revision der Apparate, Raumersparnis und Wirtschaftlichkeit, Rücksicht auf Erweiterung und Umbau.

Die Bauart der typischen älteren Anlage, bestimmt vor allem durch den Oelschalter, wurde diesen Anforderungen nicht immer gerecht. Die Brand- und Verqualmungsgefahr infolge eines Schalterdefektes zwang zur Verteilung der Anlage auf verschiedene Stockwerke mit allen ihren Nachteilen der Unübersichtlichkeit und weitläufigen Bedienung. Erst mit den ölarmen und öllosen Apparaten konnte man es wagen, auch grössere Anlagen offen in einen einzigen Raum hineinzustellen.

Eine besonders weitreichende Veränderung brachte die neue Bauweise der modernen Schalter. Diese sind nun fast ausschliesslich so gestaltet, dass die vertikal verlaufenden Hochspannungsleitungen ohne Schleifenbildung angeschlossen werden können. Damit war es gegeben, das ganze Schaltfeld in einer vertikalen Ebene auszulegen, als möglichst getreue Wiedergabe des Schaltbildes im Raum, mit einer praktisch ungebrochenen Linienführung. Erfolgen die Kabeleinführungen unten im Feld, so ergibt sich die natürliche Anordnung der Apparate von unten nach oben: Kabelendverschluss, Kabel-

trenner, Messwandler, Leistungsschalter, Sammelschienentrenner, Sammelschienen. Fig. 1 und 2 zei-

gen diese häufigste und bekannte Bauart. Ist genügend Platz vorhanden, so wird das ganze Feld