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XXVIIe Année

N° 18

Vendredi, 4 Septembre ]_936

Der Verlauf von Strom und Spannung lings einer Uebertragungsleitung.

Von Ernst Peter, Ziirich-Oerlikon.

Die Grundgleichungen fiir die Berechnung von Strom und
Spannung bei Uebertragungsleitungen enthalten bekanntlich
hyperbolische Funktionen komplexer Argumente. Wihrend
sich diese Funktionen bei reellen Argumenten durch zwei
einfache Kurven darstellen lassen, die der junge Ingenieur
bei seinem Studium kennen lernt, liegen die Verhilinisse bei
komplexen Argumenten scheinbar derart kompliziert, dass
die meisten Ingenieure dariiber sehr wenig orientiert sind.
Fiir die Berechnung von kiirzeren Leitungen kann man diese
Funktionen in Reihen entwickeln und sich mit den ersien
zwei bis drei Gliedern begniigen. Der Verfasser behandelt
eine Darstellung, mit welcher man einen iiberraschend klaren
Ueberblick iiber diese Funktionen gewinnt, und zwar fiir
Argumente, deren reelle und imaginire Komponenten in be-
liebigen positiven und negativen Grenzen variieren konnen.
Dadurch ist man bei Leitungsberechnungen sowohl hinsicht-
lich der Leitungslinge als auch der Frequenz des Wechsel-
stromes an keine Grenzen gebunden. Es kann daher auch der
Schwachstromtechniker die gleiche Methode miihelos zum
Studium der Uebertragung von Sprechstromen (Tonfrequenz)
anwenden, An Stelle umstindlicher Berechnungen tritt das
einfache Ablesen aus einem Diagramm.

A. Ableitung der Grundgleichungen.

Sind bei einer Uebertragungsleitung Spannung
und Strom an einem bestimmten Punkt in ihrer vek-
toriellen Grosse (d. h. absoluter Betrag und Phasen-
verschiebungswinkel) gegeben, so kann man Strom
und Spannung fiir jeden beliebigen Leitungspunkt
berechnen, wenn die Leitungskonstanten bhekannt
sind.

Es bedeute:

s die Leitungslinge in km;
w=2nf die Kreisfrequenz;
z=r+ jx=r+ jol den Impedanz-Vektor in

Ohm pro Phase und pro km;
y=g+ jb—=g+ jwc den Admittanz-Vektor in

Siemens pro Phase und pro km;

U, den Vekior der Sternspannung an dem gegebe-
nen Punkt;

I, den Vekior des Stromes an dem gegebenen Punkt;

U den Vektor der Sternspannung an dem gesuchten

Punkit;

I den Vektor des Stromes an dem gesuchten Punkt.

Der gegebene Punkt, der als Nullpunkt bezeich-
net werden soll, liege irgendwo auf der Leitung und
diese sel nach beiden Seiten beliebig weit fortge-

621.315.051

Les équations fondamentales pour le calcul du ceurant
et de la tension dans les lignes de transmission contiennent
des fonctions hyperboliques a arguments complexes. Lorsque
les arguments sont réels, ces fonctions peuvent se représenter
par deux courbes simples que le jeune ingénieur apprend a
connaitre au cours de ses études. Par contre, lorsque les
arguments sont complexes, la situation parait si compliquée
que la plupart des ingénieurs en savent trés peu. Pour cal-
culer des lignes courtes, on peut développer ces fonctions
en séries et se limiter aux deux ou trois premiers ternmies.
L’auteur expose une méthode qui apporie une étonnante
clarté dans ces fonctions, et cela pour des arguments dont les
termes réels et imuginaires peuvent varier enire n’importe
quelles limites positives et négatives. De la sorte, le calcul
des lignes n’est plus lié @ aucune limite, tant au point de vue
de la longueur des lignes que de la fréquence du courant
alternatif. Le technicien a courant faible peut donc sans
autre utiliser cette méthode pour Uétude de la transmission
des courants a fréquence musicale. Les calculs compliqués
sont remplucés par la simple lecture d’'un diagramme.

fithrt. Wie bei allen Problemen mit vektoriellen
Spannungs- und Stromdiagrammen muss man lings
der Leitung eine positive Bezugsrichtung wihlen
und die Entfernung s von dem gegebenen Null-
punkt in der Bezugsrichtung positiv, entgegen der
Bezugsrichtung negativ bezeichnen. Auch in der
Richtung quer zur Leitung muss man eine positive
Bezugsrichtung wihlen, und zwar sei sie positiv in
der Richtung von der Erde (oder eventuell von
einem Nulleiter) nach einem Phasenleiter. In der
Zeichnungsebene, in welcher die rotierenden Vek-
toren dargestellt werden, sei die positive reelle Axe
horizontal nach rechts und die positiv imaginére
Axe vertikal nach oben gerichtet. Die Strom- und
Spannungs-Vektoren sollen zeitlich im Gegenuhr-
zeigersinn rotieren und werden derart aufgeiragen,
dass sie mit der positiv reellen Axe einen spitzen
Winkel einschliessen, wenn sie zur Zeit t=—0 in der
Bezugsrichtung einen positiven Wert haben.

Unter diesen Voraussetzungen gelten dann fol-
gende Differentialgleichungen:

dU dI

s = —Iz a4 = — Uy (1)
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Durch nochmalige Differenziation erhilt man

oL gl
dz1 aU @
T o Pk
Die allgemeine Lsung fiir U lautet
U=KeV + K1 3)

Hieraus findet man

Lide S Y Ve Y il

Ist fiir s=0, U=U, und I =1, so kann man die
Integrationskonstanten berechnen und findet

U =

1 z\ LV 1 2\ _.5:
)by
I — (o)
1 Y\ WV 1 Y\
(o ) s )

Fasst man in den Gleichungen (5) je die Glieder
mit U, und I, zusammen, so erhilt man:

U —u, @ogsm_zol/geinsyrz
<. - ®
I = I Gos s)ys— UO]/%@msw;

Wenn man die Wahl der Bezugsrichtung konsequent
durchfiihrt, so gelten diese Gleichungen unter allen Umstiin-
den, ob nun Io und Uo die gegebenen Werte am Anfang der
Leitung (Generatorenwerte), I und U die gesuchten Werte
am Ende der Leitung (Verbraucherwerte) darstellen oder ob
das Umgekehrte der Fall ist. Dies steht im Gegensaiz zu den
Ausfithrungen mehrerer anderer Autoren, welche die Lei-
tungslinge einfach als eine positive Grosse annehmen und
dann das Gleichungssystem (6) nach Io und Uo auflésen, wo-
durch sowohl Uo und U als auch Io und I ihre Plitze ver-
tauschen, wihrend die mit dem &in behafteten Glieder ihr
Vorzeichen wechseln. Dieser Vorzeichenwechsel erscheint fiir
die Zwecke dieses Artikels ungeeignet. Durch Einfithrung
der Bezugsrichtungen!) gelingt es, ihn zu vermeiden; ebenso
wird das Auflésen des Systems (6) mach Uo und Io iiber-
fliissig.

Der nétige Richtungswechsel der zweiten Glieder der bei-
den Gleichungen vollzieht sich automatisch, ohne dass am
Vorzeichen etwas zu dndern ist, da die beiden @in-Vektoren
beim Einsetzen einer negativen Leitungslinge sich um 180"
drehen, withrend die beiden (§p3-Vektoren ihre Richtungen
beibehalten. Da die Wahl der positiven Bezugsrichtung will-
kiirlich erfolgt ist, so kann sie jederzeit wieder geidndert wer-
den, wenn man nicht gern mit negativen Leitungsiingen
rechnet. Dann sind aber beide Stromvektoren um 180° zu
verdrehen, wihrend die beiden Spannungsvektoren ihre Rich-
tung beibehalten.

1) Siehe A. von Brunn: «Die Bedeutung des Bezugssinnes

in Vektordiagrammen», Bull. SEV 1922, S. 385, 449, und A.

von Brunn: «Neue Methoden zur graphischen Bestimmung
von Wechselstrom-Ortskurveny, Bull. SEV 1929, S. 65.

Die Ueberlegungen sind besonders wichtig bei Leitungen
mit wechselnder Energiefluss-Richtung, bei welchen die Be-
griffe «Anfang» und «Ende» ihre Bedeutung verlieren.

Die Wirkleistung soll dann positiv sein, wenn sie in der
Bezugsrichtung fliesst, Strom und Spannungsvektor bilden
dann einen spitzen Winkel. Bei einem Wechsel der Bezugs-
richtung wird dieser Winkel stumpf, da der Stromvektor um
180° verdreht wird, wihrend der Spannungsvektor unver-
dndert bleibt. Die frither positive Leistung wird dadurch
negativ.,

Die meisten Autoren verwenden die Gleichungen
(6) mit hyperbolischen Funktionen. Da jedoch in
den technischen Handbiichern fiir Kreisfunktionen
ausfiihrlichere Formelsammlungen zur Verfiigung
stehen, welche ohne weiteres auch fiir komplexe
Argumente gelten, sollen die Gleichungen (6) auf
Kreisfunktionen umgeformt werden. Dies ist um so
eher berechtigt, als bei verlustlosen Leitungen oder
bei sehr hohen Frequenzen ohnehin Kreisfunktio-
nen mit reellen Argumenten auftreten. Es gelten
die Beziehungen

cos jx —=Co8x €03 jx—cosx
tg x=j%Tgx Tg jr=jtgx

sin jx=j&@inx Gin jx—=jsinx %
(7

Wenn man diese Beziehungen in Gl. (6) einsetzt, so
ergibt sich
U = U, cos jsVﬁ-*-Ioj]/?sin isVyz

I =1, cosjs]/ﬁ—i— Uoj]/%sin jsW

Auch diese beiden Gl. (8) gelten in allen Fillen

ohne Vorzeichenwechsel.

(8)

Die Summe einer cos- und einer sin-Funktion
kann man wie bei jeder Wellenbewegung auch hier
mit den komplexen Argumenten in eine einzige
Kreisfunktion verwandeln nach folgendem Ansatz:

U= 4 cosf(js]/yiz—{— a) = A cos'a  (9)

wobei ¢ = «, + js]/y’z ist; A und ¢, sind jetzt die
zu bestimmenden Integrationskonstanten.
Aus Gl. (9) erhilt man
U=A (cos g, cos js |/ yz— sin a, sin js}/vz)
Aus Gl. (8) erhilt man

. z
L
U= 4 (jgcosjs]/yz—}——/i*— sin jsl/yz)

Da beide Gleichungen identisch sind, wird

. z
U ~ih)/
cos oy = — sin oy = —— "

A
Quadriert und addiert ergibt sich

vi- 13 Z

2 in2 - A
cos? o) -+ sin? ¢, = YE =1
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, , 3 B. Das Hilfs-Cosinus-Diagramm.
Hieraus 4 = ]/ v, - Iy — 10) Die Formel (11) kann noch etwas umgeformt
Damit ergibt sich endgiiltig werden. 3 i
by z cos ay = = — 17
U ) =J4 3 _ Ii= V1+ tg?e
Cos ay = ——_"Oi* Sl ¢y = ———— Ug y
z 3
]/ Us-15 ]/Uﬁ -2 D pie 61 (1) und (17) sind ziemlich kompliziert
— ' und es wiirde daher fiir den praktischen Betriebs-
tg o, = — Jil/ 2 mann zu umstindlich sein, den cos a, jedesmal nach
0 UV ¥ diesen Formeln zu berechnen. Es wurde daher in
Aehnlich erhilt man dem Hilfs-Cosinus-Diagramm nach Fig. 1 die Be-
I=B cos (js}yz + f,) =B cos (12) | ziehungen zwischen den Vektoren cos «, und
wobei f— p, + js1/y ist i Iﬁoo‘l/%
B = V g U(Z)% (13) | graphisch dargestellt.
— Angenommen, der Vektor jtga, habe den abso-
s ]/y luten Betrag ¢z und den Richtungswinkel 7. Fiir kon-
o I, in g = °V = stante Werte von ¢ und variable Werte von ¢ erhilt
SN y o v (14 | a0 Kurven, die in Fig. 1 mit 7=0°, 1=6",
] - U(z:; Vlg— U= U9 | ;=12 ... usw. angeschrieben sind.
1 Fir konstantes ¢ und variables 7 dagegen ergeben
tg By, = _-_% X sich Kurven, diemitt =108, ¢t =1, ¢t = 1,25...
Bl == g ‘ usw. angeschrieben sind.

Fig. 1.

Das Hilfs-Cosinus-Diagramm.

I z A
] 2 s S W e T
Es sei entweder j tgo = — ]/; =t

. U v P
oder j tg 0 =TV%: toedT

Dann zeigt dieses Diagramm den Cosinus
als Funktion des Tangens, d. h. als Funk-
tion von ¢ und 7. Der Richtungswinkel ¢
ist in Intervalle von 6 Grad eingcteilt: fiir
den absoluten Betrag ¢ wurden folgende
Werte angenommen:
t=01—012 — 0,16 — 0,2 — 0,25 — 0,316
— 04 —05—062 —08 —09% —1—
1,11 — 1,2 — 1,6 — 2 — 25 — 3,16 —
4—5—62—8—10
Die ersten Werte liegen in der Nihe der
Punkte 41 und —1 und kénnen in der Ver-
kleinerung nicht mehr genau abgelesen
werden.

S

e

w
u

Zwischen den Grossen 4, B, «,, §, bestehen die Be- Mit Hilfe des Diagrammes nach Fig. 1 findet man
ziehungen daher zu einem beliebigen Wertepaar (¢, 7) leicht
4\ den zugehorigen Vektor cos «, (bzw. seine Spitze)
z Is den Schnittpunkt der beiden entsprechenden

skt B ¢ ¢ I | 15) | als pun entsprec

( B ) y g% t& (15) Kurven «t=konstant» und «7 = konstanty.
Fieruis g, — [, == 200" Fiir eine bestimmte gegebene Leitung ist der

Die Gl (9) und (12) kénnen jetzt noch etwas | Ausdruck ]/_%_ eine konstante Grisse. Normaler-
vereinfacht werden. Unter Zuhilfenahme der Gl. Yy

(9) bis (14) ergibt sich weise will man die Spannung U, an einem Verbrau-
== = 6k cher-Punkt der Leitung konstant halten. Dann ist
U= A4cosa = cosa]/Uﬁ——I?,—zUo (16) I i
Yy cos «a, von dem Ausdruck Ui *_ der Strom I, die ein-
0

T Yy
I=BcosB — cos ]/I§~ Uﬁ% — [ cos f3 zige Variable und das Diagramm Fig. 1 stellt den

cos f3, cos e, als Funktion des Stromvektors dar. Wenn
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¥

der Wert I,="U,

als Normalstrom bezeich-

net wird, dann bedeuten die in Fig. 1 eingetragenen
Werte «t=— konstant» einfach ein Vielfaches des Nor-
malstromes.

Das Hilfs-Cosinus-Diagramm kann aber auch in
gleicher Weise fiir den cos §, benutzt werden. Die-
U1/ ¥

=0

1, l/ N
also bei konstanter Spannung ebenfalls eine Funk-
tion des Strom-Vektors I,. Nur muss man jetzt des-
sen reziproken Wert nehmen. Aus diesem Grunde
wurde das System der Kurven «t=—konstanty in
Fig. 1 derart gewihlt, dass zu jeder Kurve «t = kon-
stant» auch die Kurve des reziproken Wertes von #
vorhanden ist.

ser ist dann eine Funktion von jtg f,=

C. Das Cosinusdiagramm.

Das eigentliche Cosinus-Diagramm stellt die Be-
ziechungen dar zwischen dem Argument-Vektor o

Wird dagegen p konstant gelassen und ¢ variiert,
so erhilt man eine Hyperbel mit den Halbaxen
cos p und sin p. Der halbe Brennpunktabstand wird

]/(cos p)2+(sinp)Z=1

Gibt man nun sowohl p als auch ¢ der Reihe
nach verschiedene Werte, so erhilt man ein System
von sich rechtwinklig kreuzenden konfokalen El-
lipsen und Hyperbeln.

Fig. 2 stellt ein Cosinusdiagramm dar, in wel-
chem sowohl reelle als auch imaginire Komponen-
ten des Argumentes g —p + jg in Intervallen von
n
30
valle in beiden Richtungen gleich sind, entsteht ein
System von krummlinigen Quadraten 2).

Wie bei reellen Argumenten, so gilt auch hier

cos (p + jg) =cos (—p— jq)

Im Diagramm nach Fig. 2 sind nur die Werte fiir
0 < p < + 180° mit den zugeh6rigen Werten von ¢

= 6 Grad sich sprungweise dndern. Da die Inter-

© ki
3 L - 3 .8 .
< 103 % L 3 r
-« % Bo= e T——r—d4 §
, .:’ = g=|-54 A Q§ »
"~ =) bd id
<, 7?» Q;,
< 2 q=|-48 g“, )?
.J
2, % q=|-42 N 5
L a Tig. 2.
., a=1-36 0
%, d
2., =|-30 n .
35 C 20 8 o Das Haupt-Cosinus-Diagramm
ou, A g=|-24 o
72 peh® ) !
o, 9--18 P zeigt den Cosinus als Funktion sei-
L] p=*
9=1-12 s
y nes Argumentes. Reelle und ima-
=+ 12 g=)-6 p=+6
Z= gindre Komponenten des Argumen-
pus »
a=lvs tes sind in Intervalle von 6 Grad
put 174 Puss T
21412 = 35 eingeteilt. Zu jedem Punkt
,.M“ q=|+18 Pt " . i
des Diagrammes gehort noch ein
82 | 9=]e24 | Pouzg
° 2 zweiter Argumentwert, dessen beide
9= 0,
o = K t
& ., A omponenten entgegengesetztes
o 3 .
¥ R e A Vorzeichen haben.
. ,
o $ Y &
N %
‘o' ‘9 -k 6& ®
<
¢ »'.P =45 A K
& F *’.% T
=
d F ¥ a=)+60 T &
q é 2 L

P=t103)
Dus 95
g@e=d
gL=d

>
1
SEVES16 a

und dem Funktions-Vektor cos a. Das Argument o
der Cosinus-Funktion kann in der Form

a=p * jq
geschrieben werden, wo p und q reelle Zahlen sind.

Man kann jetzt ohne weiteres bekannte Formein
aus der Trigonometrie anwenden und erhilt

cos g =cos (p + jg) = cos p cos jq — sin p sin jg
=—cospCo3g—jsinp&ing=m + jn (18)
Wird in Gl. (18) ¢ konstant gelassen und p va-
riiert, so stellt sich die Cosinusfunktion (m + jn)

als eine Ellipse dar mit den Halbaxen €03 ¢ und
@in ¢. Der halbe Brennpunktabhstand wird

V(€03 ¢)2 —- (Gin ¢)>=1

aufgetragen. Zu jedem Punkt des Diagrammes ge-
hort also noch ein zweites Wertepaar (p, g), dessen

beide Komponenten entgegengesetztes Vorzeichen
haben.

D. Das Tangensdiagramm.

Das Tangensdiagramm stellt die Beziehungen
dar zwischen dem Argument-Vekior ¢ und dem
Funktions-Vektor tg a.

Eine wichtige Eigenschaft der Tangensfunktion
findet man folgendermassen: Es ist

e _ 202 cosa +jsine  1-4jtge

e = -
cos @ —jsina l—jtga

2) S. Literaturhinweise INrn. 8 bis 10 am Schluss.



XXVII¢ Année 1936

BULLETIN No. 18

505

8-2q+j<2pim= ]:tga—i—l tga—]: (19)
jtga—1 tga +j
In Fig. 3 sei OA =+
OB=—j
OP =tga
Dann wird
AP 1 tga —j _ ijerim
—_—— == ¢ “
BP Ty tea -+ j
Hieraus ergeben sich folgende Sitze:

r
a) Der absolute Betrag von -!
-

2

ist gleich &2

Bleibt ¢ konstant, so bleibt dieser absolute Betra%

konstant und der Punkt P beschreibt einen Kreis,
der entweder den Punkt A = + j oder den Punkt
B=——j umschlingt. In
der Geometrie wird er ap-
polonischer Kreis genannt.

b) Der Winkel, den die
A beiden Abstinde r, und

r, einschliessen, ist 2p + 7.
f Bleibt p konstant, so
Fig. 3.

P

bleibt dieser Winkel kon-
stant und der Punkt P be-
schreibt einen Kreis durch
die Punkte A und B.

Gibt man den Grissen
p und ¢ verschiedene
Werte, so erhilt man zwei Systeme von sich recht-
winklig kreuzenden Kreisen. Die Kreise des einen
Systems umschliessen alle entweder den Punkt + j

oder — j, die Kreise des andern Systems gehen alle
durch beide Punkte + j und — j hindurch.

Fig. 4 stellt ein Tangensdiagramm dar, in wel-
chem wie beim Cosinusdiagramm nach Fig. 2 beide
Komponenten des Argumentes in Intervallen von
7

30

SEVS517

= 6" sich dndern.3)
Wie bei reellen Argumenten, so gilt auch hier

tg (p+ jgtna)=tg (p+ jq)

wobei n eine beliebige, ganze, reelle Zahl ist.

Im Diagramm nach Fig. 4 sind nur die Werte fiir
0°< p°<180° eingetragen mit den zugehdrigen
Werten von q. Zu jedem p-Wert kann also noch n
mal 180° addiert oder subtrahiert werden.

E. Die verlustlose Leitung.

Nach den Vorbereitungen der ersten Abschnitte
sollen jetzt die Leitungsprobleme behandelt und zu-
nichst der Idealfall der verlustlosen Leitung be-
trachtet werden. Es sei also sowohl der ohmsche
Widerstand ldngs der Leitung als auch die ochmsche
Ableitung quer zur Leitung gleich Null.

r=0 und g=0
Dann wird
yz= jxjb——xb=—w?lc

3) S. Literaturhinweise Nrn. 8 bis 10 am Schluss.

Fiir Freileitungen gilt mit grosser Anndherung

1)\® fd
le = |— e
v, Vg

wo v; die Lichtgeschwindigkeit ist. Dann wird

(20)

2
w . )
yz = —|— also }/yz = j— und
UL v
jsVys = —s (21)
UL
./ q=+36
X gk )
2, % o8 § &
& g=ltez
~‘,qg 9""12
q={*4g8
qsltsy
— Lol o) 55 p=+66
p=—+120] Pev-60
126 Prrs,
° 9|
143
|42
q={+18
g=|+12
%“ﬁgﬁ-ﬁ%%ﬁq.w.\,g,@Rwowmg
o | e
b I I P < I I O I 4
N EEEEREEEEEENEEE
q=|12
q=|-18
=|-24
=|-30,
R F. A
7
A um D
7 5!’C B\P"
1 > 1
=+120] 1 | p=t
'
1 )|~ !
=+ 14 o 7 P2s.65
\ i
N =|-48 4
D’* A X Ix,
P> g=|-42 g .
3
D QRIS 3 X &
P oo & N\ S,
* - -9
3=936
173
SEV5518
Fig. 4.

Das Tangens-Diagramm

zeigt den Tangens als Funktion seines Argumentes. Reelle und

imaginidre Komponente des Argumentes sind in Intervalle von

6 Grad= %

nen zum Argument noch n mal 180 reelle Grade addiert oder
subtrahiert werden.

eingeteilt. In jedem Punkt des Diagrammes kon-

Damit wird

w o .
azao—sv—:P+JQ§ Oy = Po +]q0

L

w
P—Po=—5—3 4—¢=0; g=gq,
UL
Das konstante Glied g, ist eine komplexe Grosse,

das variable Glied s ’Uidagegen rein reell. Bei einer
L
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Verinderung des Weges s éndert sich daher nur die
reelle Komponente p des Argumentes a, wihrend
seine imaginire Komponente ¢=g¢q, konstant
bleibt. Nach den Abschnitten C und D beschreibt
daher der Cosinusvektor eine Ellipse, der Tangens-
vektor einen appolonischen Kreis.

Nach Gl (11) und (14) ist

V jtgﬂ=~[1~]~]/%

Die Grosse ]/i ist die Wellen-Impedanz, ihr
Yy

jtga =

reziproker Wert ]/ Y de Wellen-Admittanz. Die
z

Grosse T soll die Belastungs-Impedanz, die Grosse
% die Belastungs-Admittanz genannt werden. Es
ist also

- Belastungs-Admitlanz

Jtea Wellen-Admittanz

(22)
ity Belastungs-Impedanz
tg f= Wellen-Impedanz

In diesen beiden Ausdriicken sind die Nenner
der Briiche Konstante fiir eine gegebene Leitung,
nur die Zihler sind variabel. Die Tangensdia-
gramme zeigen also unmittelbar den Verlauf der
Belastungs-Admittanz und Impedanz lings einer
Leitung. Man kann daher das Diagramm des Vek-
tors tg ¢ das Admittanz-Diagramm, dasjenige des
Vektors tg f das Impedanz-Diagramm nennen.

Zahlenbeispiel 1.

Es soll jetzt ein praktisches Beispiel durchge-
rechnet werden und es sei dazu die von den Berni-
schen Kraftwerken A.-G. und der Kraftwerke Ober-
hasli A.-G. betriebene 150 kV-Leitung von Innert-
kirchen iiber den Briinigpass, durch das Emmental-
Bickingen-Pieterlen nach Miihleberg gewihlt. Es
ist eine Drehstrom-Doppelleitung. Die sechs Leitun-
gen sind ungefihr in einem regulidren Sechseck an-
geordnet. Die totale Leitungsldnge betrigt 124,1 km.

Aus dem im Bull. SEV 1931, S. 212, Fig. 7, ab-
gebildeten Profil der genannten Leitung und dem
Leiterdurchmesser von 18,85 mm kann man die Lei-
tungskonstanten ! und ¢ berechnen. Man erhilt fiir
die Doppelleitung

1=0,64 mH/km
¢=0,018 xF/km

Im genannten Bulletin SEV sind gemessene
Werte nur fiir die Einfachleitung angegeben. Sie
decken sich mit den vom Verfasser ebenfalls be-
rechneten Werten [ —=1,32 mH/km und ¢ = 0,00875
uF/km fiir die Einfachleitung. Im folgenden wird
nur die Doppelleitung behandelt. Man erhilt zu-
néchst

l . 0,018.10° ﬁF
m k

m

lc = 0,64.103

1 o
2 =
(2,95.105 k%’)

v ist die Wellenfortpflanzungsgeschwindigkeit

- 00 (8 Yo
= 0,115-10 (km) =

i s ‘ m .
unserer Leitung; sie ist mit 2,95-105 —— nur wenig
s

kleiner als die Lichtgeschwindigkeit v;, die bekannt-
lich 3-10° k—;‘i ist.

Nimmt man an Stelle der mas-
siven Seile unendlich diinnwandige Hohlseile, so
fdllt das magnetische Feld im Innern der Leiter
weg und damit wird die Induktivitit nur noch 0,615
mH/km. Dann wird die Wellenfortpflanzungsge-
schwindigkeit genau gleich der Lichtgeschwindig-
keit, also v=v;.

Wenn v=v; ist, erhdlt man fiir eine 100 km
lange Leitung bei einer Frequenz von 50 Per./s

s2xaf 100-2 7-50 T

o, = 300000 = 30— 00md

sV ye=

Dies ist aber im Cosinus- und im Tangens-Diagramm
nach Fig. 2 und 4 gerade die Intervallendifferenz
zweier benachbarter Kurven. Sie wurde absichtlich
so gewihlt, um bei 50 Per./s mit einem Blick gerade
100 km mit ziemlich grosser Genauigkeit ablesen
zu konnen. Es ergibt sich nun:

Fiar 50 Per./s entspricht einer ganzen Ellipse im
Cosinus-Diagramm angenihert eine Leitungsstrecke
von 6000 km, einem ganzen appolonischen Kreis
des Tangensdiagrammes eine Strecke von 3000 km
bei verlustlosen Freileitungen.

Da jedoch in dem vorliegenden Beispiel die Fort-
pflanzungsgeschwindigkeit etwas kleiner als die
Lichtgeschwindigkeit ist, so erhélt man fiir 100 km
6,1 Grad und im Cosinus- und im Tangensdiagramm
fitir die vorgedruckte Intervallendifferenz von 6 Grad
nur 98,5 km.

Die Leitung von Innertkirchen nach Miihleberg
hat eine Linge von 124,1 km, was einem Argument
von 6,1-1,24=17,56 Grad entspricht. Die Wellen-
Impedanz wird

0,64 - 103
0,018.10°

Dleser Wert ist bei verlustlosen Leitungen rein reell.

Die verkettete Nennspannung betrigt 150 kV, die
Sternspannung U somit 86,6 kV. Bei Vollbetrieb
des Kraftwerkes Handeck stehen in Inmertkirchen
4-28 000 =112 000 kVA zur Verfiigung, die nach
Miihleberg transportiert werden konnen. Der Be-
triebsstrom wird dann 430 A. Der Normalstrom fiir
die Doppelleitung wird:

b il z == Spannung A
*7 70 z T Wellenimpedanz
= 460 A,

= 188,5 Ohm

86600 V
188,5 Ohm
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Man erhilt somit:

Betriebsstrom 430

=160 = 0,935

Diese Leistung werde unter einem Leistungsfaktor
cos ¢ von 0,866 in Innertkirchen mit voreilender
Spannung von Innertkirchen nach Miihleberg iiber-
tragen, was einem Verschiebungswinkel von =+ 30
Grad zwischen Spannungs- und Strom-Vektor ent-
spricht. Die Belastungsimpedanz ist dann

U _ 86600V &
G 430 A

Hieraus ergeben sich nach Gl. (22) fiir die Tangens-
Vektoren

Normalstrom

= 201 &3° Ohm

188,5

Flge, = S0l T® = 0,935 ¢ =73
J 30
jtgfy = %%5— == 10T 5%

Um nun den cos ¢, zu bestimmen, wird das Hilfs-
Cosinus-Diagramm nach Fig. 1 beniitzt und dort der
Schnittpunkt der beiden Kurven «t=—0,935» und
«7=-—30°» gesucht. Um cos g, zu bestimmen, wird
der Schnittpunkt der beiden Kurven «z=1,07» und
«t ==+ 30°> gesucht. Man erhilt auf diese Weise
die beiden Punkte A und B in Fig. 1.

Horizontale und vertikale Komponenten der
Punkte A und B werden nun mit dem MaBstab oder
Zirkel von Fig. 1 auf Fig. 2 iibertragen. Es ist je-
doch von grossem Vorteil, wenn man sich von dem
Haupt-Cosinus-Diagramm nach Fig. 2 einige Exem-
plare auf durchsichtigem Papier herstellt, und zwar
in demselben MaBstab wie Fig. 1%). Mit diesen
kann man einfach die beiden Fig. 1 und 2 aufein-
anderlegen und die beiden gefundenen Punkte A
und B von Fig. 1 auf Fig. 2 iibertragen. In Fig. 2
liegen jetzt beide Punkte auf derselben Ellipse,
nimlich «g =— 37,5°», Punkt A liegt auf der Hy-
perbel «p=138,8"», Punkt B auf der Hyperbel
«p=—48,8°>. Man findet Gl. (15) bestitigt, nach
welcher a, — B, = # 90° ist. Dies gibt eine wertvolle
Kontrolle.

Wie weiter oben berechnet, ist fiir die ganze
Leitung von Innertkirchen bis Miithleberg der Wert

js ]/ yz="1,56 Grad. Wenn der Bezugssinn von
Innertkirchen bis Miihleberg positiv gewidhlt wird
(es sei hier nochmals auf die Ausfithrungen im Ab-
schnitt A betreffend Bezugssinn verwiesen), so er-
hilt man fiir s in Mithleberg einen positiven Wert,

somit wird s — positiv. Damit wird in Miihleberg
v

a— s = 138,80 — j 37,50 — 7,56°

= 131,240 — j 37,50

By— % — 48,89 —j 37,50 _ 7,56°

= 41,240—j 37,50

4) Transparente Diagramme konnen vom Verfasser (Chalet-
weg 9, Ziirich 11) bezogen werden.

Damit ergeben sich die Endpunkte C und D der
Spannungs- und Stromkurven (Fig. 2).

Man findet damit den allgemein giiltigen Satz:
Bei verlustfreien Leitungen verdrehen sich die Vek-
toren cos ¢ und cos § im Uhrzeigersinn, beim Wan-
dern auf der Leitung im Sinne des Wirkleistungs-
flusses (wenn man die Strom- und Spannungs-Vek-
toren zeitlich im Gegenuhrzeigersinn rotieren lisst,
was heute als das Normale gilt). Der Satz ist un-
abhéngig von der Wahl der Bezugsrichtung.

Nach Gl. (16) ist U=A cos a und I =B cos §.

i,-]/z
Y,

Da bei verlustfreien Leitungen 'I/’i rein reell ist,
¥

Nach Gl (15) ist %:—..

so stehen die Vektoren 4 und B senkrecht aufein-
ander. Um daher aus dem Verlauf der Cosinus-Vek-
toren den Verlauf der Strom- und Spannungs-Vek-
toren in ihrer richtigen gegenseitigen Lage zu fin-
den, wird das Spannungsdiagramm unveridndert ge-
lassen und das Stromdiagramm um 90 Grad in dem
Sinne verdreht, dass zwischen den gegebenen Vek-
toren U, und I, der gegebene Phasenverschiebungs-
winkel von 30° erscheint. Man erhilt damit zwei
senkrecht aufeinanderstehende kongruente Ellipsen

SEV5519
Fig. 5.

Spannung- und Strom-Diagramm der verlustlosen Leitung in
richtiger gegenseitiger Lage.

nach Fig. 5. Je ein kleines Teilstiick dieser Ellipsen
stellt den Vektorenverlauf dar zwischen den gege-
benen Punkten A, B am Anfang und C, D am Ende
der Leitung. Um den MafBstab der Kurven zu be-
stimmen, trigt man einfach die gegebenen Strom-
und Spannungswerte in die gefundenen Anfangs-
werte der Cosinusdiagramme ein und findet dadurch
leicht mit dem Rechenschieber, wieviel Volts und
Ampéres einem ecm Vektorldnge entsprechen.
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Die in Fig. 5 eingetragenen Zahlen sind Effektiv-
werte. Da die rotierenden Ellipsen den rdumlichen
und zeitlichen Verlauf von Strom und Spannung
darstellen, sollten eigentlich Scheitelwerte eingetra-

gen werden, was durch Multiplikation mit VE ge-
schehen kann. An der Form der Kurven wird da-
durch natiirlich nichts gedndert. Samtliche Glei-
chungen gelten sowohl fiir Scheitel- als auch Effek-
tivwerte.

Unendlich lange Leitung.

Fiir Leitungen von weniger als 200 km Linge
findet man bei 50periodigem Wechselstrom zwi-
schen Anfangs- und Endvektor meistens nur ein
kurzes Stiick einer fast geradlinigen Kurve. Interes-
sant werden die Verhiltnisse bei dieser Frequenz
erst bei grosseren Leitungslingen. Es sei daher an-
genommen, die behandelte Leitung sei nur ein Teil-
stiick einer grossen europiischen Sammelschiene;
sie habe also eine Linge von einigen tausend Kilo-
metern. Der Einfachheit halber wird angenommen,
am gegebenen Anfangspunkt seien Strom und Span-

;o
nung in Phase, und zwar sei %]/l > 1. Dann
0 z

wird U, zur grossen, I, zur kleinen Halbaxe einer
Ellipse. In Fig. 5 werden beide Anfangsvektoren
in die Horizontalrichtung nach links gelegt. Dann
ergibt sich folgender Verlauf:

s==0 km. U ist ein Maximum, I ein Minimum,
beide sind in Phase (Punkte 1,17).

s=750 km. U hat abgenommen und sich um
weniger als 45° verdreht, I hat zugenommen und
sich um mehr als 45° verdreht, U eilt I um einen
maximalen Winkel vor (Punkte 2,2").

s=1500 km. U ist ein Minimum, I ein Maxi-
mum, beide sind wieder in Phase. Beide sind gegen-
itber s =0 um 90° verdreht (Punkte 3,3").

s=2250 km. U hat zugenommen, I hat abge-
nommen. Wir haben wieder eine maximale Phasen-
verschiebung zwischen U und I, jedoch im umge-
kehrten Sinn; dieses Mal eilt der Strom der Span-
nung vor (Punkte 4,4").

s=23000 km. U und I haben gleiche Grosse, wie
bei s =0, sind jedoch um 180° gegen jenen Punkt
phasenverschoben (Punkte 5,5).

Zwischen s=—3000 km und s — 6000 km erschei-
nen wieder die genau gleichen Werte wie zwischen
s=0 km und s=3000 km; nur sind alle um 180"
verdreht.

Bei hoheren Frequenzen, die z. B. in der Schwach-
stromtechnik beim Uebertragen von Sprechstromen
vorkommen, werden diese Distanzen natiirlich ver-
kiirzt. So erhilt man z. B. bei einer Frequenz von
2000 Per./s fiir eine ganze Ellipse des Cosinusdia-

grammes nur eine Distanz von 150 km.

Interessant ist nun auch die Betrachtung der Tan-
gensdiagramme. Es werden daher die fiir Zahlen-
beispiel 1 berechneten Werte von tg a, und tg f, in
ein Tangensdiagramm nach Fig. 4 eingetragen und
dadurch die zwei Punkte A und B erhalten. Wenn

man an diesen Punkten die Werte von p, und ¢,
abliest, so miissen sie mit den aus den Cosinusdia-
grammen herausgefundenen Werten iibereinstim-
men. Dies ergibt wieder eine wertvolle Kontrolle.
Insbesondere findet man, dass beide Punkte A und
B auf demselben appolonischen Kreis ¢ =— 37,5
liegen. Sie liegen ferner auf zwei Kreishégen p—
138,8° und p—48,8°, die sich zu einem vollstindi-
gen Kreis durch die Punkte + j und — j ergiinzen.
Man findet nun leicht auch die Werte fiir den End-
punkt der Leitung; sie liegen auf demselben appo-

lonischen Kreis (Punkte C und D).

Das Tangensdiagramm zeigt den Verlauf der Be-
lastungsimpedanz und der Belastungsadmittanz. Bei
einer sehr langen Leitung findet man:

Fir s=20, 3000, 6000 km ist die Impedanz ein
Maximum, die Admittanz ein Minimum, fiir s—=:
1500, 4500 km ist die Impedanz ein Minimum, die
Admittanz ein Maximum (Punkte 1,1°, 3,3").

Im Tangensdiagramm kann man besonders gut
den Phasenverschiebungswinkel ablesen; er er-
scheint als Winkel zwischen dem Tangensvektor
und der vertikalen Axe. Man findet fiir s =750,
3750 km eine maximale Voreilung des Spannungs-
vektors (Punkte 2,2"), fiir s = 2250, 5250 km eine
maximale Voreilung des Stromvektors (Punkte 4,47),
wihrend fiir s =0, 1500, 3000, 4500, 6000 km Strom
und Spannung in Phase sind. Den Phasenverschie-
bungswinkel kann man berechnen:

¢ _ sin 2p
By = Gin2q

Da &in 2 ¢ und die Wirkleistung konstant blei-
ben (es ist ja eine verlustfreie Leitung angenom-
men), so ist sin 2 p direkt ein Mass fiir die Blind-
leistung.

Blindleistung

Wirkleistung Ked)

Man bezeichnet gewohnlich Kondensatoren als Blind-
leistungserzeuger, Drosselspulen (Asynchronmotoren usw.) als
Blindleistungsverbraucher. Diese Annahme ist willkiirlich;
es ist auch schon die gegenteilige Annahme vorgeschlagen
worden. Es soll jedoch hier an der erstgenannten Delinition
festgehalten werden. Dann fliesst bekanntlich Blindleistung
von einer iibererregten zu einer untererregten Synchron-
maschine. Fiir lange Leitungen findet man:

Die Blindleistung wird in den Gebieten hoher
Spannung (s=0, 3000, 6000 km) erzeugt, fliesst in
beiden Richtungen nach den Gebieten hohen Stro-
mes (s ==1500, 4500 km) und wird dort verbraucht.

Bei langen Leitungen wird also die Blindleistung
nicht immer von Generatoren oder Phasenschiebern
geliefert und von den Stromverbrauchern ver-
braucht, sondern sie entsteht und verschwindet auf
der Leitung selbst. Sie kann bei 50periodigem
Wechselstrom auf einer verlustfreien Leitung auf
keinen Fall weiter als 1500 km transportiert werden
(woran man allerdings auch kein Interesse hat).

Die Wirkleistung fliesst natiirlich immer in der-
selben Richtung; es gibt daher Gebiete, in welchen
Wirk- und Blindleistung gleichgerichtet sind (s=
750, 3750 km) und solche, in welchen sie entgegen-
gerichtet sind (s = 2250, 5250 km).
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Leerlauf und Kurzschluss.

Ist an einer Stelle der Leitung der Strom gleich
Null, so fallen die Cosinusdiagramme in die Brenn-
strecke hinein, die Tangensdiagramme in die unend-
lich lange horizontale Axe. In einiger Entfernung
vom Leerlaufpunkt ist der Strom nicht mehr Null,
Strom- und Spannungsvektor stehen auf der ganzen
Leitung senkrecht aufeinander.

Aus den Diagrammen findet man leicht, dass in
1500 km Entfernung von diesem Leerlaufpunkt ein
Kurzschlusspunkt liegt, in 3000 km Entfernung wie-
der ein Leerlaufpunkt. Man kann sich eine beliebig
lange Leitung vorstellen, auf welcher Leerlauf- und
Kurzschlusspunkte in Intervallen von 1500 km im-
mer abwechseln. Dabei ist es nicht nétig, dass an
allen Kurzschlusspunkten eine leitende Verbindung
zwischen den Phasenleitern vorhanden sei, es ist
einfach die Spannung Null, ebenso ist auch nicht
an allen Leerlaufpunkten ein Leitungsunterbruch,
es ist einfach der Stromvektor Null.

Es wird nur Blindleistung transportiert, der Zu-
stand bleibt bei einer absolut verlustfreien Leitung
ohne #ussere Energiezufuhr dauernd bestehen. Wir
haben ein System von Schwingungskreisen (Reso-
nanz). Es sind reine stehende Wellen auf der Lei-
tung.

Eine Stromschleife, die an einem Ende offen, am
andern kurzgeschlossen ist, kann Schwingungen mit
ihrer Eigenfrequenz ausfithren. Diese ist z. B. bei
einer 100 km langen Leitung 750 Per./s. Es kénnen
auch Schwingungen mit einem ungeraden Viel-
fachen der Grundfrequenz auftreten.

Leitung ohne Blindleistung.
Wenn die Belastungsimpedanz nach Grosse und

Richtung genau gleich der positiven oder negativen
Wellenimpedanz wird, erhélt man

=t

tg B, = _J.[—O]/""z“ = tJ

Das ganze Tangensdiagramm schrumpft in den
Punkt + j oder — j zusammen, ¢ wird unendlich
gross. Die Cosinusdiagramme werden zu unendlich
grossen Kreisen. Die Amplituden 4 und B nach
Gl. (10) und (13) werden jedoch unendlich klein,
so dass die Produkte 4 cos ¢,=U, und B cos f,=
I, Werte von endlicher Griosse werden (es sind ja
die gegebenen Spannungs- und Stromvektoren). Die
Vektoren U und I behalten immer denselben abso-
luten Betrag und verindern nur ihre Richtung. Sie
bleiben dauernd miteinander in Phase oder um 180°
phasenverschoben, je nach der Wahl des Bezugs-
sinnes; es wird keine Blindleistung transportiert.

Wie man sieht, kénnen sowohl die Tangens- als
auch die Cosinusvektoren alle moglichen Werte in
der unendlichen Ebene annehmen, auch wenn Strom
und Spannung nicht unendlich gross werden. Es
empfiehlt sich daher, mehrere Cosinus- und Tan-
gensdiagramme in verschiedenen Mafstiben anzu-

fertigen, fiir unendlich grosse Werte von ¢ wird das
Cosinusdiagramm zu einem System von konzentri-
schen Kreisen und Radien.

F. Die Leitung mit Verlusten.
Nachdem im vorangegangenen Abschnitt die ver-
lustfreie Leitung, die natiirlich einen unerreich-
baren Idealzustand darstellt, ausfiihrlich behandelt
wurde, soll jetzt der Einfluss der Leitungsverluste
untersucht werden. Man erkennt sofort, dass sich

der Wert des Ausdruckes }/yz indern muss. Es soll
daher gleich das im Abschnitt E behandelte Zah-
lenbeispiel 1 nochmals aufgegriffen und die dort
vernachlissigten Leitungsverluste sollen nachtrig-
lich beriicksichtigt werden.

Zahlenbeispiel 2.

Die Induktivitit der Leitung betrdgt wie in Bei-
spiel 1 0,604 mH/km, was bei 50 Per./s einen induk-
tiven Widerstand von x = =2 7-50-0,61-10-% —
0,201 Ohm/km ergibt.

Nach den Angaben des bereits zitierten Artikels
Seite 210 bis 215 des Bull. SEV 1931 hat die Dop-
pelleitung einen ohmschen Widerstand von 0,084
Ohm/km. Damit erhilt man fiir die Impedanz

r + jx = 0,084 4 j 0,201
= 0,2178 ¢£i67°20 Ohm/km
Die ohmsche Ableitung soll auch dieses Mal ver-
nachlissigt werden, so dass sich fiir die Admittanz
ergibt:
y = jb = 5,65 -
Dann wird
yz = 5,65 . 106 gi%°. (2178 gi67°20
= 1,23 . 106 g7157°20" km-2
Vyz = 1,11 . 108 gi78°4" km-!
Fiir eine 100 km lange Leitung erhélt man dann
js Yyz = j 0,111 im0 = 0111 gil68° 40 -
= — 0,1088 4 j 0,0218
In Graden ausgedriickt erhdlt man fiir 100 km
js Vyz=— 6,24 + j1,25 Grad.
Die Wellenimpedanz wird

5 0,218 /6P
y  } 565.10° %0

Fiir den Anfangspunkt der Leitung in Innert-
kirchen sollen wieder dieselben Werte fiir U, und
I, angenommen werden wie in Beispiel 1, ndmlich
U,=86 600 V und I,=—=430 A. Die Spannung soll
wieder dem Strom um 30 Grad voreilen. Danun wird
die Belastungsimpedanz am Anfang der Leitung
wieder wie frither 201 ¢/%° Ohm. Hieraus erhilt
man nach Gl. (22) fiir die Tangensvektoren:

) 196 g711020°

T8 % = 01 giae
201 gJ30°

T 196 g1

Z =

106 £i%° Siemens/km

= 196 ¢1°20" Ohm’

= 0,975 g7 41020

Jjtgh = 1,025 gt+ja120
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Um nun den cos g, und den cos f, zu bestimmen,
wird wieder wie in Beispiel 1 das Hilfs-Cosinusdia-
gramm nach Fig. 1 benutzt und darin bestimmt man

SEVS520

Spannungs- und Strom-Diagramm der Leitung mit Verlusten in
richtiger gegenseitiger Lage.

die Punkte E und F, die auch in das Diagramm

nach Fig. 2 iibertragen werden. Beide liegen wieder
auf derselben Ellipse «g=—27,9"», E liegt auf

SEvs521

Fig. 7.
Allgemeines Spannungs- und Strom-Diagramm der Leitung mit Verlusten.

Spannungs-Diagramm.
Kurve b: Blindleistung = 0
Kurve d: Wirkleistung = 0

der Hyperbel «p=136,1°» und F auf der Hyperbel
«p=146,1"». Es ist also wieder ¢ — =% 90°.

Fiir die gegebene Leitung von 124,1 km Linge
erhilt man

Strom-Diagramm.
Kurve a: Blindleistung = 0
Kurve c: Wirkleistung = 0

jsyyz= (— 6,24 + j1,25) % o= =775 + §1,55°

Damit wird am Ende der Leitung in Miihlebery

a=ua, + js Yyz=136,1 — j27,9 — 7,75 + j 1,55 =
128,35 — j 26,35 Grad

B=po+ jsVya—= 461 —j27,9—17,75 + j 1,55 =
38,35 — j 26,35 Grad

wodurch die Endpunkte G und H der Spannungs-
und Stromkurven gefunden werden (Fig. 2).

Withrend man bei der verlustfreien Leitung ein-
fach auf einer Ellipse wandern konnte, miissen jetzt
Ellipsen und Hyperbeln geschnitten werden. Beim
Fortschreiten im Sinne des Wirkleistungsflusses tritt
also nicht nur eine Verdrehung der Vekioren im
Uhrzeigersinn auf, sondern auch ein Uebergang zu
immer kleineren Ellipsen, bis die Brennstrecke er-
reicht wird. Hierbei gilt der wichtige Satz:

Die Aenderungen von p und ¢ stehen in einem
konstanten Verhiltnis. Dasselbe ist bei dem behan-
delten Beispiel

Ap  —624
Ag T +1,25 -

Nach GIl. (15) ist

P o
;:j:j]/i=
B y

= 196 £-/101°20 Ohm
Die Vektoren 4 und B stehen

also nicht mehr senkrecht aufein-
ander. Es wird wieder das Span-
nungsdiagramm in seiner horizon-
talen Lage gelassen und das Strom-
diagramm um den soeben berech-
neten Winkel von 101°20" ver-
dreht, wodurch sich Fig. 6 ergibt.

—5,0

+ j 196 g-i11°2

Die unendlich lange Leitung, Leer-
lauf, Kurzschluss und allgemeine
Betriebszustinde.

Bei einer Leitung mit Verlusten
gibt es keine Schwingungszustinde
ohne Leistungszufuhr wie bei der
verlustfreien Leitung. Es kann
hochstens ein einziger Leerlauf-
punkt oder ein einziger Kurz-
schlusspunkt vorkommen.

Die Kurve des Leerlaufstromes
geht natiirlich durch den Null-
punkt. Der weitere Verlauf ist aus
Kurve I der Fig. 7 ersichtlich. Sie
kann auch um 180° gedreht wer-
den, wodurch die Kurve III erhal-
ten wird. Die Leerlaufspannung
beginnt in einem der beiden

' Brennpunkte und wird durch eine der beiden Kur-
| ven II oder IV dargestellt.

Die Kurve der KurzschluBspannung ist mit der-
jenigen des Leerlaufstromes identisch (Kurve i
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oder III), die Kurve des KurzschluBBstromes ist mit
derjenigen der Leerlaufspannung identisch (Kurve
II oder IV).

Selbstverstindlich miissen die Stromkurven noch
um den oben berechneten Winkel von 101° 20" gegen
die Spannungskurven verdreht werden.

Wenn man diese vier Kurven immer weiter ver-
folgt, so erhilt man in grosser Entfernung vom Null-
punkt vier gleiche logarithmische Spiralen. Zwi-
schen diese Kurven konnen nun eine beliebige An-
zahl weiterer Parallelkurven gelegt werden. Diese

SEV5522

Fig. 8.

Allgemeines Impedanz- und Admittanz-Diagramm der Leitung
mit Verlusten.

Adwmittanz-Diagramm.

Gerade a: Blindleistung =
Gerade ¢: Wirkleistung =

Impedanz-Diagramm.

Gerade b: Blindleistung
Gerade d: Wirkleistung

[(—=X—1

=0
=0

haben alle denselben Charakter. Sie kommen als
logarithmische Spiralen im Uhrzeigersinn aus dem
Unendlichen, nehmen in der Nihe der Brennpunkte
eine abgeplattete Form an, umschlingen ~f6rmig
beide Brennpunkte und wandern als logarithmische
Spiralen im Gegenuhrzeigersinn wieder ins Unend-
liche hinaus.

Dieses Kurvensystem stellt alle moglichen Be-
triebszustinde dar, die iiberhaupt bei der gegebenen
Leitung denkbar sind. Fiir eine beliebige Belastung
und Phasenverschiebung bestimmt man nach Fig. 1
zunichst den Anfangspunkt, iibertrdgt denselben
direkt in das Diagramm nach Fig. 7, wandert dort
zwischen den benachbarten Kurven parallel dazu

hindurch, addiert oder subtrahiert fiir die gegebene
Strecke die entsprechende Anzahl reeller und ima-
gindrer Grade und findet so den Zustand am Ende
der Leitung.

Es sollen auch hier wieder die Verhiltnisse im
Tangensdiagramm studiert werden, wodurch Fig. 8
erhaiten wird. Alle Tangenskurven beginnen im
Punkt +j, von welchem sie sich im Gegenuhrzeiger-
sinn spiralformig immer weiter entfernen. Sie durch-
schneiden an irgendeiner Stelle die horizontale Axe,
worauf sie sich im Uhrzeigersinn spiralférmig dem
Punkt — j nihern, den sie erst nach unendlich vie-
len Umdrehungen erreichen.

Je nachdem, ob das Tangensdiagramm als Ad-
mittanz- oder Impedanz-Diagramm aufgefasst wird,
ergibt sich der Phasenverschiebungswinkel ¢ zwi-
schen dem Spannungs- und dem Stromvektor als
Winkel zwischen dem Tangensvektor und einer der
beiden geneigten Geraden a oder b, deren Neigung

durch die Richtung +j l/i oder *j ]/L be-
y z

stimmt ist.

Man zieht nun noch zwei weitere Gerade ¢ und d,
welche auf den Geraden a und b senkrecht stehen.
Dann ist im Admittanzdiagramm auf der Geraden a
die Blindleistung, auf der Geraden c¢ die Wirk-
leistung Null, im Impedanzdiagramm ist auf der
Geraden b die Blindleistung, auf der Geraden d die
Wirkleistung Null. Ein Durchschreiten der Gera-
den ¢ im Admittanzdiagramm oder der Geraden d
im Impedanzdiagramm ist daher nun bei Kupp-
lungsleitungen zwischen zwei Kraftwerken moglich
bei schwacher Belastung, wobei dann von den bei-
den Werken Wirkleistung in die Leitung hinein ge-
spiesen wird, die auf der Leitung selbst in Form
von Verlusten vollstindig verbraucht wird. Im
Diagramm nach Fig. 7 entsprechen den Geraden a,
b, ¢, d acht Kurven «7 = konstant», wobei 7 durch

die Richtungen -l-]/_z , + '|/_3i, +J —l/i
y & y

und + j

Y bestimmt ist.
z

Im Impedanzdiagramm ist fiir den Leerlauf-
punkt die Impedanz Null; man erhilt dafiir den
Nullpunkt. Fiir den Kurzschlusspunkt ist sie un-
endlich gross, sie fiallt daher in unendlicke Ferne.
Im Admittanzdiagramm vertauschen die entspre-
chenden Punkte ihre Lage.

Mit Hilfe des Diagrammes nach Fig. 7 erkennt
man leicht, ob bei einer langen Leitung bei irgend-
einem Belastungszustand gefidhrliche Ueberspan-
nungen auftreten kénnen, die zu Ueberschligen fiih-
ren konnen, oder ob ausserordentlich hohe Stréome
moglich sind, welche die Leitung iibermissig er-
wirmen oder mechanisch iiberbeanspruchen. Ohne
diese Diagramme konnte man dies nur mit umstind-
lichen Berechnungen herausfinden.

Um dies einzusehen, soll beispielsweise versucht
werden, die gesamte Leistung des Kraftwerkes Hand-
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eck von 112000 kVA bei der gleichen Sternspan-
nung von 86,6 kV und dem gleichen Strom von
430 A iiber ein oder mehrere parallele Kabel zu
iibertragen. Die Kapazitdt wird viel grosser, z. B.
etwa 0,35 uF/km; die Induktivitit wird viel kleiner,
z. B. etwa 0,14 mH/km. Dann wird bei Annahme
eines Impedanzwinkels von 68° und einer Voreilung
des Stromes von 11°

. U
jtg B =T°|/l
0 z

_ 86600 110 . 106 g i'90
430&711° | 44 . 103 ¢ 1" 68

Hieraus t=10, 7=0, woraus sich mit Hilfe der
Fig. 1 und 2 fiir B, ein Wert von (90 — 6 j) Grad
als Anfangspunkt der Stromkurve ergibt. In 250 km
Entfernung wird f=90—6j—30 + 6 j=60".
(Die Fortpflanzungsgeschwindigkeit in diesem Ka-
bel ist nur etwa die halbe Lichtgeschwindigkeit.)
Der Strom am Leitungsende wird das Fiinffache
des Normalstromes, also 2150 A, und die Leitung
mechanisch und thermisch iiberbeansprucht, wah-
rend im Kraftwerk nur der Normalstrom vorhanden
ist, welcher keine Schalterauslosung bewirkt.

=10

Wird dagegen? %:0,1, so erhilt man fiir
den Anfangspunkt der Spannungskurve den Punkt
(90 — 6 j) Grad. Die Spannung steigt in 500 km
Entfernung auf den fiinffachen Wert und ruft na-
tiirlich Ueberschlige hervor.

Man kommt nun ganz von selbst zum Schluss,
dass die Wellenimpedanz und die Belastungsimpe-
danz bei Vollast fiir eine Kraftithertragung unge-
fahr gleich gross sein miissen. Dies ist bei der Lei-
tung von Innertkirchen nach Miihleberg tatsichlich
der Fall.

Spezialfall.

Im Gegensatz zu den Beispielen 1 und 2 soll die
obige Bedingung nicht nur dem absoluten Betrag,
sondern auch der Richtung nach ganz genau zutref-
fen. Es sei also vektoriell genau

U z
¥ L) E
1 ]/y

Aus dem Hilfs-Cosinus-Diagramm nach Fig. 1 er-
sieht man sofort, dass die Cosinuskurven im Un-
endlichen beginnen, es sind einfache logarithmische
Spiralen und behalten diese Form bei bis in unend-
liche Distanzen auf der Leitung. Es entspricht dies
dem Fall eines Kreises bei verlustfreien Leitungen.
Der Phasenverschiebungswinkel zwischen Spannung
und Strom bleibt konstant, woraus folgt, dass auch

Blindleistung

das Verh a].tnls m@

— konstant bleibt.

Spannung und Strom nehmen pro km prozentual
immer gleich viel ab. Aus Gl. (5) erhilt man fiir
diesen speziellen Fall

U: UOS‘SVEundI=IOS'Sm

Man kann in diesem Fall leicht den Wirkungs-
grad einer s km langen Leitung berechnen

UyesVyzIyesVyzcos o

—] =8-2 SV oz
( Uy I, cos o -

Von diesem Ausdruck ist nur der absolute Betrag
(ohne Richtung) zu nehmen. Mit den Zahlenwerten
des Beispiels 2 erhilt man fiir eine 100 km lange
Leitung

p o= & 20028 — ¢ -0046 — ~ 10,0436 = 0,9564

Fiir andere Belastungszustinde werden die allge-
meinen Formeln ziemlich kompliziert; der Wir-
kungsgrad kann stark von dem obigen Wert ab-
weichen.

Aus dem Richtungswinkel des Vektors‘l / Z er-
y

gibt sich, dass in unserm Beispiel fiir diesen Fall
der Strom der Spannung voreilen muss, Wirk- und
Blindleistung wandern daher in entgegengesetzten
Richtungen.

Im Tangensdiagramm erhilt man fiir diesen Zu-
stand nur den Punkt + j. Im Gegensatz zur verlust-
freien Leitung wird hier eine im Vergleich zur
Wirkleistung kleine Blindleistung iiber Distanzen
von mehr als 1500 km transportiert.

Zahlenbeispiel 3.

In diesem Beispiel sollen ausser den ohmschen
Lingswiderstinden auch noch die ohmschen Quer-
leitfihigkeiten (Ableitung, Koronaverluste) beriick-
sichtigt werden. Dann erhilt also die Admittanz
eine reelle Komponente

y=gtjb=g+tijwe

Durch die im Bulletin SEV 1931, S. 210, beschrie-
benen Versuche wurden fiir die Koronaverluste
bei 150 kV 0,08 kW/km bis 1 kW/km fiir die Ein-
fachleitung gemessen, je nach der Witterung. Durch
Umrechnen des grossten Wertes auf die Doppellei-
tung findet man fiir g einen Wert von 8,810 Sie-
mens/km. Damit wird

y=25,65 £/%°¢-10-° Siemens/km
Yy 111-10° 67503 ot

Der Richtungswinkel von ]/yz hat sich um 27,
also weniger als ein halbes Grad verindert. Die all-
gemeinen Cosinus- und Tangenskurven werden da-
her um diesen Betrag stirker geneigt als in Bei-
spiel 2. Das bedeutet im Cosinusdiagramm etwas
raschere Abnahme der Vektoren gegen die Brenn-
strecke (zwischen + 1 und — 1) hin; die Verluste
werden etwas grosser und die Wirkungsgrade etwas
schlechter.

Die Koronaleitfihigkeit ist keine Konstante ?).
Die Grosse g ist stark spannungsabhiingig. Man wird

5) Siehe ausser dem bereits mehrmals zitierten Artikel
im Bull. SEV 1931 besonders auch die dort am Schluss (S.

215) zusammengestellten Literaturangaben.
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also bei sehr genauen Arbeiten beim Aufzeichnen
der Fig. 7 zunichst nur etwa bis zu einer 10 %oigen
Spannungsinderung fortschreiten und hierauf mit
einem neuen Wert von g weiterfahren. Fiir nicht
iibertriebene Genauigkeit kann man jedoch meistens
einen konstanten Mittelwert iiber den ganzen Span-
nungshereich annehmen.

Fiir die Leitung Innertkirchen-Miihleberg findet
man, dass bei voller Leistung die Koronaverluste
etwa 25mal kleiner sind als die ohmschen Verluste.

Zahlenbeispiel 4.

Es sei noch ein anderes Beispiel erwihnt, bei
welchem die Ableitung so gross ist, dass der Rich-
tungswinkel von y und z genau gleich wird. Die
Cosinus- und Tangenskurven erhalten die doppelte
Neigung, wonach sich doppelte Verluste ergeben;
ohmsche und Ableitungs-Verluste werden genau

gleich.

Fiir die unendlich lange Leitung konzentriert
sich das ganze Tangensdiagramm bhekanntlich auf

einen der Punkte + j oder — j. Da —l/ireell ist,
4

fallen in Fig. 8 die Geraden a und b in die vertikale
Axe, was anzeigt, dass iiber die ganze Leitung reine
Wirkleistung ohne Blindkomponente iibertragen
wird.

Beim Uebertragen von Sprechstrémen erhilt man
schon mit kiirzeren Leitungen mehrere Wellenliin-
gen, so dass man mit guter Anniherung eine unend-
lich lange Leitung annehmen kann. Es stellt sich
dann an der Sendestation immer ziemlich genau

1

T = —I—] / %ein, unabhingig davon, ob sie am

Ende unterbrochen, kurz geschlossen oder durch
eine Impedanz beliebiger Grisse belastet sei.

G. Literaturhinweise und Schlussbemerkungen.

Ueber die Berechnung langer Leitungen existiert schon
eine umfangreiche Literatur. Es seien hier nur ganz wenige
Veroffentlichungen herausgegriffen.

1. M. L. Keller: Die Uebertragung grosser Leistungen. Bull.

SEV 1929, S. 477, 517.

2. L. F. Woodruff: Complex hyperbolic function charts. Elec-

trical Engineering 1935, S. 550.

3. Frinckel: Theorie der Wechselstrome, 3. Auflage 1930, -

12. Kapitel.
4. R. Wengler: Sinusrelief und Tangensrelief in der Elektro-

technik (nach einem Vortrag von Prof. Dr. Ing. F. Emde).
ETZ 1927, S. 766.

5. A. Blondel und Ch. Lavanchy: Resumé pratique du calcul
électrique des transmissions d’énergie a haute tension par
P’emploi d’abaques. Revue Générale d’Electricité. Nov.
1923, S. 775.

6. Giinther Oberdorfer: Zur Kraftiibertragung auf langen
Héchstspannungsleitungen. ETZ 1927, S. 1691.

7. Edith Clarke: «A transmission line calculatory und «Sim-
plified transmission line calculations». General Electric
Review 1923, S. 380, und 1926, S. 321.

In diesen Veréffentlichungen wird zum Teil mit Reihen-
entwicklungen der hyperbolischen Funktionen operiert, zum
Teil werden ganz interessante Diagramme dargestellt.

In Literatur 2 erkennt man Leerlaufspannungs- und Kurz-

schluBstrom-Kurven fiir verschiedene Werte von 1/ vz, jedoch

nur fiir einen beschrinkten Bereich, withrend in Fig. 7 des

vorliegenden Artikels fiir einen einzigen Wert von 'l/?z_ alle
Belastungsstrom- und Spannungs-Kurven fiir unbeschrinkte
Leitungslidngen dargestellt sind. _
Beim Vergleich der Fig. 2 und 4 von Literatur 4 mit den
Fig. 2 und 4 dieses Aufsatzes findet man, dass das Argument

s 1/yz und die Funktion (sin, cos, tg) ihre Rollen in den

beiden Artikeln vertauschen. Ausserdem werden bei Wengler
und Emde die Funktionen durch absoluten Betrag und Rich-
tung dargestellt. Sehr interessant sind die Reliefs. Von den
Fig. 2 und 4 dieses Artikels kénnte man natiirlich auch Re-
liefs konstruieren.

Literatur 5 zeigt in Fig. 5 und 6 dhnliche Diagramme wie
Literatur 4.

In Fig. 3 der Literatur 6 kann man vereinzelte Bruch-
stiicke der Kurven nach Fig. 7 dieses Aufsatzes erkennen.

Der Verfasser ist der Ansicht, dass mit keiner dieser Dar-
stellungen eine solch klare Uebersicht iiber die Cosinus-,
Sinus- und Tangensfunktionen komplexer Argumente gewon-
nen wird, wie mit den Fig. 2 und 4 dieses Artikels. Fig. 7
und 8 zeigen alle moglichen Betriebszustinde auf einer Lei-
tung beliebiger Linge mit einer sonst nicht erreichbaren
Uebersichtlichkeit. Der Verfasser glaubt daher, mit dem
vorliegenden Artikel einen Beitrag zum Problem der Fern-
kraftiibertragung zu liefern. Besonders auch fiir die Tele-
phonie, bhei der Sprechstréme mit Frequenzen von einigen
Tausend Hz vorkommen, konnen diese Ueberlegungen niitz-
lich sein.

Ausser obigen Literaturangaben 1 bis 7 elektrotechnischen
Charakters sei noch auf folgende rein mathematische Werke
hingewiesen:

8. A. E. Kennelly, Atlas der komplexen Hyperbelfunktionen.
9. L. Lewent, konforme Abbildungen, S. 24, 64, 74.
10. Mises-Frank, Differential- und Integralgleichungen 1, S. 107.

Diese Werke 8 bis 10 enthalten ebenfalls das Cosinus-
(resp. Sinus-) sowie das Tangensdiagramm nach Fig. 2 und 4
dieses Aufsatzes. Eine ausfiihrliche Anwendung auf Leitungs-
probleme wird jedoch nicht gemacht.

Die Fig. 1, 2, 4 wurden vom Verfasser in grésserem Mass-
stab, niamlich 500 mm fiir die Zahleneinheit je fiir einen
Quadranten angefertigt. Es konnen daher Abziige in dieser
Grosse vom Verfasser ) bezogen werden, womit natiirlich
ein genaueres Arbeiten méglich ist,

DerVerfasser gedenkt in einem weiteren Artikel noch den
Verlauf der Leistung sowie eventuell noch einige verwandte
Probleme zu behandeln.

6) Chaletweg 9, Ziirich 11.
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