Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 27 (1936)

Heft: 10

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

au caoutchouc protégé ou non par une tresse ordinaire, le caoutchouc est attaqué par l'ozone; il perd son élasticité, de petites fissures transversales se produisent, puis s'étendent

peu à peu jusqu'à perforation complète.

Comme il n'est pas possible, pour des raisons économiques et pratiques, de donner des dimensions suffisantes à la gaine isolante des conducteurs à haute tension de construction normale pour les éviter complètement, des effluves peuvent toujours se produire. Il suffit, pour cela, du voisinage immédiat de conducteurs d'autre polarité ou de pièces conductrices mises à la terre provoquant une déformation du champ électrique.

Les deux cas suivants, qui se sont présentés dernièrement, sont instructifs à ce sujet et montrent les dangers auxquels

on peut être exposé.

Pour l'alimentation d'une station de transformation provisoire composée de deux transformateurs de 160 kVA, 8000 V, on utilisait, pour des raisons pratiques, deux groupes de 3 conducteurs de 20 mm², recouverts chacun d'une couche de caoutehouc de 7 mm et d'une tresse ordinaire imprégnée. Ces conducteurs avaient été essayés dans l'eau pendant 20 minutes à 25 000 V. Dans l'installation en question, ils furent posés en partie dans le sol, et en partie le long d'un poteau de bois pour le raccordement à la ligne aérienne. Jusqu'à une hauteur de 4 m du sol, ils étaient protégés par un fer zorès mis à la terre. Après 2 semaines environ de service normal, un claquage se produisit entre 2 conducteurs et le fer de protection.

Les 6 conducteurs montraient dans la partie protégée par le fer zorès des défauts identiques: des fissures transversales plus ou moins profondes de la couche de caoutchouc, situées toutes sur la même génératrice. Les parties posées dans le sol, de même que celles qui n'étaient pas recouvertes par le fer zorès, ne présentaient pas de défauts, et subirent à nouveau avec succès l'essai d'isolement dans l'eau à 25 000 V.

Comme les défauts constatés présentaient l'aspect caractéristique d'une attaque par l'ozone, des éléments sains furent soumis à l'essai de résistance à l'ozone 1).

Après avoir enlevé la tresse extérieure, une éprouvette de conducteur sain a été disposée en 3 spires jointives sur un noyau métallique de 110 mm de diamètre. Cette éprouvette fut immergée dans de la grenaille de plomb et soumise à une tension alternative de 25 000 V entre âme et grenaille. Cette disposition a pour but de provoquer une intensification des effluves et de la formation d'ozone. Après ½ heure déjà le claquage se produisit et la couche de caoutchouc montra, à

l'examen, exactement les mêmes fissures transversales constatées précédemment sur la partie détériorée. Le même résultat a donc été obtenu avec cette différence que, dans l'essai de contrôle, le processus a été accéléré par l'augmentation de la tension, par la courbure du conducteur et par le contact intime de ce dernier avec la grenaille.

La preuve était ainsi fournie que les défauts constatés pro-

voquaient bien une attaque par l'ozone.

Un second cas de ce genre s'est révélé dernièrement dans une installation de redresseur transportable. Dans ce cas, la formation de l'ozone a été provoquée par la pose des conducteurs sur une grille métallique qui était à la terre.

Des détériorations dûes à la même cause sont souvent constatées dans les installations d'éclairage au néon et dans les câbles d'allumage de moteurs à explosion.

Pour éviter, dans la mesure du possible, de pareils défauts, 3 solutions peuvent être envisagées:

1° Eviter la formation d'ozone.

2º Protéger la couche de caoutchouc isolante par une tresse ou une enveloppe textile recouverte d'un vernis parfaitement étanche résistant à l'ozone.

3° Remplacer la couche de caoutchouc ou la protéger par une gaine de masse isolante résistant à l'ozone.

La première méthode peut être réalisée en disposant les conducteurs de polarités différentes à une distance suffisante et en évitant soigneusement dans leur voisinage immédiat la présence de pièces conductrices mises à la terre; il ne faudra donc pas utiliser de métal pour les supports et les protections, mais seulement du bois ou d'autres matériaux isolants. Une autre possibilité consiste aussi à appliquer directement sur la gaine de caoutchouc une couche conductrice, couche qui doit être protégée et mise à la terre. Les extrémités des conducteurs sont alors à traiter d'une façon particulière (boîtes d'extrémité).

Dans la seconde solution, les enveloppes en textiles utilisées normalement seront vernies et formeront une couche absolument imperméable. Dans la fabrication il faudra ve'iler à ce qu'il ne reste pss, entre la couche protectrice et le caoutchouc, de cavité remplie d'air, ce qui rendrait la protection tout à fait illusoire. Un certain risque est cependant toujours à courir car la couche de vernis peut être blessée au montage et se fendiller avec le temps.

Troisième solution: on cherche depuis quelques années des matières isolantes résistant à l'ozone, soit pour remplacer la couche de caoutchouc elle-même, soit pour être utilisées sous forme de gaine de protection à appliquer sur le conducteur déjà isolé. Ces nouveaux matériaux sont des produits synthétiques, dont plusieurs ont déjà donné des résultats intéressants.

Technische Mitteilungen. — Communications de nature technique.

Keramische Dielektrika. 621.315.6.612

Ueber dieses Thema sprach im Rahmen des von der Physikalischen Gesellschaft Zürich veranstalteten Vortragszyklus für technische Physik Dipl.-Ing. W. Soyck vom Zentrallaboratorium der Steatit-Magnesia G. m. b. H., Berlin. Seine interessanten Ausführungen sind nachstehend kurz zusammengefasst.

Die kennzeichnenden Eigenschaften eines Isolierstoffes sind Dielektrizitätskonstante (DK), Durchschlagsfestigkeit, Isolationswiderstand und dielektrische Verluste. Die letzten sind bekanntlich gekennzeichnet durch den Verlustfaktor $tg\delta$, wo δ die Abweichung der Phasenverschiebung von 90° bezeichnet.

Die Quelle der dielektrischen Verluste bildet erstens die Ohmsche Leitfähigkeit der Dielektrika, zweitens ihr Aufbau aus Molekülen mit permanentem elektrischem Dipolmoment. Solche polare Molekeln erfahren im elektrischen Feld eine Richtkraft, die ihre Einstellung parallel zum Feld erzwingt. Bei dieser Einstellung wird von der Feldkraft auf Kosten der Feldenergie Arbeit geleistet, die sich nach aussen in einer Erwärmung des Dielektrikums bemerkbar macht. Da jedem einzelnen Molekül ein bestimmtes mechanisches Trägheitsmoment zukommt, besteht eine Abhängigkeit des Ver-

lustfaktors von der Frequenz der angelegten Wechselspannung in dem Sinn, dass dieser mit steigender Frequenz zunächst zunimmt bis zu einem Maximalwert, um dann bei sehr hohen Frequenzen wieder zu sinken, weil die Moleküle infolge ihrer Trägheit den raschen Feldänderungen nicht mehr zu folgen vermögen.

In der Theorie von Debye erfahren diese Erscheinungen eine quantitative Behandlung für den Fall der Flüssigkeiten und Gase. Das feste Dielektrikum hingegen wurde von der Theorie bis jetzt noch nicht erfasst; Aufschlüsse über sein Verhalten sind bisher auf rein experimentellem Wege beschafft worden. Es hat sich dabei ganz allgemein gezeigt, dass Stoffe, die einheitlich kristallinen Aufbau besitzen, weit geringere dielektrische Verluste aufweisen als Substanzen, die ein Gemisch kristalliner und glasiger Stoffe darstellen.

Für die Technik erwuchs somit die Aufgabe der Auffindung von Rohmaterialien einheitlich kristalliner Struktur, die sich nach den üblichen Herstellungsverfahren zu Isolierstoffen mit den gewünschten elektrischen und mechanischen Eigenschaften verarbeiten lassen.

Als ältestes keramisches Dielektrikum ist das Porzellan zu erwähnen. Es ist ein Gemenge von Kaolin, Quarz und Feldspat und besitzt als solches nicht den erwünschten rein

¹⁾ Heinrich Viehmann: «Ueber die Ozonfestigkeit von Hochspannungsleitungen mit Gummiisolation und ihre Prüfung». ETZ 1934, Heft 37, 13. Sept. 1934. S. 209.

kristallinen Aufbau. Seine DK beträgt etwa 6, sein Verlustfaktor 10 bis $15~^{0}/_{00}$.

Isolierstoffe jüngern Datums, mit wesentlich günstigeren elektrischen Eigenschaften, sind die Stoffe der Steatitgruppe. Sie bestehen im wesentlichen aus einem Gemisch von Magnesium- und Siliciumoxyd (MgO, SiO₂), mit kleinen Zuschlägen von Aluminiumoxyd (Al₂O₃). Ihre DK ist ca. 5, der Verlustfaktor von der Grössenordnung 1 °/00. Es existieren verschiedene Ausführungen, die sich im Mengenverhältnis der genannten Bestandteile unterscheiden und unter den Handelsbezeichnungen Steatit normal, Frequenta, Calit, Sondersteatit bekannt sind.

Die Suche nach Materialien hoher DK, die der Kondensatorbau verlangt, hat durch Auffindung der Rutilgruppe zu einem vollen Erfolg geführt. Rutil (TiO2) besitzt eine DK von 110, die allerdings starke Temperaturabhängigkeit, nämlich eine Abnahme von 10 % pro 100° Temperaturanstieg, aufweist. Erniedrigung dieses Temperaturkoeffizienten wird erreicht durch Zusatz von ca. 20 % Zirkonerde (ZrO2) zum Rutil. Der so gewonnene Kunststoff trägt die Bezeichnung Kerafar U und ist gekennzeichnet durch die Daten: DK 70, Temperaturkoeffizient —7 % pro 100°, Verlustfaktor 0,5 °/00. Sehr günstige Eigenschaften weist bei etwas tiefer liegender DK die Rutilverbindung Magnesiumorthotitanat (TiMg2O4) (Handelsbezeichnung Deakond) auf: DK 18, Temperaturkoeffizient + 0,3 %, Verlustfaktor 0,1 °/00.

Die Herstellung der keramischen Dielektrika erfolgt in drei Schritten: 1. Formgebung in feuchtem, plastischem Zustand; 2. Trocknen; 3. Dichtbrennen (Sintern). Hierbei tritt ein Schwund bis zu 10 % ein.

Die technische Verwendung dieser neuen Isolierstoffe erstreckt sich vor allem auf den Isolator- und Kondensatorbau. Keramische Kondensatoren lassen sich in einem Stück herstellen mit Kapazitäten bis zu 3000 cm. Sie ertragen Scheinleistungen bis zu 5 kVA. Ihre Hauptvorteile gegenüber den Glimmer- und Papierkondensatoren bestehen in den kleinen Abmessungen, der Formstarrheit, der hohen Beständigkeit im Betrieb. Letztere wird erreicht dank der Möglichkeit, die Metallisierung unmittelbar auf das Dielektrikum aufzutragen. In Anwendung kommt hierbei sowohl die Kathodenzerstäubung als auch das Metallspritzverfahren nach Schoop. Vor allem bei höheren Betriebsspannungen, bei denen der Glimmer zur Erzielung der erforderlichen Isolation geschichtet werden muss, wird der keramische Kondensator dank seiner niedrigeren Gestehungskosten immer mehr mit Vorteil an Stelle des Glimmerkondensators treten. H.W.

Normung von Aluminium-Schienen für elektrische Anlagen.

389.6:621.316.35:621.315.53

Die Technische Kommission 14b des VSM-Normalienbureau hatte schon im Jahre 1931 die Normung der Aluminium-Schienen vorgesehen. Das Programm umfasste die Festlegung der Abmessungen, der Spezifikationen des Werkstoffes und der zulässigen Strombelastungen bei Gleich- und Wechselstrom. Da die Belastungswerte für die praktische Anwendung sehr grosse Bedeutung haben, einheitliche und befriedigende Unterlagen zu deren Festlegung aber nicht zur Verfügung standen, wurden eingehende Versuche durchgeführt. Um eine systematische und nutzbringende Auswertung der Versuchsergebnisse zu ermöglichen, erfolgten auch theoretische Untersuchungen; diese wurden in STZ, Heft 34 vom 22. August 1935, veröffentlicht. Ueber die Versuche und deren Auswertung sowie ihren Vergleich zu den theoretischen Ergebnissen und zu Literaturangaben wurde in STZ, Heft 39 vom 26. September 1935, berichtet. Die grosse Zeitdauer, die die Versuche und ihre Auswertung beanspruchten, ermöglicht erst jetzt die Veröffentlichung der Entwürfe. Die Entwürfe zerfallen in zwei Abschnitte:

- 1. Werkstoff und Abmessungen und
- 2. Strombelastungen.

1. Die Werkstoffeigenschaften sind aus Tabellen I und II ersichtlich. Sie enthalten neben den angegebenen Garantiewerten über die mechanischen, elektrischen und physikalischen Eigenschaften noch diverse Orientierungswerte, ferner den Ausgangswerkstoff. In einer besonderen, hier nicht veröffentlichten Tabelle sind die Abmessungen mit 51 verschiedenen Querschnitten von 10 bis 4000 mm² und 5×2 bis 200×20 mm mit den Gewichten und Toleranzen zusammengestellt.

Mechanische Eigenschaften.

Garantie-Werte:

Tabelle I.

Zustand	Streck- grenze kg/mm² min- destens	Zug- festigkeit kg/mm² min- destens	Bruch- dehnung $0/0$ 1=11,3 \sqrt{F} mindest.	Brinell- härte kg/mm ² 10 D ²
hart, gewalzt oder gezogen ½hart, gewalzt oder gepresst, zwischengeglüht und nachge-	14	15	4	ca. 35
walzt oder nachge- zogen weich, gepresst oder	9	11	6	ca. 30
gewalzt oder gezo- gen und geglüht .	ca. 4 – 6	7-9	30-45	ca. 20 – 40

Elektrische und physikalische Eigenschaften.

Garantie-Werte:

Tabelle II.

			Zuouno Zz
Ī	Zustand	Elektr. Leitfähigkeit m/2 mm² bei 20° C mindestens	Spez. Widerstand \$\Omega\$ mm²/m bei 200 C höchstens
	hart 1/2 hart	34	0,0294
	weich	35	0,0286

2. Die Strombelastungen umfassen die dauernd zulässigen Belastungen bei Gleich- und Wechselstrom (50 Per./s) für eine Schiene bis zu zehn parallelen Schienen. Als Bezugstemperatur wurden 20° C, als zulässige Erwärmung 35° C zugrunde gelegt bei ruhender Luft; die Oberfläche der Schienen wurde als rohblank, d. h. leicht oxydiert angenommen. Die Anordnung der Schienen ist horizontal-hochkant, der Abstand der Schienen bei paralleler Anordnung ist gleich der Schienendicke. Für diese Verhältnisse sind die Ströme in Tabellen zusammengestellt.

Um auch die Belastungen bei andern Verhältnissen bestimmen zu können, wurde ein Unterabschnitt mit Umrechnungsfaktoren angefügt. Diese erlauben die Berücksichtigung verschiedener Bezugs- und Uebertemperaturen, Oberflächenbeschaffenheit und Schienenanordnung, des Einflusses der Luftgeschwindigkeit und verschiedener Frequenzen des Stromes sowie bei Wechselstrom Berücksichtigung des Einflusses des Abstandes der Rückleitung. Einige dieser Umrechnungsfaktoren gelten allerdings nur als Richtlinie und nicht als feste Norm; dies trifft insbesondere z. B. für die Umrechnungen auf Frequenzen über 50 pro Sekunde zu, da hiefür Versuchsunterlagen fehlen.

Diese Umrechnungen sind von besonderer Bedeutung, weil bei den praktisch vorliegenden Fällen der Projektierung und Ausführung oft andere Verhältnisse vorkommen, als sie den Tabellenwerten zugrunde liegen.

Die Entwürfe über die Strombelastungen und Umrechnungen können wegen ihres Umfanges hier nicht veröffentlicht werden. Interessenten können sie für Abschnitt 1 und 2 beim VSM-Normalienbureau, Lavaterstrasse 11, Zürich, zur Kritik beziehen. Ablauf der Frist zur Stellungnahme: 5. Juni 1936.

Der Bearbeiter: F. Streiff.

Das Normenwerk der deutschen Lichttechnik.

Von H. Lux, Berlin. 389.6:628.93(43)

(Zur Einführung der Normblätter DIN 5031 bis 5037 1) liess der bekannte Lichttechniker Herr Dr. H. Lux, Berlin, in den DIN-Mitteilungen vom März 1936 einen Aufsatz erscheinen, den wir hier im Einverständnis mit dem Autor und dem Verlag abdrucken. Er gibt einen wertvollen Ueberblick über den Stand und die Bestrebungen der modernen Lichttechnik und bietet auch den Fachleuten Wertvolles. Red.)

Von allen andern Zweigen der Technik unterscheidet sich die Lichttechnik dadurch, dass zur Bewertung ihrer Leistungen physiologische und z. T. auch noch psychische Empfindungen herangezogen werden müssen, und dass zum Messen der physiologischen Vorgänge in letzter Linie nur der optische und nervöse Sehapparat des Auges verwendet werden kann. Das bedingt eine stark individuelle Willkür bei der Beurteilung der Beobachtungsergebnisse und erschwert die Nachprüfung durch andere Beobachter. Niemand weiss, wie ein anderer die Farben sieht - daher die auffällige Erscheinung, dass erst Ende des 18. Jahrhunderts die Farbenblindheit entdeckt wurde -, und niemand ist imstande, die absolute Stärke eines einzelnen Lichteindruckes zu schätzen. Zieht man dann noch in Betracht, dass das Auge mehr noch als jedes andere Sinnesorgan den schwersten Täuschungen zum Opfer fallen kann, so ist leicht zu erkennen, weshalb sich die Lichttechnik erst verhältnismässig spät Gleichberechtigung mit ihren technischen Geschwistern errungen hat. Dafür aber besitzt sie jetzt als einzige Technik die Kenntnis von den Grenzen ihrer Leistungsfähigkeit. Sie allein vermag auszusagen, mit welchem höchstmöglichen Wirkungsgrade mechanische Energie in sichtbare Strahlung, in Licht, umgewandelt werden kann. Zum Ausdruck kommt diese Tatsache in dem mechanischen Lichtäquivalent, das seinen Höchstwert in dem Strahlungsbezirk gewinnt, in dem das Auge die höchste Empfindlichkeit aufweist, im Gelbgrünen bei $\lambda = 555 \text{ m} \mu$. Da dieser Empfindlichkeitshöchstwert in enger Beziehung zur Temperatur der Sonne steht, an deren Strahlung sich das menschliche Auge biologisch angepasst hat, so gilt das mechanische Lichtäquivalent eben auch nur für das Auge des erdgebundenen Menschen. Für die lichtempfindlichen Organe anderer Lebewesen, so für die Meerestiere in verschiedenen Tiefen, für Höhlenbewohner und Nachttiere hat das mechanische Lichtäquivalent jeweils andere Werte, weil es sich hier - im Gegensatz zum mechanischen Wärmeäquivalent - nicht um eine unabhängige, sondern um eine von der Empfindlichkeit des Empfangsorgans $physiologisch\ abhängige\ physikalische$ Grösse handelt.

Streng genommen hat das mechanische Lichtäquivalent auch einen von Mensch zu Mensch abweichenden Wert; normenmässig ist aber ein ganz bestimmter Wert international festgelegt worden, der sich als Mittelwert aus zahlreichen Messungen der spektralen Hellempfindlichkeiten ergibt.

Die Feststellung dieser Tatsachen hat die Lichttechnik endgültig aus der Empirie zur Wissenschaft erhoben. Die Entwicklung hierzu vollzog sich, seit Ende des vorigen Jahrhunderts, als mit der Entdeckung des dynamo-elektrischen Prinzips das elektrische Licht und mit der Nutzbarmachung der seltenen Erden das Gasglühlicht in den allgemeinen Gebrauch übergeführt wurden und die Lichttechnik sprunghafte Fortschritte machte.

Die Anwendung neuer Lichtquellen seit 1880 und ihr Wettbewerb untereinander bedingten die Ausbildung neuer

1) DIN 5031

Bewertungsarten, scharfer Begriffsbestimmungen und genauer Messverfahren.

Im ersten Jahrzehnt dieses Jahrhunderts wurden auf diesem Gebiete achtungswerte Fortschritte erzielt, so dass sich bald das Bedürfnis zu ihrer Normung herausstellte. Entscheidende Schritte in dieser Richtung waren die Gründung der internationalen Lichtmesskommission und verschiedener lichttechnischer Gesellschaften in den Kulturstaaten. Die aus der alten Lichtmesskommission hervorgegangene Internationale Beleuchtungs-Kommission (IBK) ist gegenwärtig die Stelle, in der die Arbeiten der einzelnen an ihr beteiligten Nationen (z. Z. 19) zusammenlaufen, aus denen sich dann unter einheitlichem Gesichtspunkt zusammengefasste Regeln und Leitsätze herausbilden sollen.*)

Die Arbeiten der Deutschen Lichttechnischen Gesellschaft (DLTG), die in den beiden letzten Jahrzehnten entstanden sind, liegen jetzt in einem Werk vor, das die deutschen Normblätter DIN 5031 bis 5037 umfasst. Es beginnt logisch mit einer Festlegung der «Grundgrössen, Bezeichnungen und Einheiten», wie sie in der Lichttechnik gebräuchlich geworden sind.

Weil bei der Aufstellung des hierauf bezüglichen Normblattes DIN 5031 der Entstehungsgeschichte und den internationalen Abmachungen Rechnung getragen werden musste, macht es leider einen etwas zwiespältigen Eindruck, und es steht in seinem ersten Teil, der vereinfachten Darstellung lichttechnischer Begriffe, mit den wissenschaftlichen Erkenntnissen einigermassen im Widerspruch. Das gilt vor allem für die Grundgrössen: Lichtstrom und Lichtstärke.

Als lichttechnische Ausgangsgrundgrösse galt noch bis in das erste Jahrzehnt dieses Jahrhunderts hinein die «Lichtstärke», die, wenn man sich auf ihre Masseinheit, die «Kerze» stützt, zwar als recht anschaulicher Begriff erscheint, die in Wirklichkeit aber eine abgeleitete und dazu noch ganz unreale Grösse ist. Zwecks Schaffung klarer Grundlagen ist deshalb für das Licht als Grundeinheit die ausgestrahlte Lichtleistung gewählt worden, die aber nicht physikalisch, sondern physiologisch gemäss der international festgelegten Kurve der spektralen Hellempfindlichkeit bewertet wird.

Diese international festgelegte Begriffsbestimmung ist zwar korrekt, und es handelt sich auch um eine ganz reale Grösse: aber sowohl ihre Bezeichnung «Lichtstrom» als auch ihre Messung auf dem Umwege über die Lichtstärke sind wie geschaffen, Verwirrung zu erzeugen. Bei den Verbrauchern, aber auch bei Installateuren und Händlern wird nur zu oft der Lichtstrom mit dem aus dem Leitungsnetz bezogenen elektrischen Strom verwechselt; und die Lichtstärke, die zur Messung des Lichtstromes dient, ist ihrerseits als «Raumwinkel-Lichtstromdichte» bestimmt, also aus dem Lichtstrom abgeleitet.

Dieser innere Widerspruch hat deshalb die Deutsche Lichttechnische Gesellschaft (DLTG) veranlasst, in dem Normblatt DIN 5031 auch eine strenge Festlegung der lichttechnischen Begriffe aufzustellen, bei der von der vom Licht ausgelösten Grundempfindung ausgegangen wird. Das ist der Helligkeitseindruck auf das Auge, dem objektiv die Leuchtdichte des betrachteten Gegenstandes (mag es ein Selbstleuchter sein oder mag er auftreffendes Licht zurückstrahlen) entspricht. Aus der Leuchtdichte lassen sich dann widerspruchslos die andern Grundgrössen ableiten.

Bei der Berlin-Karlsruher Tagung der IBK im Jahre 1935 ist auf Grund der Anregungen der DLTG eine Sonderfachgruppe eingesetzt worden, die diese Frage weiterbearbeiten soll. Bis zur Vollendung dieser Arbeit bleiben aber die alten internationalen Grundgrössen mit ihren gegenseitigen Abhängigkeitsbeziehungen und ihren Einheiten in Geltung, nämlich: Lichtstrom (Lumen), Lichtstärke (Hefnerkerze oder internationale Kerze), Beleuchtungsstärke (Lux), oder internationale Kerze), Beleuchtungsstärke (Lux), Leuchtdichte (Stilb). — Die beiden Lichtstärke-Einheiten: internationale Kerze und Hefnerkerze, stehen bei der Tem-

Grundgrössen, Bezeichnungen und Einheiten in der Lichttechnik (RM 1.—). Photometrische Bewertung und Messung von Lampen und Beleuchtung (RM 2.—). Bewertung und Messung von Farben (RM 1.50). Leitsätze für Tagesbeleuchtung (RM 1.50). Leitsätze für die Beleuchtung mit künstlichem Licht (RM 2.—). DIN 5032

DIN 5033 DIN 5034 DIN 5035

DIN 5036 Bewertung und Messung von Beleuchtungsgläsern (RM 1.—).

DIN 5036 Bewertung und Messung von Beleuchtungsgläsern (RM 1.—).

DIN 5037 Bewertung von Scheinwerfern (RM —.75).

Zu beziehen, zuzüglich Versandkosten, durch Beuth-Verlag GmbH, Berlin SW 19, Dresdener Strasse 97.

^{*)} Siehe die Broschüre «Die bisherigen Arbeiten der IBK», zu beziehen beim SEV und VSE, Seefeldstrasse 301, Zürich 8.

peratur der Kohlenfadenlampe im Verhältnis von 10:9 (1,11) zueinander 2)

Für die Bewertung von Lichtquellen kommen in erster Linie die aufgenommene Leistung (in Watt oder Kalorien) und die ausgestrahlte Lichtleistung (in Lumen) in Betracht. Vorschriften für ihre subjektive Messung³), die sich auf einer Erfahrung von 40 Jahren Lichtmesstechnik aufbauen, gibt das Normblatt DIN 5032 «Photometrische Bewertung und Messung von Lampen und Beleuchtung». Werden sie genau beachtet, so sind unbedingt zuverlässige und jederzeit wieder herstellbare Ergebnisse zu erwarten, was bei Streitig-keiten und Mängelrügen von besonderer Wichtigkeit ist. Das Normblatt betont deshalb vor allem die Fehlerquellen bei den verschiedenen in Betracht kommenden subjektiven Messverfahren und gibt Anleitungen für ihre Beseitigung. Wirkliche Schwierigkeiten treten dann kaum noch auf, ausser bei der Vergleichung verschiedenfarbiger Lichtquellen miteinander. Hier aber handelt es sich um ein noch nicht endgültig gelöstes physiologisches Problem. Die zur Ueberwindung der auftretenden Schwierigkeiten angegebenen Verfahren reichen aber für die praktischen Zwecke der Beleuchtung aus.

Ergänzt wird das eben besprochene Normblatt durch das Normblatt DIN 5033, das die Bewertung und Messung von Farben behandelt. Das normale menschliche Auge sieht bei der Ueberschreitung eines verhältnismässig niedrigen Schwellenwertes der Helligkeit immer bestimmte Farben. Der vom Auge wahrgenommene oder photometrisch bestimmte Helligkeitseindruck kennzeichnet deshalb auch nicht vollständig den vom Auge aufgenommenen farbigen Eindruck von Lichtern und rückstrahlenden Flächen. Zur Kennzeichnung des Farbeindruckes ist das Auge allein ganz ausserstande. Sogar bei selbstleuchtenden Gegenständen kann unter gewissen Umständen anstatt der wirklichen Eigenfarbe die Komplementärfarbe in Erscheinung treten, und bei farbig rückstrahlenden Gegenständen ist der Farbeindruck immer abhängig von der Farbe der beleuchtenden Lichtquelle. Sind aber bestimmte, genau vorgeschriebene Sehbedingungen erfüllt, so genügen zur Kennzeichnung des Farbeindruckes 3 Zahlen, etwa: Farbton, Sättigung und Leuchtdichte, oder Angabe der zur Erzeugung der betreffenden Farbe benötigten Menge von genau festgelegten Eichfarben usw. Praktisch kommen für die Messung in Betracht:

- 1. Das Spektralverfahren, mit dem die relative spektrale Zusammensetzung der vom Strahler ausgesandten oder von der Oberfläche zurückgeworfenen oder durchgelassenen Strahlung bestimmt und hieraus Farbmasszahlen abgeleitet werden; oder
- 2. das Gleichheitsverfahren, nach dem die zu messende Farbe mit einer anderen durch Kennzahlen genau bestimmten Farbe verglichen wird. Die hierfür im Verkehr befindlichen Farbatlanten, auch der Farbatlas und der Farbkörper von Ostwald, können zur Farbmessung nur dann herangezogen werden, wenn die Farbenbeispiele nach dem Spektralverfahren ausgewertet sind.

Bei den Farbatlanten darf die allmähliche Farbveränderung durch atmosphärische Einflüsse und durch länger andauernde Beleuchtung nicht ausser acht gelassen werden.

Von praktischer Bedeutung sind die Farbmessverfahren in industriellen Betrieben, die Farbstoffe herstellen oder benutzen, die Textilien, Leder, Papier, keramische Waren und andere Gegenstände einfärben, oder die farbige Gläser, farbige Lichtquellen, Leuchtphosphore usw. erzeugen. Trotz der grossen Wichtigkeit genauer Farbmessungen für die Industrie, für Handel und Verkehr sind sie bisher in der Praxis arg vernachlässigt worden; z. T. wohl deshalb, weil hierfür keine eingehenden Anleitungen und keine Normung vorhanden waren. Das Normblatt DIN 5033 füllt also eine sehr empfindliche Lücke aus.

Zu weiterer Ergänzung des besprochenen Normblattes DIN 5032 dienen dann noch die Normblätter DIN 5036 und DIN 5037, die sich auf die Bewertung und Messung von Be-

leuchtungsgläsern sowie von Scheinwerfern beziehen. Das Blatt DIN 5036 ist vornehmlich für die Hersteller von Beleuchtungsgeräten aller Art bestimmt, während das Blatt DIN 5037 von Wichtigkeit für den Kraftwagenverkehr ist. Ohne Scheinwerfer sind Nachtfahrten von Kraftfahrzeugen so gut wie unmöglich. Der Scheinwerfer gehört deshalb auch zu den unentbehrlichen Ausrüstungsgegenständen des Kraftfahrzeugs. Das Normalblatt DIN 5037 wird die Einheitlichkeit in der Messung und Bewertung von Scheinwerfern fördern.

Die Normblätter DIN 5034 und 5035 enthalten Leitsätze für Tagesbeleuchtung und für die Beleuchtung mit künstlichem Licht. Sie sind von der Deutschen Lichttechnischen Gesellschaft zusammen mit den massgebenden Behörden bearbeitet und schon früher veröffentlicht worden. Sie gelten in Streitfällen als Beweismittel von ähnlicher Bedeutung wie etwa die Vorschriften des Verbandes Deutscher Elektrotechniker. Besonders die Leitsätze für künstliches Licht (DIN 5035) werden von den Gewerbeaufsichtsbeamten als massgeblich für die Beurteilung der Beleuchtung in gewerblichen Betrieben angesehen, während die Leitsätze für Tagesbeleuchtung (DIN 5034) ein wichtiges Hilfsmittel für die Planung von Bauten darstellen und von fortschrittlich eingestellten Architekten auch in diesem Sinne benutzt werden.

Die Aufnahme dieser Leitsätze in das grosse deutsche Normenwerk wird die Bedeutung und Verbreitung der Leitsätze erheblich fördern. Aehnliche Leitsätze sind zwar auch schon in anderen Staaten in Gebrauch, an einzelnen Stellen haben sie sogar Gesetzeskraft. Von diesen fremdländischen Leitsätzen unterscheiden sich die deutschen vor allem durch Einführung und Begründung des Begriffes der Beleuchtungsgüte. Zur Erzielung einer guten Beleuchtung sind nicht nur die Beleuchtungsstärke, sondern ausserdem noch Schattigkeit, örtliche und zeitliche Gleichmässigkeit, Leuchtdichte der Leuchtgeräte (Blendungsfreiheit) und Lichtfarbe den Ansprüchen der zu verrichtenden Arbeit, der Betriebssicherheit, dem Verwendungszweck des Raumes und der Verkehrssicherheit anzupassen. Ausserdem aber sind in den deutschen Leitsätzen die für die verschiedenen Verrichtungen geforderten Beleuchtungsstärken erstmalig aus den physiologischen Sehbedingungen abgeleitet worden. Im Gegensatz zu den früher benutzten, rein aus der Erfahrung abgeleiteten Werten haben die deutschen Zahlen deshalb auch ein ganz besonderes Gewicht.

Die im Herbst 1935 von der Deutschen Lichttechnischen Gesellschaft in Verbindung mit dem Amte «Schönheit der Arbeit» in der DAF eingeleitete Propaganda für gute Beleuchtung zum Schutze des Auges, zur Verminderung der Unfälle und zur Befruchtung der Arbeitsleistung an allen Stellen — auch bei den Behörden wie Post, Eisenbahn usw. hat die Aufmerksamkeit weiter Kreise auf die fruchtbare und überaus notwendige Tätigkeit der Lichttechnik gelenkt. Das jetzt erschienene Normenwerk wird der weiter fortzusetzenden Werbetätigkeit für «Gutes Licht» eine starke und zuverlässige Stütze bieten. Auch die schweizerischen Lichttechniker werden gerne nach diesen wertvollen, aufschlussreichen Unterlagen greifen.

Akkumulator-Fahrzeuge.

629.113.65

Der Elektrolastwagen eignet sich für viele Zwecke in derart hervorragendem Masse, dass es eigentlich überraschen mag, wie wenig er bisher in der Schweiz benutzt wird und wie mühsam sich seine Einführung in grösserem Maßstabe gestaltet. Hier gilt es vor allem, bekannte Vorurteile durch Tatsachen zu widerlegen und eine gewisse Trägheit zu überwinden. Das erstrebte Ziel jedenfalls ist aller Anstrengungen

Zunächst sei darauf hingewiesen, dass das Elektromobil keinen allgemeinen Wettbewerb mit dem Brennstoff-Fahrzeug aufnehmen soll und dies auch nicht kann. Infolge der Begrenzung seines Fahrbereiches durch die Batterie auf ungefähr 60 bis 70 km kann das Elektromobil nur im Stadt- und Vorortsverkehr eingesetzt werden. Durchgeführte Unter-

²⁾ Das Verhältnis ändert sich mit der Farbtemperatur der Lichtquellen und erhöht sich um etwa 4 % bei der Temperatur der hochbelasteten Wolframlampe mit Gasfüllung. ³⁾ Ein die objektiven Messverfahren behandelndes Norm-blatt ist in Vorbereitung.

suchungen haben gezeigt, dass in den Großstädten die tägliche Transportleistung von ungefähr 80 % der Fahrzeuge die Grenze von 60 km nicht überschreitet und somit innerhalb des Leistungsbereiches der normalerweise verwendeten Fahrzeugbatterien liegt.

Der Elektrolastwagen entwickelt nur eine Höchstgeschwindigkeit von 25 bis 30 km/h; trotzdem haben Versuchsfahrten ergeben, dass der Elektrolastwagen mit diesen Geschwindigkeiten einem Benzinfahrzeug gleicher Tragfähigkeit im Stadtverkehr, insbesondere im Lieferdienst von Haus zu Haus, wesentlich überlegen ist. In Tabelle I ist das Ergebnis von Versuchsfahrten zusammengestellt, die im September 1934 in Berlin im Beisein eines neutralen Beobachters mit einem Benzinkraftwagen (Höchstgeschwindigkeit 60 km/h) und einem Elektrowagen (Höchstgeschwindigkeit 30 km/h) für 2 t Nutzlast betriebsmässig durchgeführt worden sind.

Tabelle I.

Entfernung	Durchschnit geschwir	Ueberlegen-	
der Halte- stellen m	Elektro- lastwagen km/h	Benzin- lastwagen km/h	heit des Elek- trowagens
30	13,3	7,0	90
100	16,5	12,8	28
200	20,4	17,6	16
300	22,8	20,8	10

Gegenüber den Fahrzeugen mit Verbrennungsmotoren hat der Elektrowagen den Vorzug der höheren Anfahrbeschleunigung; das Einschalten der Gänge erfordert dort Zeit und bedeutet jedesmal einen Geschwindigkeitsverlust. Der Elektrowagen mit Reihenschlussmotor dagegen wird vom Fahrzeugführer ohne jede Verzögerung eingeschaltet. Bei kurzen Haltepunktabständen bewirkt dieser Vorzug eine grössere Reisegeschwindigkeit des Elektrofahrzeuges im Vergleich zum Brennstoffwagen, dessen Höchstgeschwindigkeit im Stadtverkehr gar nicht ausgenützt werden kann. Sogar bei einer sich über 23 km erstreckenden Wettfahrt durch die Strassen Berlins benötigte das Elektrofahrzeug 3 % weniger Zeit als der Benzinwagen, obwohl beide Fahrzeuge gleichzeitig abfuhren und jedes Fahrzeug das Ziel so schnell wie möglich zu erreichen suchte.

Vom energiewirtschaftlichen Standpunkte aus dürfte Fig. 1 von Interesse sein. Wie daraus hervorgeht, werden beim Benzinwagen 14,2 %, beim Elektrowagen 52,2 % der zugeführten Energie für den Antrieb nutzbar gemacht.

Vorteilbringende Verwendung finden Elektrolastwagen in allen Wirtschafts- und Verwaltungszweigen, die innerhalb des erwähnten Fahrbereiches von etwa 65 km Transporte auszuführen haben und insbesondere den Fahrweg vorher übersehen können. An erster Stelle sind hier die Gemeindebetriebe mit ihren Fahrzeugen für den Kehrichtabfuhrdienst sowie die Strassen- und Kanalreinigung zu erwähnen, dann der Postdienst und die Bahnspedition, ferner Betriebe der Energieversorgung, der Milchversorgung, Bäckereien, Brauereien, Fuhrhaltereien, Kohlenhandlungen und Mühlen. Bei diesen zum Teil lebenswichtigen Betrieben ist auch die Unabhängigkeit der Transporte von der Zufuhr ausländischer Brennstoffe von Bedeutung.

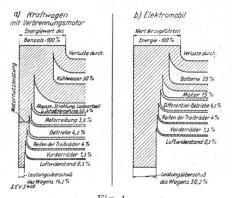


Fig. 1.
Energiediagramm von Automobilen und Elektromobilen.

Die Fahrzeugindustrie hat es verstanden, ihre Erzeugnisse durch entsprechende Aufbauten den gestellten Anforderungen aufs zweckmässigste anzupassen. Wo kleine Hilfsmotoren benötigt werden, ermöglicht die Fahrzeugbatterie besonders bequeme Lösungen.

Anhaltspunkte über den Absatzmarkt, der für den Elektrolastwagen gewonnen werden kann, mögen folgende Berechnungen über die Verhältnisse im deutschen Reich liefern. Von insgesamt 214 000 im Verkehr stehenden Lastkraftwagen sind rund 50 % in den grossen Städten stationiert, und hiervon haben, wie erwähnt, 80 % im Stadtverkehr eine Fahrleistung bis höchstens 60 km im Tag aufzuweisen; es kann somit ein Bedarf von rund 85 000 Elektrolastwagen angenommen werden, wovon 10 000 bereits im Betriebe sind. Der Einsatz der neuen Elektrolastwagen kann praktisch nur dem natürlichen Abgang der vorhandenen Brennstoffkraftwagen folgen. Unter Berücksichtigung der Gliederung nach Grösseklassen lässt sich nach erfolgter Umstellung auf Elektrobetrieb in Deutschland eine jährliche Treibstoffersparnis von ca. 400 Millionen Liter Dieselöl und Benzin errechnen, der ein Mehrverbrauch von ca. 600 Millionen kWh elektrischer Energie entsprechen würde. — (G. Lucas, Das Elektrofahrzeug, seine Verwendung und volkswirtschaftliche Bedeutung; ETZ, 13. Februar 1936.)

Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

Ueber den Wechselwirkungseffekt bei Radiowellen, den sogenannten «Luxemburgeffekt».

621.396.822

Die ersten bekannt gewordenen Beobachtungen dieser längere Zeit ungeklärten Erscheinung stammen von A. G. Butt, Aprilheft der Zeitschrift World Radio (1933), und von Ir. B. D. H. Tellegen (Nature Juni 1933). Butt hörte bei Einstellung seines Empfängers auf die Welle des Luxemburger Senders das Programm von Radio Paris als Untergrund. Tellegen verwendete bei seinen Beobachtungen einen Batterieempfänger ausserhalb der Stadt, bei dem eine Kreuzmodulation kaum in Frage kommen mochte.

In der folgenden Tabelle sind noch weitere Beobachtungen angeführt, die auf Anregung der Philips-Laboratorien von den Herren Braillard (Brüssel), Ashbridge (London), Gutton (Paris) und Schwaiger (Wien) gemacht wurden.

Ueberdies wurde auf der Trägerwelle von Wien die Modulation von Prag an folgenden Orten wahrgenommen: Schwetzingen, Heidelberg, Innsbruck. Die Modulation von Königswusterhausen wurde wahrgenommen auf der Welle von Warschau in Monkseaton bei Newcastle und am selben Ort auch die Modulation der Station Koolwyk auf der Trägerwelle von Stuttgart.

Sowohl aus diesen Angaben als auch aus Fig. 1¹) ersieht man, dass der Effekt am stärksten hervortritt, wenn der Störsender zwischen dem zu empfangenden Sender und dem Empfangsort ungefähr auf deren Verbindungslinie liegt. Diese Tatsache und dass die Erscheinung nur nachts eintritt, deutet auf seine Entstehung in der Heaviside-Schicht hin.

Es lag natürlich nahe, nach einem Zusammenhang der Frequenz des gewünschten Senders mit der des Störsenders

¹⁾ Funk, Heft 2, S. 33, 1935.

Tabelle I.

	Tabelle 1.
Trägerwelle, auf der der Sender Luxemburg gehört wurde	Empfangsort
Radio Paris	Eindhoven Eindhoven, Brüssel, London Antwerpen Eindhoven, Brüssel Eindhoven, Brüssel Eindhoven, Brüssel, London Eindhoven, Brüssel, London Eindhoven Eindhoven Eindhoven Eindhoven, Brüssel, London Rotterdam, Arnheim, Düsseldorf Paris, Antwerpen Brüssel Brüssel Brüssel London London London

Tabelle II.

Trägerwelle, auf der der Sender Radio-Paris gehört wurde	Empfangsort
Beromünster	Weymouth Reading bei London, St. Helier,
London Regional	Bath, Plymouth, London Bordes B. P.

zu suchen. Z. B. könnte man an Kombinationsfrequenzen der Schwingungszahlen f1 und f2 denken, die in der Akustik bekannt sind $(n f_1 \pm m f_2)$. Deutungsversuche in dieser Richtung führten zu keinem Resultat.

Zur Aufklärung der Erscheinung wurden dann im Februar 1934 Versuchssendungen von Luxemburg und Beromünster durchgeführt. Beromünster sendete dabei eine konstante, unmodulierte Trägerwelle, während Luxemburg eine modulierte Trägerwelle aussandte, deren Modulationstiefe und Modulationsfrequenz in bestimmten Zeitabschnitten geändert wurden. In Eindhoven wurden dann die Feldstärken der beiden Sender und die durch den Luxemburger Sender veranlasste Modulationstiefe der Trägerwelle von Beromünster gemessen. Die erhaltenen Resultate gibt Tabelle IV.

Die höchste momentan beobachtete Modulationstiefe betrug sogar 12 %, bei einer Modulation des Luxemburger Senders von 80 % und einer Modulationsfrequenz von 100 Per./s. Zwischen der Modulationstiefe des ungewollten Senders («Störsenders») und der dem gewünschten Sender aufgezwungenen Modulation bestand Proportionalität. Ueberdies scheint zu den Zeiten schwachen Empfangs die Modulation durch den «Störsender» stärker zu sein.

Kurz nach diesen Versuchen wurden die Wellenlängen der beiden Stationen Luxemburg und Beromünster ein wenig geändert. Da diese Aenderung auf den beobachteten Effekt keinen Einfluss hatte, ist das Nichtbestehen einer Frequenzbeziehung als bewiesen anzusehen.

Die Beobachtungen haben auch ergeben, dass als «Störsender» nur Stationen mit grosser Sendeenergie (Luxemburg: 200 kW, Droitwich: 150 kW, Radio Paris: 100 kW) in Betracht kommen. Ebenso wurden keine Wechselwirkungseffekte an Sendern von kürzerer Wellenlänge beobachtet. Der kurzwelligste «Störsender», Prag, hat eine Wellenlänge von 468 m. Demnach müssen die Wellen des störenden Senders nicht nur in derselben geographischen Lage wie die des gestörten Senders in der Heavisideschicht verlaufen, sondern auch in dieselbe Höhe vordringen.

Beobachtungen über den «Luxemburgeffekt» in der Schweiz.

Sender	m	kW	moduliert						
Sender	III	KW	Sender	m	kW				
	htungen Beobach		Zürich und Gren René Schild.	chen.					
Luxemburg	1304	200	Brüssel I	483,9	19				
Luxemburg	1304	200	Langenberg	455,9	100				
Luxemburg	1304	200	Hamburg	331,9	100				
Mühlacker	522,6	100	Budapest	550,5	120				
Mühlacker	522,6	100	Wien	506,8	120				
Mühlacker	522,6	100	Prag I	470,2	120				
Mühlacker	522,6	100	Leipzig	382,2	120				
Mühlacker	522,6	100	Berlin	356,7	100				
Mühlacker	522,6	100	Hamburg	331,9	100				
Wien	506.8	120	Budapest	550,5	120				
Prag I	470,2	120	Wien	506,8	120				
Prag I									
Prag I	Prag I 470,2 120 Breslau								
Beromünster	539,6	100	München	405,4	100				
Beromünster	539,6	100	Wien	506,8	120				
Mühlacker	522,6	100	Budapest	550,5	120				
Prag I	470,2	120	Budapest	550,5	120				
Luxemburg	1304	200	Hamburg						
III. Beobachtungen in Zürich allein. Beobachter: René Schild.									
				331,9					
			René Schild. Leipzig		100				
	Beoback	iter:	René Schild.		120				
Mühlacker	Beoback	100	René Schild. Leipzig	382,2	120 120				
Mühlacker Budapest I	522,6 550,5	100 120	René Schild. Leipzig Wien	382,2 506,8	120 120 120 50				
Mühlacker Budapest I Prag I Luxemburg	522,6 550,5 470,2 1304 Beobac	100 120 120 200 htunge	René Schild. Leipzig Wien Berlin	382,2 506,8 356,7	120 120 100				
Mühlacker Budapest I Prag I Luxemburg	522,6 550,5 470,2 1304 Beobac	100 120 120 200 htunge	René Schild. Leipzig Wien Berlin North-Regional en in St. Gallen.	382,2 506,8 356,7 449,1	120 120 100				
Mühlacker Budapest I Prag I Luxemburg IV. Be	522,6 550,5 470,2 1304 Beobaceobachto	100 120 120 200 htunger: Hu	René Schild. Leipzig Wien Berlin North-Regional en in St. Gallen. Igo Thiemann.	382,2 506,8 356,7	120 120 100 50				

Tabelle IV.

Modulationsfrequenz d. Störsenders Per./s	100	200	400	800	1600 — 6400
Modulationstiefe des gestörten Senders 0/0	7,5	3,7	3,3	1,2	geht unter in at- mosphärischen Störungen

Es ist nun von den Physikern V. A. Bailey und D. F. Martyn 3) eine Theorie der Wechselwirkung von Radiowellen in der Ionosphäre entwickelt worden, deren wesentliche Gedankengänge hier kurz skizziert werden sollen.

Die Ionosphäre (Heavisideschicht) besteht im wesentlichen aus ionisierter Luft in äusserster Verdünnung. Durch genügend intensive elektromagnetische Wechselfelder, die Radiowellen, welche starke Sender erzeugen, wird nun die mittlere Zahl der Zusammenstösse der Elektronen mit den Gasmolekulen als auch die mittlere Geschwindigkeit ihrer Zickzackbewegung (Agitationsgeschwindigkeit) beeinflusst. Durch die einfallende Welle des stärkeren «Störsenders» tritt nun eine Art Modulation der mittleren Stosszahl auf, und da die Absorption und damit die Intensität der dasselbe Gebiet der Ionosphäre durchkreuzenden Wellen des gewünschten Sen-

²⁾ Beobachtungen von René Schild, Stud. phys. ETH, Zü-

rich, private Mitteilung.

3) Philosophical Magazine 18 (7) 389, 1934. V. A. Bailey and D. F. Martyn, The Influence of Electric Waves on the Iono-

ders von dieser Stosszahl abhängt, so sind dieselben nach dem Verlassen der vom störenden Sender in seinem Rhythmus «geschüttelten» Heavisideschicht ebenfalls mit der Modulation des störenden Senders behaftet. Sobald daher der gestörte Sender seine Emission einstellt, verschwindet natürlich gleichzeitig auch die Modulation bzw. das Programm des störenden Senders. Man kann auf diese Weise leicht erkennen, ob es sich bei der Störung um einen Wechselwirkungseffekt handelte oder ob dieselbe nur durch ungenügende Selektivität des Empfängers hervorgerufen war.

Bailey und Martyn gehen von den Bewegungsgleichungen aus, die für ein Elektron der Ionosphäre zwischen zwei Zusammenstössen gelten. Zu diesem Zwecke wird ein rechtwinkliges Koordinatensystem benutzt X, Y, Z, die elektrische Feldstärke $\mathfrak f$ in die X-Richtung gelegt und die X-Z-Ebene so angenommen, dass der magnetische Vektor des Erdfeldes in ihr liegt. Für die Bewegung des Elektrons ist dabei nur die zu $\mathfrak E$ senkrechte Komponente $\mathfrak S_p$ massgebend. Die elektrische Feldstärke sei dabei etwa gegeben durch den Ausdruck

$$\mathfrak{E} = \mathfrak{E}_0 \sin (p \cdot t) \tag{1}$$

Die Bewegungsgleichungen lauten dann

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{e}{m} \cdot \mathfrak{G} + \mathfrak{H}_{p} \cdot \frac{e}{m} \quad \frac{\mathrm{d}y}{\mathrm{d}t} \tag{2}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -\mathfrak{H}_{p} \cdot \frac{e}{m} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} \tag{3}$$

Setzt man noch zur Abkürzung $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{\mathrm{d}u}{\mathrm{d}t}$ und $\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\mathrm{d}v}{\mathrm{d}t}$

und $\mathfrak{H}_{\mathfrak{p}}\cdot \frac{e}{m}=\omega$, so folgt aus den beiden Gleichungen

$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + \omega^2 \cdot u = \frac{e}{m} \, \mathfrak{F}_0 \, p \cdot \cos (p \cdot t)$$

Die volltändige Lösung für die Geschwindigkeiten u und v ist dann durch

$$u = B \cos p t + b \cos \omega t + c \sin \omega t \tag{4}$$

$$v = -C \sin p t - b \cdot \sin \omega t + c \cdot \cos \omega t \tag{5}$$

gegeben, wo

$$B = \frac{e}{m} \cdot \frac{\mathfrak{G}_0 \cdot p}{\omega^2 - p^2} \text{ und } C = \frac{e}{m} \frac{\mathfrak{G}_0 \cdot \omega}{\omega^2 - p^2}$$

Aus diesen Gleichungen wird nun zunächst die Arbeit berechnet, die das elektrische Feld in der Zeit zwischen zwei Zusammenstössen am Elektron leistet. Diese Zeit sei mit τ bezeichnet. Diese wird nun mit gleicher Wahrscheinlichkeit ihren Anfang in einem beliebigen Zeitpunkt der Periodendauer $\frac{2\pi}{p}$ des elektrischen Feldes nehmen. Der Mittelwert dieser Arbeit W_{τ} über eine Periode ist demnach

$$W_{ au} = rac{1}{2 \, \pi} \! \int_0^{2 \, \pi} \! w_{ au} \, \mathrm{d} \delta \qquad ext{wo } \delta = extit{t} \cdot extit{p}.$$

Eine weitere Mitteilung ergibt sich dadurch, dass alle Zeitdauern zwischen zwei Zusammenstössen einem statistischen Gesetz folgen. Die Wahrscheinlichkeit dafür, dass diese Zeitdauer zwischen den Werten τ und $\tau+d\tau$ liegt, ist der Bruchteil $e^{-\nu\tau}$ d (τ) aller dieser verschiedenen freien Wegzeiten, wo ν die Anzahl der Stösse eines Elektrons in der Zeiteinheit bedeutet. So ergibt sich

$$W = \int_0^\infty W_{ au} \; e^{-
u au} \; \mathrm{d} au = rac{1}{2} \cdot rac{Z^2 \, e^2}{m} \; \cdot \left[rac{1}{
u^2 + (p - \omega)^2} + rac{1}{
u^2 + (p + \omega)^2}
ight]$$

wo $Z = \mathfrak{G}_0 \cdot \sqrt{2}$ bedeutet. Und wenn man noch eine Maxwellsche Geschwindigkeitsverteilung der Elektronen annimmt, erhält man schliesslich als endgültigen Mittelwert

$$\overline{W} = 0.815 \cdot \frac{Z^2 e^2}{m} \cdot \frac{1}{2} \cdot \left[\frac{1}{v^2 + (p - \omega)^2} + \frac{1}{v^2 + (p + \omega)^2} \right]$$
(6)

Für die weiteren Rechnungen werden noch folgende Grössen benutzt:

- mittlere ungeordnete Geschwindigkeit (Agitationsgeschwindigkeit) der Elektronen;
- L mittlere freie Weglänge der Elektronen im betreffenden Gas bei 1 mm Quecksilberdruck;
- P Druck des betreffenden Gases in mm Quecksilbersäule;
- l mittlere freie Weglänge der Elektronen beim Druck p;
- Bruchteil der Eigenenergie, die ein Elektron bei einem Stoss verliert.

Die letzten drei Grössen hängen im allgemeinen von u ab.

Die Anwendung der Energiebilanz für ein kleines Zeitintervall ergibt nun für die vom Feld am Elektron geleistete Arbeit $\overline{W} \cdot \nu \cdot \mathrm{d}t$, für den Energieverlust bei den Zusammenstössen $g \cdot \frac{1}{2} \cdot m \, \overline{u^2} \nu \cdot \mathrm{d}t$ und schliesslich für den Zuwachs an

kinetischer Energie den Betrag d $(\frac{1}{2}m\overline{u^2})$, woraus sofort die Gleichung

$$m \cdot \overline{u} \cdot \frac{d\overline{u}}{dt} + \frac{1}{2} g m \overline{u^2} \cdot v = \overline{W} \cdot v \tag{7}$$

folgt. Ferner erhält man durch Substitution von $u=l\cdot r,\ l=\frac{L}{P}$ und $n=\frac{\nu}{P}=\frac{u}{L}$ die Gleichung

$$\frac{1}{P} \cdot \left(1 + \frac{n}{L} \frac{\mathrm{d}L}{\mathrm{d}n}\right) \frac{\mathrm{d}n}{\mathrm{d}t} + \frac{1}{2} g \cdot n^2 = \frac{\overline{W}}{m L^2} \tag{8}$$

Für ein gegebenes Gas hängt n, d. h. die Anzahl der Elektronenstösse beim Gasdruck 1 mm von \overline{u} allein ab. g und L können deshalb als Funktionen von n allein aufgefasst werden. Für Luft ist überdies experimentell gefunden worden, dass $\frac{\mathrm{d}L}{\mathrm{d}n}$ sehr klein ist. Es kann deshalb in der Gleichung vernachlässigt werden. Setzt man noch den früher berechneten Ausdruck für \overline{W} in die Gleichung ein, so erhält man

$$\frac{dn}{d\vartheta} + \frac{1}{2} \cdot g \, n^2 = \frac{1}{2} \, a \, \xi^2 \left[\frac{1}{n^2 + (q - r)^2} + \frac{1}{n^2 + (q + r)^2} \right] (9)$$
wo $\vartheta = P \cdot t \quad \xi = \frac{Z}{P} \quad q = \frac{p}{P} \quad r = \frac{\omega}{P} \quad n = \frac{\nu}{P}$

$$a = 0.81 \, \frac{e^2}{m^2 L^2} \, .$$

Wenn demnach zu einer bestimmten Zeit ein Anfangswert von n_0 gegeben ist, so kann man mit Hilfe der obigen Gleichung zu jeder späteren Zeit n und damit u und ν berechnen.

Wird die betrachtete Gasschicht von einer in Amplitude und Frequenz konstant bleibenden elektrischen Welle beeinflusst, $\zeta = \zeta_0 =$ Konstante, so ergeben sich auch stationäre Werte n_0 , u_0 , g_0 , v_0 für die Amplituden der übrigen Grössen n, u, g, v, und die Gleichung geht über in

$$\frac{1}{2}g_0n_0^2 = \frac{1}{2}a\zeta_0^2 \left[\frac{1}{n_0^2 + (q-r)^2} + \frac{1}{n_0^2 + (q+r)^2}\right]. \quad (10)$$

Von Townsend und Tizard 4) wurden für verschiedene Werte von u_0 folgende Werte experimentell bestimmt:

			Т	abelle V
$u_0 \cdot 10^{-6}$	18,5	27	38	54
$L_{ m o} \cdot 10^{12}$	3,22	3,37	3,30	3,28
$g_0 \cdot 10^4$	18	26	26	26
$n_0 \cdot 10^{-8}$	5,57	8,0	11,5	15,5

4) J. S. Townsend and H. T. Tizard, Proc. Roy. Soc. A. Bd. LXXXVIII (1913), S. 336.

Für Werte von u_0 , die kleiner sind als $18,5\cdot 10^6$, können die Grössen L_0 , g_0 , n_0 , theoretisch abgeschätzt werden.

Es wird nun weiter der Einfluss einer modulierten Welle untersucht. Die Grösse Z und damit auch die Feldstärke \mathfrak{F}_0 nimmt dann die Form an

 $Z = Z_0$ (1 + M sin f t) M = Modulationskonstante, f = Modulationsfrequenz.

$$M < 1$$
 $f < \langle p \rangle$

Setzt man dann $n = n_0$ $(1 + \sigma)$, so entsteht die Aufgabe, die unbekannte Grösse σ , welche den Einfluss der Modulation auf die Zahl der Elektronenstösse angibt, zu bestimmen. Das Resultat der Berechnung ergibt

$$\sigma = \mu \cdot \sin(f t - \Phi) + A^{-R t}$$

wo

$$R = \left(1 + rac{1}{2} rac{n_0}{g_0} rac{\mathrm{d} g_0}{\mathrm{d} n_0}
ight) g_0 \,
u_0 \quad \mathrm{und} \quad \mathrm{tg} \; \Phi = rac{f}{R}$$

und A eine willkürliche Konstante bedeutet.

Die Grösse μ , welche die Stärke der Modulation von n bestimmt, wird durch folgenden Ausdruck gegeben

$$\mu = \frac{2 aQZ^2M}{\sqrt{(\nu_1^2 + bQZ^2)(f^2 + G^2\nu_1^2 + cQZ^2)}}$$

wo $Q=P^2~(p^2+\omega^2)/(p^2-\omega^2)~\nu_1={
m Stosszahl}$ bei Abwesenheit eines elektr. Feldes und $2a=4,7\cdot 10^{33};~b=1,8\cdot 10^{36};~G=2,6\cdot 10^{-3};~c=1,2\cdot 10^{31}$

Da in der Rechnung einige Vernachlässigungen vorgenommen wurden, so bleibt die Formel nur gültig, wenn Z, gemessen in V/cm nicht grösser wird als

$$2 \cdot 10^{-10} \cdot \frac{|p^2 - \omega^2|}{\sqrt{p^2 + \omega^2}}$$
.

Wenn nun eine zweite elektrische Welle das betrachtete ionisierte Luftvolumen durchdringt, in welchem die Stosszahl eines Elektrons pro Sekunde in der durch obige Formeln ausgedrückten Weise moduliert ist, so erfährt dieselbe ebenfalls eine Modulation ihrer Intensität. Diese zweite Welle soll nun die Feldstärke $\mathfrak{E}_1 = \mathfrak{E}_{10} \sin p_1 t$ besitzen. Läuft sie ungefähr in senkrechter Richtung zum erdmagnetischen Feld, so wird ihre Intensität beim Verlassen des ionisierten Gasraumes (Heavisideschicht) durch die Gleichung

$$Z_{s} = Z \cdot \varepsilon^{-\int k \, ds} \quad \text{wo} \quad k = \frac{\frac{4 \, \pi \, N \, e^{2}}{m \, p_{1}^{2}} \cdot \nu \cdot 10^{-10}}{6 \cdot \sqrt{1 - \frac{4 \, \pi \, N \, e^{2}}{m \, p_{1}^{2}}}}$$
(11)

gegeben. N ist dabei die Zahl der Elektronen pro cm³ und s die Länge des in der Gasschicht durchlaufenen Weges. Es tritt demnach eine Absorption ein, die von ν abhängt.

Allgemein kann man sagen, dass für irgendeine gekrümmte Bahn, wie sie die Wellen in der Ionosphäre wirklich zurücklegen, die Absorptionsgleichung die Form annimmt

$$Z_{s} = Z \varepsilon^{-C_{0} \cdot \nu} *) \tag{12}$$

Die Grösse C_0 hängt dabei von der Frequenz, der zurückgelegten Weglänge, der Dichte und allgemein von den auf dem Wege angetroffenen Ionisationsverhältnissen ab. Ist nun die Grösse ν durch die Welle des starken, störenden Senders moduliert, so lautet die Gleichung

$$Z_s = Z e^{-C_0 \nu_0 [1 + \mu \sin (f t - \Phi)]} *)$$
 (13)

oder in erster Annäherung für nicht zu grosse Modulation

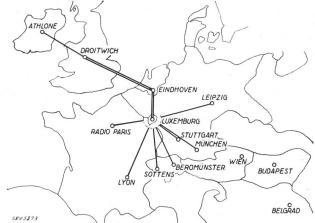
$$Z_{s} = Z \cdot \varepsilon^{-C_0 \nu_0} \left[1 - M^1 \sin \left(ft - \Phi \right) \right] \tag{14}$$

wo die Modulationskonstante M^1 durch den Ausdruck

$$M^{1} = C_{0} \nu_{0} \mu = \frac{P^{2} Z^{2} M (\rho^{2} + \omega^{2}) C_{0}}{\sqrt{f^{2} + G^{2} \nu_{1}^{2} + c Q Z^{2} (\rho^{2} - \omega^{2})}} \cdot 4,7 \cdot 10^{33}$$
(15)

gegeben ist. Gemäss der Definition von $n_1=\frac{P}{\nu_1}$ kann P durch ν_1 ausgedrückt werden. Die Grösse n_1 ergab sich aber aus den experimentellen Daten der Tabelle V und deren theoretischer Ergänzung zu 3,2·108. M' kann deshalb auch in der Form

$$M^{1} = \frac{Z^{2} M \nu_{1}^{2} C_{0} (p^{2} + \omega^{2})}{\sqrt{f^{2} + G^{2} \nu_{1}^{2} + c Q Z^{2}} (p^{2} - \omega^{2})^{2}} \cdot 4.6 \cdot 10^{16}$$
 (16)


dargestellt werden.

Zum Vergleich der Theorie mit der Erfahrung wird zuerst die in der Ionosphäre wirksame Feldstärke abgeschätzt. Nimmt man eine Höhe dieser Schicht von etwa 100 km an, so erhält man für eine senkrechte Antenne (Hertzscher Dipol)

$$Z_{\text{max}} = 4.7 \ \sqrt{P} \cdot 10^{-7} \ \text{V/cm.} \ ^{**}$$

(W = Antennenleistung in Watt).

Da die meisten gebräuchlichen Rundfunkantennen horizontal verlaufende Teile besitzen, resultiert in der Nachbarschaft der Antenne eine grössere nach oben gerichtete Strahlung. Man macht deshalb keinen grossen Fehler, wenn man etwa die Strahlung in einem Umkreis von 50 km Radius um den Sender in der Ionosphäre als homogen annimmt. Nimmt

Geographische Uebersicht über den «Wechselwirkungs-Effekt». Beobachtungsort Eindhoven.

Jene Sender, bei denen die Modulation von Luxemburg am meisten stört, liegen in der Verlängerung der Linie Holland-Luxemburg; beim abseits liegenden Sender Leipzig ist das Auftreten des Effektes sehr schwach; bei Radio Paris kann er nicht regelmässig festgestellt werden. Genau in einer Linie liegen Beobachtungsort—Droitwich—Athlone. Eine nicht einwandfrei festgestellte Wechselwirkung zwischen Stuttgart und Wien sowie zwischen Budapest und Belgrad wurde nicht eingezeichnet.

man noch als Druck in derselben den Wert $8\cdot 10^{-4}$ mm Quecksilbersäule und eine Antennenleistung von 200 kW, so ergibt sich eine Modulationskonstante von

$$M^1 = 10^{-3}$$
,

ein Wert, der gegenüber einer normalen mittleren Modulation der gewünschten Station von $M=\frac{1}{3}$ eben noch wahrnehmbar ist, in den Pianostellen aber unangenehm hervortritt.

^{*)} Nach genügend langer Zeit verschwindet ja das Glied A^{-Rt} .

^{**)} Die allgemeine Gleichung lautet: $Z=0.95\cdot 10^{-4}\sqrt{W}\frac{\sin i}{r}$ wo i den Einfallswinkel der Welle auf die Heaviside-Schicht und r die Entfernung der betrachteten Region vom Sender bedeutet

Auch die Frequenzbedingungen, unter denen ein Wechselwirkungseffekt zu erwarten ist, werden durch die Theorie richtig wiedergegeben.

Aus der Gl. (16) folgt, dass M1 am grössten wird, wenn $p \cong \omega$ (für $p = \omega$ gilt die Ableitung der Gleichung nicht mehr). Da aber ω von der Wegrichtung abhängt, kann diese Bedingung nur für ein begrenztes Wegstück Geltung haben und wird deshalb auf die Absorption der Strahlung nur von geringem Einfluss sein. Wenn man demnach diese Art «Resonanz» vernachlässigt, so ist klar, dass die Modulation am grössten wird, wenn ω und p klein sind. Im Rundfunkwellenbereich $10^6 wird deshalb die Modulation <math>M^1$ am grössten für $p \cong 10^6$, vorausgesetzt, dass $\omega \ll 10^7$. Appleton 5) zeigte theoretisch, dass Wellen von der angegebenen Frequenz in Gegenden gelangen, wo dies auf lange Strecken hin der Fall ist. Für die kürzeren Wellen, wo p grösser ist, ergibt dieselbe Theorie, dass die Bedingung ω (< 10^7 nur für kleine Wegstrecken gilt. Störungen von Stationen mit kürzeren Wellen sind deshalb auch bei grosser Antennenleistung nicht zu erwarten, was bisher ebenfalls von der Erfahrung bestätigt wurde. Für die sehr langen Wellen, wie sie noch für Telegraphie benutzt werden, sind deshalb keine Störungen zu erwarten, weil sie schon in den tieferen Schichten der Ionosphäre reflektiert werden, wo noch keine Absorption der Rundfunkwellen und damit keine Beeinflussung derselben möglich ist.

Eine Abhängigkeit von der Tageszeit ergibt sich ebenfalls aus Gl. (16), indem die Grösse v1 nachts am kleinsten ist. Da der Effekt tags aus andern Gründen (vollständige Absorption der reflektierten Wellen in der dann niedrig liegenden Heavisideschicht) kaum beobachtet wird, wird die Störung am besten nach Sonnenuntergang und vor Sonnenaufgang wahrgenommen.

Eine im wesentlichen auf demselben Mechanismus aufgebaute Theorie wurde kürzlich von K. Försterling 6) veröffentlicht. Es wird dort darauf hingewiesen, dass durch den Einfluss eines starken Senders geeigneter Frequenz zusätzliche Elektronengeschwindigkeiten erzeugt werden, die mit denen der ungeordneten Elektronenbewegung vergleichbar sind. Infolge dieser vergrösserten Elektronengeschwindigkeit wird die Stosszahl der Elektronen mit den Gasmolekülen vermehrt und damit die Absorption vergrössert.

Es ist auch versucht worden, den Wechselwirkungseffekt als Störung im Empfänger zu erklären. Wenn nämlich mit einer Antenne gearbeitet wird, die die langen Wellen bevorzugt und wenn der Empfänger so geschaltet ist, dass man im gekrümmten Teil der $I_{\mathfrak{d}}/\mathfrak{e}_{\mathfrak{g}}=$ Charakteristik der ersten Röhre arbeitet, so wird durch die stark einfallende Langwelle der Arbeitspunkt infolge der Nichtlinearität der Kennlinie im Rhythmus der Hüllkurve verschoben und damit infolge der wechselnden Steilheit eine Intensitätsschwankung, d. h. eine Modulation hervorgerufen.

Gegen diese Erklärung ist hingegen einzuwenden, dass der Luxemburgeffekt auch mit Empfängern wahrgenommen wurde, bei denen diese Voraussetzungen nicht zutreffen. Ueberdies müsste, wenn diese Erklärung richtig wäre, der Effekt auch in Fällen eintreten, in denen er nicht beobachtet wurde. Z. B. wäre die geographische Lage der beteiligten Stationen untereinander ohne Einfluss auf die Beobachtung V. Hardung.

Wirtschaftliche Mitteilungen. — Communications de nature économique.

Energieausfuhrbewilligung.

Der Bundesrat erteilte den Nordostschweizerischen Kraftwerken A.-G. in Zürich/Baden (NOK), nach Anhörung der Eidgenössischen Kommission für Ausfuhr elektrischer Energie, die Bewilligung (Nr. 136), bis max. 6000 kW elektrischer Energie an die Badische Landeselektrizitätsversorgung A.-G. in Karlsruhe, zur Weitergabe an das Werk Rheinfelden der Aluminium-Industrie A.-G., Neuhausen, auszuführen. Die Bewilligung Nr. 136 ist bis 30. September 1941 gültig.

Elektrizitätswirtschaft Grossbritanniens im Jahre 1935. 31:621.311(42)

Dem achten Jahresbericht des Central Electricity Board 1) (CEB) ist zu entnehmen, dass im Jahre 1935 17565·106 kWh erzeugt wurden, 2100·106 kWh (12 %) mehr als 1934 (Zunahme 1934 gegen 1933 1900 · 106 kWh). Die Zunahme seit 1929 betrug 70 %, während die Zunahme der Energieproduktion auf der ganzen Welt während der gleichen Zeit etwa 20 % betrug.

Das «Grid-System» 1) wurde weiter ausgebaut. Im Besichtsjahr hatte das CEB in Betrieb ca. 62 000 km Uebertragungsleitungen, wovon ca. 44 000 km von 132 kV und der Rest von 66 kV oder weniger, ferner 280 Schalt- und Transformatorstationen mit einer installierten Totalleistung von 8,8 · 106 kVA (Zunahme 453 000 kVA) und 132 «Selected Stations» (Kraftwerke, welche vom CEB zur Speisung des «GridSystem» ausgewählt wurden) 1), mit einer installierten Leistung von 6749230 kW (Zunahme 277000 kW, wovon eine Turbogruppe im Battersea-Kraftwerk in London von 105 000

Die Frequenznormalisierung machte starke Fortschritte: In Kraftwerken wurden Anlagen von 669 286 kW auf Normalfrequenz gebracht; 82 025 Motoren mit 1 100 000 kW wurden geändert, ferner Umformerstationen mit 291 058 kW installierter Leistung.

Die Elektrizität im Ausstellungszug.

Am 2. Mai d. J. ging der schweizerische Ausstellungszug, 10 Wagen stark, zum zweitenmal auf die «Tour de Suisse», die diesmal 2200 km mit 72 Ortschaften umfasst und etwa 80 Tage dauert.

Die «Elektrowirtschaft» richtete in diesem Zug einen Kollektivstand ein, an dem etwa 10 Firmen beteiligt sind. Gezeigt wird eine elektrische Musterküche, ferner verschiedene Kochherde und Réchauds, ein instruktiver Schnitt durch einen normalen Heisswasserspeicher, ein elektrischer Durchlauferhitzer von 8 1 Speicherinhalt sowie eine Waschmaschine und eine Bodenputzmaschine, neben einer grossen Zahl hübscher Kleingeräte. Wandfiguren geben interessante Auskünfte über die elektrische Küche.

Diese wirklich gelungene Ausstellung ist nicht durch ständiges Personal begleitet. Sie wird an den einzelnen Stationen den örtlichen Elektrizitätswerken anvertraut, denen sie zu Demonstrationszwecken zur Verfügung steht.

⁵) Appleton, JIEE, Bd. 71 (1932), S. 642.

⁶⁾ K. Försterling, über die gegenseitige Beeinflussung zweier elektrischer Wellen in der Heaviside-Schicht, Hochfrequenz-Technik und Elektroakustik, Bd. 45 (1935), Heft 5, S. 145. Vergleiche auch die Artikel: Versuchssendungen über den Wechselwirkungseffekt. Von K. Schmoll. Funk 1935, Heft 3, S. 134. Der «Luxemburgeffekt», eigenartige Beobachtungen über die gegenseitige Einwirkung elektrischer Wellen. Von Gehne, Funk 1934, Heft 39, S. 773.

Benützt wurde ferner: Interaction of Radio Waves von B. Van der Pol und J. Van der Mark (Union Radio scientifique internationale, Kongress 1934).

¹⁾ S. Bull. SEV 1935, Nr. 3, S. 57.

Extrait des rapports de gestion des centrales suisses d'électricité.

(Ces aperçus sont publiés en groupes de quatre au fur et à mesure de la parution des rapports de gestion et ne sont pas destinés à des comparaisons.)

	A. E. W.	Aarau	E. W. Kt.		E. W. V Wangen	Van g en a. d. Aare	E. W. Lang	Wynau enthal
	1934/35	1933/34	1935	1934	1935	1934	1935	1934
1. Production d'énergie . kWh 2. Achat d'énergie kWh 3. Energie distribuée kWh 4. Par rapp. à l'ex. préc. % 5. Dont énergie à prix de	3 374 042 118 101 192 121 475 234 — 8,4	128 946 913	60 145 690 57 496 452 + 2,6		10 0 0 <u>11 1</u>	55 925 370	45 485 220 3 041 710 48 526 930 — 1	6 444 390
déchet kWh	12 383 000	10 613 000	-	-	-	_	-	
11. Charge maximum kW 12. Puissance installée totale kW	14 600 94 000	17 000 89 500				7 700 —	10 750 22 589	
13. Lampes $\begin{cases} nombre \\ kW \end{cases}$	521 000 19 500					=	61 246 1 981	=
14. Cuisinières $\begin{cases} & \text{nombre} \\ & \mathbf{kW} \end{cases}$	9 560 —	8 600	1 854 9 270			_	927 3 339	1 400 4 564
15. Chauffe-eau $\begin{cases} \text{nombre} \\ \mathbf{k} \mathbf{W} \end{cases}$	7 500 —	6 850 —	2 623 3 159			=	583	_ 455
16. Moteurs industriels . $\begin{cases} & \text{nombre} \\ & \mathbf{k} \mathbf{W} \end{cases}$	22 000 —	20 600 —	17 174 46 422	16 963 45 785		_	2 312 5 777	-
17. Installations de chauff. $\begin{cases} & \text{nombre} \\ & \mathbf{kW} \end{cases}$	_	Ξ	1 570 2 905	1 450 2 660		=	542 448	
21. Nombre d'abonnements 22. Recette moyenne par kWh cts.	21 050 5,24	20 600 5,20	 5,58	5,88	_	=	ca. 10 500 4,15	11 600 4,26
Du bilan: 31. Capital social fr. 32. Emprunts à terme » 33. Fortune coopérative » 34. Capital de dotation » 35. Valeur comptable des inst. » 36. Portefeuille et participat. »		3 809 426		2 777 087	14 832 523	1 156 000 — —	1 000 000 ²⁾ 3 900 000 — 8 211 038	4 200 000
Du Compte Profits et Pertes:								
41. Recettes d'exploitation fr. 42. Revenu du portefeuille et des participations » 43. Autres recettes »	6 052 621 556 460	779 381	381 549	428 677	_	_	2 047 072 — 31 439	_
44. Intérêts débiteurs » 45. Charges fiscales » 46. Frais d'administration » 47. Frais d'exploitation » 48. Achats d'énergie »		952 941 — 310 932 777 404 4 031 478	505 093 153 839 211 151 2 154 341	126 020 232 781 2 221 817	46 077 145 769 82 845 —	11 560 56 693 138 975 79 714 —	331 500 109 166 165 103 456 777 234 369	
49. Amortissements et réserves > 50. Dividende	1 167 919	=	=	704 480	450 000 5	$495\ 000$ $5\ ^{1}/_{2}$	Ξ	732 026
bliques fr. Investissements et amortissements:	125 000	125 000			15 000	15 000		_
61. Investissements jusqu'à fin de l'exercice fr. 62. Amortissements jusqu'à fin	_		7 797 209	7 719 476	20 040 016	19 732 509	17 677 165	17 138 269
de l'exercice » 63. Valeur comptable »	_	=	5 136 461 2 660 748				9 466 127 8 211 038	
64. Soit en % des investissements	_	_	34,1	36	74,0	75,2	46,5	48,5

¹⁾ Location des Forces Motrices Bernoises.

 $^{^{2})\ \}mathrm{Capital}$ actions fr. 5 000 000. Non versé fr. 4 000 000.

Statistique de l'énergie électrique des entreprises livrant de l'énergie à des tiers.

Elaborée par l'Office fédéral de l'économie électrique et l'Union des Centrales Suisse d'électricité.

Cette statistique comprend la production d'énergie de toutes les entreprises électriques livrant de l'énergie à des tiers et disposant d'installations de production d'une puissance supérieure à 300 kW. On peut pratiquement la considérer comme concernant toutes les entreprises livrant de l'énergie à des tiers, car la production des usines dont il n'est pas tenu compte ne représente que 0,5 % environ de la production totale.

La production des chemins de fer fédéraux pour les besoins de la traction et celle des entreprises industrielles pour leur consommation propre ne sont pas prises en considération. Une statistique de la production et de la distribution

de ces entreprises paraît une fois par an dans le Bulletin.

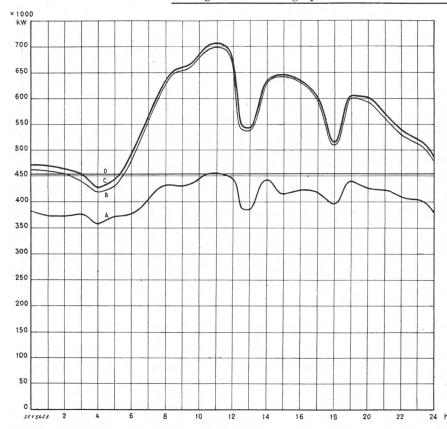
	Production et achat d'énergie*) Accumulation d'énergie*)											1.					
Mois	Produ hydrai			uction nique	achete entrep ferrovi	rgie ée aux orises aires et rielles	Ene impo	rgie ortée	four	rgie rnie éseaux	Diffé- rence par rapport à l'année	Ce Energie emmagasinėe dans les bassins ort d'accumulation à la fin du mois de emergie emergi emergie emergie emergie emergie emergie emergie emergie emergie		ences atées t lemois lange olissage	*)		
	1934/35	1935/36	1934/35	1935/36	1934/35	1935/36	1934/35	1935/36	1934/35	1935/36	précé- dente	1934/35	1935/36	1934/35	1935/36	1934/35	1935/36
				en	million	s de k	Wh				0/0		en	million	s de kV	Vh	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Octobre	374.2	385,4	0,5	0,7	2,7	5,3	_	1_	377,4	391,4	+ 3,7	503	598	- 5	+ 9	106.3	113,7
Novembre .		387,2		1,3	1,9	2,2	2,6		355,6	,	+ 9,9		581	- 28	-17	85,2	
Décembre .	344,9			1,6	3,0	2,8	3,6	_	353,4	414,6	+17,3	441	551	- 34	-30	- 5	123,4
Janvier	371,0	399,6	2,1	1,3	2,5	3,0	3,1	0,9	378,7	404,8	+ 6,9	338	524	-103	-27	94,8	118,8
Février 6)	332,3	374,7	1,4	1,3	2,2	2,7	2,5	1,6	338,4	380,3	+12,4	292	464	- 46	- 60	87,1	111,0
Mars	369,6	383,2	0,5	0,7	1,9	2,4	1,8	1,7	373,8	388,0	+ 3,8	245	401	- 47	- 63	108,5	113,0
Avril	355,6		0,2		1,9				357,7			251		+ 6		104,4	100
Mai	368,7		0,2		9.0		_		377,9			318		+ 67		122,4	
Juin	334,0		0,4		8,1		_		342,5			455		+137		117,2	
Juillet	378,0		0,3		8,3		_		386,6			522		+ 67		141,6	
Août	390,4		0,4		8,3		_		399,1			572		+ 50		148,9	
Septembre .	381,0		0,3		7,9		-		389,2			589		+ 17		145,9	
Année	4348,8		10,2		57,7		13,6		4430,3			_	1	_		1349,8	
Oct. · Mars .	2141,1	2340,3	8,4	6,9	14,2	18,4	13,6	4,2	2177,3	2369,8	+ 8,8		4			569,4	693,5

	Distribution d'énergie dans le pays																		
	Usa	Usages		Elec	Electro- Excédents				D.	Pertes et		Consommation en Suisse et pertes							
Mois	domestiques et artisanat		domestiques et		Indu	ıstrie	chi métal	mie, lurgie, mie ¹)	livrés	pour les dières ques 2)	Trac	ction	éner	gie de gage ³)	les ex et l'é	ompris cédents nergie mpage	les ex et l'é	nergie	rence par rapport à l'année
	$1934/35 \ 1935/36 \ 1934$									précé- dente ⁵)									
	en millions de kWh											θ/0							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
Octobre	107,6	110,6	50,5	47,4	19,9	18,9	17,8	28,1	22,4	22,4	52,9	50,3	243,8	243,2	271,1	277,7	+ 2,4		
Novembre .	112,4	111,3	50,3	45,6	19,2	17,7	13,5	30,5	23,4	21,7	51,6	50,3	248,1	239,5	270,4	277,1	+ 2,5		
Décembre .	116,0	120,8	47,0	45,2	15,5	18,4	11,8	28,6	23,4	24,7	52,2	53,5	246,6	255,0	265,9	291,2	+ 9,5		
Janvier	122,3	115,1	49,2	43,8	17,5	20,0	15,3	34,5	24,7	22,7	54,9	49,9	263,5	245,3	283,9	286,0	+ 0,7		
Février ⁶)	104,3	104,9	44,2	42,1	15,9	18,6	17,4	35,1	21,5	21,3	48,0	47,3	228,6	229,9	251,3	269,3	+7,2		
Mars	106,5	104,1	44,8	44,3	16,6 (2,7)	20,3 (2,8)	23,5 (23,5)	36,1 (36,1)	22,0	20,9	51,9 (5,1)	49,3 (1,5)	234,0	234,6	265,3 (31,3)	275,0 (40,4)	+ 3,7		
Avril	95,6		44,4		20,1		23,1		17,7		52,4		214,8		253,3				
Mai	94,3		46,0		21,2		23,6		17,3		53,1		215,4		255,5				
Juin	85,7		43,0		19,2		20,6		17,1		39,7		199,4		225,3				
Juillet	91,6		47,7		19,6		21,4		18,5		46,2		216,0		245,0				
Août	94,3		49,0		20,3		21,2		18,6		46,8		222,0		250,2				
Septembre .	94,7		47,2		18,5		20,0		17,9		45,0		217,3		243,3				
Année	2125,3		563,3		223,5 (54,0)		229,2 (229,2)		244,5		594,7 (47,8)		2749,5		3080,5 (331,0)				
Oct Mars .	669,1	666,8	286,0	268,4		113,9 (25,4)			137,4	133,7	311,5 (22,6)	300,6 (10,5)	1464,6	1447,5	1607,9 (143,3)	1676,3 (228,8)	+4,3 (+59,6)		

^{*)} Cette statistique comprend les renseignements nouvellement recueillis pour la Dixence dès le 4 novembre 1934 (accumulation dès le 12 août 1934) et pour Klingnau dès le 3 février 1935.

1) Les chiffres entre parenthèses indiquent l'énergie fournie sans garantie de continuité de livraison à des prix correspondant aux excédents d'énergie.

2) Chaudières à électrodes.


3) Les chiffres entre parenthèses représentent l'énergie employée au remplissage des bassins d'accumulation par pompage.

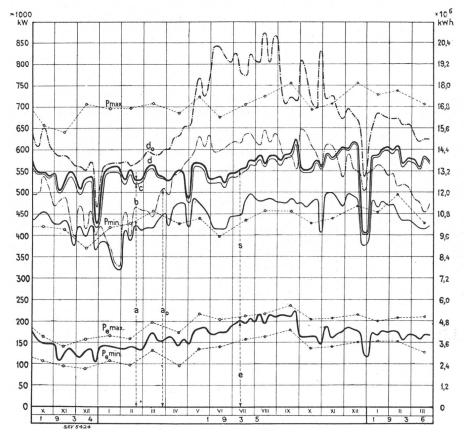
4) Les chiffres entre parenthèses indiquent l'énergie fournie sans garantie de continuité de livraison à des prix correspondant aux excédents d'énergie et l'énergie de pompage.

5) Concerne les colonnes 16 et 17.

6) Février 1936: 29 jours!

Diagramme de charge journalier du mercredi 18 mars 1936.

Légende:


1. Puissances disponibles:	10 ⁸ kW
Usines au fil de l'eau, disponibilités d'après les apports d'eau (O-D).	452
Usines à accumulation saisonnière (au niveau max.)	. 555
Usines thermiques	. 100
Total	1107

2. Puissances constatées:

- O-A Usines au fil de l'eau (y compris usines à bassin d'accumulation journalière et hebdomadaire)
- A-B Usines à accumulation saisonnière
- B-C Usines thermiques + livraison des usines des CFF, de l'industrie et importation.

3. Production d'énergie:	106	kWh
Usines au fil de l'eau		9,9
Usines à accumulation saisonnière .		4,0
Usines thermiques		_
Production, mercredi le 18 mars 1936.		13,9
Livraison des usines des CFF, de l'indu trie et importation		0,1
Total, mercredi le 18 mars 1936	•	14,0
Production, samedi le 21 mars 1936 .		11,9
Production, dimanche le 22 mars 1936 .		8,8

Diagramme annuel des puissances disponibles et utilisées, octobre 1934 à mars 1936.

Légende:

- 1. Production possible:
 - (selon indications des entreprises)
- a₀ Usines au fil de l'eau
- d₀ Usines au fil de l'eau et à accumulation en tenant compte des prélèvements et du remplissage des accumulations (y compris 2c).
- 2. Production effective:
- a Usines au fil de l'eau
- b Usines à accumulation saisonnière
- c Usines thermiques + livraisons des usines des CFF et de l'industrie + importation
- d production totale + livraisons des usines des CFF et de l'industrie + importation.
- 3. Consommation:
- s dans le pays
- e exportation.
- 4. Puissances max. et min. constatées le mercredi le plus rapproché du milieu du mois :

P_{max} puissance max. enregistrée par toutes les P_{min} puissance min. Jentreprises simultanément P_{e max} puissance max. P_{e min} puissance min. de l'exportation.

NB. L'échelle de gauche donne pour les indications sous 1 à 3 les puissances moyennes de 24 h, celle de droite la production d'énergie correspondante.

Elektrizitätswirtschaft in den USA im Jahre 1935.

31:621.311(73)

Die Electrical World vom 4. Januar 1936 enthält zahlreiches statistisches Material über das Jahr 1935, dem folgendes entnommen sei 1):

	1935	1934
Energieproduktion total 106 kWh gegenüber Vorjahr	+93575 + 90,0	85 970
Produktion in		
Wasserkraftwerken 106 kWh	37 000	32 162
Therm. Kraftwerken 10 ⁶ kWh	56 575	53 808
Energieabsatz total 106 kWh	77 355	70 782
davon Haushalt 106 kWh	13 993	12 798
Bezüger unt. 50 kW 106 kWh	14 053	13 151
Bezüger üb. 50 kW 106 kWh	41 184	36 918
Oeff. Beleuchtung 106 kWh	2 921	2 860
Transportanstalten 106 kWh	5 204	5 055
Total Absatz gegenüber Vorjahr	$+90/_{0}$	

¹⁾ Siehe pro 1934 Bull. SEV 1935, S. 269.

	1935	1934
Installierte Leistung total kW	35 050 000	35 120 000
Antrieb durch Dampf kW	24 200 000	24 400 000
Antrieb durch Wasser kW	10 100 000	10 030 000
Antrieb d. and. Treibstoffe kW	733 000	689 000
Treibstoffverbrauch:		
Kohle 106 t	29 600	28 000
Oel 10 ⁶ hl	17 800	16 000
Erdgas 106 m ³	3 820	3 862
Abonnenten: total	25 341 203	24 808 53
davon Haushalt	20 987 563	20 484 233
Bezüger unter 50 kW	3 772 007	3 727 478
Bezüger über 50 kW	581 633	596 82
Einnahmen: total 106 \$	1 923	1 83
gegenüber Vorjahr	+ 41/2 0/0	
davon Haushalt 106 \$	709 200	677 69
Bezüger unter 50 kW . \$	536 600	511 68
Bezüger über 50 kW . \$	532 500	495 65
Oeffentliche Beleuchtung \$	101 000	107 440
Transportanstalten \$	44 200	44 56
Einnahmen pro kWh (1 \$ = 3 Fr.)		
Haushalt Rp./kWh	15,2	15,8
(Schweiz) Rp./kWh		(14,1)

Miscellanea.

Persönliches und Firmen.

(Mitteilungen aus dem Leserkreis sind stets erwünscht.)

Cie Vaudoise des Forces Motrices des Lacs de Joux et de l'Orbe. Monsieur G. Nicole, directeur de la Cie Vaudoise des Forces Motrices des Lacs de Joux et de l'Orbe, qu'il a dirigée avec une rare compétence pendant de nombreuses années, prend sa retraite le 30 juin 1936. Monsieur Nicole a rendu des services éminents à l'UCS, tant comme membre du Comité que de la Commission des tarifs et d'autres encore.

Sté. Romande d'Electricité. Le Conseil d'Administration a nommé M. Louis Mercanton Directeur commercial et M. Pierre Payot Directeur technique, vu les excellents services rendus depuis de nombreuses années par ces deux Messieurs en leur qualité de Secrétaires de direction.

Kleine Mitteilungen.

Le Congrès 1936 de l'Union Internationale des Producteurs et Distributeurs d'Energie Electrique aura lieu en Hollande du 10 au 20 juin. Il comprendra plusieurs séances de travails à Schéveningue, ainsi qu'un voyage en bâteau de trois jours. Le Secrétariat de l'Union des Centrales Suisses est à la disposition des intéressés pour leur faciliter des renseignements quant au programme détaillé.

L'admission au congrès comportera un droit d'inscription de fr. fr. 300.—: Ce droit d'admission ne sera dû que pour les congressistes eux-mêmes; il ne sera pas perçu pour les membres de leur famille, qui les accompagneront sans prendre part aux séances de travail. On a passé des arrangements avec les hôtels, qui assurent des prix avantageux eun tarif forfaitaire. Nous rendons attentifs sur le fait que ces prix ne sont valables que si les chambres sont réservées par l'intermédiaire de l'UIPD.

Nous espérons qu'un grand nombre d'intéressés suisses prendront part à ce congrès. Le secrétariat de l'UCS transmettra volontiers les demandes d'admission et d'arrangements

Un Congrès International pour les Applications Electrocalorifiques et Electrochimiques (CIAEE) sera organisé à l'occasion du 6º Congrès de l'UIPD (voir ci-dessus) du 12 au 15 juin 1936 à Schéveningue, par l'Institution néerlandaise pour les Applications Electrocalorifiques et Electrochimiques, sous les auspices de l'UIPD. Ce congrès est ouvert à toutes les personnes intéressées à ce sujet. Le droit d'inscription est de 10 fl. hollandais. Cette cotisation donne droit à tous les documents et publications du congrès. Des excursions seront organisées. Les inscriptions sont demandées aussitôt que possible. On peut se procurer des renseignements supplémentaires auprès du Secrétariat général de l'ASE et de l'UCS, Secfeldstrasse 301, Zurich 8.

La Foire de Paris 1936 aura lieu du 18 mai au 3 juin 1936. S'adresser à l'agence de la foire, près le Consulat général de France à Zurich.

14. Akademischer Diskussionsvortrag.

Samstag, den 23. Mai, 9 h 30, findet im neuen Maschinenlaboratorium der Eidg. Techn. Hochschule in Zürich, Hörsaal IV (I. Stock) der 14. Akademische Diskussionsvortrag statt.

Thema:

Fortschritte und Neuerungen im Bau und in der Anwendung von Gleichrichtern.

Hauptreferenten:

Ing. Ehrensperger, Brown, Boveri & Cie. A.-G., Baden.

Dr. Dällenbach, für Sécheron S. A., Genf.

Dr. Siemens, Siemens-Röhrenwerk, Berlin.

Ing. Loosli, Signum A.-G., Wallisellen.

Weitere Beiträge sind für die Diskussion angesagt.

Literatur. — Bibliographie.

Herausgeber: Società Edison, Mailand. 4 Bände, Format 250 × 320 mm.

Band 1: Cinquant'anni di evoluzione delle costruzioni idrauliche, dei motori primi, delle macchine e delle condutture elettriche. 510 S.

Band 2: Caratteri e sviluppo dell'industria elettrica nell'economia italiana. 487 S.

Band 3: Lo sviluppo dell'industria elettrica nel mondo. 632 S.

Band 4: Lo sviluppo della Società Edison e il progresso economico di Milano. 276 S.

RM. 6.50.

Die Società Edison, Milano, ist eine der ältesten und grössten Elektrizitätsgesellschaften Europas. Anlässlich ihres 50-jährigen Bestehens hat sie das oben umsehriebene Werk herausgegeben, dzs einen überaus gelungenen Versuch zur Beschreibung der bisherigen Entwicklung der Elektrizitätsindustrie in der Welt im allgemeinen und in Italien im besondern darstellt.

Der erste Band ist den technischen Mitteln der Elektrizitätsindustrie gewidmet. Mit reichem Bildermaterial belegt, werden die Fortschritte des Wasserbaues, der Turbinen, der Wärmekraftmaschinen, der Generatoren, Transformatoren und Motoren geschildert. Ein besonderer Abschnitt wird dem Leitungsbau und seinen Problemen eingeräumt.

Im zweiten Band werden einleitend die Grundlagen und besondern Kennzeichen der Elektrizitätswirtschaft dargestellt und sodann die Geschichte der Elektrizitätsversorgung in Italien bis in die jüngste Gegenwart beschrieben. Anschliessend wird die Elektrifizierung der industriellen Betriebe in Italien behandelt.

Der dritte Band befasst sich mit der Elektrizitätswirtschaft von zehn repräsentativen Ländern: Vereinigte Staaten, Deutsches Reich, Grossbritannien, Frankreich, Kanada, Schweiz, Schweden, Norwegen, Russland, Japan. Ausgehend von den Energiequellen jedes Landes wird die Entwicklung der Elektrizitätsversorgung und des Energieverbrauches dargestellt und auf die Fragen der Wirtschaftlichkeit und Finanzierung eingetreten. In meisterhafter Weise sind einerseits die gemeinsamen Züge hervorgehoben, anderseits die Besonderheiten jedes Landes herausgearbeitet. Ausserordentlich sorgfältig bearbeitete Statistiken mit vollständigem Quellennachweis bilden die zuverlässigen Grundlagen der Arbeiten.

Der vierte Band endlich gilt der Heimatstadt Mailand und der Edisongesellschaft selber. Die Entwicklung der einen hat das Wachstum der andern begünstigt und umgekehrt. Interessante Statistiken und graphische Darstellungen geben über die Bevölkerungsbewegung und Zusammensetzung, die Wohnverhältnisse, den Verbrauch und die Beschäftigung Auskunft. Weitere Kapitel befassen sich mit der Industrie, dem Handel und Verkehr, der Kreditwirtschaft und den fiskalischen Bedürfnissen der Stadt. Den Schluss bildet eine Einzelbeschreibung der Edison-Gesellschaft und der ihr angeschlossenen Gruppe, ihres Ursprunges, Werdens und Wachsens bis zum heutigen stolzen Organismus. Die Edison-Gesellschaft war Ende 1933 mit einem Aktienkapital von 1485 Millionen Lire ausgestattet; in ihren hydraulischen Kraftwerken sind rund 300 000 kW, in den kalorischen 50 000 kW installiert; der jährliche Energieumsatz übersteigt 1 Milliarde kWh. Die *Edison-Gruppe* verfügt über 1 200 000 kW hydraulischer und 200 000 kW kalorischer Leistung und setzt jährlich über 3 Milliarden kWh um. Ihr Versorgungsgebiet umfasst sozusagen die ganze Lombardei und Ligurien sowie Teile des Piemont, der Emilia und Venetiens mit insgesamt über 1300000 Abnehmern.

Das vorliegende Werk, das seine Entstehung dem auch in der Schweiz bestens bekannten Verwaltungsratsdelegierten der Edison, Comm. Giacinto Motta, verdankt, überschreitet bei weitem den Rahmen einer Festschrift. Die Problemstellung, das gesammelte Material und die Art seiner Verarbeitung sind für jeden Elektrizitätswirtschaftler von bleibendem Wert. Aber auch der Konstrukteur, den die Geschichte seiner Technik interessiert, kommt voll auf die Rechnung.

W. Sch.

621.365 Nr. 760 Elektrische Industrieöfen für Weiterverarbeitung. Von Victor Paschkis. 305 S., 16×23 ,5 cm, 251 Fig., 3 Tafeln. Verlag: Julius Springer, Berlin 1932. Preis geb. RM. 31.50.

Die Anwendung elektrischer Energie als Wärmequelle in Industrieöfen für Weiterverarbeitung war erst mit der Schaffung hochhitzebeständiger Metallegierungen nach Ende des Krieges möglich. Dieses Gebiet der Elektrotechnik ist deshalb noch jung und es sind vor dem Erscheinen des Buches Paschkis auch nur wenige Veröffentlichungen in Fachzeitschriften erschienen.

Dr. Paschkis hat dieses Schrifttum gewissenhaft gesammelt und zusammen mit den Erfahrungen der Ofenbaufirmen, welche ihm in reichem Masse zur Verfügung gestellt wurden, im vorliegenden Werk verrabeitet. Der weitaus grösste Teil des Buches ist den unmittelbar durch metallische Widerstände beheizten Oefen gewidmet. Die Grundlagen der Berechnung werden auf fast 100 Seiten in wissenschaftlicher Weise eingehend behandelt, wobei allerdings in einigen Berechnungsbeispielen Wissenschaft und Werkstattpraxis mit einem Gewaltgriff in Einklang gebracht werden.

Eingehend ist auch die Temperaturmessung und -regelung behandelt und besonders auf die zahlreichen Fehlerquellen hingewiesen. Der wertvollste Abschnitt des Buches dürfte für die meisten Leser das ausführliche Kapitel über alle im Elektroofenbau verwendeten Baustoffe sein. Im letzen Kapitel, über Ausführungsformen, findet besonders der Betriebsleiter Hinweise und Anregungen zur rationellen Eingliederung von Elektroöfen in den Fabrikationsgang.

G. Keller.

621.3.014.3 Nr. 1154
Kurzschlußströme in Drehstromnetzen. Berechnung und
Begrenzung. Von M. Walter. 146 S., 17 × 24 cm, 107 Fig.
Verlag: R. Oldenbourg, München und Berlin 1935. Preis

Das vorliegende Buch gibt in lehrreichen Abschnitten Einblicke in den Gefahrenbereich der Kurzschlußströme und deren Berechnung. Sodann werden die vorkommenden Fehlerarten in Drehstromnetzen, wie auch die Rechnungsgrössen für Hochspannungsanlagen erörtert. Den Stoss- und Dauerkurzschlußströmen und deren mechanischen und thermischen Wirkungen ist eine weitgehende Betrachtung gewidmet. Massnahmen und Mittel zur Begrenzung der Kurzschlußströme und ihrer Auswirkungen werden anschliessend aufgeführt. Der Ermittlung des erforderlichen Schaltvermögens für Schalter in Netzanlagen folgen Zahlenbeispiele aus der Praxis. Betrachtungen über vermaschte und mehrfach gespeiste Netze und deren elektrisch gleichwertige Abbildungen schliessen das Buch mit einem graphischen Anhang als wertvolle Beigabe, der noch ein Literatur- und Sachverzeichnis folgt.

Der Verfasser vermittelt in einfacher, lehrreicher Weise klare und wertvolle Aufschlüsse, gestützt durch gut wiedergegebene schematische Darstellungen und Bilder. Den Betriebsmann berühren besondere Beziehungen des Autors zur Praxis sympathisch.

Die Behandlung der thermischen Auswirkungen des Kurzschlußstromes auf die Sekundärleitungen, Relais, Messgeräte und Zähler dürfte wohl in einer späteren Auflage etwas ausführlicher und zusammenfassender gestaltet werden, insbesondere, weil das Problem der thermischen Festigkeit der sekundären Schutz- und Meßsysteme in verschiedener Hinsicht heute besondere Beachtung erheischt.

Das Buch ist allen, die sich mit Berechnung, Bau oder Betrieb elektrischer Hochspannungsanlagen zu befassen haben, ganz zu empfehlen. Es dürfte dem Fachmann zu einem bald unentbehrlichen Berater werden. F. Hug.

535.7:628.9 Nr. 1241
Sehen und Beleuchten. Von L. Schneider. 32 S., A₅, 29
Fig. Zu beziehen bei Osram A.-G., Abteilung für Lichtwirtschaft, Zürich, Limmatquai 3.

Ein hervorragendes Aufklärungsbüchlein über das Sehen und Beleuchten legt uns die Osram auf den Tisch. L. Schneider zeigt darin selten anschaulich die Funktion des Auges und des Lichtes als Mittler zwischen der Umwelt und dem Auge. Ueberaus gut ausgewählte Bilder veranschaulichen auch dem Laien die Physiologie des Sehens und überzeugen ihn vom Wert zweckmässiger Beleuchtung. Die Schrift ist ganz auf das Physiologische abgestellt und deshalb besonders bemerkenswert.

659: 621.3(494)

Werbetätigkeit städtischer Elektrizitätswerke. Von E.

Stiefel. 32 S., A₅, 27 Fig. Verlag: Elektrowirtschaft, Postfach Hauptbahnhof, Zürich. Einzelstückpreis Fr. 1.50. Bei Mehrbezug Rabatt.

An der Diskussionsversammlung der «Elektrowirtschaft» vom 8./9. November 1935 in Freiburg hielt Herr Direktor Stiefel vom EW Basel einen sehr aufschlussreichen und anregenden Vortrag über die Werbetätigkeit städtischer Elektrizitätswerke. Die Ausführungen des Referenten sind in die ser Broschüre zusammengefasst. Das Büchlein gehört in die Hände von jedermann, der sich mit Fragen der Förderung des Energieabsatzes und mit dem Apparateverkauf befasst.

Der Referent hat es dank seiner grossen Erfahrungen auf diesem Gebiete verstanden, an Hand von konkreten Beispielen die Organisation der Werbearbeit eines städtischen Elektrizitätswerks zu veranschaulichen. Die Ausführungen sind aber nicht nur gültig für städtische Betriebe, da ja die Werbemittel sowohl auf dem Lande als auch in der Stadt in mancher Hinsicht die gleichen sind.

Marque de qualité de l'ASE et estampille d'essai de l'ASE.

Matériel d'installation muni de la marque de qualité de l'ASE.

L'introduction, par l'ASE, de normes pour conducteurs isolés, interrupteurs, prises de courant, coupe-circuit, boîtes de dérivation et transformateurs de faible puissance, avait pour but d'améliorer le matériel d'installation et par conséquent de diminuer le danger d'électrocution et d'incendie dû aux installations électriques. Les diverses normes susmentionnées sont en vigueur depuis plusieurs années, de sorte que l'on possède déjà une certaine expérience sur leur efficacité. Il est incontestable que l'introduction des normes a eu pour effet d'améliorer la qualité du matériel d'installation, et que le matériel muni de la marque de qualité a rencontré rapidement la faveur de la plupart des centrales d'électricité et des installateurs. Les épreuves périodiques exécutées annuellement par la Station d'essai des matériaux de l'ASE sur des objets munis de la marque de qualité, prélevés sur le marché, témoignent que ces derniers demeurent conformes aux dispositions des normes.

En élaborant les normes, la Station d'essai des matériaux et la Commission des normes se sont toujours efforcées d'adopter les méthodes d'essai aux conditions réelles de service. Cependant, il n'est pas impossible que la pratique révèle certains défauts ne pouvant être mis en lumière par les essais de laboratoire. C'est pourquoi nous demandons instamment à toutes les centrales d'électricité et aux installateurs-électriciens d'attirer l'attention de la Station d'essai des matériaux de l'ASE sur les défauts ou les imperfections qu'ils auront constatés sur du matériel d'installation muni de la

marque de qualité, en service normal.

Pour appuyer ces communications, dont nous sommes d'avance très reconnaissants, il est désirable d'y joindre si possible un exemplaire non employé de l'objet en question, prélevé sur la même livraison, en indiquant brièvement le genre de l'installation et les conditions d'exploitation. Par cette collaboration plus étroite, nous espérons accroître encore le renom de la marque de qualité de l'ASE et c'est pourquoi nous remercions d'avance tous ceux qui voudront bien soutenir nos efforts.

Irrégularités constatées lors du contrôle périodique.

Dans sa dernière séance, la Commission des normes de l'ASE et de l'UCS a pris connaissance du rapport de la Station d'essai des matériaux de l'ASE sur des critiques auxquelles ont donné lieu des objets munis de la marque de qualité de l'ASE, prélevés pour l'épreuve périodique de 1935. En observant le matériel prélevé sur les stocks des centrales d'électricité, des installateurs ou des magasins de vente, on a constaté que plusieurs dispositions consignées dans les contrats relatifs au droit à la marque de qualité ne sont pas suffisamment observées par le fabricant. C'est ainsi qu'on a trouvé du matériel d'installation muni de la marque de qualité mais dépourvu de la banderole de contrôle; d'autre part, on a livré des interrupteurs, des prises de courant, des coupe-circuit et des boîtes de dérivation qui différaient des échantillons examinés et conservés à l'ASE. En dehors de ces délits principaux, d'autres violations de contrat moins graves ont été constatées.

En conséquence, la Commission des normes à chargé la Station d'essai des matériaux d'intervenir plus énergiquement que par le passé auprès des coupables, en cas d'abus de la marque de qualité ou de violation patente de contrats, ceci notamment pour protéger efficacement les maisons sérieuses.

I. Marque de qualité pour le matériel d'installation.

pour interrupteurs, prises de courant, coupe-circuit à fusibles, boîtes de dérivation, transformateurs de faible puissance.

--- pour conducteurs isolés.

A l'exception des conducteurs isolés, ces objets portent, outre la marque de qualité, une marque de contrôle de l'ASE, appliquée sur l'emballage ou sur l'objet même (voir Bulletin ASE 1930, No. 1, page 31).

Sur la base des épreuves d'admission subies avec succès, le droit à la marque de qualité de l'ASE a été accordé aux maisons ci-dessous pour les produits mentionnés:

Interrupteurs.

A partir du 1er avril 1936.

La firme STABA Aktiengesellschaft, Spezialfabrik elektr. Schalt- und Steuerapparate, Baden.

Marque de fabrique:

Interrupteurs à poussoir, sous coffret, 500 V, 15 A. Exécution: Interrupteur monté dans boîtier en métal léger; plaque de base en résine artificielle moulée.

Type No. D3: Interrupteur tripolaire schéma A, sans coupe-circuit, pour montage dans locaux secs et humides.

Type No. D 3 V: Interrupteur tripolaire schéma A, sans coupe-circuit, pour montage encastré dans locaux secs.

A partir du 15 avril 1936.

La firme Levy fils, Bâle.

Marque de fabrique:

Interrupteurs à bascule pour 250 V, 4 A.

Utilisation: sur crépi, dans locaux secs.

Exécution: socle en matière céramique; cape en résine artificielle moulée brune; bascule à mercure.

No. D 320: interrupteur ordinaire, unipol., schéma 0 No. D 323: inverseur unipolaire, » II.

Utilisation: sous crépi, dans locaux secs.

Exécution: socle en matière céramique; plaque protectrice quelconque; bascule à mercure.

No. D 540: interrupteur ordinaire, unipolaire, schéma 0 No. D 543: inverseur unipolaire, » III

A partir du 1er mai 1936.

Interrupteurs «Mercuria» S. A., La Chaux-de-Fonds.

Marque de fabrique:

Interrupteur rotatif 250 V, 4 A.

Utilisation: sur crépi, dans locaux secs.

Exécution: socle en matière céramique; boîtier en résine artificielle moulée; bascule à mercure.

Interrupteur ordinaire, unipolaire Utilisation: sous crépi, dans locaux secs. schéma 0

Exécution: soèle en matière céramique; plaque protectrice en résine artificielle moulée; bascule à mercure.

a) Interrupteur ordinaire, unipolaire

schéma

b) Interrupteur à gradation, unipolairec) Inverseur, unipolaire

» III

Société Anonyme des produits électrotechniques Siemens, Dépt.: Siemens-Schuckert, Zurich (Repr. de Siemens-Schuckertwerke A.-G., Berlin).

Marque de fabrique:

Interrupteurs à poussoir pour 500 V, 6 A.

schéma A, sans coupe-circuit.

Utilisation: montage intérieur, dans locaux secs.

Exécution: interrupteur ouvert (sans coffret), plaque de front en fonte, socle en matière céramique.

Type No. K 347: interrupteur ordinaire, tripolaire,

R. H. Gachnang, Zurich.

Marque de fabrique:

Interrupteurs rotatifs pour 250 V, 6 A \sim (pour courant alternatif seulement).

Utilisation: sous crépi, dans locaux secs.

Exécution: socle en matière céramique; plaque protectrice intérieure en tôle de zinc et plaque protectrice extérieure quelconque.

No. 1287: interrupteur ordinaire unipol., schéma 0 No. 1287/I: interrupteur à grad. unipol., » I No. 1287/III: inverseur unipolaire, » III

Prises de courant.

A partir du 1er avril 1936.

Adolf Feller S. A., Fabrique d'appareils électriques, Horgen.

Marque de fabrique:

Prises de courant murales bipolaires avec contact de terre $(2\,\mathrm{P}+\mathrm{T}),\ 250\,$ V, 6 A.

Utilisation: sur crépi, dans locaux mouillés.

Exécution: socle et couvercle du boîtier en matière céramique: boîtier et couvercle à fermeture automatique en matière isolante moulée.

Les prises sont prévues pour le montage d'un fusible

No. 8203 SPJ: exécution normale, pour fiche avec deux tiges de 4 mm.

No. 8203 ff SPJ: exécution spéciale, pour fiche avec deux tiges plates.

A partir du 15 avril 1936.

Appareillage Gardy S. A., La Jonction, Genève.

Marque de fabrique:

Prises de courant bipolaires pour 250 V, 6 A. Utilisation: sur crépi, dans locaux humides. Exécution: socle et boîtier en matière céramique.

No. 35040: exécution normale, pour fiche avec tiges de 4 mm, resp. une tige de 4 et une de 5 mm (feuille de

4 mm, resp. une tige de 4 et une de 5 mm (feuille de normes SNV 24300).

ses de courant bipolaires avec contact de terre (2 P + T).

Prises de courant bipolaires avec contact de terre $(2\,\mathrm{P}+\mathrm{T})$, pour 250 V, 6 A.

Utilisation: sur crépi, dans locaux humides.

Exécution: socle et boîtier en matière céramique.

No. 35006: forme carrée avec tiges de 4 mm, resp. une tige de 4 et une de 5 mm (feuille de normes SNV 24301)

Prises de courant.

A partir du 1er mai 1936.

A. Grossauer, Fabrication d'articles électriques, St-Gall-W.

Marque de fabrique:

AGRO

Prises de courant mobiles, bipolaires, pour 250 V, 6 A. Utilisation: dans locaux secs.

Exécution: pièce de contact en laiton nickelé; pièces isolantes en résine artificielle moulée brune ou noire.

No. 2017 U: exécution normale, pour fiche avec deux tige de 4 mm, resp. une tige de 4 et une de 5 mm.

Adolf Feller S. A., Fabrique d'appareils électriques, Horgen.

Marque de fabrique:

Prises de courant murales, bipolaires, avec contact de terre (2 P+T) pour 380 V, 10 Å ~ (pour courant alternatif seulement).

Utilisation: sur crépi, dans locaux secs.

Exécution: socle et cape en matière céramique.

No. 8713: exécution normale, pour fiche avec tiges plates de 2,5×5 et 2,5×8,5 mm.

Fiches bipolaires avec contact de terre (2 P+T) pour 380 V, 10 A ~ (pour courant alternatif seulement).

Utilisation: dans locaux secs et humides.

Exécution: corps de la fiche en résine artificielle moulée noire.

No. 8813, 8813 L: exécution normale, avec tiges plates de 2.5×5 et 2.5×8.5 mm.

Boîtes de dérivation.

A partir du 1er avril 1936.

La firme J. J. Buser S. A., Fabrik elektrotechn. Isoliermaterialien, Bâle.

Marque de fabrique:

Boîtes de dérivation ordinaires pour 380 V, 6 A.

Utilisation: sur crépi, dans locaux secs.

Exécution: boîtier en résine artificielle moulée brune ou crème et porte-bornes en matière céramique avec 4 bornes au maximum.

No. 800 (grandeur: 57×57 mm).

A partir du 15 avril 1936.

Oskar Woertz, elektrotechn. Material und techn. Spezialitäten, Bâle.

Marque de fabrique:

Boîtes de dérivation étanches à l'eau, 500 V, 15 A.

Utilisation: sur crépi; dans locaux secs, poussiéreux, humides ou mouillés.

Exécution: pièces porte-bornes, 4 bornes au maximum, montées dans boîtier en matière isolante moulée.

No. 650 651 652 653 654

Transformateurs de faible puissance.

A partir du 15 avril 1936.

La firme Th. Zürrer, elektromechanische Werkstätte, Zurich.

Marque de fabrique:

Transformateurs à basse tension.

Utilisation: fixes, dans locaux humides.

Exécution: transformateurs monophasés non-résistants aux courts-circuits, avec deux enroulements secondaires. Fusibles sur les côtés primaire et secondaire. Classe 2b, type I 22, 21 VA. Boîtier en métal léger.

Tensions: primaire 220 V.

secondaire 6 et 18 V.

A partir du 1er mai 1936.

C. Schaefer, Elektrotechn. Bedarfartikel en gros, Zurich (Repr. de la firme A. Grothe & Söhne, Köln-Zollstock).

Marque de fabrique:

Transformateurs à basse tension. Utilisation: fixe, dans locaux secs.

Exécution: monophasé, résistant aux courts-circuit; classe la, type 3131 et 3132, 4 VA; boîtier en résine artificielle

moulée.

Tensions: primaire 130 resp. 220 V. secondaire 3, 5, 8 V.

Emploi abusif de la marque de qualité de l'ASE.

Ayant constaté que des douilles de lampes E 27 dites «douilles d'illumination» étaient mises en vente munies de la marque de qualité déposée de l'ASE, ceci contrairement à la loi, nous attirons l'attention du public sur le fait que ces douilles ne doivent pas porter la marque de qualité de l'ASE. Le droit à cette marque n'a pas été octroyé puisque, jusqu'à maintenant, l'ASE n'a pas établi de normes pour ces

III. Signe «antiparasite» de l'ASE.

A la suite de l'épreuve d'admission subie avec succès selon le § 5 du Règlement pour l'octroi du signe «Antiparasite» de l'ASE (voir Bulletin ASE, Nos. 23 et 26 de 1934), le droit à ce signe a été accordé à la firme ci-dessous, pour l'appareil suivant.

A partir du 1er mai 1936.

Electro Lux, Société Anonyme, Zurich (Repr. de Aktiebolaget Lux, Stockholm).

> Marque de fabrique: plaquette. Frottoir modèle B 4, pour 210-225 V ~ 310 W.

Six-Madun-Werke, Rudolf Schmidlin & Cie, Sissach. Marque de fabrique: plaquette. Aspirateur de poussière 250 V, 200 W.

Communications des organes des Associations.

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels du Secrétariat général de l'ASE et de l'UCS.

Nécrologie.

Le 19 avril est décédé à Prilly-Chasseur, dans sa 80e année, Monsieur Anthelme Boucher, ingénieur, membre fondateur de l'ASE. Nous présentons à la famille en deuil nos plus sincères condoléances.

Un article nécrologique complètera ces données sommaires.

Le 5 mai est décédé à Bâle à l'âge de 64 ans Monsieur Hans Hurter, ingénieur, chef d'une entreprise d'installation bien connue, membre de l'ASE depuis 1896. Nos sincères condoléances à la famille en deuil.

Un article nécrologique complètera ces données sommaires.

Assemblées annuelles 1936.

La commission d'administration de l'ASE et de l'UCS a décidé, le 30 avril, de donner aux assemblées générales 1936, selon la coutume établie, un caractère très simple, sans dames. Ces assemblées auront lieu le samedi 4 juillet à St-Gall. Des excursions inofficielles sont prévues pour le dimanche.

Le programme détaillé et les documents officiels paraîtront dans le numéro du 12 juin.

Normalisation des barres d'aluminium pour installations électriques

voir page 265.

Conférence Internationale des Grands Réseaux Electriques à haute tension (CIGRE) 1937.

Les personnes qui ont l'intention de présenter un rapport à la prochaine session de la CIGRE, en été 1937 à Paris, sont priées de bien vouloir en aviser le secrétariat général de l'ASE et de l'UCS, Seefeldstrasse 301, Zurich 8, jusqu'au 31 mai 1936, en indiquant le titre et l'ampleur approximative de leur communication. Nous rappelons à cet effet qu'un texte concis, limité à un sujet original rentrant dans le domaine de l'une ou l'autre des trois sections de la CIGRE (production et transformation de l'énergie - construction et isolation des lignes - exploitation et protection des réseaux), est beaucoup plus recherché et apprécié qu'un travail de

grande envergure. Le Comité National Suisse pour la CIGRE donnera par conséquent la préférence aux rapports de la première catégorie dans le tri des travaux qu'il désignera pour la 9e session dans le courant de cet automne.

Compte-rendu de la 4^e Réunion Plénière de la CMI.

Le compte-rendu imprimé de la 4º Réunion Plénière de la Commission Mixte Internationale pour les expériences relatives à la protection des lignes de télécommunication et des canalisations souterraines (CMI) (voir Bulletin ASE 1936, Nº 3, p. 96) vient de paraître. C'est un volume de 210 pages 27.5×20.5 reproduisant la liste des délégués, les décisions concernant l'organisation et le budget, les rapports des Comités d'Etudes des 1re et 2e sections ainsi que les procès-verbaux des séances. Tous ceux qui s'intéressent aux problèmes multiples que soulève la protection des lignes de télécommunication contre l'action perturbatrice des installations d'énergie (1re section), ou la protection des canalisations souterraines contre la corrosion due à l'électrolyse et aux actions chimiques (2e section), prendront connaissance avec profit des échanges de vues relatifs à l'état actuel de ces problèmes, tels qu'ils eurent lieu à Paris au début de cette année, entre délégués de 5 grands organismes internationaux et d'une quinzaine d'associations nationales et de constructeurs de matériel électrique.

Ce compte-rendu est en vente au secrétariat de la CMI, 20, avenue de Messine, Paris 8e, au prix de 20 francs français, non compris les frais de port. Ceux de nos compatriotes qui s'intéressent à ce document peuvent en prendre connaissance à notre bibliothèque et nous adresser leur commande (secrétariat général de l'ASE et de l'UCS, Seefeldstrasse 301, Zurich 8), que nous transmettrons à Paris après en avoir

recueilli un certain nombre.

Le calcul mécanique des lignes aériennes. Tirage à part.

Il a été fait de l'article de M. E. Maurer, Innertkirchen, sur le calcul mécanique des lignes aériennes (Bulletin 1936, Nos 2 et 3) un tirage à part (en allemand et en français) que l'on peut obtenir au prix de fr. 2.- pour les membres et de fr. 2.50 pour les autres personnes au secrétariat général de l'ASE et de l'UCS, Seefeldstrasse 301, Zurich 8.