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Theoretische Betrachtung der Seilschwingungen unter Einbeziehung
von Schwingungsdimpfern.

Von Josef Miiller-Strobel, Ziirich-Alistetten.

Es wird versucht, die theoretischen Grundlagen fiir eine
Berechnung von mechanischen Seildimpfern herzuleiten. Der
an das Seil befestigte, als elastisches Bindeglied zu betrach-
tende Dimpfer erzeugt, mathematisch gesehen, eine Unstetig-
keitsstelle, weshalb fiir die Erfassung seines Einflusses die
allgemeinen Prinzipien der Mechanik unter Einschluss eini-
ger erlaubten Vernachlissigungen angewandt werden miissen.
Mittels einer Modellvorstellung gelingt es, die Fragestellung
so zu wenden, als wiirde eine iussere, nur an einem Punkt
angreifende Kraft die storende Schwingung dem Seil auf-
zwingen, Zwei vereinfachte Beispiele weisen auf den fiir
eine exakte Rechnung durchzufiihrenden Weg hin.

1. Einleitung.

Seit der Einfithrung des Weitspannsystems bei
Hochspannungsfreileitungen nahmen die Unter-
suchungen iiber deren mechanische Sicherheit an
Bedeutung zu. Mit der Anwendung grosser Spannwei-
ten und hoher Zugspannungen erwuchs der Frei-
leitung eine neue Gefahr, die erhhte Schwingungs-
beanspruchung. Mit teilweisem Erfolg wurden
pneumatische Schwingungsddmpfer*) nach Fig. la
und rein mechanische nach Fig. 1b verwendet. Alle
Bewegungen dieser einfachen Systeme sind durch
die Eigenfrequenzen und der durch die schwin-
gende Masse erzeugten, resultierenden Kraft Y cha-
rakterisiert. Wegen der Wichtigkeit der Problem-
stellung kann es nicht uninteressant sein, den er-
wiinschten Einfluss des Diampfers angenihert theo-
retisch zu erfassen.

Yix,t)

SEVE42S

Fig. 1.
Schwingungsdidmpfer fiir Freileitungsseile.

Leicht ist man versucht, bei einem so einfachen
System, wie es das Seil mit Diampfer darstellt, die
Kriiftespiele der bewegten Massen auf unzureichende
physikalische und mathematische Beziehungen zu-
riickzufiithren. Zum voraus ist zu verraten, dass
eine theoretisch exakte Analyse, von welchen Grund-
annahmen sie auch ausgehen mag, erhebliche
Schwierigkeiten bietet. Der Grund hiefiir ist in der
Unstetigkeit der angreifenden Kraft zu suchen. Man
bedient sich bis heute mit der gewohnlichen, alther-
gebrachten Schwingungsgleichung unter gleichzei-
tiger Einfithrung den Didmpfer beriicksichtigenden
Randbedingungen ?) (siche Bemerkung am Schluss

1)y ETZ 1934, H. 26.
2) R. Ruedy: Canadian Journal of Research, Sec. A. Vol.
13 (Nov.) 1935, B 99.
H. Maass: Forschung Bd. 4 (1933), S. 105.
S. Timoshenko: Vibration problems in engineering,
New York 1928, deutsch bei Julius Springer, Berlin.

621.315.056.3

L’auteur essaye d’établir les bases théoriques pour le cal-
cul des amortisseurs de vibrations pour lignes aériennes.
L’amortisseur fixé au conducteur, que Uon doit considérer
comme un élément de liaison élastique, produit, mathéma-
tiquement parlant, une solution de continuité; c’est pourquoi,
afin de saisir Uinfluence qu’elle exerce, on doit appliquer les
principes généraux de la mécanique, en se permettant de
négliger quelques termes d’importance minime. Au moyen
d’'un modéle, lauteur arrive a tourner la question comme si
une force extérieure appliquée en un seul point imprimait
au conducteur la vibration perturbatrice. Deux exemples
simplifiés montrent le chemin a suivre pour obtenir un calcul
exuct.

des Aufsatzes). Dieses Rechenverfahren ist insofern
erfolgversprechend, als man sich mit der Ermitt-
lung eines sogenannten Dampfungsfakiors begniigt,
der jedoch recht miihsam fiir jede Aenderung der
Schwingmassen (Dampfer und Seil) der Eigenfre-
quenzen und der Anordnung des Dimpfers ermittelt
werden muss. Trotz des Bekanntwerdens des Mas-
senverhilinisses von Dimpfer und Seillinge pro
Meter durch die Rechnung, zeigen sich erhebliche
Abweichungen, selbst bei idealisierten Versuchs-
bedingungen.

Es sei hier versucht, die allein zustdndigen, allge-
meinen Prinzipien der Mechanik auf das Problem
anzuwenden. Bei der Zuhilfenahme einer Modellvor-
stellung lassen sich die Krifte der Schwingungserre-
gung gegeniiber der natiirlichen Diampfung kompen-
sieren, was dann erméglicht, die wesentlichen, leicht
beeinflussharen Schwingungszustinde zu erfassen.
Weiter wird angenommen, dass das Seil an den En-
den weder eine translatorische noch longitudinale
Verschiebung erleidet. Ohne besondere Schwierig-
keiten liessen sich mit der hier angewandten allge-
meinen Methodik transversale und longitudinale,
quer und parallel zur Kraftrichtung der Erregung
wirkende Schwingungen beschreiben. Da es sich in
dieser Arbeit darum handelt, das Wesen der physi-
kalischen Gegebenheiten und die Art der mathema-
tischen Gedankenfiihrung herauszuschilen, ist hier
nur eine zweidimensionale Anordnung (System mit
einem Freiheitsgrad) untersucht. Auf Einzelheiten
kann nicht eingegangen werden.

Die Frage, warum nicht auf die vektorielle Dar-
stellungsweise der harmonischen Schwingungen ein-
gegangen wird, konnte berechtigt sein. Es ist ein-
zuwenden, dass man bei der Untersuchung im drei-
dimensionalen Raum mit der den meisten Lesern
gelidufigen elementaren Vektordarstellung nicht
auskommt. Jedoch wird sie bei einer spiteren und
eingehenderen Untersuchung, die viele ungeklirte
Einfliisse erfassen wird, nebst den nétigen funktio-
nentheoretischen Erorterungen zwangslidufig zur
Anwendung gelangen. Wieweit eine graphische Ana-
lysis vermittels des Linienbildes einer Funktion der
erzwungenen Schwingungen bei periodischen Sto-
rungen fiir eine Vereinfachung zweckdienlich ge-
wesen wire, konnte leider nicht eindeutig genug
festgestellt werden.
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2, Herleitung der Bewegungsgleichungen eines
schwingenden Seiles mit Dampfer.

a) Spannungszustinde.

Ist der Leiter als Litzenseil ausgebildet, wird zu-
folge der Reibung der einzelnen Drihte ein anderer
mechanischer Spannungszustand als in einem homo-
genen Seile vorzufinden sein. Alle die Frequenz f
des Seiles erniedrigenden Einflisse explizite in die
Rechnung einzubeziehen, ist aussichtslos. Ein ein-
faches Ersatzschema oder Modell ermoglicht, diese
Schwierigkeiten zu iiberwinden.

Ist das Seil als Vollkdrper ausgebildet und hat
es einen nicht allzu grossen Durchhang, bzw. eine

nur schwache Spannungsidnderung g_gin Abhingig-

keit von der Koordinate «x, stellt sich nach bekann-
ter Gesetzmissigkeit bei konstanter Erregung die
Frequenz

n o
=gl e

ein. Es bedeutet n die Ordnungszahl, ¢ die mecha-
nische Spannung, I, die Linge zwischen den Ein-
spannungen und o das Gewicht pro Lingeneinheit
des Seiles.

Bei Seilen, in denen starke innere Reibungskriifte
eine merkliche Verminderung der elastischen Deh-
nung oder der Forminderungsarbeit hervorrufen,
ist eine Verkleinerung der Frequenz in bezug auf
das ideale Seil zu erwarten. Wie kann ein derarti-
ges Seil modellmissig nachgebildet werden? Grund-
sdtzlich handelt es sich bei dieser Untersuchung um
die Ermittlung des Spektrums der Schwingungen,
was in der spiiteren Entwicklung des Fourierschen
Integrals deutlich zum Ausdruck kommt. Dank
des integralen Charakters der mathematischen
Formulierung des Problems ist man gar nicht
gezwungen, alle technologischen Abmessungen oder
mechanischen Spannungen einzuhalten, wenn nur
die fiir eine «homologe Nachbildung» massgeben-
den Grundzustinde durch irgendeine Massnahme
erzeugt werden kénnen. Um Vergleiche mit einem
von der Luft umstrémten, Wirbel ablésenden Seil
anzustellen, ist es vorteilhaft, Durchmesser, Versei-
lungsart und Linge I, (bzw. o) beizubehalten. Als
Nachbildungsmass miisste die in Gl. (I) noch unbe-
riihrt gebliebene Grisse ¢, die mechanische Span-
nung eingefiihrt werden.

Was fiir Beziehungen gelten beziiglich der Span-
nungséinderung und Frequenzabhingigkeit bei den
in praxi ausgefithrten Seilen? Wie ist die Span-
nung ¢ zu dndern, dass sich bei einem Seil die glei-
chen Frequenzen wie bei den der Gl. (I) zugrunde
liegenden Zustdnden, einstellen?

4) Karman: Nachr. Ges. Wiss. Gottingen 1911/12.
Karman und Rubach: Physik, Z, Bd. 13 (1912), S. 49.
H. Maass: Wiss. Versff. Siemens-Konz. 10 (1931), S.153.
R. Ruedy: Canadian J. Research. Sect. A. Vol. 13

(1935), Ottawa.
Fuchs-Hopf: Aerodynamik, Jul. Springer, Berlin 1935.
Th. Schmitt u. P. Behrens: ETZ Bd. 54 (1933), S. 603.
P. Behrens, H. Hutter: Elektrizititswirtschaft Bd. 36
(1937), S. 331.

Nach den neuesten Messungen *) besteht zwischen

Luftgeschwindigkeit v (einer senkrecht zur Schwin-
gungsebene wirkenden Strémung, Achsenrichtung
z), Seildurchmesser d (cm), Spannung und Gewichi
die folgende Relation:

d o
s = 2,00 < |/—
/; vz]/Q

Die Spannung wird nach Auflésen der Gl. (II)

_ (.t *)

%= \205 a)°¢

Bei gleichbleibender Erregung durch die Wirbel-
ablosung wird dem homogenen, mit der Eigenfre-
quenz schwingenden Seil eine Schwingung mit der
Frequenz nach Gl (II) und (III) aufgezwungen.
Angaben iiber die Frequenzabhingigkeit der Seile
fiir verschiedene Seildurchmesser, bzw. die Gréssen
der Knotenabstinde 4 in Abhingigkeit vom Seil-

durchmesser d fiir verschiedene Windgeschwin-

In°)

(IT1)

digkeiten v und Spannungen finden sich im bereits
erwihnten Aufsatz von Jaquet®).

Will man den Einfluss einer storenden Kraft, bzw.
die Wirkung eines Ddmpfers erfassen, ist die fest-
zuhaltende Tatsache von Wichtigkeit, dass sich nur
zwei Resonanzlagen einstellen, die eine in der Nihe
der Grundfrequenz Gl. (I), die andere im Frequenz-
bereich der erzwungenen Schwingung (Gl. II).

Um das theoretische Modell zu bilden, nimmt
man eine Umkehrung der Fragestellung vor, und
zwar so, dass man durch Einfiihren der neuen
Spannung ¢, das Seil mit der Frequenz f; schwin-
gen ldsst und demselben, durch dussere Einfliisse

L]/E .
21, o) g

danklich eine Resonanz zuschreibt, wihrend der
Stossddmpfer selbst durch Schwingungsenergie von
der Frequenz f; angeregt wird. Diese Umgestaltung
fiihrt zu einer wesentlichen Vereinfachung der
mathematischen Analyse.

verursacht, bei der Frequenzf, =

Die in die Berechnung neu anzusetzende Span-

nung o, folgt aus Gl. (I) und (III) :

_ ( 2,05 )2

o ={55)0

Die Eingliederung einer iiber die ganze Linge
konstanten Spannung verlangt, den Giiltigkeitsbe-
reich bei einem stark durchhingenden Seil zu be-
stimmen. Sehr genaue Angaben lassen sich vorder-
hand nicht machen; trotzdem ist die getroffene An-
nahme wie aus vielen Amplitudenaufzeichnungen
von Schwingungen an den verschiedensten Seilen
bei gleichen Mastquoten und selbst grossen Spann-
weiten ersichtlich ist, zutreffend. Der Einfluss der
Spannungsinderung auf die Frequenz ist bei stark
durchhingenden Seile sehr gering. Eine analytische
Behandlung der ungestorten Schwingungsvorginge

5) Jaquet: Bull. SEV Bd. 28 (1937), S. 200.
6) An Stelle der in der Aerodynamik die Zirkulation cha-
rakterisierende Grésse I' ist der Index s eingefiihrt.

(Iv)
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bei den eine Kettenlinie 7) darstellenden Seilen und
bei starken Ueberhohungen der Fixpunkte ) gibt
Ruedy #).

Als &ussere, den Leiter in Schwingungen ver-
setzende Energiequelle ist die Luftstromung zu be-
trachten. Die Schwingungsddmpfung selbst wird
durch die Forminderungs- und Reibungsarbeit ?)
der einzelnen Drihte nebst dem Luftwiderstand her-
vorgerufen. Tritt nicht Resonanz mit der Grund-
frequenz ein, halten sich die zugefiihrte und die
vernichtete Energie nach bekannten Gesetzen das
Gleichgewicht. Die Leitung schwingt mit konstan-
ter Amplitude. Bei gleichbleibender Luftstromung
ist dies laut Registrierung stets der Fall. Dank der
Einfithrung der neuen Spannung o, die als das
Charakteristikum fiir das mit niedriger Frequenz
schwingende Seil anzusehen ist, wurde der verlo-
rengegangene Energiebetrag etwa durch die Aen-
derung der Frequenz (E, = 4J (M) wy21) be-
riicksichtigt. Bei der spektralen Zerlegung werden,
ohne einen Fehler zu begehen, diese Gleichge-
wichiszustinde  (stabile Gleichgewichtslage) be-
trachtet.

Wie die Ableitung der allgemeinen Bewegungs-
gleichungen zeigen wird, ist diese Modifikation des-
halb von Wichtigkeit, weil sie erlaubt, ein einfache-
res Losungsverfahren anzuwenden.

Versuche, die an den verschiedensten Seilen vor-
genommen wurden, wiesen deutlich darauf hin, dass
die bis jetzt noch nicht beriicksichtigte Luftdimp-
fung 1°) bei der Verinderung der Frequenz durch
ein Storglied ohne Bedenken vernachlissigt werden
kann. Bei elektromagnetisch erregtem Seile in ru-
hender Luft (Priifstand) konnte ohne merkliche
Korrektur direkt auf die Formidnderungs- und Rei-
bungsarbeit geschlossen werden.

. b) Herleitung der Bewegungsgleichungen.

Um eine eindeutige Losung der Aufgabe oder der
spektralen Zerlegung der Schwingungsvorginge zu

I~ ! N

e
) \Y‘
SEVEL26 Pern

Fig. 2.
Seil mit der in der Schwingungsebene liegenden iiusseren
Kraft P =Y (x, t). A Wellenlinge.

erhalten, sei die transversale Kraft Y (x,t) nach
Fig. 2 als bekannt vorausgesetzt. Die Problemstel-
lung erleidet, wie bereits erortert, eine Umkehrung,
indem man sich primér den schwingenden Dimpfer

7) E. Maurer: Bull. SEV Bd. 27 (1936), S. 41 und 65;
Leitung Handeck-Innertkirchen.
8) Ruedy: Canadian, Research, Sect. A, Vol. 13 (1935).
9) ten Bosch: Maschinenelemente, Julius Springer 1929.
Schweiz. Bauztg. Bd. 9 (1936), S. 108.
10) J. S. Caroll und J. Koontz jun.:
(1936), S. 490).
J. S. Caroll: Electr. Engng. Bd. 55 (1936), S. 543.
ETZ Bd. 41 (1936), S. 1181.
11) Es bedeutet M die Masse des Diimpfers und wqseine
Winkelgeschwindigkeit beziiglich dem Seilpunkt £, E kine-
tische Energie.

Electr. Engng. Bd. 56

denkt, der erst sekunddr im Seil eine erzwungene
Schwingung verursacht. Diese Modifikation, die
ofters bei solchen komplexen Gebilden nétig ist,
hindert aber keineswegs, den physikalischen Zu-
stand folgerichtig zu erfassen. Die wesentliche
Fragestellung wird die sein: Wie lauten die Bewe-
gungsgleichungen eines Seiles, dem eine beliebig
verinderliche, #dussere Kraft eine erzwungene
Schwingung aufdringt. Um die Kraft Y (x, t), die
als diskontinuierliche Quelle zu deuten ist, orga-
nisch in die mechanischen Beziehungen eingliedern
zu konnen, ist man genotigt, sich des Hamiltonschen
Variationsprinzipes und der Lagrangeschen Bewe-
gungsgleichungen zu bedienen.

Systeme mit unendlich vielen Freiheitsgraden,
die infolge periodischer Erregung sogenannte er-
zwungene Schwingungen ausfiihren, konnen he-
kanntlich durch verallgemeinerte Koordinaten aus-
gedriickt werden. In einem ungestérten System las-
sen sich die Lagrangeschen Bewegungsgleichungen
zweiter Art schreiben

- =0 1)

d /6E.

o)™

dt \ 94, 84,
Hiebei geben die Lagenkoordinaten ¢q,, ¢q,, ...q,
die Abweichungen des Systems aus der Gleichge-
wichtslage ¢, = 0; ¢, = 0... an. Die kinetische
Energie E, ist bei kleinen Schwingungen 12) als ho-
mogene quadratische Formen mit konstanten Koef-
fizienten der zeitlichen Ableitungen der Koordina-
ten g, selbst gegeben. Es wird die kinetische Ener-
gie in die positiv quadratische Form mit dem Koef-
fizienten a, , iibergehen.

ou

E, = E Ay, Qv qu (2)
npe=1
Diese Vereinfachung ist berechtigt, da wegen des
Einsatzes des Dédmpfers zum vornherein nur Dis-
sonanzen betrachtet werden und grosse Amplituden
iiberhaupt nicht zuldssig sind (siehe spiter).

Die potentielle Energie mittels einer Reihenent-
wicklung dargestellt, ergibt

U
o-ven 3 (30), o
U

ZZ (8qv 8qﬂ>qv—0 =0

Wie bereits erwihnt, kann bei kleinen Verschiebun-
gen die Reihe mit den quadratischen Gliedern ab-
gebrochen werden. Die Berechtigung dieser Verein-
fachung kann ohne die obige theoretische Erwigung
auch durch bekannt gewordene Messresultate **) an
Seilen belegt werden. Bei einem Seil von ca. 180
mm? Querschnitt und einer Spannweite von 200 m,
bei Knotenabstinden von 1 bis 4 m, wurden auf
Rekorderstreifen maximale Amplituden von durch-

12) Rayleigh: The theory of sound Bd. I
M. Plancherel: Des petites oscillations, Vorlesg. ETH,
Ziirich.
13) E. M. Wright und J. Mini jr.:
S. 138. Electr. Engng. Bd. 53 (1934).

Qu Qe

Aluminio Bd. 4 (1935),
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schnittlich 0,6 bis 1,0 cm aufgezeichnet. Dimpfer,
die eingebaut wurden, vermochten die Amplituden
bis auf 0,5 bis 0,2 cm und noch mehr zu erniedri-
gen, was absolut eindeutig fiir die Gutheissung der
mathematischen Einschrénkung spricht.

Um rascher an das Ziel zu gelangen, wihlt man
die Lagrangeschen Koordinaten so, dass eine lineare
Transformation der ohnehin stets in die Ausgangs-
lage zuriickkehrenden Systeme vorgenommen wer-
den kann. Die zugehorige Transformationsglei-
chung lautet

dp = Z Cyy Yo 4)

=1
Das Wesentliche der Transformatlon, die Bestim-
mung der Hauptachsen oder Eigenvektoren, wird
durch das Koeffizientenschema oder die Matrix 14)

der Gl. (4)

01‘1 al'g ------ o, 1
4 = (o, = ‘12;,1 0122,2 ‘Exz.n (5)
Op | sseaecnes Cy 1

mit der Determinate
A = /“v,u/ (6)

wiedergegeben. Zufolge dieser linearen Transforma-
tion werden die Funktionen in quadratische Ein-
heitsformen: von E, und U, bzw. in Summen von
Quadraten iibergehen. Fiir jede einzelne Koordi-
nate ergibt sich nun eine, von den anderen ginzlich
unabhingige, harmonische Schwingung mit zuge-
horender Periode. Schwingungen, die bei bestimm-
ten Koordinaten variieren, wihrend bei den andern
keine Bewegungen stattfinden, nennt man Haupt-
schwingungen, die Koordinaten «Hauptkoordina-
ten». Das ganze System auf derartige Koordinaten,
unter gleichzeitiger Vernachlédssigung héherer Ab-
leitungen, bezogen, erlaubt, die kinetische Energie

1 < .
E=7Z%ﬁ (7)
=1

und die potentielle Energie U,

—Z%% (8).

w=1

zu schreiben. Nach Einbeziehung der von aussen
eingreifenden Storungsfunktion Y (x, ¢) kann wegen
dem positiv definiten Charakter von E, und U,
(die Werte a, und ¢, positiv) jeder Koordinate ¢,
die erweiterte Differentialgleichung von der Form
der Lagrangeschen Bewegungsgleichung zweiter Art
geniigen. Sie besitzt die Form

g@&)*au
dt \gq,/

O
14) Hilbert-Courant: Methoden mathem. Physik, Springer,
Berlin 1931.
O. Schreier und E. Sperner:
trizen, Teubner 1932.

dz
= a, d?;) + g =Yt (9)

Vorlesungen iiber Ma-

Fiir die erzwungene Schwingung eines Seiles mit
der mechanischen Spannung ¢, der Einheitsmasse ¢
und einer transversal beliebig verdnderlichen Kraft
Y (x,t) (senkrecht zur Achsenrichtung des Seiles)
wird die Schwingungsgleichung in Kartesischen Ko-
ordinaten

o2y iy
o 8t2 — O == Y(x’t)

a2 (10)

Darauf ausgehend, die Losung der Gleichungen mit-
tels periodischen Funktionen zu ermitteln, ist hier
auf eine besondere Tatsache verwiesen. Aus dem
gebriuchlichen Rechenverfahren bei der Herleitung
der Koeffizienten von Fourierschen Reihen kann
leicht geschlossen werden, dass die vorkommenden
Integralbeziehungen keine speziellen Eingenschaf-
ten trigonometrischer Funktionen sind. Sie entspre-
chen viel mehr einer allgemeinen Eigenschaft der
hier schon eingefiihrten Hauptkoordinaten. Wunsch-
gemiss sind alle Gleichungen mit Hauptkoordinaten
dadurch gekennzeichnet, dass sie nach ihrer Einfiih-
rung in die gegebenen Differentialgleichungen (9)
Beziehungen liefern, in denen ausser der Zeit t stets
nur eine einzige Kocrdinate vorkommt. Funktio-
nen, die Gleichungen eines Systems mit n Freiheits-
graden befriedigen kénnen, heissen Eigenfunktionen
und sind von der Form

oo

2 P () -y ()

rv=1

Definiert man die kinetische Energie E; des be-
wegten Systems durch Ueberfithrung der unend-

lichen Summe mittels einem Integral, wird sie die
Form annehmen

!
1 [8y
E,, _TSQ(8t)dx
3 0
Analog schreibt sich die potentielle Energie
4
> oy
U= 3 _\6 ( oY )dt
o

Unter Einschluss der wichtigsten Eigenschaften
der Hauptkoordinaten, die fordern, dass in den Aus-

(12)

(13)

driicken der Energiefunktionen nur Quadrate >
und keine Produkte der verschiedenen Ableitungen

1,0#, 1p,, (u =~ v) auftreten %), wird Gl (12) iiber-
gehen in
]

oly v(t))zgfﬁf(x)dx—k

0

E,,:l

WMZ

0 le Ilaz’ﬂ () -y (1) S Pu(x) P (x) dx (14)
p=1r= p

Fir ein Orthogonalsystem bildende Funktionen

15) Riemann-Weber: Differential- und Integralgleichungen
der Mechanik und Physik, Bd. I, S. 217 (1935).
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wird das Integral iiber das Produkt der Faktoren

¢yund ¢, nach bekannten Gesetzen
14

S‘Pu ®) v () dx = 0
0
Bildlich gesprochen besagt diese Gl. (16) folgen-
des. Die den einzelnen Veridnderlichen ¢,(x) ent-
sprechenden Vektoren des Funktionenraumes stehen
zueinander orthogonal. Normiert man dieselben so,

dass die Quadratintegrale
/

Srpf (1) dx = 1
0

werden, ldsst sich die Energiegleichung (14). in einer

bedeutend vereinfachten Form schreiben, ndmlich
I3

(15)

(16)

oo

| . .
Ek=298(§§pm(t»2dx—%2 ® (t)

Aus analogen Ueberlegungen sei die potentielle
Energie U ermittelt.

V= l

gzs_z” 2(,)8(‘1‘/’”)&,; (18)

dog, y
dx) dx

a7

l

Eine partielle Integration des IntegralesS(

in Gl. (18) vorgenommen, fiihrt es iiber in
I4

d ¢, (x) ? _
S(T o =
o

0

Sm(x) E0D ax o)

Sind die beiden Enden des Seiles in Klemmen
eingespannt (Fig. 3), wie es veraussetzungsgemiss
bei den meisten Freileitungsseilen in bezug auf eine
Achsrichtung zutrifft, wird die Quadratur des ersten
Produktes mit den Grenzen 0—>1 gleich Null. Ueber
die Bedingungen der stehenden Wellen ist folgen-
des zu sagen. Das Integral rechts der Gl. (18) und
links der Gl. (19) wird gleich dem zweiten Faktor
in Gl (18). Dieses Ergebnis in die Beziehung der
potentiellen Energie eingesetzt und die bereits frii-
her genannten Teillosungen vom Typus

o, (x) _

dx _kzlp'b’ (x)

(20)

beriicksichtigt, fithrt auf das Quadratintegral der
normierten Funktionen

U =5 Xk @1)

Es bedeutet hierin der Faktor k.2 = yl—n Um eine
0

vollstindige Beschreibung der Bewegungen durch-
zufiihren, ist es nétig, die Arbeit, welche der Damp-
fer jeweils phasenverschoben an das Seil abgibt, ana-
lytisch einzugliedern. Die Energie, die er selbst auf-
zehrt, wirkt sich als eine Vergriosserung der Damp-
fung aus (Wirkungsgrad sehr hoch). Man denkt sich
diese Energie durch die kontinuierliche Erregung
von der Luftstromung gedeckt und beriicksichtigt
nach den Modellvorsiellungen nur den Einfluss
der eintretenden Wellcninterferenzen. Weiter fiihrt
man die auf die Spannung og des Seiles bezug-
nehmende Kraft Y (x,¢) ein. Die angreifenden
Krifte des Diampfers sind, wie auf Seite 591 ver-
merkt, nahezu in einem einzigen Punkt ver-
einigt. Erfasst werden die Krifte durch die sehr
anpassungsfahigen Quellfunktionen. Man stellt
sich diese analytischen und stetigen Funktio-
nen so vor, als besitzen sie ausserhalb eines festen
Intervalles .£ — ¢, £ + ¢ einen beliebig kleinen, ver-
nachlissigharen Wert, im Intervalle + ¢ einen belie-

Vi1 V=2 | Y(x,t)
Xo=§
L i
SEV6e27
Fig. 3.

Ersatzbild des schwingenden Seiles mit dem vollkommenen
elastischen Gliede bzw. der Kraft Y (x, ) und der neuen Zug-
Spannung ¢s Gl. (III).

big grossen. Solche Zackenfunktionen (Fig. 3 u.4),
die eine Punktquelle darstellen, verursachen eine na-
hezu sprungartige Aenderung der ersten Ableitung in
der Umgebung der Quelle. Die Ableitung im Inter-
valle Ete—>E—¢ wird

dlp (x) fte

Cdx

: SfQ(x)dx+17 —1+45 (22)
Es konvergiert die Funktion y =1 (¢) fiir ¢—0.
Der negativ genommene Grenzwert der linken Seite
fiir ¢—0 heisst die Ergiebigkeit der Quelle und
beim Passieren einer solchen mit der Ergiebigkeit 1
springt die Ableitung nidherungsweise um den Be-
trag
§+0
de 7T _ (23)
dx |t o
Die von den ortlich begrenzten Quellen oder den
Dampfern, bezogen auf das schwingende Seil mit
den Koordinatenzahlen 1 geleistete Arbeit A,
wird nach der Integration iiber ihren Wirkbereich
x—>1
{
A = S 0, Y x,8) 0y dx =

!

0 Zla Ly (t)SY(xa £) o (x) dx = ZIPV oy, () (24)
V= . v=
0
Diese angreifenden fremden Krifte haben die
Koordinatenzahlen v, ., s, ... 9, Sind dieyp
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an Grosse einander gleich, wird die einzelne

Kraft P,

l

Bo=o\Ywonwis @)
0

Man ersieht aus der Form der Gl. 25 die Moglich-
keit, die Kraft P, als Koeffizienten der Fourier-
schen Entwicklung der Funktionen ¢;Y (x, t) nach
den Eigenfunktionen ¢, (x) zu deuten. Setzt man
die erhaltenen, von den Eigenfunktionen ¢, (x)
und der transversalen Kraft Y (x,z) abhingige
«Kraft P,» nebst der Teillosung

Cyqy = O k,? Wy (®)

in die Gl 9 ein, ergibt sich fiir das Seil die Bewe-
gungsgleichung in Form einer Integralgleichung 16)

de ;pt(t) + o2y, (f) = o, S ¢ (x) Y (x, ) dx (26)

v

Wird die Dampfung 17) durch das Glied rg;q,dieErreger-
energie des Seiles durch ¢ (v, d) einbezogen, miisste die
obige Gl. iibergehen in

2 . -
%"'c”‘ﬁ’_f“%')dxqu)(v,d)—r or .
‘ ot

Ausgehend von der gewshnlichen Gleichung, ist man gezwun-
gen, die durch den Dimpfer verursachte Kraftinderung Ao,
im Seil an der Unstetigkeitsstelle & zu erfassen. Diese kann
aber wegen der sehr geringen Spannungsénderung gegeniiber
den Auswirkungen in Form von Schwingungen nur sehr un-
zureichend bestimmt werden.

c) Allgemeine Losung der Bewegungsgleichung.

Die Bewegungsgleichung 26 des Seiles ist durch
die Umgestaltung in eine grundsitzlich andere Form
iibergegangen. An Stelle der fiir einfache Verhilt-
nisse ausreichenden Differentialgleichung ist eine
Integralgleichung16) getreten. Die Losung dieser In-
tegralgleichung bietet verschiedene mathematische
Schwierigkeiten, und man muss alle eine Verein-
fachung erméglichenden physikalischen Bedingun-
gen beriicksichtigen. Die willkiirlich angesetzten
Funktionen miissen ermittelt werden und das ist
durchaus nicht moglich durch die Bildung von ge-
wohnlichen Differentialgleichungen, wie sie bei-
spielsweise eine weitere Differentiation von Gl. 26
ergeben wiirde. Vielmehr ist es die Integralglei-
chung, die hier als die alleinige Grundlage und den
natiirlichen Ausgangspunkt fiir eine Reihenentwick-
lung zu betrachten ist. Trotzdem das Suchen der
zum Kern gehorigen Eigenfunktion allgemein
sehr schwierig ist, gelingt es in unserem Fall, ein
brauchbares Resultat herzuleiten.

Die wesentlichste Eigenschaft des Dampfers wird
die sein miissen, eine Schwingung zu erzeugen, die
im Sinne spektraler Zerlegung die kleinsten Ampli-
tudenwerte der Hauptkoordinaten am Seil erzwingt.
Aus der bekannten Gleichung einer ungedimpften
Saite, die fiir ein Seil ohne spezielle Vorbehalte an-

16) D. Hilbert: Grundziige einer allgemeinen Theorie der
linearen Integralgleichungen, Teubner 1924.

wendbar ist!7), erhilt man nach Einfithrung der
Wellenléinge A aus Gl. (I) eine Schwingungszahl von

1 14/0
T, — 2if ¢

Es sei zum voraus der Fall der Resonanz der Sy-
steme ausser acht gelassen, denn sonst wiirde die
Frequenz der storenden Krifte mit der Eigenfre-
quenz des Seiles iibereinstimmen und es konnten
die Amplituden keine Verringerung erfahren. Ana-
loge Verhilinisse **) treten bei den sehr einfachen
Konstruktionen schwingungsfreier Aluminiumseile
auf, bei denen durch eine Metalleinlage einfach Dis-
sonanz angestrebt wird. Demzufolge setzt man
mit voller Berechtigung den folgenden Zu-
stand voraus: Der Dimpfer soll eine gerin-
gere, bzw. grossere Eigenfrequenz aufweisen als
das Seil. Eine einfachere Lsung erhilt man, wenn
die Trigheit des Systems vernachlissigt wird. Das
0%qy
o
in Gl (9). Dass die Genauigkeit der Rechnung un-
ter den genannten Absichten (Spektrum) keine Ein-
busse erleidet, ist dem folgenden Umstand zu ver-
danken. Die Amplituden werden nach den Bemer-
kungen auf S. 590 r. unten ziemlich klein (siehe Ab-
leitung der Systemgl. 3 u. 4). Das charakteristische
Verhiltnis der Seilamplituden bei Einbeziehung
der Massentrigheit (dynamische Theorie) und bei
deren Vernachlissigcung (statische Theorie) ist bei
der Umgestaltung oder Vereinfachung der System-
gleichungen 1—26 allein massgebend. Ist w, die
FEigenfrequenz des Dimpfers (Stérungsquelle) und
ws die des Seiles, wird die dynamische Vergrosse-
rung u, die als eine Verhiltniszahl zwischen Fre-
quenz und Eigenfrequenz zu werten ist, durch die
Beziehung dargestellt

M=
(%)
w,?2

Erreicht man geniigend Dissonanz, etwa bei y-Wer-
ten von 0,8 ... 1,0, so ist die gestellte Bedingung der
Trigheitslosigkeit gercchifertigt. Immer wird man
bemiiht sein, die Grundfrequenz w; gegeniiber w,
geniigend gross zu halten. Es ldsst sich demzufolge
die Gl. (26) fiir die langsamen Schwingungen um-
schreiben. Die Koordinate v wird
l

S Y (x,0) 9y (x) dx

0

Die so erhaltene 1, -Funktion in den Ansatz Gl. (11)
eingesetzt, fithrt auf die Koordinatengleichung

geschieht durch Null setzen der Glieder a,

(28)

1
P = L2

v

(29)

— @ (x)
=1 ?

S Y (x,t) @y (x) dx (30)

17) Ruedy: Canadian Journ. Research, Vol. 13, Sec. A.
18) Preiswerk: Bull. SEV 1934, S. 252, und ETZ 1934,
S. 1125.
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Betrachtet man den Grenzfall einer nahezu punkt-
formig wirkenden Quelle, so wie die angreifende
Kraft des Dampfers in x = ¢ eine ist, muss als Ko-
ordinatenbegrenzung fiir die Funktion Y (x, t) die

Ungleichung gelten
f—e=x=é+e (1)

Fir eine Ergiebigkeit von 1 wird das Integral uber
die Kraft

Ste
S Y (x,9)dx = 11) (32)
§—e¢

Setzt man den erhaltenen Wert in Gl. (30) ein und

schreibt fiir den neuen Koordinatenwert die Funk-
tion K (x,t), so wird die Amplitude

5 — Z Py (x) il ()

=

(33)

Dieses transzendente Summengebilde ldsst die
Schwierigkeit erkennen, dass man eine Losung
gewohnter Art nicht findet, weshalb man gezwun-
gen ist, diese in der Mathematik benannte Bilinear-
form nach den Eigenfunktionen zu entwickeln.
Man nennt die Greensche Funktion K(x, &) den
Kern der Integralgleichung. Das Resultat der
Losung dieses Gleichungsgebildes, deren Eigen-
werte sich als Wurzeln einer transzendenten Glei-
chung ergeben, werden die Eigenfunktionen ¢, (x)
sein, von denen jede eine Hauptschwingung oder
«stehende» Welle darstellt.

Zur Losung dieser Gleichung gelangt man fol-
gendermassen Die Kraft Y (x,t) denke man sich
auf eine perlodlsche Funktion o f (x)-cos (wg t)
reduziert, eine in der Wirklichkeit durchaus zutref-
fende Annahme. Y (x,t) in die im Seil tangential
wirkende Kraft P, eingesetzt, fithrt auf die G1. (34)

P, = cos (wq ¢) SGS f(x) ¢ (x) dx

0

(34)

Man erinnere sich der Gl. (9), die beim Einsetzen
der gestellten Bedingung die allgemeinen Koordina-
ten g, bei periodischer Erregung lieferte. Mit dem
Ansatz q, = 4, cos wg t und bei der Giiltigkeit der
Ungleichung ¢, — w,? a, 2 0 kann die Koordinate
der y-ten Schwingung nach dem Auflésen der Gl.
(25) geschrieben werden

F, (x) cos wy t
(ev — wo? @)

q = (35)
Diese Gl. (35) sagt aus, dass sich fiir jede Haupt-
koordinate eine bestimmte Amplitude ergibt. Die

Funktion 1, (t) des transformierten Systems wird
nun analog geschrieben

19) Selbstverstiindlich ist Y (x,¢) eine Funktion der eige-
nen Masse M, des Dimpfers, also

Y (x,t) = (f[M]) = f (x,8, M, »?)
Hiezu GI. 24 und 25.

l
cos wg t - GSS f(x) @ (x) dx

'_ 0 =
" @ (@ = wo¥)

x ]/3
wo (Uy—(%) 5

gesetzt ist. Die Funktion vy, (¢) in den Lésungsan-
satz [Gl. (11)], die als Gleichung der Eigenfunk-
tionen zu bezeichnen ist, eingesetzt, ermoglicht die
Koordinate y bei Einfithrung der Abkiirzung k2
0Wy?

s

y = cos (wq t) Z

(36)

zu berechnen.

{

il (x) \f(x) Py (x) dx (37)

Um die Schreibweise zu vereinfachen, sei k2= ]’

substituiert und die Funktion ¢, (x)=— Y wird

cosmgt

¥ 28 (1) (0 ax

(Y

P (x) =

In dieser Funktion tritt die Unbekannte ¢ (x) so-
wohl ausserhalb als auch innerhalb des Integral-
zeichens auf. Es wird die Aufgabe sein, zu zeigen,
dass diese Gleichung einer Integralgleichung zwei-

ten Grades von der Form
s

p (x)-z'SKu,g)f(ﬁ)d: —F) (39)
geniigt. ’

d) Herleitung der Integralgleichung.

Die bekannte Funktion, die eine quellenmissige
Darstellung erlaubt, sei
4

F(x) = SK<x,§)f(§)d§

0

(40)

Mit Benutzung der Bilinearformel Gl. (33) folgt

(4
Fo=3 29 e oo @
v=1 v 5
Vergleicht man dies mit Gl. (38), so kann durch
Subtraktion der einzelnen Summenglieder nach E.
Schmidt ?°) eine #hnliche Gleichung nachgebildet
werden, und zwar gilt

> 1
2 (7

/

1 %
i)‘l)v(x)g‘pv(g)f(g) s=

@ (x) — F (x) (42)

20) E. Schmidt: Math. Ann. Bd. 63 (1907), S. 454; Bd. 64
(1907), S. 161——174. Einige die Grundziige der Theorie iiber-
mittelnde Literatur findet sich in 1) D. Hilbert, Grundziige
einer allgemeinen Theorie der linearen Integralgleichungen,
Teubner 1924.

Hilbert Courant: Methoden der mathematischen Physik I,
Bd. 12, S. 96, 131, Springer, Berlin 1931.
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Durch Multiplikation und Integration erhilt man
nach. dem Einsetzen der Gl. (38) die Relation

‘
§ Po( () A&

(43)
die, wie vorher bewiesen [rechtes Glied der Gl.
(42)], mit q)(i;& Folglich

wird die Funktion ¢ (x) identisch mit den in der
allgemeinen Form der Gl. (39) bezeichneten. Gl.

(3) aufgeldst liefert die Grosse @ (x), ndmlich,
I3

K(xdp@Eds=Y . 2@

v=) Ay (Ay— A)

iibereinstimmt.

rp(x)=F(x)+A'SK<x,§m<§)d§ (44)

0

Man sieht, dass die Funktion ¢ (x) in der Tat der
obigen Integralglelchung geniigt. Die Entwicklung
von F (x) in eine nach den Eigenfunktionen ¢, (x)
fortschreitende Reihe ist der einzige Ausweg, um zu
einer Losung zu gelangen. Man schreibt

F(x) =490, x)+A 05 (x) + ...+ 4y 0 (x) (45)

und findet aus den Orthogonalititshedingungen der
Eigenfunktionen und spiterer Multiplikation mit
@y(x) und Integration iiber die Linge I, die Zwi-
schengrosse A,,:

14

4, = \ F (x) ¢» (x) dx

o
Die allgemeine Fouriersche
F (x) 2) lautet

(46)

Entwicklung von

4
oo

= v};lrﬁv (x) gF (&) ov (5) d&.
0
Vergleicht man das erhaltene Resultat mit der Gl

(40), so besteht eine Identitit zwischen
/8 l

z SF(§) py(§) d§ = Sfﬁv (G ds (48)
‘0 0
Da die Kraft des Dimpfers in dem Punkt x—¢
eingreift, ldsst sich Gl. (38) bei Ueberfithrung der
Koordinate x in & schreiben

F, (x) (47)

s )“u v
z(jf’)("?

P (x) = S v (6) F(8) 4§ (49)

0

Durch Aufteilung der Summe und Anwendung
der allgemeinen Fourier-Entwicklung wird die Am-
plitude an der Stelle x endgiiltig

:
v (X
r () =P+ 4 £ 28 (@ F(9 as 0)
= 1 Y
Durch Gl. (50) ist das gestellie Problem allgemein

gelost. Priziser gesagt, es gibt fiir alle Schwingzu-

21) Blochner: Vorlesungen Fourierscher Integrale, Teub-
ner, Leipzig 1932.

stinde entsprechende Losungen. Schwierigkeiten
bietet die Fouriersche Entwicklung, denn erst ihre
definitive Form ermoglicht, die Werte der Haupt-
schwingungen zu ermitteln. Wie eine Quellfunktion
F (&) anzusetzen ist, wird in einem folgenden Bei-
spiel gezeigt. Bedingungen kénnen nun an alle
Glieder gestellt werden, und zwar so, dass bestimmte
Amplitudengréssen dank des Eingreifens des Sto-
rers (oder Diampfers) nicht erreicht werden. Dies
war die tiefere Absicht dieser methodischen Ent-
wicklung, eine Relation mit einer allgemeinen Fou-
rierschen Reihe zu finden, um den spektralen Cha-
rakter der durch den Dampfer verursachten Inter-
ferenzen, welche in anderen Untersuchungen als
irgendeine Dimpfung zum Ausdruck kommen, zu
beweisen.

3. Beispiel.

Beim einfachsten Fall kann die Fouriersche Ent-
wicklung in der Integralgleichung umgangen wer-
den, sofern eine eindeutige und zugleich geniigend
«einfachey Quelle in x — £ vorhanden ist. Fiir eine

Yix,t)

Fig. 4.
- Yixt) Darstellung der rdumlich ausgedehnten
! Kraftquelle — g bis + ¢ und der Einzel-
! kraft ¥ (x,#) in Richtung der Schwin-
gungsebene [vgl. Gl. 30), (31), (32)].
=€l |+€
T

e

L §

SEV6L28

Kraft Y (x,t), die sich auf die in t periodische
Funktion ¢ f (x) - cos wg ¢ reduzieren lisst, wird
nach Gl. (37) die Koordinate y eines jeden Seil-
punktes fiir y =1 (Grundharmonische)

¥y (x)

y = cos thk"

yw%wu<m

0

Fiir f (x) setzt man die schon angedeutete Quell-
funktion ein, die ihr Maximum bei & hat und der
analytischen Gleichung

f(x) = Vﬁ

geniigt (Fig. 4). Wird die Hauptkoordinate ¢, (x)
eine Sinusfunktion mit einer Grundharmonischen

A, sin %x, geht Gl. (51) iiber in

A, T - u —w—5?
y = e kzcos (wq t) - sin (l x)\% .
in T
sin (3

v
x) dx
Die konstanten Werte in und ausserhalb dem Inte-
grale in § zusammengefasst, den Formfaktor der
Quelle u individuell eingetragen, fiihrt die Gl. (53)
iiber in

_uz x — &

(52)

(53)
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—ut(x — §)?

y%ﬂ'u cos (wq t)-sin (%x) S e

sin (%-x)dx

Das Integral der Gl. (54) ldsst sich mit einer Rei-
henentwicklung in den gewiinschten Grenzen 0...1
I6sen.

(54)

Beabsichtigt ist, den Weg des Losungsganges zu
zeigen, weshalb auf die Ueberfithrung des Integrales
in das komplexe Gebiet und der darauffolgenden
totalen Losung verzichtet ist (vgl. 2). Substituiert

man die Verinderliche x — & = ¢" und lﬁ(a'—F §=
0
/' d/y wird das Integral J der Gl. (54
1-¢
J = S e “*Vgin (1 o) da’
=1

) iibergehen in

(53)

Die Exponentialfunktion in eine Reihe entwickelt

(we')? | (ue)t

—wlx?
e =1-— 17 91 —_— .+ =

o0 ., (ua,)Zn

2 (=) —— 5 (56)

und dieselbe an Stelle der Exponentialfunktion in
Gl. (55) eingesetzt, ergibt die neue Beziehung

§
Nach der Integrationsmethode fiir Potenz- und tri-
gonometrische Funktionen bei gleichzeitiger Ein-

fithrung des Parameters p wird nach bekannten
Gesetzen 22)

2n
n 2n

1 (@)

oMZ‘ﬁ

(— -sin (A’a’)yda’  (57)

n!la-r

& 20 0 ’ " 1 ’
Sa sin(A'¢')de =pZ=:U(/l,)P+l -(n_p)!cosla

/(58)

Diese Gl. (58) der Integration der Summe Gl. (57)
zugrunde gelegt, fithrt, wenn n’ = 2n ersetzt wird,
auf das endgiiltige Integral ?*) (cos-Glieder)

— ,,u“ = (2n)!
J:,,Z=o(_1) WZ@n—p)!'
p=0

p=0,1,2,3,....

()
@

«cos Ao’

(59)

Aus Gl. (56) ist die Tatsache ersichtlich, dass die
Wahl von n (Anzahl Glieder) nur von der gewiinsch-
ten Genauigkeit abhingt und dass ausserhalb dem
Bereiche ¢ die Exponentialfunktion nahezu Null
wird. Die endgiiltige Koordinate y schreibt sich
beim Extrahieren des Faktors cos )'o

22) Handbuch der Physik VIII
Springer, Berlin.
23) Jahnke-Emde: Funktionentafeln, Teubner, Leipzig 1933.

(1925), S. 172, Julius

y=_1u#
(@)t

én )Zw

n =20,1, 2,

Greift man, um einen Ueberblick iiber die Gl. (60)
zu erhalten, auf Gl. (55) und (56) zuriick, so ersieht
man einen Vorteil, den die Exponentialfunktion
bietet. Um ein geniigend genaues Resultat zu erhal-
ten, muss die Integration praktisch nur iiber ein
kleines Gebiet £ ¢ erfolgen.

Denkt man sich fiir eine Ergiebigkeit 1 der
Quelle die konstanten Summen in B (x = const.)
unter gleichzeitiger Einbeziehung von 1'¢’ zu-
sammengefasst, so bilden die Verinderlichen in Ab-
hingigkeit von der Frequenz des Diampfers w, und
der Eigenfrequenz mit den Grossen x — & die fol-
gende Relation

, \
y = B cos (wgt) cos (% . x)- sin (]lr x) (61)

x = konst.

+cos (wot)- sin (li . x) cos (V')

)A-N”’m

Es wird nun die Aufgabe sein, die Schwebungen so
zu erzeugen (Interferenzmethode), dass nirgends
eine grosse Amplitude auftreten kann. Eine Grund-
gleichung liegt in (61) vor. Ob es vom Standpunkt
der Ermiidungsfestigkeit vorteilhaft erscheint, kurze
Wellenldngen oder ldngere mit grosseren Amplitu-
den entstehen zu lassen, wird die Erfahrung zeigen.
Am aussichtsreichsten wird die Einfithrung der Be-
dingung sein, niemals Resonanz entstehen zu lassen.

Gl. (61) hat sehr viel Aehnlichkeit mit der Be-
wegungsgleichung (10) einer gezupften Saite, abge-
sehen von der neu hinzugetretenen Quellenfunktion
exp (x — &) CGr—p),

Der noch einfachere Fall ergibt sich, wenn man
eine punktférmige Quelle (wy=10) von der Ergie-
bigkeit ?*) 1 in x=—¢ annimmt [Gl. (32]. Weiter
beachte man die Normierung der Eigenfunktionen
Gl. (16) und versuche dann die Gl. (33) durch eine
Funktionenfolge zu bestitigen. Setzt man in GIl.

(33) k2 == 4, s0 gilt 4, ==

wird dann

via?
—2—. Die Eigenfunktion

oy = A, sin (Elr—x) (62)

Die Sinusfunktion in Gl. (16) eingesetzt, ergibt
die Konstante A4,, wihrend die Eigenfunktion

@, (x) selbst wird
VX
sin ( l )

Die allgemeine Losung erhélt sodann die Form

21 = ‘sin(ﬂ. x)sin(g <
DI N)M

4
2
v=1 v

(63)

%m=ﬁ-

y=

24) Im Punkte £ entsteht eine Punktquelle von der Er-
giebigkeit 1, wenn die Kraft P =0, wird (siehe GIl. 22, 23).
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Wegen dem Faktor »? im Nenner werden die oberen
Harmonischen rasch unmerklich klein und fiir die
Grundwelle ergibt sich die sehr einfache Gleichung

21l . /= . (né&
y = 3 sin (T x) sin (T) (65)

einer stehenden Welle.
Durch diese angefithrten Gleichungen wurden
die einfachsten Fille errechnet. Es ist die weitere

Aufgabe, die Bedingungen einzufiihren, die fiir die
Interferenz (Ddmpfung genannt) der einzelnen
Wellen den vorteilhaftesten Zustand schaffen. Bei-
spielsweise verlangt man die minimalste Ampli-
tudengriosse. Da aber die Absicht leitend war, die
allgemeinen theoretischen Grundlagen vorerst her-
zuleiten, fillt die Behandlung der individuell

wiinschbaren Bedingungen aus dem Rahmen dieser
Arbeit.

La respiration artificielle en cas d’électrocution a-t-elle des chances de succés?

Communication de V’Inspectorat des installations a@ courant fort.

Il y a quelques mois, une brochure de M. W. Estler, D"
med., intitulée: «Quelles sont les chances de succés de la
respiration artificielle?», a paru comme fascicule 4 de la
série des publications du Reichsgesundheitsamt, a Berlin.
Cette brochure est basée sur des statistiques entreprises en
Allemagne sur une grande échelle, en vue de constater la
valeur pratique de la respiration artificielle. L’auteur en
tire la conclusion que la respiration artificielle n’a générale-
ment pas beaucoup de succes, et que sa valeur thérapeutique
n’est pas tant de rappeler réellement un accidenté a la vie,
que de maintenir plutét en vie une personne qui allait périr,
lorsqu’il s’agit d’un danger pour le fonctionnement du ceeur
et de la respiration. A vrai dire, ces statistiques ont surtout
tenu compte des cas d’asphyxie par le gaz d’éclairage et
I'oxyde de carbone, ainsi que des cas de noyades; car parmi
les 415 cas étudiés et ou l'on avait tenté la respiration arti-
ficielle (dans 180 de ces cas, on n’indiquait pas nettement
s’il s’agissait d’un arrét de la respiration et du ceeur), six
seulement concernaient des électrocutés. Parmi ces derniers,
ongn’avait que dans trois cas des indications précises sur les
mesures prises en vue de rappeler I'accidenté a la vie. Or,
dans ces trois cas, les tentatives avaient été commencées
aprés un délai relativement long. D’ailleurs, Estler déclare
lui-méme que le nombre de six cas d’électrocution est trop
faible pour pouvoir en tirer des conclusions sur les chances
de réussite de la respiration artificielle. La Caisse nationale
suisse d’assurances en cas d’accidents, a Lucerne, ayant attir¢
notre attention sur cette brochure, nous avons prié M. R.
Sulzer, D' med., 2 Genéve, ancien membre de la Commission
des Médecins de I’ASE, chargé de I’étude des accidents dis
au courant fort, de nous dire son avis au sujet de cette
brochure. Nous pensons que son exposé¢ sur la valeur de la
respiration artificielle en cas d’électrocution intéressera les
électrotechniciens. M. Sulzer déclare ce qui suit:

Le doute que I'on exprime parfois au sujet de la
valeur des tentatives de rappeler a la vie une per-
sonne électrocutée, en procédant principalement a
la respiration artificielle, provient du fait que le
pourcentage des succeés est relativement faible.

Pour bien comprendre quelles peuvent étre les
chances de succés lors d'un tel traitement, il faut
tenir compte des considérations suivantes. Au point
de vue biologique, la mort n’est pas un événement
instantané, mais bien un événement qui demande
plusieurs heures, voire méme plusieurs jours. En
pratique, on considére que la mort a fait son ceuvre
lorsque le coeur a cessé de battre, car on sait par
expérience qu'un cceur qui s’est arrété de battre
pendant plus d’une minute ne peut plus recommen-
cer de lui-méme a fonctionner. Cependant, il est
souvent possible de refaire fonctionner le coeur par
des moyens artificiels peu aprés son arrét, de méme
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essence qui s’est arrété. Toutefois, si la cessation de
fonctionnement du coeur a duré un certain laps de
temps, les conditions vitales de l'organisme s’affai-
blissent de plus en plus, par suite de I'arrét de la
circulation du sang, et, les uns aprés les autres
(suivant leur sensibilité), les divers organes cessent
irrémédiablement de fonctionner. Il est important
de noter que ce sont les organes essentiels, tels que
le cerveau et le cceur, qui sont les premiers a éire
irrémédiablement perdus, lors de larrét de la cir-
culation du sang.

C’est une subtilité que de parler de vraie ou de
fausse mort apparente, etc. Ces notions n’ont au-
cune valeur, car il est pratiquement impossible de
fixer des limites dans cet ordre d’idées.

Les moyens qui peuvent parfois ranimer les pul-
sations d’un cceur arrété, sont avant tout le massage
du cceur, l'excitation par l'introduction d’une ai-
guille dans le cceur, les injections intracardiales
d’adrénaline, de coramine, etc. Toutefois, en cas
d’électrocution par courant fort, il ne s’agit géné-
ralement pas d’un arrét des battements du ceeur,
mais bien de trémulations fibrillaires des ventri-
cules du cceur; les moyens indiqués ci-dessus n’ont
presque jamais donné de bons résultats dans un
pareil cas. Il est en tout cas illusoire d’attendre de
la, respiration artificielle un fonctionnement nor-
mal d’un cceur pris de trémulations fibrillaires.

En revanche, il existe des cas d’électrocution ot
il s’agit essentiellement d’un arrét de la respiration,
et ou le coeur ne présente pas le phénoméne de
trémulation des ventricules, mais continue a battre,
quoique parfois trés faiblement. Dans un pareil
cas, la respiration artificielle est le meilleur, sinon
le seul moyen, de rappeler un accidenté a la vie.
Rappeler un accidenté a la vie, cela veut dire dans
ce cas que si I'accidenté avait été abandonné a lui-
méme, il aurait irrémédiablement passé a 1’état de
mort irréversible. La valeur thérapeutique de la
respiration artificielle ressort d’ailleurs nettement
de l’article de M. Estler. Ainsi, cet auteur déclare
que dans trois cas d’arrét de la respiration, avec
battements encore perceptibles du ceceur, les trois
accidentés ont pu étre sauvés grice au pulmoteur.
Pour ceux qui n’attendent pas I'impossible de la

que l'on peut remetire en marche un moteur a | part de la respiration artificielle, les données statis-
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