**Zeitschrift:** Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

**Band:** 30 (1939)

**Heft:** 14

**Rubrik:** Communications ASE

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

# Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 25.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Dienstag, den 18. Juli: Filmvorführungen und Demonstrationen im Höchstspannungsraum.

Mittwoch, den 19. Juli: Vortrag von Herrn Dr. Fröhlich (Landis & Gyr) über Tarife und Spezialzähler.

Donnerstag, den 20. Juli: Vortrag von Herrn A. de Quervain (ETH) über Fernsehen, mit Demonstrationen.

Freitag, den 21. Juli: Vortrag von Herrn Dr. K. Berger über Blitzforschung, mit Demonstrationen.

Samstag, den 22. Juli: Demonstration des Wasserbaumodells. Sonntag, den 23. Juli: Filmvorführungen.

Montag, den 24. Juli: Filmvorführungen und Demonstrationen im Höchstspannungsraum.

Dienstag, den 25. Juli: Vortrag von Herrn Dr. H. Kappeler (Micafil) über Kondensatordurchführungen, mit Film. Mittwoch, den 26. Juli: Conférence de M. Dr J. J. Müller sur la Télévision, avec démonstration.

# Technische Mitteilungen. — Communications de nature technique.

# Die Petersen-Erdschlußspule in den Vereinigten Staaten von Amerika.

Wie bei vielen grundlegenden Erfindungen hat die allgemeine Anerkennung auch hier lange Zeit in Anspruch genommen. Während sich diese in Europa durch eine Reihe von Patentumgehungen zuerst anzeigte, schwieg sich die amerikanische Praxis über die anerkannte, weitgehende Verbesserung der Betriebssicherheit der Hochspannungsnetze einfach aus. Wenn übrigens eine Patentumgehung z. B. etwa viermal so viel Material verwendet als die Petersen-Spule, dann ist für sie in der heutigen Zeit kein Platz mehr vorhanden. Wenn dazukommt, dass Leistungsschalter mit Trennern nötig werden, so ergibt sich die heutige völlige Nutzlosigkeit der Patentumgehung, selbst wenn die technischen Vorteile bei beiden gleich wären.

dass rund 73 % aller Erdschlüsse wahrscheinlich durch atmosphärische Entladungen hervorgerufen wurden.

Die Amerikaner und Engländer nahmen ihre Zuflucht zum festgeerdeten Nullpunkt, um hochfrequente Schwingungen mit starken Ueberspannungen bei Erd- oder Kurzschlüssen mit der Leiterkapazität im Hauptschluss zu vermeiden, tauschten aber die schweren mechanischen und thermischen Beanspruchungen bereits bei jedem Erdschluss dagegen ein, von Aussertrittfallen der Synchron-Maschinen bei schwereren Fällen ganz zu schweigen. Ausdrücklich sei hervorgehoben, dass fast ohne Ausnahme alle amerikanischen Netze von 110 000 Volt und darüber keine Widerstandserdung des Nullpunktes haben. Der Widerstand würde nämlich sowohl in der Beschaffung als auch im Unterhalt sehr teuer, vor allem aber würde die sichere Abschaltung bei Erdschluss durch die hohen kapazitiven Ströme der gesunden Leiter in Frage

Poterson-Erdschlußspulen in den Vereinigten Staaten von Amerika

Toballa I

| Pet                                                        | ersen-Erasci     | ntußsputen                             | ın aen V                | ereinigien                                                               | Staaten von Amerika  | t. Tabelle I.                                   |
|------------------------------------------------------------|------------------|----------------------------------------|-------------------------|--------------------------------------------------------------------------|----------------------|-------------------------------------------------|
| Elektrizitätswerk                                          | Einbau-<br>Datum | Zahl der<br>Erd-<br>schluss-<br>spulen | Netz-<br>spannung<br>kV | Geschützte<br>Länge der<br>Hochspan-<br>nungsfrei-<br>leitungen<br>in km | Mastmaterial         | Bemerkungen                                     |
| 9                                                          |                  |                                        |                         |                                                                          |                      |                                                 |
| Alabama Power Co                                           | 1921             | 1                                      | 44                      | 149                                                                      | Holzmaste            | 130 km Erdseil                                  |
| Georgia Power Co                                           | 19291)           | î                                      | 38                      | 206                                                                      | Holz- und Eisenmaste |                                                 |
| Consumers Power Co                                         | 1931             | 2                                      | 140                     | 420                                                                      | Eisenmaste           | Nur 64 km ohne Erdseile                         |
| Central Maine Power Co                                     | 1935             | 1                                      | 33                      | 896                                                                      | Holzmaste            | Keine Erdseile                                  |
| Public Serv. Co. of Indiana<br>Public Serv. Co. of Denver, | 1936             | 1                                      | 33                      | 256                                                                      | Holzmaste            | Keine Erdseile; 1290 m<br>Dreileiterkabel       |
| Colorado                                                   | 1937             | 1                                      | 95                      | 299                                                                      | Holz- und Eisenmaste | 50 km Holzmaste; 156 Eisenmaste, keine Erdseile |
| Public Serv. Co. of Indiana                                | 1937             | 4                                      | 33                      | 2080                                                                     | Holzmaste            | Keine Erdseile                                  |
| Metropolitan Edison Co<br>Public Service Co. of New        | 1937             | 3                                      | 66                      | 512                                                                      | Holz- und Eisenmaste | 203 km Holzmaste; 194 Eisenmaste                |
| Hampshire                                                  | 1937             | 1                                      | 33                      | 192                                                                      | Holzmaste            | Keine Erdseile                                  |
| Light and Power Co<br>Southern California Edison           | 1937             | 1                                      | 33                      | 48                                                                       | Holzmaste            | Keine Erdseile; 914 m Drei-<br>leiterkabel      |
| Co                                                         | 1938             | 2                                      | 230                     | 416                                                                      | Eisenmaste           | 2 Erdseile                                      |
|                                                            |                  | Gesamt 17                              |                         |                                                                          | ¥                    |                                                 |
| 1) Determen Coule 6-21                                     |                  | . Alabama                              | Dames Co                |                                                                          |                      |                                                 |

<sup>1)</sup> Petersen-Spule früher eingebaut in Alabama Power Co.

Vier Jahre waren seit der Patenterteilung auf die Petersen-Erdschlußspule vergangen, als die «Alabama Power Co.» eine Erdschlußspule - die erste in den Vereinigten Staaten von Amerika — in ihrem 44-kV-Netz im Jahre 1921 einbauen liess (Tabelle I). Trotz der erzielten guten Ergebnisse trat das beinahe Unglaubliche ein, dass im Jahre 1929 diese Spule ausgebaut wurde und bei der «Georgia Power Co.» in einem 38-kV-Netz eingebaut wurde.

Die grossen Freileitungsnetze, die in den letzten Jahrzehnten gebaut wurden, zeigten bekanntlich eine grosse Verwundbarkeit gegen atmosphärische Entladungserscheinungen. Ein Bericht über die Betriebserfahrungen von 27 grossen Hochspannungsnetzen der USA 1) kommt zu dem Ergebnis, dass von allen Fehlern dieser Netze im Mittel 69 % auf Erdschluss zu setzen sind. Eine weitere Zusammenstellung<sup>2</sup>) der Betriebszahlen von Netzen von 26 kV bis 220 kV gibt an,

gestellt. Feste direkte Erdung schafft positive, kurzzeitige Abschaltung, die dort höher bewertet wird als die Gefahren der grossen Strom- und magnetischen Beanspruchungen und ergibt eine zunächst festliegende dielektrische Beanspruchung.

Wenn aber 70...80 % aller Abschaltungen durch eine einfache, betriebsichere und billige Apparatur vermieden werden können, sollte man es da bei den «praktischen» Amerikanern nicht als selbstverständlich annehmen, dass sie diese sofort für ihre Netze beschafften? Tabelle I³) besagt das Gegenteil. Und dabei beachte man die bisher erzielten, geradezu hervorragenden Betriebsergebnisse:

Die «Consumers Power Co.» hat seit 1931 zwei Petersen-Erdschlußspulen in ihrem 140-kV-Netz für 420 km Länge in Betrieb. In fünf Jahren wurden 242 Netzfehler registriert, von denen 171 von den Petersen-Spulen ohne Betriebsunterbrechungen behoben wurden.

AIEE Transactions, Bd. 50 (1931), S. 892.
 AIEE Transaction, Bd. 56 (1937).

s) E. M. Hunter, Einige technische Daten der Petersen-Erdschlußspule und ihre Anwendung, AIEE Transactions, Bd. 57, Jan. 1938.

Die «Central Maine Power Co.» hat eine grosse Erdschlussspule in ihrem 33-kV-Netz für fast 900 km Leitungslänge. Während der ersten 14 Betriebsmonate arbeitete die Spule 54mal und löschte alle Erdschlüsse, so weit sie nicht Dauererdschlüsse waren, ohne Betriebsunterbrechungen. Ehe die Spule eingebaut war, kamen h.ufig gleichzeitige Fehler in verschiedenen Netzteilen vor, die durch die Spule fast völlig ausgemerzt wurden.

Die «Public Service Co. of Indiana» hat jetzt 5 Petersen-Spulen in ihrem 33-kV-Netz für mehr als 2400 km. Ihre Erfahrungen mit der ersten Spule waren so gut, dass vier weitere bestellt wurden. 91 % aller Fehler wurden ohne Betriebsstörung durch die Spule beseitigt. Allerdings schliesst der Bericht nicht den letzten Teil der Gewitterperiode in sich, doch machen atmosphärische Entladungen nur 25 % der Netzfehler aus. Die Erdschlüsse, die restlos sofort durch die Spule gelöscht wurden, wurden durch Windbruch, Graupelschauer und Blitze verursacht.

Die «Public Service Co. of Colorado» hat in ihrem 97-kV-Netz eine Erdschlußspule für 300 km Freileitung. Früher war der Nullpunkt des Netzes fest an Erde gelegt. Nach Einbau der Spule ging die Sicherheit der Energieversorgung stetig aufwärts. Zuerst traten einige Fehler wegen schad-hafter Isolation auf, was leicht durch die Erhöhung der Spannung bei Erdschluss in den beiden gesunden Leitern zu erklären ist. Ferner war auch das Ansprechen der Relais fehlerhaft. Alle diese Mängel wurden rasch behoben, wie sich aus der Zahl von 73 % aller Fehler ergibt, die die

Spule ohne Betriebsunterbrechung gelöscht hat 4).

Ueber die weiteren in Tabelle I angeführten PetersenErdschlußspulen lagen zur Zeit der Zusammenstellung der Betriebsergebnisse noch keine Einzelangaben vor. Dass die Betriebserfahrungen gut gewesen sind, geht schon daraus hervor, dass Ende 1938 für das Jahr 1939 vier Spulen in Auftrag gegeben wurden 5). Aus dieser Quelle ersieht man auch, dass die drei Spulen der «Metropolitan Edison Co.» für über ohne Blitzseil: 1,9 A für 10 kV und 100 km mit Blitzseil: 2,2 A » 10 » » 100 »

Hunter gibt die folgenden Werte für amerikanische Drehstrom-Freileitungen an, allerdings ohne Unterteilung nach Leitungen mit oder ohne Blitzseil:

2,95 ... 4,1 A für 10 kV und 100 km.

Da diese Zahlen bei Erdschluss gemessen wurden, so sind die Werte der höheren Harmonischen darin enthalten. Hieraus folgt, dass die Uebereinstimmung mit den deutschen Werten durchaus angängig ist. Ausdrücklich bemerkt Hunter, dass die Messung der Erdkapazität bei Mittelspannungen — z. B. 33 kV — um 50 % höhere Ergebnisse zeitigen kann als die Berechnungen mit den Maxwellschen Koeffizienten.

Einen Erdschluss an 33-kV-Drehstrom-Freileitung, schützt mit Petersen-Spule, zeigt Fig. 1. Deutlich ist im Erdschlußstrom die Anwesenheit von höheren Harmonischen zu erkennen, während der Spulenstrom die Grundfrequenz gibt. Eine Kompensation der oft auftretenden fünften Harmonischen ist nicht nötig. Aus den verketteten Spannungen geht hervor, dass der Betrieb unbeeinflusst bleibt, nur muss natürlich die Spule für vollen Kompensationsdauerstrom gebaut sein. Auf die kleine zusätzliche Transformatorbelastung muss Rücksicht bei Dauerbetrieb mit Erdschluss genommen werden. In den USA wird eine 10-Minuten-Belastung für Netze angeraten, deren Erdschlüsse sofort behoben werden müssen. Höhere Dauerbelastungen, z. B. von mindestens einer Stunde, werden für Netze empfohlen, die durch Einund Ausschalten von Leitungsstrecken usw. den Erdschluss zu beheben suchen. Wenn im Erdschluss gefahren werden soll, was eigentlich im Interesse jedes Betriebes liegen sollte, so stimmt natürlich die amerikanische mit der europäischen Praxis überein.

Hier sei noch eine praktische Zahl genannt, nämlich die Entfernung des Erdschlusses von der Spule, bei der eine Explosion, also ein ungelöschter Entladestrom eintreten kann:

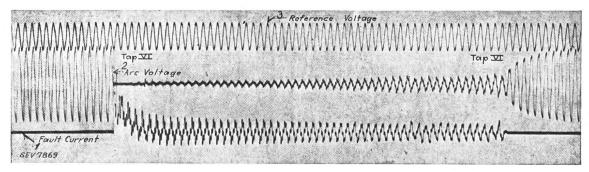



Fig. 1a

Oszillogramm eines künstlichen Lichtbogens an einer normalen Isolatorkette bei eingeschalteter Petersenspule mit Anschluss an Anzapfung Nr. 4. 1 Erdschlußstrom. 2 Lichtbogenspannung. 3 Spannungskurve 60 Per./s.

 $500~\rm{km}$  Freileitungslänge und  $66~\rm{kV}$   $74\,\%$  aller Fehler ohne Ausschaltung von Oelschaltern löschten. Es wird ferner angegeben, dass die Spulen bis 30 % der Verstimmung vertragen. Diese Erfahrung stimmt gut mit der deutschen überein, nach der eine Fehlabgleichung von ±10 % gar nicht, eine solche von ± 20 % nur an dem Hellerwerden des Unterbrechungsfunkens an der Fehlerstelle zu bemerken ist. Erst bei einer Verstimmung von  $\pm 30\,\%$  ergibt sich eine merkliche Verschlechterung der Löschwirkung.

#### Technische Einzelheiten.

Die deutschen Erfahrungszahlen der Erdschlußströme lauten für Drehstrom-Freileitungen überschläglich:

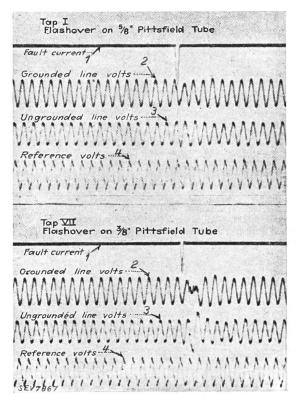
ohne Blitzseil: 2,2...2,7 A für 10 kV und 100 km mit Blitzseil: 2,5...3,2 A » 10 » » 100 »

Bei Dreiphasen-Doppelleitungen sind obige Werte im Verhältnis 1,4:1 zu veringern. Sie lauten rund:

Lewis.
<sup>5</sup>) Electr. Wld., Bd. 111 (1939), Nr. 6, S. 57.

sie beträgt rund 1000 km. Das selbsttätige Verlöschen des Lichtbogens hängt vor allem von dessen Spannung und der Stromstärke ab. Folgende Werte sind hierfür Anhaltszahlen des Betriebes:

10 kV:  $I_{\bullet} = 3...5$  A, 50 kV:  $I_{\bullet} = 1,5...2$  A (Stützisolatoren), 60 kV:  $I_{\bullet} = 5$  A (Hängeisolatoren).


Bei Unterschreitung dieser Werte tritt kein intermittierender Erdschluss ein und damit ist die Ueberspannungsgefährdung stark herabgesetzt. Tabelle II gibt hierbei Aufschluss über die höchstmöglichen Ueberspannungen unter Berücksichtigung der Wirkung der gegenseitigen Kapazitäten C12 und der Dämpfung d in Ein- und Dreiphasennetzen. Hierin bedeutet C11 die Erdkapazität pro Leiter und u den Scheitelwert (Amplitude) der Spannung gegen Erde. Den Hauptteil der Dämpfung übernehmen, wie bekannt, die Eisenverluste der Transformatoren, Leitungswiderstände und die Isolationsverluste der Leitungen neben z. B. induktionsfreien Belastungen usw. Bei mittleren Spannungen wirken daher die vielen kleineren Transformatoren und die geringere Isolation günstig gegen das Auftreten von Ueberspannungen. Bei Höchstspannungs-

<sup>4)</sup> Ein eingehender Bericht hierüber findet sich in AIEE Transactions, Bd. 56 (1937) von W. D. Hardaway und W. W.

anlagen mit einer, schon aus Wirtschaftlichkeitsgründen kleinen Zahl von Grosstransformatoren und guter Isolation durch Hängeketten, wirkt ausserdem noch das hohe Verhältnis

$$C_{11}:C_{12}=\sim 5$$

dahin, dass bis 4,5facher Scheitelwert der Spannung gegen Erde in den gesunden Phasen auftreten kann.



Oszillogramme von künstlichen Lichtbogen.

- Fehlerstrom.
  Spannung am erdschlussbehafteten Leiter.
  Spannung am gesunden Leiter.
  Spannungskurve 60 Per./s.

Natürlich war es nötig, die Frage zu prüfen, ob die amerikanischen Netze, die für geerdeten Nullpunkt gebaut waren, den höheren Spannungsbeanspruchungen bei Induktionsspulen-Erdung gewachsen waren. Die guten Erfahrungen mit dem endlichen Uebergang zur Petersen-Spulen-Erdung mit all ihren grossen Vorteilen haben schon an sich gezeigt, dass die

Mögliche Ueberspannungen bei Erdschluss.

Tabelle II.

| a) im Einp                                      | hasenne                                | etz                       |                               |                               |  |  |  |
|-------------------------------------------------|----------------------------------------|---------------------------|-------------------------------|-------------------------------|--|--|--|
|                                                 | $C_{11}:C_{12}$                        | = 3:1,5                   | $C_{11}$ : $C_{12} = 5$ : 1,5 |                               |  |  |  |
| Mögliche Ueberspannung                          | d = 0,1                                | d = 0,2                   | d = 0,1                       | d = 0,2                       |  |  |  |
|                                                 | us                                     | $u_{s}$                   | $u_{\mathfrak{s}}$            | $u_{s}$                       |  |  |  |
| an der gesunden Phase                           | 3,72                                   | 3,46                      | 4,12                          | 3,78                          |  |  |  |
| an der kranken Phase                            | 2,86                                   | 2,73                      | 3,06                          | 2,89                          |  |  |  |
| Gleichspannung                                  | 1,86                                   | 1,73                      | 2,06                          | 1,89                          |  |  |  |
| b) im Dreiphasennetz                            |                                        |                           |                               |                               |  |  |  |
| b) im Drei                                      | phasenn                                | etz                       |                               |                               |  |  |  |
|                                                 | ${ C_{11} \colon C_{15}}$              |                           | $C_{11}:C_{1}$                | 2=5:1                         |  |  |  |
| Mögliche Ueberspannung                          | C11: C15                               |                           |                               | $\frac{1}{2} = 5:1$ $d = 0,2$ |  |  |  |
|                                                 | C11: C15                               | 3:1                       |                               |                               |  |  |  |
| Mögliche Ueberspannung an den gesunden Phasen . | $\frac{C_{11} \colon C_{12}}{d = 0,1}$ | d = 3:1 $d = 0,2$         | d=0,1                         | d = 0,2                       |  |  |  |
| Mögliche Ueberspannung                          | $C_{11}: C_{12}$ $d = 0,1$ $u_s$       | $d = 3:1$ $d = 0,2$ $u_s$ | $d = 0,1$ $u_s$               | $d = 0,2$ $u_s$               |  |  |  |

Isolation im allgemeinen völlig ausreicht. In wenigen Ausnahmefällen nur (siehe z. B. die Erfahrungen der «Public Service Co. of Colorado» weiter oben) musste die Isolation verbessert werden; dann trat aber auch sofort die bedeutend erhöhte Betriebssicherheit ein.

Erwähnt sei noch, dass alle modernen Spulen in Amerika wie in Deutschland Eisenkerne haben, die jegliche Resonanzneigung sofort durch Sättigung des Eisens im Keime ersticken. Unsymmetrie der Netzkapazitäten hat dort, wie übrigens auch anderswo, keine bemerkbare Rolle gespielt. Patentansprüche aus solchen Dissonanzgründen sind daher auch dort unbekannt, was leider in Europa nicht der Fall ist.

Auf die nicht unwesentlichen, verschiedenen, aber leicht zu erfüllenden Vorbedingungen, die an die Transformatoren gestellt werden müssen, deren Nullpunkt an die Petersen-Spule gelegt werden soll, geht der Bericht von Hunter nicht ein.

Abschliessend kann die erfreuliche Tatsache festgestellt werden, dass die amerikanische Praxis sich endlich zu der Petersen-Spule als Lösung vieler Betriebsschwierigkeiten der immer ausgedehnteren Hochspannungsnetze bekannt hat, wenn sie auch weit hinter den etwa 1800 Erdschlußspulen in den anderen Ländern vorläufig zurückbleibt.

# Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

#### Ueber den Einbau von Lautsprechern.

Von W. Furrer, Bern. Siehe Seite 369.

# Die Frequenzspektren von Hochfrequenzimpulsen.

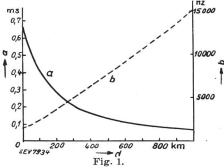
Zur Erforschung der Wellenausbreitung werden in vielen Gebieten der Physik stossartige Erregungen verwendet, z. B. in der Raumakustik ein scharfer Knall, dessen verschiedene Reflexionen mit einem Mikrophon registriert werden können. Auf demselben Prinzip beruht auch das Behmlot der Unterwasserschalltechnik. Ganz ähnliche Lotungen werden mit Hochfrequenzimpulsen zur Messung der Höhe der reflektierenden Schichten der Ionosphäre durchgeführt. Eine andere Anwendung von Impulssendern stellt das Impulspeilverfahren dar. Durch Anwendung der Fourierintegrale findet man, dass alle Impulssender je nach der Impulsform eine mehr oder weniger grosse Bandbreite besitzen. Weil eine zu grosse

Bandbreite den übrigen drahtlosen Verkehr stark beeinträchtigt, ist die Kenntnis des Frequenzspektrums von ausgesendeten Impulsen von grosser Bedeutung.

Da im allgemeinen die Bandbreite mit abnehmender Impulsbreite zunimmt, hat zuerst eine Abschätzung über die anzuwendende Impulsbreite vorauszugehen. Nehmen wir an, es handle sich um die eingangs erwähnten Messungen der Höhe der Ionosphärenschichten, so gibt die Kurve a in Fig. 1 Aufschluss über die zu erwartenden Laufzeitdifferenzen für die verschiedenen Distanzen zwischen Sender und Empfänger. Die obere Grenze der zu verwendenden Impulsbreite liegt demnach etwa zwischen 0,5 und 0,1 ms.

Ueberlagert man den etwa durch die Fourierintegrale

$$\int_{0}^{\infty} A(\omega) \cdot \sin \omega t \, d\omega + \int_{0}^{\infty} B(\omega) \cdot \cos \omega t \, d\omega \tag{1}$$


dargestellten niederfrequenten Vorgang einer Trägerwelle mit der Hochfrequenz  $\Omega$ , so erhält man für die resultierende Schwingung den Ausdruck

$$\frac{1}{2} \int_{\Omega}^{\infty} A_{(v-Q)} \cdot \sin v \, t \, dv + \frac{1}{2} \int_{\Omega}^{\infty} B_{(v-Q)} \cdot \cos v \, t \, dv$$

$$+ \frac{1}{2} \int_{\Omega}^{\infty} A_{(v+Q)} \sin v \, t \, dv + \frac{1}{2} \int_{\Omega}^{\infty} B_{(v+Q)} \cos v \, t \, dv \qquad (2)$$

An der unteren Grenze haben A und B die Werte, die sie im Ausdruck (1) an der Stelle  $\omega=0$  hatten, und sie zeigen als Funktion des Argumentes  $v \mp \Omega$  denselben Verlauf wie die entsprechenden Grössen des Niederfrequenzvorganges als Funktion des Arguments  $\omega$ . Aus dem berechneten oder beobachteten Niederfrequenzspektrum lässt sich demnach ohne weiteres das bei der Modulation entstehende Hochfrequenzspektrum ermitteln, es genügt deshalb, nur das Niederfrequenzspektrum der Impulse zu untersuchen.

Die Tatsache, dass eine an ein Tiefpassfilter plötzlich angelegte Gleichspannung eine etwa der reziproken oberen Grenzfrequenz gleiche Zeit benötigt, um am Ausgang ihre volle Höhe zu erreichen, lässt sich zu einer Abschätzung



Laufzeitdifferenz zwischen Bodenimpuls und erstem Echo (a) sowie notwendige obere Grenzfrequenz der Uebertragung (b) in Abhängigkeit von der Peilentfernung (d).

der Seitenbreite bei den in Frage kommenden Impulsbandbreiten benutzen. Denn zur Erzielung eines brauchbaren Impulses soll die volle Amplitude während einer halben Impulsdauer erreicht werden. Im Falle von Einseitenbandmodulation ist in Fig. 1 Kurve b die erforderliche Bandbreite als Funktion der Entfernung Sender-Empfänger und

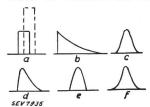
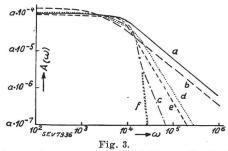




Fig. 2.
Verschiedene Impulsformen
gleicher Maximalhöhe und
gleicher Breite in halber Höhe.

damit implizite als Funktion der benötigten Impulsbreite eingetragen.

Es ergibt sich nun die Frage nach der zweckmässigsten Impulsform, wobei sich die Anforderungen der Brauchbarkeit und der Störfreiheit zum Teil widersprechen. In Fig. 2



Amplitudenspektren, bzw. deren Umhüllende für die in Fig. 2 dargestellten Impulse.  $A(\omega)$  Teiltonamplitude.  $\omega$  Kreisfrequenz.

sind verschiedene Impulsformen und in Fig. 3 die zugehörigen Impulsspektren, bzw. deren Einhüllenden im logarithmischen Maßstab eingezeichnet. Die einzelnen Teilbänder und die O-Stellen der Spektra sind dabei nicht berücksichtigt; die gezeichneten Kurven verbinden lediglich die den Teilbändern entsprechenden Maxima miteinander. In den Berechnungen werden nur solche Impulse miteinander verglichen, die in halber Höhe gleiche Impulsbreiten aufweisen, da wegen der oft flach verlaufenden Anstiege Messungen der Breite und Verschiebungen an der Basis zu ungenau werden. Wie man den Kurven entnimmt, hat der rechteckige Impuls die grösste Bandbreite, stört also am stärksten. Recht günstig ist die Impulsform c, die dem analytischen Ausdruck  $a\sin^2\frac{\omega t}{2}$  entspricht. Das Frequenzspektrum, d. h. die Funktion  $A_{(\omega)}$  des Fourierintegrals wird dabei

$$A_{(\omega)} = \frac{a}{\pi \ \omega} \cdot \frac{\varOmega^2}{\varOmega^2 - \omega^2} \cdot \sin \left( \pi \cdot \frac{\omega}{\varOmega} \right)$$

Dieses in Kurve c dargestellte Impulsspektrum besitzt brauchbare Bandbreiten zwischen etwa 5000 und 7000 Hertz; es hat indessen den Nachteil, dass die Vorderfront des Impulses nicht so steil ansteigt, wie es für Messungen vorteilhaft wäre. Man kann indessen diesen Nachteil durch Verringerung der Impulsbreite ausgleichen, ohne die Seitenbandbreite über das zulässige Mass hinaus zu vergrössern. Aus dem Vergleich der übrigen Impulsformen und der zugehörigen Frequenzspektren ergibt sich, dass bei gleicher Impulshöhe a und gleicher Breite T in der halben Impulshöhe alle Spektren bis zur Frequenz  $f=rac{1}{T}$  ungefähr gleich sind. Die höheren Seitenbandfrequenzen treten um so stärker hervor, je eckiger und unstetiger die Impulsform ist. Eine Unstetigkeit ergibt bei hohen Frequenzen mit  $\frac{1}{\omega}$  abfallende Amplituden; bei einer Unstetigkeit in der ersten Ableitung fallen diese mit  $\frac{1}{\omega^2}$ , bei einer solchen der zweiten Ableitung mit  $\frac{1}{\omega^3}$  ab. Ein besonders enges Frequenzband ergibt demnach die Funktion  $a \cdot e^{-bt^2}$ , wobei bei einer Impulsbreite T in halber Höhe die Konstante b durch den Ausdruck  $b=rac{4\ln 2}{T^2}$  gegeben ist. Das Spektrum ist durch die Funktion

$$A_{(\omega)} = \frac{a T}{2 \sqrt{\pi \ln 2}} \cdot e^{-\frac{\omega^2 T^2}{16 \cdot \ln 2}}$$

gekennzeichnet (Kurve f in Fig. 3). Diese ideale Impulsform liefert ein nicht synchronisierter «Tröpfelgenerator», der aber wegen der Inkonstanz seiner Niederfrequenz nicht brauchbar ist. Die Kurve c, die praktisch erreichbar ist, unterscheidet sich indessen von der idealen Kurve f nur bei sehr hohen Frequenzen. Durch Anfügen weiterer Verstärkerstufen kann die Annäherung an die ideale Kurve beliebig weiter getrieben werden.

Um eine genauere Uebersicht über die Störwirkung eines Impulssenders zu erhalten, wird ein Impulssender von 1 kW Antennenleistung vorausgesetzt, der einmal mit der Rechteckimpulsform, ein andermal mit der in Fig. 2 c gezeichneten sin²-Form arbeitet. Die Senderfrequenz sei beispielsweise 325 kHz. Als Mass für die Störwirkung des Senders dient die über das Frequenzintervall  $\Delta f = \frac{\omega_2 - \omega_1}{2\pi} = 10\,000$ 

Hz integrierte Feldstärke des Seitenbandes in der Abhängigkeit von der mittleren Frequenz  $f_{\rm m}$  dieses Intervalls. Der nichtmodulierte Sender würde bei 1% Antennenwirkungsgrad in 1 km Abstand unter Vernachlässigung der Bodendämpfung die Feldstärke

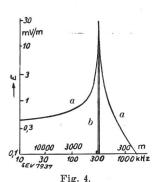
$$E_0 = 30 \left[ \frac{\text{m V}}{\text{m}} \right]$$

hervorrufen. Hat der auf die Trägerfrequenz abgestimmte Impulsempfänger eine genügende Bandbreite, so wird man bis auf einen geringen Fehlbetrag den obigen Feldstärkewert messen. Verstimmt man den Empfänger, so werden nur die zwischen  $\omega_0 + \omega_1$  und  $\omega_0 + \omega_2$  liegenden Energieanteile aufgenommen, wo  $\omega_0$  die Kreisfrequenz der Trägerwelle bedeu-

tet. Die Integration des Leistungsspektrums über den Durchlassbereich  $\omega_1$  bis  $\omega_2$  ergibt

$$E_{\omega} = E_0 \cdot \sqrt{\frac{\int\limits_{\omega_2}^{\omega_1} A_{(\omega)}^2 \ \mathrm{d}\omega}{\int\limits_{0}^{\infty} A_{(\omega)}^2 \ \mathrm{d}\omega}} E_0 \cdot n_{\mathrm{R}}$$

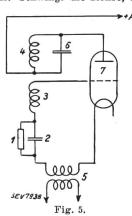
Eine näherungsweise Berechnung der Integrale ergibt


$$n_{\rm R} = \frac{0.8}{f_{\rm m}} \cdot \sqrt{\frac{\Delta f}{T}} = \frac{4600}{f_{\rm m}}$$

In der Fig. 4 ist die aus diesen Formeln in den Seitenbändern sich ergebende Feldstärke eingetragen (Kurve a). Bei Verwendung der sin²-Form anstatt der Rechteckform für den Impuls erhält man in derselben Weise die Kurve b. Die Ueberlegenheit der Kurve b in bezug auf die Störfreiheit tritt dabei besonders deutlich in Erscheinung.

Man hat früher geglaubt, die Störungen des Rundfunks durch Verringerung der sekundlichen Impulszahl herabsetzen zu können; der dadurch erzielbare Gewinn steht jedoch in keinem Verhältnis zu dem durch geeignete Senderanordnung erreichbaren. Die Häufigkeit der Impulse richtet sich nach der Art der zu lösenden Aufgaben. Bei Ionosphärenmessungen können z. B. bis zu 4 Reflexionen an der F-Schicht beobachtet werden, wobei Laufzeitdifferenzen bis zu 1600 km Länge entstehen, die einer Zeitdifferenz von 5,3 ms entsprechen. Will man sicher gehen, dass beim Eintreffen eines Impulses der vorhergehende mit allen seinen Echos abgelaufen ist, so muss zwischen zwei Impulsen eine Zeit von ca. 10 ms verstreichen. Die Impulsfrequenz darf also 100 Hz nicht übersteigen. Im übrigen macht man die Impulsfrequenz zweckmässigerweise so hoch wie möglich, da sich die Impulse so am besten vom Störpegel abheben.

Die Synchronisierung der Impulsfrequenz durch das Starkstromnetz ist zwar einfach, empfiehlt sich aber nicht, da allfällige Störungen mit derselben Frequenz häufig und von schwachen Echos schwer zu unterscheiden sind.


Im folgenden wird noch der Bau zweier praktisch erprobter Impulstaktgeber beschrieben. Fig. 5 stellt, wenn man sich den Transformator 5 vorläufig unbenutzt denkt, einen sogenannten Tröpfelgenerator dar (eine Art Kippschwingungsgerät). Spule 4 und Kondensator 6 bilden den abgestimmten Hochfrequenz-Anodenkreis. Im Gitterkreis liegt die Koppelungsspule 3 und der aus der Kapazität 2 und dem Widerstand 1 bestehende Zeitkreis. Schwingt die Röhre, so



Tig. 4.

Ueber eine Bandbreite von
10 000 Hz integrierte Empfangsfeldstärke.

E Effektive Feldstärke bei
einer Bandbreite von
10 000 Hz.



Schema eines in tonfrequentem Takte tröpfelnden Hochfrequenzgenerators.

fliesst ein Gitterstrom und lädt den Kondensator so lange negativ auf, bis die Schwingungen abreissen und der Gitterstrom aussetzt. Durch den Widerstand 1 wird dann der Kondensator wieder entladen, wodurch die Röhre wieder schwingfähig wird. Ist die Schwingung des vorhergehenden «Tropfens» bis zu diesem Zeitpunkt unter den Störpegel gesunken, so wird sie erst durch die nächste Störung von genügender Intensität wieder angefacht werden. Durch diesen Umstand (Fortsetzung auf Seite 380.)

#### Données économiques suisses.

(Extrait de «La Vie économique», supplément de la Feuille Officielle Suisse du commerce).

|     | Officielle Suisse du con                                      | illierce).   |             |
|-----|---------------------------------------------------------------|--------------|-------------|
| No. |                                                               |              | ai          |
|     |                                                               | 1938         | 1939        |
| 1.  | Importations                                                  | 126,2        | 162,7       |
|     | (janvier-mai) en 106 frs                                      | (650,3)      | (702,3)     |
|     | Exportations ( " )                                            | 104,1        | 116,7       |
|     | (janvier-mai)                                                 | (517,1)      | (558,8)     |
| 2.  | Marché du travail: demandes                                   | ,            | , , , ,     |
|     | de places                                                     | 56 108       | 35 285      |
| 3.  | Index du coût de la vie) Juillet (                            | 136          | 137         |
|     | Index du commerce de 1914 {                                   |              |             |
|     | gros   = 100 (                                                | 107          | 107         |
|     | Prix-courant de détail (moyenne                               |              |             |
|     | de 34 villes)                                                 |              |             |
|     | Eclairage électrique                                          |              |             |
|     | cts/kWh                                                       | 36,7 (74)    | 35,9 (72)   |
|     | $Gaz cts/m^3 \begin{cases} (Juin 1914) \\ = 100) \end{cases}$ | 26 (124)     | 26 (124)    |
|     | Coke d'usine à gaz                                            |              |             |
|     | frs/100 kg                                                    | 7,82 (160)   | 7,64 (156)  |
| 4.  | Permis délivrés pour logements                                |              |             |
|     | à construire dans 28 villes .                                 | 733          | 604         |
|     | (janvier-mai)                                                 | (3274)       | (3023)      |
| 5.  | Taux d'escompte officiel .%                                   | 1,5          | 1,5         |
| 6.  | Banque Nationale (p. ultimo)                                  |              |             |
|     | Billets en circulation 106 frs                                | 1529         | 1737        |
|     | Autres engagements à vue 106 frs                              | 1845         | 1137        |
|     | Encaisse or et devises or 1) 106 frs                          | 3221         | 2732        |
|     | Couverture en or des billets                                  |              |             |
|     | en circulation et des autres                                  |              |             |
| _   | engagements à vue <sup>0</sup> / <sub>0</sub>                 | 84,06        | 85,98       |
| 7.  | Indices des bourses suisses (le                               |              |             |
|     | 25 du mois)                                                   |              |             |
|     | Obligations                                                   | 136          | 126         |
|     | Actions                                                       | 184          | 169         |
| ا ا | Actions industrielles                                         | 302          | 297         |
| 8.  | Faillites                                                     | 51           | 37          |
|     | (janvier-mai)                                                 | (231)        | (187)       |
|     | Concordats                                                    | 6            | 11          |
|     | (janvier-mai)                                                 | (80)         | (63)        |
| 9.  | Statisticus du territore                                      |              |             |
| ٦.  | Statistique du tourisme                                       | 1938 Av      | ril<br>1939 |
|     | Occupation moyenne des lits,                                  |              |             |
|     | en %                                                          | 26,1         | 25,9        |
| 10. | Posettes d'aumlaitation des                                   | Av           |             |
| 10. | Recettes d'exploitation des<br>CFF seuls                      | 1938         | 1939        |
|     |                                                               |              |             |
|     | Marchandises                                                  | 12 524       | 14 453      |
|     | (janvier-avril) . en                                          | (53 284)     | (56635)     |
|     | Voyageurs 1000 frs                                            | 11 999       | 11 297      |
|     | (janvier-avril) . '                                           | (40 561)     | $(38\ 585)$ |
| 1)  | Depuis le 23 septembre 1936 devise                            | s en dollars | s.          |
|     | -                                                             |              |             |

#### Prix moyens (sans garantie) le 20 du mois.

| 10                                 |              |            |                |               |
|------------------------------------|--------------|------------|----------------|---------------|
|                                    |              | Juin       | Mois précédent | Année précéd. |
| Cuivre (Wire bars) .               | Lst./1016 kg | 48/0/0     | 47/12/6        | 39/16/0       |
| Etain (Banka)                      | Lst./1016 kg | 228/0/0    | 225/15/0       | 182/0/0       |
| Plomb                              | Lst./1016 kg | 14/15/0    | 14/7/6         | 13/18/9       |
| Fers profilés                      | fr. s./t     | 161.90     | 161.90         | 161.90        |
| Fers barres                        | fr. s./t     | 184.10     | 184.10         | 184.10        |
| Charbon de la Ruhr gras [1] .      | fr. s./t     | 45.40      | 45.40          | 46.50         |
| Charbon de la Saar l 1)            | fr. s./t     | 35.50      | 35.50          | 38.90         |
| Anthracite belge 30/50             | fr. s./t     | 65         | 65.—           | 65.—          |
| Briquettes (Union) .               | fr. s./t     | 44.70      | 44.70          | 47.20         |
| Huile p. mot. Diesel2) 11 000 keal | fr. s./t.    | 102.50     | 99.50          | 106.50        |
| Huile p. chauffage2) 10 500 kcal   | fr. s./t     | 103.50     | 100.50         | 105.—         |
| Benzine                            | fr. s./t     | 151.50     | 151.50         | 151.50        |
| Caoutchouc brut                    | d/lb         | $8^{8/16}$ | 8.—.—          | $5^{7/8}$     |

Les prix exprimés en valeurs anglaises s'entendent f. o. b. Londres, ceux exprimés en francs suisses, franco frontière (sans frais de douane).

Par wagon isolé.
 En citernes.

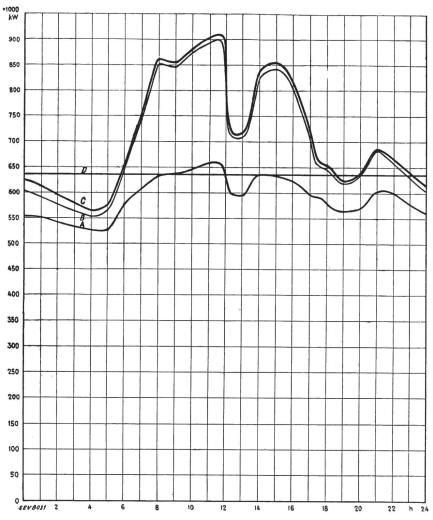
#### Statistique de l'énergie électrique des entreprises livrant de l'énergie à des tiers.

Elaborée par l'Office fédéral de l'économie électrique et l'Union des Centrales Suisse d'électricité.

Cette statistique comprend la production d'énergie de toutes les entreprises électriques livrant de l'énergie à des tiers et disposant d'installations de production d'une puissance supérieure à 300 kW. On peut pratiquement la considérer comme concernant toutes les entreprises livrant de l'énergie à des tiers, car la production des usines dont il n'est pas tenu compte ne représente que 0,5 % environ de la production totale.

La production des chemins de fer fédéraux pour les besoins de la traction et celle des entreprises industrielles pour leur consommation propre ne sont pas prises en considération. Une statistique de la production et de la distribution

de ces entreprises paraît une fois par an dans le Bulletin.


|             |                             |         |         | Prod    | uction  | et ach  | at d'éi | ergie   |         |         |                 | Accı                                    | ımulat  | . d'éne | rgie    |         |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
|-------------|-----------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------------|-----------------------------------------|---------|---------|---------|---------|---------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|-----------------|---------------------------|--------------------------------------------------|-------------|--|-----------------------|-----|--------------------------------|---------------------|---------|------------------------|---------------------------------------------------|-------------|-----------------------|
| Mois        | Mois Production hydraulique |         |         |         |         |         |         |         |         |         |                 |                                         |         |         |         |         |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | uction<br>nique | achet<br>entre<br>ferrovi | rgie<br>ée aux<br>prises<br>aires et<br>trielles | Ene<br>impo |  | Ene<br>four<br>aux re | nie | par<br>rapport<br>à<br>l'année | d'accun<br>à la fin | bassins | cons<br>pendan<br>— vi | ences<br>tatées<br>t le mois<br>dange<br>olissage | tat<br>d'én | por-<br>tion<br>ergie |
|             | 1937/38                     | 1938/39 | 1937/38 | 1938/39 | 1937/38 | 1938/39 | 1937/38 | 1938/39 | 1937/38 | 1938/39 | précé-<br>dente | 1937/38                                 | 1938/39 | 1937/38 | 1938/39 | 1937/38 | 1938/39 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
|             |                             |         |         | en      | million | s de k  | Wh      |         |         |         | 0/0             |                                         | en      | million | s de k  | Vh      |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| 1           | 2                           | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12              | 13                                      | 14      | 15      | 16      | 17      | 18      |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Octobre     | 474.1                       | 471,1   | 0,3     | 0,3     | 4,3     | 5,4     | 1,0     | 0,8     | 479.7   | 477,6   | - 0,4           | 716                                     | 653     | - 46    | - 35    | 129.9   | 136,3   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Novembre .  |                             | 421,0   | 1,3     | 1,6     | 2,4     | 2,5     | 2,1     | 4,8     |         | 429,9   | ,               | 000000000000000000000000000000000000000 | 541     | - 90    |         |         | 109,6   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Décembre .  |                             | 419,5   | 1,7     | 5,4     | 2,7     | 2,5     | 0,8     | 9,9     | 479,4   | 437,3   | - 8,8           | 484                                     | 411     | -142    | -130    | 116,2   | 101,3   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Janvier     | 436,8                       | 406,4   | 2,0     | 4,7     | 2,6     | 2,4     | 1,6     | 11,2    | 443,0   | 424,7   | - 4,1           | 370                                     | 317     | -114    | - 94    | 109,6   | 96,9    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Février     | 407,3                       | 380,9   | 1,2     | 2,0     | 2,4     | 2,2     | 1,6     | 7,8     | 412,5   | 392,9   | - 4,7           | 263                                     | 207     | -110    | -109    | 109,8   | 95,6    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Mars        | 441,9                       | 455,0   | 0,4     | 0,7     | 3,0     | 3,7     | 4,2     | 6,1     | 449,5   | 465,5   | + 3,6           | 208                                     | 130     | - 55    | - 77    | 121,0   | 131,5   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Avril       | 449,9                       | 460,4   | 0,4     | 0,3     | 1,0     | 2,7     | 0,1     | 0,8     | 451,4   | 464,2   | + 2,8           | 142                                     | 170     | - 66    | + 40    | 124,7   | 141,0   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Mai         | 443,2                       | 489,8   | 0,2     | 0,7     | 5,9     | 3,3     | 0,1     | 1,1     | 449,4   | 494,9   | +10,1           | 205                                     | 229     | + 63    | + 59    | 130,2   | 147,5   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Juin        | 425,8                       |         | 0,3     |         | 7,1     |         | _       |         | 433,2   |         |                 | 403                                     |         | +198    |         | 137,7   |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Juillet     | 445,3                       |         | 0,3     |         | 7,5     |         | _       |         | 453,1   |         |                 | 559                                     |         | +156    |         | 148,9   |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Août        | 463,2                       |         | 0,3     |         | 7,3     |         | _       |         | 470,8   |         |                 | 669                                     |         | +110    |         | 154,8   |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Septembre . | 462,2                       |         | 0,3     |         | 7,2     |         | `       | A       | 469,7   |         |                 | 688                                     |         | + 19    |         | 150,5   |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| Année       | 5385,5                      |         | 8,7     |         | 53,4    |         | 11,5    |         | 5459,1  |         |                 | 7754)                                   | 7754)   | _       |         | 1548,2  |         |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |
| OctMai      | 3589,0                      | 3504,1  | 7,5     | 15,7    | 24,3    | 24,7    | 11,5    | 42,5    | 3632,3  | 3587,0  | - 1,2           |                                         |         |         |         | 956,3   | 959,7   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |                 |                           |                                                  |             |  |                       |     |                                |                     |         |                        |                                                   |             |                       |

|             |                       |         |           |         |                         | Г       | lstrib         | ation d  | 'énerg   | ie dan  | s le pa                              | ys              |                                         |         |                                         |         |                                |
|-------------|-----------------------|---------|-----------|---------|-------------------------|---------|----------------|----------|----------|---------|--------------------------------------|-----------------|-----------------------------------------|---------|-----------------------------------------|---------|--------------------------------|
| 8           | Usages<br>domestiques |         |           |         | Electro-                |         | Chaudières     |          |          |         | Pertes et                            |                 | Consommation en Suisse et pertes        |         |                                         |         | Diffé-<br>rence<br>par         |
| Mois        | et<br>artisanat       |         | Industrie |         | métallurgie,<br>thermie |         | électriques 1) |          | Traction |         | énergie de<br>pompage <sup>2</sup> ) |                 | sans les<br>chaudières et<br>le pompage |         | avec les<br>chaudières et<br>le pompage |         | rapport<br>à<br>l'année        |
|             | 1937/38               | 1938/39 | 1937/38   | 1938/39 | 1937/38                 | 1938/39 | 1937/38        | 1938/39  | 1937/38  | 1938/39 | 1937/38                              | 1938/39         | 1937/38                                 | 1938/39 | 1937/38                                 | 1938/39 | précé-<br>dente <sup>3</sup> ) |
| 9           |                       |         | -         |         |                         |         | e              | n millio | ns de k  | Wh      |                                      | 11              |                                         | '       |                                         | 1       | θ/0                            |
| 1           | 2                     | 3       | 4         | 5       | 6                       | 7       | 8              | 9        | 10       | 11      | 12                                   | 13              | 14                                      | 15      | 16                                      | 17      | 18                             |
| Octobre     | 113,4                 | 114,8   | 56,2      | 57,3    | 60,1                    | 39,5    | 39,6           | 43,6     | 23,5     | 25,6    | 57,0                                 | 60,5            | 307,7                                   | 290.5   | 349,8                                   | 341,3   | - 2,4                          |
| Novembre .  | 119,5                 | 123,6   | 58,1      | 60,1    | 61,1                    | 42,4    | 28,6           | 16,3     | 27,2     | 24,6    | 58,0                                 | 53,3            | 321,4                                   | 301,0   | 352,5                                   | 320,3   | - 9,1                          |
| Décembre .  | 132,0                 | 137,6   | 58,4      | 62,2    | 54,6                    | 40,8    | 25,0           | 10,7     | 33,9     | 29,0    | 59,3                                 | 55,7            | 336,5                                   | 323,7   | 363,2                                   | 336,0   | - 7,5                          |
| Janvier     | 127,7                 | 130,8   | 55,9      | 59,4    | 48,7                    | 45,7    | 13,0           | 11,2     | 32,1     | 27,8    | 56,0                                 | 52,9            | 318,5                                   | 313,9   | 333,4                                   | 327,8   | - 1,7                          |
| Février     | 110,2                 | 115,8   | 50,1      | 53,5    | 46,8                    | 41,1    | 20,0           | 11,6     | 28,7     | 28,1    | 46,9                                 | 47,2            | 281,5                                   | 284,1   | 302,7                                   | 297,3   | - 1,8                          |
| Mars        | 111,2                 | 125,0   | 52,3      | 57,3    | 52,0                    | 48,1    | 35,8           | 16,1     | 27,5     | 33,2    | 49,7                                 | 54,3            | 290,3                                   | 314,8   | 328,5                                   | 334,0   | +1,7                           |
| Avril       | 102,0                 | 106,2   | 52,2      | 53,0    | 54,9                    | 47,9    | 40,9           | 37,5     | 27,1     | 24,3    | 49,6                                 | 54,3            | 283,8                                   | 278,3   | 326,7                                   | 323,2   | - 1,1                          |
| Mai         | 103,4                 | 113,0   | 52,8      | 56,1    | 53,8                    | 53,4    | 33,2           | 46,7     | 23,9     | 19,3    | 52,1<br>(4,9)                        | 58,9<br>(6,1)   | 281,1                                   | 294,6   | 319,2                                   | 347,4   | + 8,8                          |
| Juin        | 95,2                  |         | 49,5      |         | 37,5                    |         | 42,3           |          | 25,4     |         | 45,6                                 | (0,1)           | 252,6                                   |         | 295,5                                   |         |                                |
| Juillet     | 96,9                  |         | 50,1      |         | 36,2                    | 10      | 40,8           |          | 26,4     |         | 53,8                                 |                 | 255,0                                   |         | 304,2                                   |         |                                |
| Août        | 101,4                 |         | 51,4      |         | 35,2                    |         | 42,0           |          | 23,6     |         | 62,4                                 |                 | 260,6                                   |         | 316,0                                   |         |                                |
| Septembre . | 105,8                 |         | 52,1      |         | 34,7                    |         | 42,8           |          | 22,1     |         | 61,7                                 |                 | 264,6                                   |         | 319,2                                   |         |                                |
| Année       | 1318,7                |         | 639,1     |         | 575,6                   |         | 404,0          |          | 321,4    |         | 652,1                                |                 | 3453,6                                  |         | 3910,9                                  |         |                                |
| OctMai      | 919,4                 | 966,8   | 346,0     | 458,9   | 432,2                   | 358,9   | 236,1          | 193,7    | 223,9    | 211,9   | (53,3)<br>428,6<br>(19,1)            | 437,1<br>(32,7) | 2420,8                                  | 2400,9  | 2876,0                                  | 2627,3  | - 1,8                          |

<sup>1)</sup> Chaudières à électrodes.
2) Les chiffres entre parenthèses représentent l'énergie employée au remplissage des bassins d'accumulation par pompage.
3) Colonne 17 par rapport à la colonne 16.
4) Energie accumulée à bassin rempli.
En 1938/39 les mêmes centrales que l'année précédente sont en service.

2,6

17,2



# $10^6 kWh$ 103 kW 21,6 900 19,2 800 16,8 700 600 14,4 12,0 500 9,6 400 300 7,2 200 4,8 100 2,4

#### Diagramme de charge journalier

#### du mercredi 17 mai 1939.

| Légende:                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------|
| 1. Puissances disponibles: 10 <sup>3</sup> kW                                                                                         |
| Usines au fil de l'eau, disponibilités<br>d'après les apports d'eau naturels<br>(O-D)                                                 |
| Usines à accumulation saisonnière (au niveau max.) 647                                                                                |
| Usines thermiques $\dots \dots \dots$ |
|                                                                                                                                       |
| 2. Puissances constatées:                                                                                                             |
| O—A Usines au fil de l'eau (y compris<br>usines à bassin d'accumulation jour-<br>nalière et hebdomadaire)                             |
| A-B Usines à accumulation saisonnière.                                                                                                |
| B-C Usines thermiques + livraison des usines des CFF, de l'industrie et importation.                                                  |
| 3. Production d'énergie: 196 kWh                                                                                                      |
| Usines au fil de l'eau 14.4                                                                                                           |

Usines à accumulation saisonnière .

Livraison des usines des CFF, de l'industrie et importation . . . . .

Usines thermiques . . . . .

Total, le mercredi 17 mai 1939

Total, le samedi 20 mai 1939. . .

Total, le dimanche 21 mai 1939 .

# Production du mercredi et production mensuelle.

## Légende:

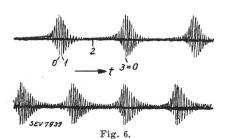
# 1. Puissances maximum:

P de la production totale;

 $P_{\mathbf{e}}$  de l'exportation.

# 2. Production du mercredi:

(puissance moyenne ou quantité d'énergie)


- h totale;
- i effective des usines au fil de l'eau;
- k possible des usines au fil de l'eau sur la base des débits naturels.

#### 3. Production mensuelle:

(puissance moyenne mensuelle ou quantité journalière moyenne d'énergie)

- a totale;
- b des usines au fil de l'eau par les apports naturels;
- c des usines au fil de l'eau par les apports provenant de bassins d'accumulation;
- d des usines à accumulation par les auports naturels:
- des usines à accumulation par prélèvement sur les réserves accumulées;
- f des usines thermiques, achats aux entreprises ferroviaires et industrielles, importation;
- g Exportation:
- g-a Consommation dans le pays.

entsteht eine Unsicherheit in der Einhaltung der Periodendauer. Die Periode der Kippschwingung wird demnach um so mehr streuen, je flacher der Anschwingvorgang verläuft. Bei einer Anschwingzeitkonstante von etwa 50·10-6 s wird die Dauer der Tröpfelperiode um 130·10-6 s unregelmässig schwanken, was bei 300 Hz einer relativen Schwankung von  $\pm\,6\,\%$  entspricht. Oszillogramme von solchen Tröpfelschwingungen sind in Fig. 6 wiedergegeben.



Oszillogramme eines in niederfrequentem Takte tröpfelnden  $1000 ext{-}$ Hertz-Generators.

Die Frequenzkonstanz kann verbessert werden, wenn man durch den Transformator 5 eine niederfrequente Synchronisierspannung einführt. Ist die Synchronisierspannung hoch genug, so kann man den Tröpfelmechanismus (1) (2) überhaupt weglassen und an seiner Stelle eine feste Gitterspannung

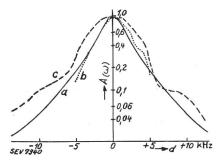



Fig. 7.
Impulsspektren eines zweistufigen, in der Steuerstufe getasteten Senders.

a berechnet, b und c gemessen.  $A(\omega)$  Teiltonamplitude. d Abstand vom Träger.

einführen. Ueber den Transformator 5 wird dann eine so grosse niederfrequente Stoßspannung an das Gitter gelegt, dass die Schwingungen der Röhre plötzlich mit voller Amplitude einsetzen. Hat die verwendete Stoßspannung ungefähr Dreieckform, so kann durch geeignete Wahl der Gittervorspannung die Impulsbreite beliebig eingestellt werden. Das derart abgeänderte Impulsgerät wurde bei verschiedenen Sendern mit Erfolg benützt.

Eine experimentelle Bestimmung des Impulsspektrums wurde mit einem 60-Watt-Sender unter Verwendung des eben beschriebenen Impulstastverfahrens nach zwei verschiedenen Methoden durchgeführt. Das erste Mal wurde ein Zweikreisrückkopplungsempfänger so eingestellt, dass er bei Abstimmung auf die Trägerwelle fast voll ausgesteuert war. Dann wurde der Sender nach und nach verstimmt und die jeweilige Ausgangsspannung am Empfänger gemessen und in Fig. 7 als Kurve b eingetragen. Bei der zweiten Messung wurde die Spannung von einem Meßsender und vom Impulssender an die entsprechenden Gitter einer Mischhexode gelegt und hinter diese ein mehrgliedriges Resonanzfilter für 300 Hz geschaltet. Der Meßsender wurde dann ebenfalls nach und nach verstimmt und die jeweiligen Ausgangsspannungen abgelesen. Die entsprechenden Werte sind in Kurve c eingetragen. Die Uebereinstimmung mit der berechneten Kurve a ist im allgemeinen befriedigend. — (P. Kotowski und S. Sonnenfeld, ENT Bd. 14, 1937, S. 360.)

#### Kleine Mitteilungen.

Vom Kurzwellensender Schwarzenburg. Am Tage vor der Eröffnung der Landesausstellung wurden die ersten Versuchssendungen aus der Anlage in Schwarzenburg mit der vollen Leistung von 25 kW auf die Antenne gegeben. Das Ergebnis war derart ermutigend, dass die Generaldirektion der Post- und Telegraphenverwaltung den Kurzwellensender am 6. Mai der Schweizerischen Rundspruchgesellschaft zur Verfügung stellte, um einen Hörbericht von den Feierlichkeiten durchzugeben, mit denen in Zürich die Landesausstellung eröffnet wurde. Die Sendung ging zwischen 14 und 15 Uhr über den Richtstrahler nach Nordamerika.

Heute sind auch die Richtantennen für Sendungen nach Kanada, Südamerika, Afrika und Asien erstellt. Es werden Versuchssendungen nach allen Richtungen mit Messungen und Einstellungen für die verschiedenen Wellenlängen durchgeführt, die ja bekantlich den Tages- und Jahreszeiten angepasst werden müssen. Gutes Gelingen dieser Anschlussarbeiten vorausgesetzt, wird der schweizerische Kurzwellensender beim Erscheinen dieses Heftes seine regelmässigen Sendungen bereits aufgenommen haben.

Wer im Kurzwellenbereich Empfangsversuche anstellt, kann auf einer der Wellen 49,55; 48,66; 31,46; 25,28; 19,60; 16,87; 13,94 oder 11,70 m jetzt schon den Versuchssendungen begegnen, die von rührigen Ingenieuren und Technikern in Schwarzenburg auf die Strahlungsgebilde des neuen Senders gegeben werden. Für Mitteilungen über allfällige Empfangsbeobachtungen ist die Generaldirektion der Post- und Telegraphenverwaltung dankbar. — (Techn. Mitt. T.T.)

# Miscellanea.

#### Der Einfluss des Schalters auf die wiederkehrende Spannung und sein Verhalten im Netz.

Von H. Puppikofer, Zürich. Bull. SEV 1939, Nr. 13, S. 334.

Der Autor bittet um die Berichtigung eines Fehlers, der sich in Fig. 5 auf Seite 336 eingeschlichen hat: Wendet man die Formel  $s=4f_0\cdot u_{\max}$  (V/ $\mu$ s) an, so wird man sehen, dass für  $f_0=1000$  der Wert s= $4\cdot 10^{-3}$   $u_{\max}$  und für  $f_0=500$  der Wert s= $2\cdot 10^{-3}$   $u_{\max}$  sein muss. Die Werte für  $f_0=10$ 000 und  $f_0=20$ 000 sind richtig angeschrieben.

#### In memoriam.

Ernst Spörri †. Im Nachruf, der in der letzten Nummer erschienen ist, findet sich in der 8. Zeile ein sinnstörender Druckfehler: Herr Spörri erwarb 1899 am Technikum Winterthur das Diplom eines Elektrotechnikers (statt Elektromechanikers).

#### Kleine Mitteilungen.

V. Internationaler Kongress für Rettungswesen und erste Hilfe bei Unfällen. Vom 23. bis 28. Juli findet in Zürich und St. Moritz der V. Internationale Kongress für Rettungswesen und erste Hilfe bei Unfällen statt. Herr Bundespräsident Ph. Etter hat das Patronat übernommen, Herr Prof. Dr. med. H. Zangger, Zürich, den Ehrenvorsitz. Die Arbeit wird in 8 Sektionen durchgeführt: I: Internationale Hilfe bei sehr schweren Katastrophen, II: Rettung und erste Hilfeleistung bei katastrophalen Ereignissen im internationalen und nationalen Verkehr, III: Erste Hilfe bei Unfällen im allgemeinen (worunter Wiederbelebung, insbesondere künstliche Atmung), IV: Organisation der Hilfeleistung, V: Rettung und erste Hilfe (inkl. Schutzmassnahmen (Feuerwehr, Industrie, Baugewerbe), VI: Hilfeleistung an der Küste und an Binnengewässern, VII: Hilfe beim Sport, VIII: Geschichte. — Kongresskarte 40 Fr., inkl. Fahrt nach St. Moritz.

Auskunft und Programme sind beim Kongress-Sekretariat, Schmelzbergstrasse 4, Zürich, zu beziehen.

## EMIL HUBER-STOCKAR

Ehrenmitglied des SEV

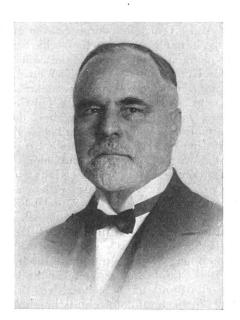
Am Nachmittag des 8. Mai unterhielten wir uns mit Dr. Emil Huber-Stockar am Paradeplatz in Zürich, den er, mit einem witzigen Wort sich verabschiedend, lebhaft und frisch überquerte und darauf in der Menge verschwand. Am andern Morgen erreichte uns die unfassbare Kunde, dass er in der Nacht plötzlich verschieden war. Emil Huber ist nicht mehr, aber sein Wesen und seine kraftvolle Art werden stets mit all' denen sein, die das Glück hatten, in seiner Nähe und unter seiner Führung zu arbeiten.

Emil Huber entstammte altem hochangesehenem Zürcher Geschlecht; sein Vater, Oberst P. E. Huber-Werdmüller, war der Gründer der Maschinenfabrik Oerlikon. In Riesbach am 15. Juli 1865 geboren, verlebte er in seinem hochkultivierten Vaterhause eine sehr glückliche Jugendzeit. Schon im Gymnasium zeigte sich sein überragender Geist, besonders eine aussergewöhnliche Begabung für Mathematik und Naturwissenschaften. Diese Begabung, verbunden mit grosser, ernster Selbstdisziplin, kristallklarem Denken und zielbewusstem, konsequentem Handeln, einem ausserordentlich stark entwickelten Sinn für Form und herrlichem attischem Witz drückten seinem Wesen zeit-

Nach der Matura belebens den Stempel auf. zog er das Eidg. Polytechnikum, das er 1888 mit dem Diplom eines Maschineningenieurs verliess. Trotz starker Neigung für rein wissenschaftliches Arbeiten trat er in die Maschinenfabrik Oerlikon ein. Nach zweijähriger Praxis in dieser Unternehmung machte er mit seinem Freunde Carl Sulzer aus Winterthur eine einjährige Studienreise durch die Vereinigten Staaten, von der er viele, lange nachwirkende Anregungen, Erfahrungen und persönliche Beziehungen heimbrachte. Seine Unternehmungslust zeigte sich aber auch auf andern Gebieten: In den Rocky Mountains trägt ein Gipfel den offiziellen Namen Mount Huber, als Erinnerung an die erfolgreiche Forschungsexpedition, die der mit den Bergen der Heimat und überhaupt mit der Natur tief verbundene, in vielen kühnen Touren und Erstbesteigungen erprobte Bergsteiger Huber 1891 in den Selkirks in Canada ausführte.

Im Jahre 1891 trat Emil Huber in die Direktion der Maschinenfabrik Oerlikon ein, wo er bis 1911, zuletzt als Generaldirektor, im wahren Sinn des Wortes leitend tätig war. Im Jahre 1912 berief ihn der Verwaltungsrat der Schweizerischen Bundesbahnen an die Spitze der neugegründeten Abteilung für die Einführung der elektrischen Zugförderung. Hier schuf er sein eigentliches Lebenswerk, hier setzte er sich das dauernde, grosse Denkmal, und die Würdigung dieses Lebenswerkes muss damit eigentlich zu einer Geschichte der elektrischen Einphasen-Traktion werden, die wir hier folgen lassen. Dabei müssen wir uns leider versagen, aufzuzählen, was die 20 Jahre Schaffens in der Direktion der Maschinenfabrik Oerlikon während der stürmischen

Entwicklungszeit der Elektrotechnik an Leistungen, Wegweisungen in die Zukunft, Kämpfen und Erfolgen alles in sich schliessen.


Schon bei seiner ersten Reise nach der nordamerikanischen Union machten die elektrischen Strassenbahnen, die damals nach dem ersten grossen Erfolg von Frank Sprague in Richmond im Jahre 1888 drüben in rascher Folge entstanden, auf den jungen Huber den grössten Eindruck. Schon damals trat er zu dem geistvollen amerikanischen Pionier in Beziehung und blieb ihm bis zu dessen Tode in Freundschaft verbunden.

In die Heimat zurückgekehrt, übernahm Emil Huber, als Nachfolger von C. E. L. Brown, die Leitung der elk-

trotechnischen Abteilung der Maschinenfabrik Oerlikon, wo Engelbert Arnold, Hans Behn-Eschenburg und Emil Kolben seine unmittelbaren Mitarbeiter waren. Am 28. Dezember 1892 erschien er zum ersten Mal am Vortragstisch des Zürcher Ingenieur- und Architektenvereins, um ein Referat über elektrische Strassenbahnen zu halten, das dann das Entstehen elektrischer Strassenbahnlinien in Hubers Vaterstadt wesentlich förderte. Aber bereits damals begann er sich intensiv mit dem Problem der Vollbahnelektrifizierung zu befassen, deren Bedeutung speziell für unser Land er frühzeitig erkannt hatte. Ebenso war es Huber klar, dass mit Gleichstrom von nur 600 bis 650 V Fahrdrahtspannung, die damals die oberste Grenze darstellte, grössere Vollbahnstrecken sich kaum mit einigem technischen und wirtschaftlichen Erfolg würden elektrifizieren lassen. An den Drehstrom als zukunftsreiche Stromart für die Vollbahnelektrifizerung vermochte er von Anfang an nie recht zu glauben. Diese Ueberlegungen brachten Huber schon früh zur Ueberzeugung, dass das Problem der Vollbahnelek-

trifizierung, solange die Erzeugung und Beherr-

schung hoher Gleichspannungen unmöglich war,



15. Juli 1865 — 9. Mai 1939.

durch das Einphasensystem hoher Fahrdrahtspannung gelöst werden müsse und dass in dieser Richtung praktische Versuche anzustellen waren. Wertvolle Unterstützung erhielten Hubers Bestrebungen durch Professor Dr. Wyssling durch dessen Bericht an das Schweizerische Handelsdepartement über die Pariser Weltausstellung (Januar 1901) und durch die Anregung von Dr. E. Tissot an der Jahresversammlung des Schweizerischen Elektrotechnischen Vereins in Montreux im Oktober des gleichen Jahres, die dann zur «Schweiz. Studienkommission für elektrischen Bahnbetrieb» im März des Jahres 1903 führte. Zu historischer Berühmtheit gelangte aber Hubers Vortrag vom 27. Februar 1902 im Zürcher Ingenieur- und Architektenverein über «Elektrische Traktion auf normalen Eisenbahnen», in dem er zum ersten Mal öffentlich auf die Vorteile des Einphasensystems hoher Fahrdrahtspannung und niedriger Frequenz hinwies. Diesem Vortrag war aber bereits das Konzessionsgesuch auf probeweise Elektrifizierung der Strecke Seebach-Wettingen vorangegangen, das ganz auf Betreiben Hubers nach Ueberwindung zahlreicher interner Widerstände von der Maschinenfabrik Oerlikon eingebracht worden war und das im Mai 1902 vom Eisenbahndepartement genehmigt wurde.

Huber war damit zunächst am Ziel seiner Wünsche. Mit Liebe und Begeisterung ging er an die Arbeit, entwarf selbst die Fahrleitung, die, um gewissen Einwänden zu begegnen, abschnittweise seitlich neben dem Geleise angeordnet und von einem besonderen, gleichfalls von Huber geschaffenen schwenkbaren Rutenstromabnehmer bestrichen wurde. Am 18. November 1904 fand die amtliche Kollaudation der Strecke statt und am 16. Januar 1905 begannen zwischen Seebach und Affoltern die Probefahrten mit dem ersten einphasigen Triebfahrzeug unseres Landes, das zunächst als Einphasen-Gleichstrom-Umformerlokomotive gebaut war. Inzwischen aber hatte Behn-Eschenburg seinen Einphasen-Seriemotor mit phasenverschobenem Hilfsfeld entwickelt 1) und ausprobiert, worauf Huber sofort eine zweite Lokomotive mit den neuen Reihenschlussmotoren entwarf, die am 11. November 1905 in Betrieb kam, nachdem die Strecke Seebach-Affoltern von 15 kV, 50 Per./s auf 15 kV, 15 Per./s umgestellt worden war. Dieses erste schweizerische Einphasenfahrzeug mit Seriemotoren in der geistvollen Schaltung von Behn-Eschenburg bewährte sich ausgezeichnet. Huber sah dies klar voraus und erkannte namentlich die ungeheure Bedeutung der Behn-Eschenburgschen Erfindung für die Einphasentraktion. Denn bereits am 16. März 1904 war er mit seinem denkwürdigen Vortrag im Zürcher Ingenieur- und Architektenverein über «Elektrische Traktion auf normalen Eisenbahnen, insbesondere über die Anwendung derselben auf der Strecke Erstfeld-Bellinzona der Gotthardbahn» vor die Oeffentlichkeit getreten, der wesentlich zur Beschleunigung der Arbeiten der «Schweiz. Studienkommission für elektrischen Bahnbetrieb» und ihres im Mai 1904 konstituierten geschäftlichen Ausschusses beitrug.

Systematisch leitete Huber die Fahrten auf der Versuchsstrecke und die Auswertung der Ergebnisse. Im Mai 1906 wurde der elektrische Betrieb bis Regensdorf ausgedehnt und am 1. Dezember 1907 begann der fahrplanmässige elektrische Betrieb auf der ganzen, 19 km langen Strecke bis Wettingen. Schon vorher aber hatte Huber die grosse Genugtuung, die auf der Versuchsstrecke Seebach-Wettingen gewonnenen Erfahrungen bei der Valle-Maggia-Bahn verwerten zu können, die als Einphasenbahn mit 5000 V Fahrdrahtspannung und 20 Per./s zunächst mit drei vierachsigen Triebwagen am 2. September 1907 eröffnet wurde.

Wohl bedeutete es für Huber später eine bittere Enttäuschung, als die SBB die ganz auf seine eigene Initiative von der Maschinenfabrik Oerlikon auf deren Kosten geschaffenen Einrichtungen der Versuchsstrecke Seebach-Wettingen nicht übernahmen und damit am 3. Juli 1909 der elektrische Betrieb Seebach-Wettingen eingestellt werden musste, die beiden elektrischen Lokomotiven zurückgezogen und die Fahrleitung abgebrochen wurden. Huber wusste aber, dass die Arbeit nicht umsonst getan war und dass den SBB früher oder später die gewonnenen Erfahrungen noch zugute kommen würden, auf deren unmittelbare Verwertung sie zunächst glaubten verzichten zu können.

Ausserdem aber waren Fachleute aus aller Herren Ländern im Laufe des mehrjährigen Versuchsbetriebes nach der Schweiz gekommen und hatten die Versuchsstrecke mit dem ersten europäischen einphasigen Vollbahnbetrieb hoher Fahrdrahtspannung und niedriger Frequenz besichtigt, zahlreiche, später für die Geltung der schweizerischen elektrotechnischen Praxis so überaus wertvolle fachlichfreundschaftliche Beziehungen, die schliesslich die ganze Welt umspannten, konnte Huber anknüpfen; «Seebach-Wettingen» war innerhalb der elektrischen Traktion zum Begriff und zu einem Markstein der Entwicklung geworden!

Nur zu bald sollte es sich zeigen, welche Bedeutung «Seebach-Wettingen» für die Weiterentwicklung der elektrischen Traktion speziell bei uns haben sollte. Zunächst war es die Lötschbergbahn, die den Beschluss fasste, zwischen Spiez und Frutigen elektrischen Betrieb nach dem Einphasensystem mit 15 000 Volt Fahrdrahtspannung von 15 Per./s (also genau gleich wie bei Seebach-Wettingen) einzurichten, um Erfahrungen für den späteren durchgehenden elektrischen Betrieb der damals im Bau befindlichen Bergstrecke nach Brig mit dem grossen Lötschbergtunnel in der Mitte zu sammeln. Dem Beispiel der Lötschbergbahn folgte die Rhätische Bahn, deren Verwaltungsrat am 18. Mai 1910 beschloss, die Engadiner Linien Bevers-St. Moritz, Samaden-Pontresina und Bevers-Schuls mit 11 000 V Fahrdrahtspannung von  $16^2/3$  Per./s elektrisch zu betreiben. Für die Strecke Spiez-Frutigen wurde der Maschinenfabrik Oerlikon eine Lokomotive, Achsfolge C — C, mit einer Leistung von 1500 kW in Auftrag gegeben, die im Frühjahr 1911 in Betrieb kam und damals wenigstens in Europa die leistungsfähigste elektrische Lokomotive gewesen ist.

<sup>1)</sup> Schweiz. P. 30388 der MFO vom 29. Februar 1904.

Die elektrische Traktion schien einen mächtigen Aufschwung nehmen zu wollen und Huber hielt den Zeitpunkt für gekommen, um ohne Rücksicht auf verwandtschaftliche Bindungen fortan als unabhängiger Mann ganz der Idee des elektrischen Vollbahnbetriebes zu leben. Am 30. April 1911 schied Huber aus der Maschinenfabrik Oerlikon aus, um zunächst neben fachlichen Reisen in Wort und Schrift für die elektrische Traktion zu werben. Auf seine Initiative hielt die «British Institution of Mechanical Engineers» im Juli 1911 ihre Jahresversammlung in Zürich ab. Im Mittelpunkt der Tagung stand ein Referat von Huber über «Electric Traction in Switzerland». Im Januar 1912 veranstaltete der SIA in Zürich unter der hervorragenden Mitwirkung von Huber zwei Kurse über «Elektrische Traktion».

Im gleichen Jahre aber begannen endlich auch die SBB dem Gedanken der elektrischen Traktion näher zu treten, die wohl schon 1907 beim Baudepartement der Generaldirektion ein besonderes Bureau für elektrischen Bahnbetrieb geschaffen hatten, diese Betriebsform aber bis zu jenem Zeitpunkt bekanntlich nur am Simplontunnel in sehr beschränktem Umfang anwendeten. Der Verkehr auf der Gotthardstrecke war in einer Weise angewachsen, dass entweder die Beschaffung noch leistungsfähigerer Dampflokomotiven, die auf alle Fälle eine Verstärkung von Ober- und Unterbau erfordert hätten, oder aber die Elektrifizierung ins Auge gefasst werden musste. Um die ganze Frage auch hinsichtlich der Energie-Beschaffung und -Erzeugung möglichst umfassend studieren und vorbereiten zu können, beschloss der Verwaltungsrat der SBB am 1. Oktober 1912 zunächst die Bildung einer «Elektrifizierungs-Kommission» bei der Generaldirektion und die Ausgestaltung des 1907 bestellten Bureaus für elektrischen Bahnbetrieb zu einer «Dienstabteilung für die Einführung der elektrischen Zugförderung». Dem Generaldirektor der SBB und späteren Bundesrat Dr. R. Haab war es gelungen, seinen einstigen Gymnasialkameraden Emil Huber als massgebenden Leiter für beide Körperschaften zu gewinnen.

Der Eintritt Hubers in die SBB kennzeichnet den Beginn seines bedeutungsvollsten Lebensabschnittes, in dem es ihm wie selten einem andern Bürger vergönnt war, sein ganzes Wissen und Können ausschliesslich in den Dienst von Land und Volk zu stellen. Und mit welcher Hingabe, mit welcher Gewissenhaftigkeit und Selbstlosigkeit, getragen von tiefer Treue und Liebe zu Heimat und Vaterland hat Huber die ihm übertragene Aufgabe erfüllt! Mit einigen wenigen, glücklich ausgewählten Mitarbeitern ging er an die umfangreichen Arbeiten der Projektausarbeitung nach gründlichen Energiebedarfsberechnungen, wofür die «Studienkommission» sehr nützliche Vorarbeit geleistet hatte, deren anfangs 1913 erschienene Mitteilung Nr. 5 «Wegleitung für die Gestaltung der Anlagen für elektrische Zugförderung mit hochgespanntem Einphasenwechselstrom auf schweizerischen Normalspurbahnen» von Huber verfasst war. Daneben beriet er die Abteilung des Obermaschineningenieurs, die damals noch unter der Leitung von A. Keller, dann von O. Tschanz und M. Weiss stand, bei der Abfassung der Ausschreibung zur Erlangung von Lokomotivprojekten. Mit diesen Arbeiten war das ganze Jahr 1913 ausgefüllt, das am 1. Juli gleichzeitig die Eröffnung der Lötschbergstrecke nach Brig und des ganzen elektrischen Betriebes im Engadin und schliesslich am 25. November die Kreditbewilligung von 38,5 Millionen Franken durch den Verwaltungsrat der SBB für die Elektrifizierung der Strecke Erstfeld-Bellinzona brachte. Im Jahre 1914 konnte dann mit der Ausarbeitung der Detailprojekte für die Kraftwerke Ritom und Amsteg, die Übertragungsleitungen und die Unterwerke begonnen werden und im Juli 1914 war soweit alles für die Herausgabe der Ausschreibungen bereit. Da brach am 1. August 1914 der Weltkrieg aus, der zunächst zu einer mehr als einjährigen völligen Unterbrechung aller Arbeiten führte, schon deshalb, weil Huber als Artillerieoberst selbst zum Militärdienst auf den Gotthard einrücken musste. Im Laufe des Jahres 1915 wurde, während alle Arbeiten ruhten, in der Fach- und Tagespresse noch einmal die Systemfrage aufgerollt; dabei wurden sehr gewichtige Argumente energiewirtschaftlicher Natur gegen das Einphasensystem oder mindestens gegen die Errichtung bahneigener Primärkraftwerke zur Erzeugung von Einphasenwechselstrom niedriger, also nicht marktgängiger Frequenz geltend gemacht. Als die verschiedenen Meinungen in der vom Schweizerischen Wasserwirtschaftsverband und vom Schweizerischen Elektrotechnischen Verein am 14. Dezember 1915 in den Berner Grossratssaal einberufenen öffentlichen Diskussionsversammlung hart aneinander gerieten und die Generaldirektion der SBB sich darauf beschränkte, durch den Vorsteher ihres Baudepartementes die Aufnahme der Ausführungsarbeiten am Gotthard unter Hinweis auf das bereits vorliegende Budget für 1916 in nahe Aussicht zu stellen, da war es Huber, der anfangs 1916 darauf bestand, dass die Systemfrage im damaligen Zeitpunkt überhaupt nicht mehr entscheidend sein dürfe, dass vielmehr jede Uneinigkeit den Eindruck der Unsicherheit erwecken müsse, die die Inangriffnahme des grossen nationalen Werkes überhaupt in Frage stellen könne.

Die Weiterentwicklung ist noch in frischer Erinnerung. Am 12. Januar 1916 beantragte die Generaldirektion der SBB deren Verwaltungsrat, die in Angriff genommene Einführung der elektrischen Zugförderung auf der Strecke Erstfeld-Bellinzona der einstigen Gotthardbahn nach dem Einphasensystem auszuführen und die Kraftwerke Amsteg und Ritom für die unmittelbare Erzeugung von Einphasenwechselstrom zu bauen, Entscheidungen, denen der Verwaltungsrat der SBB am 18. Februar 1916 zustimmte; dieses Datum kann somit als Beginn der Bauarbeiten betrachtet werden. Diese wurden dann so rasch durchgeführt, als es die durch die Kriegshandlungen im Ausland immer schwieriger werdende Zufuhr der Rohmaterialien, vor allem von Kupfer und Eisen, zuliess. Nachdem es noch am 7. Juli 1919 zur Aufnahme des elektrischen Betriebes auf der Strecke Bern-Scherzligen und am

31. Juli 1919 zur vorübergehenden Ausdehnung des dreiphasigen Simplonbetriebes Rhonetal abwärts bis Sion gekommen war, wurde am 14. September 1920 der regelmässige elektrische Probebetrieb durch den Gotthardtunnel und bis hinunter nach Ambri-Piotta aufgenommen, der am 18. Oktober 1920 nordwärts bis Erstfeld, südwärts am 12. Dezember 1920 bis Biasca, am 4. April 1921 bis Castione und am 29. Mai 1921 bis Bellinzona ausgedehnt wurde. Damit war das langersehnte Ziel erreicht: die Bergstrecke Erstfeld-Bellinzona der einstigen Gotthardbahn stand im elektrischen Betrieb!

Inzwischen war die Kohlenknappheit längst zur Kohlennot geworden. Der Preis der Kohle, den sich das Ausland von uns bezahlen liess, war bis auf das Achtfache des Vorkriegspreises gestiegen, die SBB mussten zum Teil auf Holzfeuerung übergehen und ihre Fahrleistungen auf ein volkswirtschaftlich kaum mehr tragbares Minimum reduzieren; an Sonntagen ruhte der Bahnverkehr sozusagen vollständig. Da war es wieder Huber, der als Soldat klar die bedrohliche Lage unseres Landes und die Gefahr seiner völligen Wehrlosigkeit erkannte, wenn unser Eisenbahnverkehr durch das Fehlen der Kohlenzufuhr aus dem Auslande zum Erliegen kommen sollte. Er war es, der schon 1917 mit allem Nachdruck seiner Ueberzeugung Ausdruck gab, dass die Elektrifizierung nicht nur auf die ganze Strecke der ehemaligen Gotthardbahn, sondern auch auf alle lebenswichtigen Strekken des Gesamtnetzes der SBB ausgedehnt werden müsse, und er war es, auf dessen Initiative es zu dem grosszügigen Verwaltungsratsbeschluss der SBB vom 30. August 1918 kam, nach dem die elektrifizierungswürdigen Strecken des Gesamtnetzes zunächst in drei Gruppen geteilt wurden, die bis zum Jahre 1939 elektrifiziert werden sollten, eine Frist, die im Dezember 1918 auf Grund des Postulates Wettstein im Ständerat um etwa 10 Jahre gekürzt wurde. Als dann auf die Jahre der Kriegs- und Nachkriegskonjunktur jählings ein scharfer Rückschlag eintrat und unsere Industrie von schwerer Arbeitslosigkeit bedroht war, da war es abermals Huber, der das sog. beschleunigte Elektrifizierungsprogramm ausarbeitete, dem der Verwaltungsrat der SBB am 5. Mai 1923 zustimmte.

Nach diesen beiden Programmen wurde dann die erste grosse Etappe der Elektrifizierung des SBB-Netzes von Huber durchgeführt, und man kann ruhig sagen, dass das Gesamtproblem und alle die Unzahl von Einzelfragen, bei den wasserwirtschaftlichen Problemen angefangen, über die beiden Kraftwerksgruppen Ritom-Amsteg und Vernayaz-Barberine und deren Zusammenarbeiten über eine Austauschleitung von 135 kV, die Verteilung der Unterwerke und deren Einfügung in das 60-kV-Netz, bis zum Fahrleitungsnetz und dessen verschiedenen Bauarten usw. von Huber und seinen wenigen Mitarbeitern meisterhaft gelöst wurden. Wohl nirgends auf der ganzen Welt wurde je eine Aufgabe dieses Ausmasses mit einem so geringen organisatorischen Aufwand in einem Minimum von Zeit durchgeführt. Als alle Arbeiten bereits weit fortgeschritten

waren, planmässig jedes Jahr auf rund 100 km Strecken der Dampfbetrieb durch den elektrischen ersetzt wurde, trat Huber im Jahre 1925 von der Ausübung der Funktionen des Oberingenieurs für Elektrifizierung zurück, blieb aber bis 1935 ständiger technischer Berater der Generaldirektion. Auf Ende 1928 standen bei den SBB 1600 Streckenkilometer oder 56 % des normalspurigen Gesamtnetzes in elektrischem Betrieb. Huber hat esverschmäht, bei diesem Anlass eine umfassende Publikation herauszugeben; nur eine anspruchslose, aber äusserst interessante Druckschrift erschien aus seiner Feder unter dem Titel «Die Elektrifizierung der Schweizerischen Bundesbahnen bis Ende 1928» als Neujahrsblatt der Naturforschenden Gesellschaft in Zürich auf das Jahr 1929.

Am 19. November 1929 beschloss dann der Verwaltungsrat der SBB das zweite Elektrifizierungsprogramm, das inzwischen auch zur Durchführung gekommen ist. Heute stehen bei den SBB 2122 Streckenkilometer, das sind 74 % des normalspurigen Gesamtnetzes, im elektrischen Betrieb, auf denen aber 94 % der gesamten jährlichen tonnenkilometrischen Verkehrsarbeit geleistet wird. Wenn in keinem andern Land der Welt dieser Anteil auch nur annähernd so hoch ist, wenn unser Bahnbetrieb als Rückgrat und Fundament unserer Wirtschaft und unserer Wehrhaftigkeit von der Zufuhr von ausländischem Brennstoff unabhängig geworden ist, dann ist das das Verdienst Emil Hubers und seiner Pionier- und Lebensarbeit, für die ihm über seinen Tod hinaus das Schweizervolk in unauslöschlichem Dank verbunden sein wird.

Ausserdem aber schuldet die gesamte schweizerische Maschinen- und Elektroindustrie und die grosse Zahl aller mittleren und kleineren Betriebe, denen die Elektrifizierung der SBB Arbeit und Verdienst gegeben hat, Huber vielleicht allergrössten Dank. Denn wären in der Wirtschaftskrise der ersten Hälfte der zwanziger Jahre die Schweizerischen Bundesbahnen infolge der Elektrifizierung nicht als Arbeitgeber grössten Stils aufgetreten, so wären so manche unserer Industrieunternehmungen, vielleicht nicht nur die kleinsten, damals zum Erliegen gekommen. So aber hatte unsere Maschinen- und Elektroindustrie die in dieser Form und diesem Umfang wohl kaum wiederkehrende Gelegenheit zur Mitarbeit an einem nach Ursprung und Zweck, nach Plan und Durchführung wahrhaft schweizerischen Werk, wobei sie überdies äusserst wertvolle Erfahrungen sammeln und ihre Leistungsfähigkeit auf dem Gebiete der elektrischen Traktion aufs neue auch für das gesamte Ausland in eindrucksvollster Weise unter Beweis stellen konnte.

Die Elektrifizierung der Schweizerischen Bundesbahnen, das Beispiel einer grossartigen Synthese von angewandter Wissenschaft und Technik, ist ein bleibendes Denkmal für Dr. *Emil Huber-Stockar!* 

Seit 1891 war Emil Huber-Stockar Mitglied des Schweizerischen Elektrotechnischen Vereins, dem er sich bis zuletzt zur Verfügung stellte, wenn immer die Schwierigkeit der Probleme die Vereinsleitung veranlasste, an seine überragende Persönlichkeit zu appellieren. Seine Ratschläge waren Wegleitung und Richtlinie, denn sie waren stets klare Entscheidungen. Das Ansehen des Vereins im Inland und Ausland beruht weitgehend auf dem Wirken Huber-Stockars.

Genau so meisterhaft und souverän, wie Emil Huber die gewaltige Aufgabe der Elektrifizierung der Bundesbahnen mit einem beispiellos geringen organisatorischen Aufwand durchführte, führte er als Präsident seit 1912 bis zu seinem Tode das Comité Electrotechnique Suisse, dessen umfassender Aufgabenkreis und vielfache Beziehungen zu einer sehr komplizierten und schwerfälligen Organisation hätten verleiten können. Unter der Hand von Dr. Huber entstand aber eine natürliche, einfache und leistungsfähige Organisation. Er war in dieser Eigenschaft der unersetzliche Vermittler zwischen der im SEV zusammengefassten Elektroindustrie und der Internationalen Elektrotechnischen Kommission. in der alle Länder vertreten sind. Wir haben Dr. Huber am Werk gesehen in Neuvork, in Stockholm, im Haag, in Paris, in London. Wir haben ihn stets von neuem bewundert. Wir haben ihn bewundert, wie er durch sein universelles Wissen, durch den tiefen Ernst seiner Persönlichkeit, der von einem unübertrefflichen Charme überdeckt war, und durch seine weltweiten persönlichen Beziehungen ein Mass an Einfluss gewann, das weit über die Bedeutung unseres kleinen Landes hinausging, uns aber restlos zugute kam. Wir haben ihn bewundert, wie er in glänzender internationaler Umgebung in würdigster und feinster Weise unser demokratisches Land verdurch und durch Schweizer allerbester trat -Prägung.

Aber nicht nur bei der Lösung grosser Probleme und grosser Schwierigkeiten materieller Art stand uns Dr. Huber zur Seite. Selbst glänzender Stilist, bereinigte er unzählige Texte von Vorschriften und Regeln aus dem ganzen grossen Gebiet der Elektrotechnik, die von den vielen Ausschüssen des Comité Electrotechnique Suisse ihm vorgelegt wurden. Er klärte damit zum voraus die oft komplizierten technischen Verhandlungen zwischen Bestellern und Fabrikanten.

Dr. Huber wusste die Dinge anzupacken. Sein scharfer Verstand sah überall das Wesentliche und das Nötige. Das — aber nur das — führte er in vollendeter Form und mit aller Konsequenz durch. Er war ein Meister auch im Handeln.

Wie alle grossen Männer, erweckte Dr. Huber seine Mitarbeiter zu Leistungen, die ohne ihn nicht zustande gekommen wären. Seine Mitarbeiter wuchsen an ihm, entfalteten sich durch den wunderbaren Einfluss, den er auf sie ausübte. Sie alle verehrten ihn. Er war die lebendige Seele überall, wo er wirkte. Seine Gegenwart gab jeder Arbeit, jeder Diskussion, aber auch jeder zwanglosen Unterhaltung unvergleichlichen Inhalt.

Die ausserordentlichen Verdienste Hubers führten zu zahlreichen, grossen Ehrungen, die zu suchen seiner Natur gänzlich fern lag; er wusste aber, dass sie unvermeidbar waren und nahm sie auf natürlichste Weise hin. Schon früh (1912) berief ihn der Bundesrat in sein höchstes elektrotechnisches Kollegium, die Eidgenössische Kommission für elektrische Anlagen, der er bis 1924 angehörte. Bis kurz vor seinem Tode war er auch Mitglied der Eidgenössischen Kommission für die Elektrifizierung von Privatbahnen. Im Jahre 1925 verlieh ihm die Eidgenössische Technische Hochschule den Titel eines Doktors der technischen Wissenschaften honoris causa, im Jahre 1929 ernannte ihn der Schweizerische Elektrotechnische Verein zum Ehrenmitglied und im Jahre 1934 erfolgte die Ernennung zum Ehrenmitglied der Société française des Electriciens. Seit 1902 war er Ehrenmitglied der Physikalischen Gesellschaft Zürich, die in ihm einen der grössten Gönner und eines der eifrigsten Mitglieder verliert.

Tiefe Trauer erfüllt uns alle. Aber wir alle tragen die unvergessliche Erinnerung an unseren Dr. Huber im Herzen. Es ist die Erinnerung an einen ganz seltenen Mann, einen universellen Geist und einen grossen Menschen.

K. Sachs und W. Bänninger.

# Literatur. — Bibliographie.

621.316.93

Nr. 1824

Ueberspannungen und Ueberspannungsschutz. Von G.

Frühauf. Sammlung Göschen, Band 1132. 122 Seiten. Verlag: Walter de Gruyter & Co., Berlin 1939. Preis: RM. 1.62.

Das Büchlein enthält folgende Kapitel:

- A. Art und Entstehung von Ueberspannungen.
- B. Schaltüberspannungen.
- C. Wanderwellen und Stoßspannungen.
- D. Schutz der Leitung gegen Ueberspannungen.
- E. Schutz der Station.
- F. Ueberspannungs-Schutzgeräte.
- G. Stossvorgänge in Transformatorwicklungen.
- H. Stossvorgänge in Maschinenwicklungen.

Die Schrift enthält in gedrängter Darstellung eine ausgezeichnete Zusammenstellung der heutigen Kenntnisse und Anschauungen von der Entstehung und Beherrschung der Ueberspannungen in elektrischen Betrieben. Durch weise

Beschränkung auf wesentliche Erscheinungen oder einfache Beispiele ist es dem Autor gelungen, dem Nichtfachmann eine gute Orientierung über dieses neue Gebiet der Elektrotechnik zu geben und ausserdem zum Teil noch die Messmittel kurz zu beschreiben, welche das Neuland entdecken halfen. Etwas eingehender sind einige Ueberspannungsableiter und Stosserscheinungen in Wicklungen besprochen, an deren Bearbeitung der Autor als Forschungsingenieur der AEG grossen Anteil hat.

Das Büchlein vermittelt eine ausgezeichnete Orientierung und kann jedem Nichtspezialisten, der nicht Zeit und Lust hat, sich mit der Menge der heutigen Fachliteratur zu befassen, bestens empfohlen werden. K. B.

669.58 Nr. 1802 Die Feuerverzinkung als Rostschutz. 14 S. As, 8 Fig. Herausgegeben vom Verband der Schweiz. Verzinkungsindu-

tallations.

strie, Zug. 1939. Gratis zu beziehen beim Sekretariat des Verbandes, Stadelhoferstrasse 42, Zürich.

Bei Anlass der Eröffnung der Schweiz. Landesausstellung überreichte dieser Verband Freunden und Gönnern eine Neuauflage der im Jahre 1918 erschienenen Broschüre «Das Zink und seine Anwendung in der Rostschutztechnik». Ein kurzes Vorwort behandelt die geschichtliche Entwicklung dieser Industrie, deren Anfänge auf über 100 Jahre zurück sich feststellen lassen. Sie beleuchtet deren Bedeutung in der Weltwirtschaft im allgemeinen und in der schweizerischen Volkswirtschaft im besonderen.

Das ansprechend ausgestattete Heft behandelt in gut verständlicher Form:

- 1. Die Korrosionserscheinungen.
- 2. Die verschiedenen Methoden der Korrosionsbekämpfung.
- 3. Die verschiedenen Metallisierungsverfahren.
- 4. Die Feuerverzinkung (Verzinkung im Vollbade).

Es ist dem Verfasser gelungen, auf knapp 14 Seiten das Wesentliche über die komplizierten Korrosionsvorgänge in volkstümlich klarer Weise auch dem Laien interessant zu machen. Interessenten steht die Broschüre kostenlos zur Verfügung; sie kann auch am Stande der Verzinkungsindustrie der Landesausstellung, Halle 31/4 — Eisenbau, in Empfang

genommen werden; dort kann man auch einen «Wunschzettel» ausfüllen. Hr.

Handbuch der Schweizerischen Produktion. Im Verlag der Schweizerischen Zentrale für Handelsförderung Zürich und Lausanne ist soeben die Ausgabe 1939 dieses umfassenden Nachschlagewerkes über die schweizerische Produktion aus Industrie, Gewerbe und Landwirtschaft erschienen. Das mit Genehmigung des Eidg. Volkswirtschaftsdepartements herausgegebene Werk umfasst ein Warenverzeichnis, in welchem über 7000 verschiedene Artikel und deren Produzenten nach Branchen übersichtlich geordnet sind, ein alphabetisches Fabrikanten-Verzeichnis, welches die Adressen von ca. 6800 Firmen enthält und einen Anhang, in welchem die bedeutendsten Export- und Transithandelsfirmen, Banken, Transport- und Versicherungs-Gesellschaften, Auskunftsbureaux, Ingenieurbureaux usw. Erwähnung gefunden haben. Eine Bereicherung hat die Neuausgabe noch dadurch erfahren, dass zum erstenmal vor den einzelnen Branchen des Warenverzeichnisses Industriekärtchen eingeschaltet worden sind. die interessante Hinweise über die geographische Verteilung der einzelnen Industrien geben. Den Interessenten für Schweizer Waren wird dieses Adressbuch, das in kurzen Zeitabständen auch in französischer und englischer Sprache erscheinen wird, vorzügliche Dienste leisten.

Der Preis dieses nützlichen Werkes beträgt Fr. 6.-..

# Marque de qualité, estampille d'essai et procès-verbaux d'essai de l'ASE.

Expériences faites dans les locaux humides avec des appareils dont les boîtiers sont en matière isolante.

Communication de l'Inspectorat des installations à courant fort.

621.316.361

Ce cas tiré de la pratique démontre que des interrupteurs avec boîtiers en matière isolante, employés dans des locaux humides, peuvent se détériorer sous l'effet de diverses circonstances dont il faut tenir compte lors de l'exécution d'ins-

Une nouvelle installation électrique avait été exécutée dans un grand local d'une teinturerie. Dans ce local mouillé et plein de vapeur d'eau, la température atteignait constamment une valeur variant de 20 à 40° C. Pour empêcher une détérioration rapide de l'installation, il avait été fait emploi d'interrupteurs avec boîtiers en matière isolante (modèle



pour locaux humides) et de câbles sous plomb avec tresses incorrodables posés eux-mêmes dans des tubes de protection en cuivre. La jonction des tubes de cuivre et des interrupteurs avait été réalisée par des manchons filetés, en acier, vissés d'une part aux tubes de cuivre et d'autre part dans les entrées des boîtiers d'interrupteurs.

Il y avait environ trois mois que l'installation avait été mise en service lorsque des fissures furent constatées aux entrées des boîtiers d'interrupteurs (voir figure). Ces fissures avaient été provoquées par les manchons de jonction en acier, rouillés au contact des vapeurs d'eau. La rouille avait provoqué une augmentation du diamètre des manchons, d'où l'éclatement des entrées des boîtiers d'interrupteurs. Ces derniers durent être remplacés.

Ce cas démontre que, dans les locaux humides, il ne faut pas introduire des tubes, manchons ou presse-étoupes en fer dans les entrées d'interrupteurs, boîtes de dérivation, etc. avec boîtiers en matière isolante. Par l'emploi de matériel en métal inoxydable, on évitera de tels désagréments. A. H.

Expertise d'appareils médicaux électriques, vendus sans restriction au public, par exemple: coussins électriques, appareils de massage, etc. Communication de la Station d'Essai des Matériaux de l'ASE.

L'expertise et l'autorisation de vendre des médicaments destinés au public sont du ressort des autorités cantonales; les appareils médicaux entrent dans cette catégorie.

Les Services sanitaires cantonaux ont créé, il v a de nombreuses années, un office intercantonal ayant eu primitivement son siège à Zurich, actuellement à Berne. Cet «Office intercantonal de contrôle des médicaments», Herrengasse 4, à Berne, se charge — sur demande des Services sanitaires cantonaux — de l'examen et de l'autorisation de médicaments; cet office a été également chargé plusieurs fois de l'expertise d'appareils médicaux électriques. N'étant pas au courant de la «Loi sur les installations électriques» se rapportant à ces appareils, et ne connaissant pas les «Prescriptions de l'ASE sur les installations intérieures», ni le cercle d'activité des Institutions de contrôle de l'ASE, cet office de contrôle a chargé jusqu'ici des experts qualifiés de l'examen de ces appareils. D'autre part, les producteurs ont soumis les mêmes appareils aux Institutions de contrôle de l'ASE pour être en règle avec les Centrales électriques.

Dans le but d'épargner des pertes de temps et les frais d'une double expertise, un accord a été conclu entre l'Office intercantonal mentionné plus haut et les Institutions de contrôle de l'ASE. A l'avenir, l'Office intercantonal renonce à l'examen technique et s'en remet pour cela aux Institutions de contrôle de l'ASE qui fourniront un certificat contenant l'autorisation de l'Inspectorat des installations à courant fort. L'office de contrôle se contentera d'apprécier le but thérapeutique de l'appareil médical soumis à l'examen.

Nous tenons à souligner tout spécialement que l'Office intercantonal pour le contrôle des médicaments ne s'occupe de l'expertise d'appareils électriques que lorsque ceux-ci sont vendus sans restriction au public en les recommandant pour des buts thérapeutiques. L'Office ne s'occupe pas des appareils destinés aux médecins et aux hôpitaux.

Nous basant sur l'accord intervenu avec l'Office intercantonal, nous nous permettons de demander expressément à tous les fabricants d'appareils médicaux électriques vendus au public de remettre ceux-ci aux Institutions de contrôle de l'ASE et de les soumettre ensuite, munis du certificat de l'ASE, à l'Office intercantonal. Cette procédure a l'avantage de réduire le temps nécessaire à l'examen des appareils et les frais qu'ils occasionnent.

# Marque de qualité, estampille d'essai et procès-verbaux d'essai de l'ASE.

# I. Marque de qualité pour le matériel d'installation.

pour interrupteurs, prises de courant, coupe-circuit à fusibles, boîtes de dérivation, transformateurs de faible puissance.

pour conducteurs isolés.

A l'exception des conducteurs isolés, ces objets portent, outre la marque de qualité, une marque de contrôle de l'ASE, appliquée sur l'emballage ou sur l'objet même (voir Bulletin ASE 1930, No. 1, page 31).

Sur la base des épreuves d'admission, subies avec succès, le droit à la marque de qualité de l'ASE a été accordé pour:

#### Interrupteurs.

A partir du 15 juin 1939.

H. W. Kramer, représentations, Zurich (Repr. de la maison Albr. Jung, elektrotechnische Fabrik, Schalksmühle i. W.). AJI

Marque de fabrique:

Interrupteurs à tirage pour 250 V, 6 A.

Utilisation: sur crépi, pour montage au plafond ou mural, dans locaux secs.

Exécution: socle en matière céramique, cape en résine synthétique moulée brune ou blanche.

No. 716 Ab, Aw: inverseur unipolaire

schéma III

## Coupe-circuit.

A partir du 15 juin 1939.

E. Webers Erben, Fabrik elektrotechn. Artikel, Emmenbrücke.

Marque de fabrique:



Socles pour coupe-circuit unipolaires, pour montage sur tableau.

Exécution: socle carré et col de protection en matière céramique. Elément avec prise derrière, sans sectionneur pour le neutre.

No. 1521: pour 500 V, 25 A (filetage E 27). No. 1541: pour 500 V, 60 A (filetage E 33).

## Renoncement au droit à la marque de qualité de l'ASE pour boîtes de dérivation.

La maison

B. Zeller-Sutter, Wärmeapparate-Fabrikation, Appenzell,

a arrêté la fabrication de boîtes de dérivation et renonce au droit à la marque de qualité pour ces objets.

Par conséquent, cette maison n'a plus le droit de mettre en vente ses boîtes de dérivation et porte-bornes munis de la marque de qualité de l'ASE et de la marque de fabrique 75.

#### Transformateurs de faible puissance.

A partir du 1er juin 1939.

Gfeller A.-G., Apparatefabrik, Flamatt.

Marque de fabrique: plaquette.

Transformateurs de faible puissance à basse tension.

Utilisation: fixes, dans locaux secs.

Exécution: transformateurs monophasés, non résistant aux courts-circuits, avec interrupteur de protection contre les suréchauffements, avec ou sans carcasse, classe 2b, jusqu'à 250 VA, types 2b T1 à 2b T5.

Tensions: primaire 110 à 380 V

secondaire jusqu'à 500 V au maximum.

Enroulements primaire et secondaire aussi commutables pour plusieurs tensions.

#### Renoncement au droit à la marque de qualité de l'ASE pour interrupteurs.

La maison

R. H. Gachnang, Zurich,

renonce au droit à la marque de qualité de l'ASE pour ses

interrupteurs à poussoir, schémas 0 et III, Nos. 1429, 1429/III, 1429 UP et 1429/III UP pour 250 V, 6 A  $\sim$ 

Par conséquent, la maison susmentionnée n'a plus le droit de mettre en vente de tels interrupteurs munis de la marque de qualité de l'ASE et de la marque de

fabrique

#### II. Estampille d'essai pour lampes à incandescence.



Sur la base des épreuves d'admission, subies avec succès selon le § 7 des «Conditions techniques pour lampes à incandescence» (voir Bulletin ASE 1935, No. 20, page 581), le droit à l'estampille d'essai de l'ASE a été accordé pour

Lampes électriques à incandescence destinées à l'éclairage général, échelonnées selon le flux lumineux, pour une durée nominale de 1000 heures.

A partir du 1er juin 1939.

«ESA», Einkaufsgenossenschaft für das schweiz. Autogewerbe, Berne (Repr. de Aktiebolaget Hammarbylampan, Stockholm).

Marque de fabrique: LUMA.

Flux lumineux nominal: 15, 25, 40, 65, 100, 125 et 150 Dlm. Tensions nominales: entre 110 V et 250 V.

Genre d'exécution: forme poire, dépolie intérieurement ou transparente, culot à vis ou à baïonnette.

#### III. Signe «antiparasite» de l'ASE.



Sur la base de l'épreuve d'admission, subie avec succès, selon le § 5 du Règlement pour l'octroi du signe «antiparasite» de l'ASE (voir Bulletin ASE, 1934, Nos. 23 et 26), le droit à ce signe a été accordé:

A partir du 15 juin 1939.

Exodor, Aktiengesellschaft, Zurich.

Marque de fabrique: plaquette.

Ventilateur à filtre 30 W, 220 V.

#### IV. Procès-verbaux d'essai.

(Voir Bull. ASE 1938, No. 16, p. 449.)

P. No. 79.

Objet: Fiches d'appareils.

Procès-verbal d'essai ASE: O. No. 15568, du 14 juin 1939. Commettant: Adolf Feller S. A., Horgen.

Inscriptions:



SUISSE

Désignation: Fiche d'appareil 2 P + T, No. 8353.



Description: Fiches d'appareils pour montage sur appareils, selon figure. Exécution pour 10 A, 250 V, selon norme SNV 24547. Collet protecteur en fonte de zinc ou de laiton, socle en stéatite, tiges en laiton nickelé. Les bornes de raccordement sont rendues inaccessibles par une cape en matière isolante moulée.

Ces fiches d'appareils sont conformes aux normes pour prises de courant d'appareils (publ. No. 142 f). Utilisation: dans les locaux secs.

P. No. 80.

Objet:

#### Redresseur.

Procès-verbal d'essai ASE: O. No. 15336/II, du 12 juin 1939. Commettant: Moser-Glaser & Cie S. A., Bâle.

Inscriptions:

Moser-Glaser & Co. A.-G.
Basel - Bâle
Gleichrichter No. 132.278 Type WGFO/K
Primär ~ 110, 125, 145, 220, 250 V.
50 Hz. Leerlauf 0,6 W.

Sekundär:  $= 8 \text{ V} 0,06 \text{ A} \times 24 \text{ V} 0,12 \text{ A}$ 

Kurzschlußsicher

Transformateur muni du signe



Description: Redresseur d'alimentation pour installations téléphoniques. Transformateur résistant aux courts-circuits à deux enroulements secondaires séparés. Un enroulement fournit le courant d'appel (24 V ~), l'autre est branché au redresseur sec. Des condensateurs et réactances sont insérés dans le circuit à courant continu pour amortir l'ondulation du courant redressé. Le tout est disposé dans un boîtier en tôle pour montage mural.

L'appareil a subi avec succès les essais relatifs à la sécurité. Utilisation: dans les locaux secs.

P. No. 81.

Objet: Fer à repasser électrique.

Procès-verbal d'essai ASE: O. No. 15582, du 7 juin 1939. Commettant: «Jura», Fabrique d'appareils électrothermiques et d'objets métalliques, L. Henzirohs, Niederbuchsiten près Olten. Inscriptions:

Description: Fer à repasser de ménage de 3 kg. Poignée de bois à étrier ouvert. Corps de chauffe isolé au mica. Tiges de la fiche d'appareil fixées sur matière céramique.

Le fer à repasser est conforme aux «Conditions techniques pour fers à repasser et corps de chauffe de fers à repasser» (publ. No. 140 f).

P. No. 82.

Objet:

#### Interrupteur automatique pour 500 V 60 A.

Procès-verbal d'essai ASE: O. No. 15499a, du 21 juin 1939. Commettant: SAIA, Société Anonyme des Interrupteurs Automatiques, Berné.

Inscriptions:

SAIA Aktiengesellschaft für Schaltapparate, Bern No. 143806 Type Sp 3t P V. 500/220 A 60 P 50

Vorsicht
500 Volt
EIN AUS

Description: Interrupteur automatique sous coffret de fonte. L'appareil se compose essentiellement d'un interrupteur tripolaire avec contacts à plots d'argent, et d'un servomoteur pour l'entraînement du tambour de commande. Le servo-moteur est commutable (220/380 V) et provoque, lors-ervo-moteur est commutable (220/380 V) et provoque, lors-qu'il est raccordé en permanence à une tension alternative de 220 V, 50 Hz, un changement de position de l'interrupteur en 10 s environ. L'interrupteur peut aussi être manœuvré à la main, à l'aide de la manette disposée sur le côté.

L'interrupteur a subi avec succès les essais analogues à ceux prescrits par les normes pour interrupteurs (publ. No. 119 f). Utilisation: dans les locaux secs.

P. No. 83.

#### Objet: Disjoncteurs d'installation à socle.

Procès-verbal d'essai ASE: O. No. 15072b, du 17 mai 1939. Commettant: Charles Maier & Cie, Schaffhouse.

Inscriptions:

4 A IS: CMC 4 A  $^{250}_{500}$  V  $\stackrel{=}{\sim}$ 

6, 10, 15, 20 und 25 A IS: CMC . . A 500 V ~

Désignation :

Disjoncteurs d'installation à socle pour 4, 6, 10, 15, 20 et 25 A, utilisables à titre de coupe-circuit de distribution ou de groupe et d'interrupteurs.

- a) Disjoncteurs sans ou avec sectionneur du neutre,
- b) Disjoncteurs pour raccordement par devant: Jv ou Jvo. sans ou avec sectionneur du neutre, pour raccordement par derrière: Jh ou Jho.



Description: Disjoncteurs d'installation unipolaires à socle, selon figure, à déclenchement thermique et électromagnétique. Commande par boutons poussoirs. Sectionneur du neutre verrouillé avec le bouton d'enclenchement. Socle en matière céramique, cape et boutons en matière isolante moulée.

Les disjoncteurs sont conformes aux «Conditions techniques pour disjoncteurs d'installation» (publ. No. 130 f) et aux «Normes pour interrupteurs» (publ. No. 119 f). Utilisation: à titre de coupe-circuit de distribution ou de groupe et d'interrupteurs dans les installations à courant alternatif (disjoncteurs à 4 A, également en courant continu).