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Vendredi, 24 Janvier 1936

Le calcul mécanique des lignes aériennes.

Par E. Maurer, Innertkirchen.

Le secréiariat général et Uinspzctorat des ins:allations a
fort courant de UASE ont publié dans le Bulletin 1919, n°s 6
et 7, des directives détaillées pour le calcul des lignes aérien-
nes, établies par Abel Jobin. Du fait des progrés réalisés de-
puis lors dans la construction des lignes, surtout celles @ gran-
des portées avec isolateurs de suspension, ainsi que des modifi-
cations apportées aux prescriptions fédérales sur les lignes
aériennes, ces directives ne concordent plus avec les condi-
tions nouvelles, de sorte qu’il est devenu nécessaire de les
reviser et de les compléter. Le secrétariat général a donc
chargé lauteur de procéder a cette revision, afin que les
intéressés disposent a nouveau de directives pratiques, adap-
tées a la technique moderne. Nous espérons que ces direc-
tives leur rendront les mémes services que celles d’ Abel
Jobin. Les directives de 1919 sont d’ailleurs épuisées de sort>
qu'une réimpression s’imposait.

Cetie étude indique la marche générale a suivre dans le
calcul mécanique des lignes aériennes. Pour en faciliter
lusage, la premiére partie mentionne les diverses formules
aw fur et @ mesure qu’elles apparaissent au cours des cal-
culs, tandis que les considérations théoriques et le dévelop-
pement des formules sont reportés, a quelques exceptions
preés, dans les annexes.

Les théories fondamentales des anciennes directives ont
pu étre conservées; il a suffi de les adapter aux nouvelles
prescriptions fédérales et de les compléter en tenant compte
du développement de la technique des lignes aériennes.

L’auteur expose tout d’abord le calcul des modifications
des lignes ensuite des sollicitations maximum, des charges
additionnelles et des variations de température prévues par
lordonnance fédérale sur les installations a fort courant du
7 juillet 1933; suit le calcul de la fléche et la détermination
des distances au sol ou aux objets en travers de la ligne.
Un chapitre est consacré aux grandes portées, un autre a
différents cas spéciaux: lignes ordinaires, lignes a grandes
portées a isolateurs fixes ou mobiles, efforts engendrés par
les lignes sur les supports, conducteurs constitués par deux
métaux différents. Pour terminer, Uauteur expose Ueffet de
charges exceptionnelles (p. ex. plus de 2 kg de givre par
métre) sur les lignes. Des exemples pratiques monirent
Papplication des formules.

Pour des raisons techniques, Uarticle doit étre réparti sur
deux numéros. Plus tard on pourra en obtenir des tirages
a part. (Réd.)

651.315.056

Unter diesem Titel veréffentlichten das Generalsekre:ariat
und das Starkstrominspektorat des SEV im Bulletin 1919,
Nr. 6 und 7, eine ausfiihrliche Wegleitung zur Berechnung
von Freileitungen, bearbeitet von Abel Jobin. Die inzwischen
erzielten Fortschritte der Technik des Leitungsbaus, beson-
ders des Baus von W eitspannleitungen mit Hiingeisolatoren,
sowie die Aenderung der Bundesvorschriften fiir Freileitun-
gen hatten zur Folge, dass diese Wegleitung mit den neuen
Verhiilinissen nicht mehr iibereinstimmt, so dass deren Re-
vision, bzw. Erginzung dringend notig wurde. Das General-
sekretariat beauftragie daher den Verfasser mit dieser Re-
vision, um den Interessenten wieder eine brauchbare, dem
heutigen Stand der Technik entsprechende W egleitung zur
Verfiigung zu stellen, die ihnen, wenn maoglich, gleich grosse
Dienste leisten soll, wie seinerzeit die Jobinsche Wegleitung.
Da die Wegleitung vom Jahre 1919 vergriffen ist, war
eine umfassende Neubearbeitung des ganzen Gebietes nicht
zu umgehen.

Die wvorliegende Abhandlung hat den Zweck, allgemein
iiber den Gang der Berechnung der Freileitungen mit Riick-
sicht auf die mechanische Festigkeit der Leiter zu orien-
tieren. Zum handlichen Gebrauch sind im ersten Teil die
Formeln mit erliuterndem Text dem Gang der Berechnung
folgend zusammengestellt, wihrend theoretische Abhandlun-
gen sowie die Ableitung der Formeln, abgesehen von klei-
nern Ausnahmen, in die Anhinge verlegt wurden.

Die grundlegenden Theorien konnten von der frithern
Abhandlung iibernommen werden; sie wuaren lediglich den
neuen Bundesvorschriften anzupassen und entsprechend den
Fortschritten der Technik im Leitungsbau zu erginzen.

Zunichst wird im folgenden die Berechnung der Zu-
standsinderungen der Leitungen auf Grund der Héchstbe-
anspruchungen, Zusatzlasten und Temperaturen, welche die
bundesriitliche Verordnung iiber Starkstromanlagen vom 7.
Juli 1933 vorschreibt, auseinandergesetzt, dann folgt die Be-
rechnung des Durchhanges und die Bestimmung von Abstin-
den gegen den Erdboden oder die Leitung querende Objekte:
ein weiteres Kapitel ist den grossen Spannweiten gewidmet,
worauf speszielle Fille zur Behandlung kommen: Regellei-
tungen, W eitspannleitungen mit festen und solche mit be-
weglichen Isolatoren, ferner die von den Leitern auf die
Tragwerke ausgeiibten Krifte und die Leiter, welche aus
zwei verschiedenen Metallen bestehen. Zum Schluss wird
das Verhalten einer Leitung bei ausserordentlichen Belastun-
gen (z. B. iiber 2 kg/m Rauhreifansatz) erliutert. Beispiele
zeigen die Anwendung.

Aus technischen Griinden muss der Artikel auf zwei
Nummern verteilt werden. Von der ganzen Arbeit sind spi-
ter Sonderdrucke erhiiltlich. (Red.)
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1° Caleul des modifications des conditions

' v: a2 K 2a2E
. . ‘ g 9| /0 yoa
des lignes dont les tensions maxima, les charges = P°-+pP=| 7 ap2 +(@-t)a E—py| = Toa (La)
supplémentaires et les températures “ 0
sont prescrites. ‘ L’équation (la) est I'équation (1) simplifiée

pour portées dont les points d’appul sont au méme

Selon les prescriptions fédérales '), les calculs de . ks i ; ;
niveau. Les désignations sont les suivantes:

la tension des conducteurs et de la fléche correspon-
- . 17 . . P S iy adton - ¢ . o 1 -
dant a la contrainte supplémentaire maximum des | ¢ la portée, c’est-a-dire la distance horizontale entre les

N 5 . points d’appui, en cm,
conducteurs sont a baser sur les hypothéses sui- % Ty Aniwellation des poinds Tappud, o -om,

vantes: o le coefficient de dilatation linéaire du conducteur; rap-
a) La température locale la plus basse, sans charge porté a 1° C,
supplémentaire, ni vent. E le module d’élasticité du conducteur en kg/cm?,

. . . . - 0 la composante horizontale connue de la tension du con-
b) Une charge supplémentaire uniformément ré. | P02 fomboss e 4 CGRASE g8 £)
ucteur aux conditions de pose, & la température de pose

partie de neige et de glace (givre), de 2 k:g 1 en ° C connue également,
par métre courant, a la température de 0° C, | yo le poids correspondant connu du conducteur et de la

sans vent. charge supplémentaire, 1‘app03‘té a une longueur du con-
Dans ces conditions, la tension ne doit pas dé- ducteur de 1 ¢m et une section de 1 cm® (yo s’exprime

les 2 de 1 sist 21 d ) donc en kg/em3), ) ) )
passer les 93 de a. resisLance, .a a rupture du con p la composante horizontale cherchée de 'effort de tension
ducteur. Les propriétés mécaniques des conducteurs du conducteur en kg/em?, a la température supposée t,
les plus usuels servant de base aux calculs sont in- | 7 le poids correspondant du conducteur et de la charge sup-
diquées dans le tableau 12). plémentaire en kg/cm3, rapporté a une longueur de 1 ¢em

P lis B . d . Phypothése b) et une section de 1 em?2,
Oul-ies JgNes @ grandes porlces, L Aypotacee I'angle d’inclinaison de la droite reliant les points d’ap-
entre pratiquement seule en ligne de compte; lors- pui, par rapport a horizontale.

e

Données relatives a la résistance et a Uallongement, et contraintes maxima admissibles des conducteurs les plus usuels.

Selon D’art. 89, chiffre 3, de I"Ordonnance sur les installations a fort courant, les calculs des fléches de toutes les lignes

aériennes dont les conducteurs sont constitués par des matériaux usuels, doivent étre basés sur les chiffres indiqués

dans ce tableau, & moins que d’autres chiffres caractéristiques n’aient été prouvés pour le maiériau utilisé, en vertu
d’une attestation d'un laboratoire d’essais des matériaux d’'une école polytechnique suisse.

Tableau I.
T 7 3 1 i 6 7 8
Résistance & Dimin. de Ta ile o agtel '
' Contrainte  |Aliongement|  coericient de
saction | Poigs | FupUIedu) résistance Module d'élasticité en kg/mm2|  maximum |4 la rupture
Nature du conducteur en mm | spécifique u"u"'éﬂ'!“ﬁ?!ﬁ's B:rojgnfegf; Contrainte | POUr Une contrainte al{el- admissivle | en % de n:::;?,',:"
W citle | tsiance | e kg/mm | Snant fa limile d'élasticits L | Iunul:,eur par10¢
en ky/mm2 |2 la rupture Fils | Cables ke S
\ env. env. |
Fil de cuivre, dur . . . . . . . ‘jusuu'a 20 40 - 16 13 000 - D7 ‘ 6
Fil de cuivre, dur . . . . . . .| > 20} 89 | 35 | — | 15 |12500 - | 925 i} e
Iil de cuivre, demi-dur . . . . . |jusyud 28 30 — 12 12000 - 20 n
Fil de cuivre, demi-dur . . . . . >28} 8,9 28 s 11 ‘ 11500 — 18 I 3 17x10°6
Cable de cuivre, 7—19 brins . - 9 42 6 16 | 13200 11000 28 N 25 17%10-6
Cable de cuivre, plus de 19 brins . - | 42 8 | 15 | 13200 10000 28 i =
Cable de bronze . . . . . . . . - 8,7 65 10 | 28 13 000 | 11 000 43 ‘ 2,5 | 16,7x10-6
Fil de fer . . . . . . . . . . |juwwi20 7,8 45 - | 25 19000, — 30 5 12,3x10-6
Cable d’acier (galvanisé), 7 brins . |jupa60 7,9 | 120 2 50 20 000‘ 18 500 80 ‘ 5 | 11,5x10-6
Cable d’aluminium pur, 7—19 brins - l 19 6 5500
Cable d’aluminium pur, plus de 19 2,75 8 6 300 12 2,5 | 23x106
brins . . . . . . . . . .. — I 18 8 5200
Cable d’aldrey, 19 brins . . . . . - 2,75| 30 4 || | { 6000 | 6
Cible d'aldrey, 37 brins . . . . .| - | 275| 30 | 5 |[f 172 | 6300  5700(f 18 5 | 2l
1) Pour les cables aluminium-acier, la contrainte maximum admissible de I’aluminium peut atteindre jusqua 13 kg/mm?2

qu'il ¢’agit de portées inférieures a 100 m, il faut | Quand le conducteur n’est affecté d’aucun poids
par contre examiner si les prescriptions sont égale- = supplémentaire, y est égal au poids spécifique du
ment remplies aux températures les plus basses, conducteur en kg/cm?®.

\
\

selon le cas a). .~ Pour une charge supplémentaire de 2 kg, le poids
i

Aprés détermination de la tension maximum a total par unité de longueur et de section devient:

0° C et sous une charge de neige, les contraintes

sur une portée peuvent étre calculées pour d’autres ' 0,02 ,
températures et d’autres charges supplémentaires a Voeige = )Y T — kge/m?, (2)
I’aide des formules (16%) de annexe 1I:

h? y2a2E

3 1 —l——hz— -+ p? Zﬁ-aﬁ cosy + (t—t)aE—p,- |1 ,,,,,; = cos 1)
p 2a2) TP | 24 p2 0 0 2 a? 24
) 1) Ordonnance fédérale sur Pétablissement, Pexploitation et Ientretien des installations électriques a fort courant, du
7 juillet 1933 (art. 88), appelée dans la suite «Ordonnance».
2) Ordonnance, art. 89.
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ot g est la section du conducteur en em? On dé-
signe souvant y,..., par poids spécifique virtuel.
Pour les portées avec appuis au méme niveau,

jusqu’a 500 m environ, la composante horizontale

peut étre remplacée aveec une approximation suffi-

sante par la tension elle-méme., On introduit donc

dans ’équation (la):

pour p, la tension maximum choisie du conducteur
en kg/em?, qui ne doit pas dépasser la va-
leur maximum fixée par I’Ordonnance,

pour t, 0,

pour y, le poids spécifique du conducteur +

surcharge par cm
section

0,02

en kg/cms3,

pour « et E les valeurs correspondantes du métal
du conducteur.

Pour une température choisie ¢, on peut alors cal-
culer I'effort horizontal correspondant du conduc-
teur p, déterminant la fléche a cette température.

L’équation étant au troisieme degré en p, il est
plus simple d’admettre pour p différentes valeurs,
de les introduire dans I'équation et de calculer la
température qui correspond a la valeur admise pour
p- La fonction p—=F (1) est alors relevée dans un
graphique permettant de lire les valeurs de p cor-
respondant a des températures déterminées.

Pour les portées dont les appuis sont a des hau-
teurs différentes, I'effort de tension a Pappui le
plus élevé p, est sensiblement plus grand que la
composante horizontale. On donne a p, la valeur
maximum choisie, qui ne doit pas dépasser la va-
leur maximum prescrite par I’Ordonnance, et on
calcule la composante horizontale a I’aide de
I’équation:

pz-(

ou p est la composante horizontale cherchée. Cette
formule, développée a I'annexe I (équation 14%)
en supposant que la ligne forme une parabole, est
également valable avec une grande approximation
pour la chainette, si la portée ne dépasse pas 500 m
et si I'inclinaison de la droite reliant les appuis ne
dépasse pas 30° sur I'horizontale. Elle donne pour
p des valeurs un peu plus faibles que celles qui
seraient obtenues par un calcul exact de la chai-
nette. Lorsque la tension de pose des conducteurs
est conforme a la valeur de I’effort horizontal cal-
culé de la sorte, la tension a I’appui supérieur est
un peu inférieure a la valeur admise par ’Ordon-
nance, ce qui est avantageux au point de vue de la
sécurité contre la rupture. L’effort p ainsi calculé
est introduit a la place de p, dans ’équation (1)
pour les calculs subséquents.

h2

a?

2° Calcul de la fleche d’apres les tensions
déterminées au chapitre 1.
Dans cette étude, la fléeche est toujours la dis-
tance entre le point de contact de la tangente a la

12 5
-+ 2> — P (2 P: — h- ;’srhney) -+ L‘Sfﬂtf‘

|

courbe du conducteur, tirée paralléelement a la
droite reliant les deux appuis, et le point de cette
droite situé perpendiculairement au-dessus du point
de contact de la tangente. Lorsque les appuis sont
au méme niveau, ce point de contact coincide avec
le point le plus bas de la chainette; la droite ver-

ticale dans laquelle se trouve la fleche divise donc
A o

S f |

C G
a H

+lQ

SEV4920

Fig. 1.

en deux parties égales la portée et la courbe du
conducteur entre les appuis. Lorsque les niveaux
des appuis sont différents, cette droite est déplacée
quelque peu vers 'appui le plus élevé, mais cet
écart n’est pas considérable. On peut donc admettre
également dans ce cas avec une approximation suf-

a 2
—78
y -
T
h
S\
H
_________ _~"C
Fig. 2

fisante que la fléche est la distance entre le milieu
de la droite reliant les deux appuis et le point de
la courbe situé perpendiculairement au-dessous, ce
qui simplifie sensiblement les calculs.

Pour déterminer la grandeur de la fléche, on
procéde comme suit:

On suppose que le cible soit coupé au point de
contact de la tangente parallele a la droite AB
(figures 1 et 2). Les deux tron-
' ¢ons du cable conserveront leur
position si I'on exerce a I’en-
droit de la coupure la tension
correspondante. En désignant par G le poids du
cible entre A et B, et par H la composante hori-
zontale de la tension au point C, I'équation des
couples au point B devient:

G :
a f-H= 5 % pour une portée horizontale
(fig. 1),
b s.-P = g . pour une portée inclinée
(fig. 2).

En posant s=f-cosy et P=-—, de sorte que
Ccos

les deux équations a) et b) deviennent identiques.

Lorsque la portée n’est pas trés grande, on peut
admettre que la longueur du conducteur est égale
a la droite AB. En désignant par g le poids par
unité de longueur, on a G—=g-a (fig. 1) et G—=
g-a
cos

S
(fig. 2), de sorte que
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_ 8&a*
/= %x

(Fig.1) et f= —5'%  (mg 9
° 8.H cos yp
En divisant g et H par la section ¢ on al — y et
q
o = p et il vient finalement

pour une portée horizontale

2V . (12
F=7 4
o~ )
et pour une portée inclinée
_ _y-a
F= 8 - pcosy (4a)

Si 'on désigne par f, la fléche de la portée hori-
zontale et par f la fleche d’une portée de méme
grandeur, mais inclinée de I'angle v, on a:

fo
cos ©)
Les deux équations (4) et (5) permettent de cal-
culer avec une approximation suffisante les fléeches
des portées horizontales jusqu’a 300 métres et celles
des portées inclinées au maximum de 30° jusqu’a
500 métres.

Pour les portées plus grandes, il n’est plus ad-
missible de remplacer la longueur de I'arc de la
chainette par la corde. On doit utiliser les équa-
tions beaucoup plus compliquées mais plus exac-
tes, dérivées des propriétés de la chainette. Le para-
metre de la chainette ¢ est p/y. Lorsque les appuis
sont au méme niveau, I’ordonnée du point le plus
bas de la chainette (point C dans la figure 1) est
égal a ¢; les ordonnées aux points A et B se calcu-

<

lent a 'aide de I’équation ?):

C

y 2= (9%4‘ e-%> = ¢ - @05% (6)

La fleche devient donc:

~ / a
] = y—c = C[QD:’(W> ——lJ (7)

ou, en développant les termes en série:

a? a?

f:ﬁ+ ***** “+ ... (¥)

On peut négliger les termes de puissance supérieure.
Si I'on supprime le terme de quatriéme puissance

et que ’on introduise ¢ :—B—, I’équation (8) devient
v
identique a I’équation (4).

La relation formulée par I’équation (5) entre les
fleches d’une portée horizontale et d’une portée
inclinée de méme grandeur f=/f/cos 1 est alors
valable avec une grande précision pour la chai-

3) Développement, voir annexe I, équations (1*) a (5%).

nette *), ce qui simplifie extrémement les calculs
des fléches. - :

Si P'on dispose de tables des fonctions hyperho-
liques, les calculs peuvent étre rendus plus faciles
en transformant I’équation (7) comme suit:

f=2c.Gin? (—4‘%) (7a)

3’ Courbe du conducteur.
Détermination des distances au sol ou aux objets
croisant la ligne.

L’Ordonnance sur les installations a fort courant
prescrit certains écartements minima entre les con-
ducteurs et le sol, ainsi que d’autres croisements
avec des lignes a fort ou a faible courant. La dé-
termination de ces écartements est basée sur la
fleche maximum qui peut se présenter (avec ou
sans charge supplémentaire). Lors du calcul de la
fleche, on doit examiner tout d’abord si c’est la
fleche a 0° C et charge de 2 kg de neige par metre,
ou la fleche a la température maximum qui est la
plus grande. Selon I’Ordonnance, la température
maximum a considérer est celle de + 40" C. Pour
pouvoir déterminer les écartements, il faut naturel-
lement connaitre la courbe du conducteur.

Comme on I'a indiqué précédemment, 1’équation
de la chainette est

y = % (ec4e) = ¢ Gos (i> (6)
ou, en développant les termes par puissances:

4 x6

x2 X
y=ct o tustTs T (62

le parameétre étant c:—£ Les termes supérieurs

a la quatriéme puissance peuvent étre négligés.
Pour faciliter les calculs, on peut transformer lé-
gérement ’équation (6a). On déplace I'axe des
abscisses en introduisant la mnouvelle ordonnée
y =1y — ¢ au point le plus bas, en augmentant de
¢ tous les termes. Il vient:

y = “[% (%)i" 214'(j>4+ 7;0'<";)6+ ]
)

Le paramétre ¢ étant de 'ordre de 500 a 1500 m
. . x ro
pour les cas pratiques, le quotient — est générale-
c

ment < 1 et les puissances sont d’un calcul facile.
A Taide de I'équation (9), on peut donc tracer la
courbe du conducteur.

On dispose généralement d’un profil en long de
la ligne. Lorsque son échelle des niveaux est suffi-
samment grande, la courbe du conducteur peut étre
dessinée sur ce plan et 'on peut mesurer directe-

1) Développement, voir ETZ 1925, p. 989, et 1932, p. 28
et 29.
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ment les distances au sol ou aux croisements et
autres. Ce simple procédé n’est toutefois pas appro-
prié en général aux lignes dont les points d’appui
sont fixes. En effet, du fait de la déclivité du ter-
rain, la composante horizontale et par suite le para-
métre différent a chaque portée, de sorte qu’il fau-
drait calculer et dessiner une courbe spéciale pour
chaque portée inclinée. Dans le cas des lignes a
chaines d’isolateurs, les courbes de toutes les por-
tées ont le méme paramétre et appartiennent donc
a la méme chainette. Il suffit dans ce cas de cal-
culer cette courbe, de la dessiner et de confection-
ner un chablon, a I’aide duquel on reporte la courbe
dans le profil en long.

Au cas ou des accidents de terrain ou des croise-

ments se rapprochent fortement de la courbe du |

conducteur, il est utile de calculer I’écartement mi-
nimum. La détermination exacte selon les proprié-
tés de la chainette conduit a des calculs compli-
qués; d’autre part, si 'on remplace la chainette
par une parabole de méme paramétre, les résultats
sont généralement trop inexacts. On peut toutefois

=]

X1

X2 |

SEV4922 X1

Fig. 3.

résoudre ce probléme avec une assez bonne exacti-
tude pour les portées jusqu’a 400 m et des inclinai-
sons jusqu'a 30°, de la fa¢on suivante:

On part de nouveau des équations (4) et (4a):

@ @
. y - a? " a? _a?
f_8p-cosw—80-costp_80' (4a)

Ces équations montrent que, pour une portée in-
clinée, le paramétre ¢ doit étre remplacé par ¢’ =
c-cos 1, si I'on veut représenter la courbe par une
parabole. Avec le nouveau parameétre, le calcul des
coordonnées de la courbe se fait a 'aide des équa-
tions °) :

- ¢ -h a . a
- = = —Cco8 Y — — =
1 a 2 Y3
h . cos: a
P Yy .o (10)
y-a 2
5) Développement, voir annexe I, équations (12*%) et

(13%).

45
__p-h-cosy a
Xg— % = @
VAL,
¥ = 2p - cosy
. x2
y', =7v, + h ou, ordinaire y — 2P7'TSI,U (12)

Lorsque x, présente une valeur négative, le point le
plus bas de la courbe se trouve a I'intérieur de la
portée, dans I'autre cas a ’extérieur de celle-ci.

Les deux exemples suivants montrent I’applica-
tion de ces équations. Les valeurs exactes détermi-
nées a l'aide de la chainette sont indiquées entre
parentheéses.

Premier exemple.

Un céible de cuivre demi-dur d’une section de 1,5 em?
doit franchir une portée de a« =451 m avec dénivellation
h =928 m, selon la figure 4, de facen que dans le cas le
plus défavorable (0° C et 2 kg/m de neige) la tension

8

Fig. 4.

maximum ne dépasse pas le 85 % de la valeur maximum
admissible de 1800 kg/em? prescrite par I’Ordonnance. Il
s’agit de déterminer quelle est la distance entre le conduec-
teur et le point C du terrain (bord extérieur de la route)
a 0° C et 2 kg/m de neige.

On calcule tout d’abord y,, selon I’équation (2). Le
poids spécifique du cuivre est de 8,9-10-3 kg/em3; d’ou

0,02
= 0,0089 2
ynnlne + 1 5

?

=0,0221 =22,1-10-3 kg/cm?.

On calcule ensuite la composante horizontale p de la
tension maximum p, selon P’équation (3), en introduisant:

p, =85 % de 1800 = 1530 kg/cm?

7 neige = 22,1'10'3 kg/cm3

@=451"10* cm, h = 92,8-10% ¢cm

et 'on obtient:

2
+ 2) —p(2-1530—92,8-10°-22,1- 10

22,1*-10°- 451% - 10*
4

2,042 p> —2864 p + 250°103 =0

+ —0

2864 + /820,28 - 10* — 204 - 10°
1,08
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On obtient 2 valeurs pour p: 1310 kg/em? et 364 kg/cm?.
La seconde valeur n’a pas de portée pratique. On pose donc:
p = 1310 kg/em®

1310

R R . =
c = > 92.1-10° 59 275 cm 592,75 m
h 92,8
tgy = il o 0,205; w=11°37; cosyw = 0,9795

Selon I’équation (10), on obtient pour le point d’appui in-
férieur A:

592,75+ 92,8 - 0,9795
X =

—225,5 = —106m (— 107,1 m)

451
1062
b= 290 968 m (9,71
Yi < 259275 0,9795 i e
Le point le plus bas de la courbe se trouve donc

a y'1=9,68 m au-dessous du point d’appui inférieur A.

L’abscisse du point de la ligne au-dessus de C est x =

301 — 106 =195 m. L’ordonnée correspondante (hauteur au-
dessus du point le plus bas de la courbe) est

1952

foam e P — 3998 (30,01 ).

Y T 2592,75-0,9795 m (3501 m)

La différence de niveau entre le point de la courbe au-
dessus de C et le point A (figure 4) atteint donc: 32,73 — 9,68
=23,05 m (22,27 m). Le point C est a 54,4 — (21 4 16)
=17,4 m au-dessus du point A, la hauteur de la ligne au-
dessus du point C du terrain (bord extérieur de la route)
est de 23,05 — 17,4 = 5,65 m selon le calcul avec la parabole,
tandis que le calcul exact d’aprés la chainctte donne une
distance de 4,9 m seulement.
aux prescriptions de 1I’0Ordonnance (art. 86). La différence
est de 75 ¢m (erreur de 15'%). Toutefois, pour des distances
ordinaires de 200 a 300 m, ces deux valeurs sont presque
identiques; pour une aussi faible différence, il ne vaut
presque pas la peine d’effectuer des calculs compliqués a
I’aide de la chainette. Pour plus de siireté, il est préférable
d’augmenter de 1 m la distance minimum admissible entre
conducteur et sol exigée par I'Ordonnance.
La fleche de cette portée est

_ 45
f= 8.592,75-0,9795

= 43,8 m

Le calcul exact d’aprés la chainette donne 44,1 m. L’erreur
est de 30 cm, donc inférieure a 1 %.

Deuxié¢me exemple.

Un cable aluminium-acier d'une section de 2,103 cm? a
été tendu entre les points A et B (figure 5), de facon que
Peffort horizontal est de 1177 kg/cm? sous une charge supplé-
mentaire de 2 kg/m de neige. Le poids du cable est de 815
grammes par meétre courant.

On a donc
0,00815 -+ 0,02

Vnelge: — W— = 13,45°10-3 kg/ecm3.

Déterminer la distance entre la ligne et le point C du terrain.
On a donc

a= 406 m
h=250m

y = 13,45°10-3 kg/cm3
p = 1177 kg/em?

cos 1 =0,8515 e=2 =815 m

w= 31" 37%’ 7

Elle ne satisfait donc pas

Selon I’équation (10), on obtient pour le point d’appui in-
férieur A
250

%3 = 875 106 -0,8515 — 203 = 256 m (302,57)

2562

T -, 52,83
Y27 9.875-0,8515 e (52,80)

Hauteur du point de la courbe au-dessus de C au-dessus du
point le plus bas de la courbe:

, (256 + 176
Y =3 47508505 = 1253 m (134,04)

La différence de niveau entre le point de la courbe au-dessus
de C et le point A est donc de
1253 — 44 = 81,3 m (81,21)

et par suite I’écartement de la courbe du point C = 81,3 — 75
=6,3 m (6,21 m).

250

1\
|
|
|
|
|
1
|
|
|
|
|
|
|
I

175 !

Fig. 5.
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La différence entre le calcul approximatif et le calcul
exact d’aprés la chainette est donc dans cet exemple de 9 em
seulement. La concordance est d’autant meilleure que la
portée est plus faible et que le paramétre de la courbe est
plus grand.

Pour la fléche, on a:

406>

" 8-875-0,8515

= 27,65 m (27,62)

Ces chiffres (x1, x2, y{, y},) montrent que le point le
plus bas de la parabole fictive s’écarte sensiblement de celui
de la chainette. Toutefois, le point le plus bas se trouvant
a Dextérieur de la portée et de la courbe du conducteur,
cela est sans importance. Ces calculs montrent d’ailleurs
que la courbe calculée et la courbe réelle coincident bien
dans la portée AB.

Pour le calcul de I’écartement minimum d’un
point de la courbe, il faut connaitre I’angle d’incli-
naison de la courbe sur I’horizontale. En désignant
cet angle par 7, on a pour un point quelconque de
la courbe la relation:

x

c-cos Y a3

ot x est ’abscisse du point de la courbe représentée
comme une parabole fictive. L’écartement mini-
mum entre un point du terrain et la courbe du con-
ducteur est alors égal a la distance perpendiculaire,
multiplée par cos 7.

(A suivre.)

Annexe L
Développement des principales formules pour le calcul des lignes.

10 La théorie fondamentale (chainette).
En supposant un cable souple de poids nul chargé a dif-
férents points de forces verticales, le polygone funiculaire

est en équilibre lorsque la somme des projections de toutes
les forces sur deux axes perpendiculaires entre eux est égale
a zéro. On doit done avoir dans la figure 1% les relations:
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H1 = H:
Vi+V2=Pi+ P2+ Ps
o'est-d-dire que les composantes horizontales des tensions

dans les divers troncons sont toutes de méme grandeur et
que la somme des composantes verticales des tensions de

H
Fib. 1%

troncons quelconques est égale a la somme de toutes les
charges qui se trouvent entre eux.

Ainsi, pour un c6té horizontal du polygone, sa tension
est égale a H, c’est-d-dire la tension la plus faible du systéme.

La composante verticale de la tension a un point quel-
conque du polygone est égale a la somme des charges entre
ce point et le point le plus bas.

Dans les lignes aériennes, la charge est constituée avant
tout par le poids propre des conducteurs; lorsque la section
des conducteurs est constante, le poids est réparti réguliére-
ment sur toute la longueur de arc. A vrai dire, en cas de
charge supplémentaire due a la neige ou au givre, cela
n’est généralement pas le cas. Mais, pour simplifier les cal-
culs, on admet que ces charges supplémentaires sont égale-
ment réparties d’une facon réguliére le long des conducteurs.
Soit g la charge totale (poids propre -+ poids supplémen-
taire) par unité de longueur (cm). Le polygone des con-

y

|
I
B I A
I
[

SEvedie 5 1

ducteurs devient alors une chainette. En effet, selon la
figure 2%, o H est la composante horizontale et ¥V la com-
posante verticale de la tension P dans le conducteur, on a:

V=gl (1%)
=V _ sl .
wT=—F = g (2%

Daprés I'équation (2%), on constate que la forme de la
courbe ne se modifie pas lorsque l'on fait varier ensemble
proportionnellement ¥V et H, resp. g et H. On peut donc
poser:

H=cg (3*)

Le facteur de proportionnalité ¢ est le paramétre de la
courbe. De D’équation (2%) on tire:

1 .
wr=—— @)

La tangente de l'angle de la courbe par rapport a I'axe
des x est donc proportionnelle a I’arc. Par dérivation de
cette derniére formule, il vient:

dtgz _ 1 dl
dx ¢ dx

dy d(tgz) _ dy
dx ’ dx da2 ’

ou g7 =

et dl = Vda2 + dy?

donc AR -
weas e (B) =V ()

On obtient ainsi I’équation différentielle:

d2y 1

dy \?
da? ?'Vl +(dx)

d’out I'on tire I’équation de la chainette:

g= 5 E7+a § (")

Taxe des x (figure 2%) se trouvant a une distance égale au

parameétre ¢ de la tangente au point le plus bas et parallele
X

X
a celle-ci. On peut aussi exprimer %(e?_l' e c)p.su'lafonc-
x ; .
tion hyperbolique $ps (—) ; Péquation (5%) prend alors
c
la forme

y = c-Cos (—:——) (5a%)

Pour faciliter les calculs, on développe I’équation (5%)
suivant la série de Mac-Laurin et on a:

xt xb
24 ¢3 + 720 ¢

x"_l_

y=ct33

+ ... (6%)

A Taide de cette équation (6*), on peut déterminer pour
une abscisse quelconque x 'ordonnée correspondante y. Les
termes d’une puissance supérieure a la quatriéme peuvent
étre négligés dans tous les cas pratiques, car ils sont rela-
tivement petits.

Lorsque les portées ne sont pas trop grandes et peu in-
clinées, il suffit de ne considérer que les deux premiers
termes. L’équation (6%) devient dans ce cas:

2
y e+ 2 ¢

En déplacant I’axe des abscisses dans la tangente au point
le plus bas, en introduisant la nouvelle ordonnée y' =y —c,
on a:
2
x
= 6a*
y e (6a7)
c’est-a-dire que la chainette est dans ce cas une parabole.
La parabole représente la courbe des conducteurs dans
le cas ou la charge est répartie réguliérement sur la projec-
tion horizontale de la courbe. On a alors:

V=gx; H=g'c

dy |4 x
— =g T == ——
dx H c
X
et, par intégration y’ = ——, formule identique a ’6quation
c

(6a*).

Il est intéressant de pouvoir déterminer la longueur de
Parc I en tenant compte des modifications des conditions.
Selon I'équation (4%), on a
dy
dx

l=c:tgr = c*

D’autre part, selon Iéquation (5%):

et par conséquent:
l=—(e"—e °) (7°)

x X
c c

1 _
On peut aussi exprimer ?(e — e °) par la fonction hyper-
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. . X % =
bolique Sin (—c—), I’équation (7%) prend alors la forme:

l=c-Gin (—x—) (7a")
C )
Pour les fonctions hyperboliques @in et 83, il existe
des tables, comme pour les fonctions circulaires.
L’équation (7*) peut étre développée en série de puis-
sances, comme I’équation (6%) et ’on obtient:

1 x8 1 x°
1 = s e g
B Fe g 120 ¢t

(8")

En pratique, il suffit de considérer les deux premiers
termes. Des équations (5a*) et (7a*) on déduit en outre,
en considérant que

X I X *
Cps? (*) — Gin (—) =ils (9%

c c

) g

La valeur de I calculée d’aprés cette formule est la longueur
de la chainette entre le point le plus bas et le point d’or-
donnée y.

Selon ’équation (3*), le parameétre est

W

g (3a%)

En divisant par la section du conducteur, on obtient:

P
7

ol p est la traction horizontale spécifique du conducteur
en kg/cm?, ¥ le poids du conducteur -+ la charge supplé-
mentaire, par 1 ¢cm de longueur et 1 cm? de section. Si la
charge supplémentaire est nulle, y est alors égal au poids
spécifique du conducteur en kg/cm3.

L’effort de tension du conducteur en un point quelconque
se compose de la composante horizontale et de la compo-
sante verticale donc:

P=1v:+m

L’effort minimum est au point le plus bas de la courbe, o
sa valeur est H; Deffort maximum est aux points d’appui,
ou au point d’appui supérieur quand la portée est inclinée.
11 résulte des équations (1*), (3*) et (9*) et de I'introduc-
tion de la charge spécifique g quc

P = ],/g‘:.12+g2.02=g-l/12+cz=.g.y (10a*)

ou, en divisant de part et d’autre par la section du con-
ducteur:

pPa=yy (10%)

Dans cette équation, y est I'ordonnée de la chainette, rap-

portée a I'axe des abscisses se trouvant a la distance ¢ au-

dessous du point le plus bas de la courbe. Si ce dernier est

considéré comme point zéro, on a ¥’ =y—c ou

p=p+yy (117

ou p est effort au point le plus bas, p, 'effort en un point
quelconque d’ordonnée v, resp. y'.

Quand il s’agit de portées pas trop grandes avec points

d’appui au méme niveau, p, peut étre considéré comme égal
a p sans commettre de grande erreur.

2° Calcul des courbes des conducteurs de lignes avec
points d’appui a des niveaux différents.

Pour déterminer les courbes des conducteurs, on doit
connaitre le paramétre, ainsi que la position des axes des
coordonnées. Lorsque les appuis des portées sont au méme
niveau, ces données sont immédiatement connues, car I’axe
des ordonnées divise en deux parties égales la droite reliant
les deux appuis et est perpendiculaire a celle-ci.

Lorsque les appuis sont a des niveaux différents, on ne
connait que le paramétre ¢, la différence des abscisses des
points d’appui égale a la portée a et la différence des or-
données égale a la dénivellation h. Il s’agit done de déter-
miner a l'aide de ces données les coordonnées des deux
points d’appui A et B (figure 3 de la partie principale, cha-
pitre 3) et ainsi la position des axes des coordonnées.

On résout ce probléme en admettant tout d’abord que la
courbe des conducteurs soit une parabole. Selon la figure 3,
on a:

x2—x1=aetys—y1=h

Selon I’équation (6a*):

%% x*
g = g =g,
On a donc
b= (% — ) = (a + =)
¢ - 2¢
ou
%.¢h
et x =
a
et
X2 — x = a

Par addition et soustraction des deux derniéres équations,
il vient:

x2=c—h—+iund
a 2 19*
oo B B e
= a 2
ou, car ¢ = P
Y
p-h a
xXg = i +—2— und ‘
(12a")
o= b _ @
: y-a 2

Pour la chainette, le probléme se résout d’'une fagon ana-
logue. On part de préférence de la forme explicite de ’équa-
tion de la chainette, en négligeant les puissances des abs-
cisses supérieures a la quatriéme.

Comme pour la parabole, on a:
x2o—x1=a; yY2—y1=h

Toutefois, les ordonnées sont:

. ST B A T
2 T Toe 24 ¢3 Y1 2¢ 24 ¢
d’ou
a) X2 — X1 = a
_a . &4 A a%
b b=+ x) [1+ f ] (13°;

En résolvant Iéquation (13*) selon x1 et x2, on se heurte
a des équations du troisiéme degré, dont la solution est
trés compliquée. Il est toutefois permis de remplacer l'ex-
pression x2-+ x% par les valeurs approchées x{2 4 x}2 calcu-
lées selon I’équation (12*), resp. (12a*), et de réduire ainsi
I’équation (13b*) en une équation du premier degré, dont
on peut calculer la somme x1 - x2 et par suite les valeurs
de x1 et x2 a 1’aide de I’équation (13a*).

Si x1 présente une valeur négative, le point le plus bas
de la courbe se trouve a Dintérieur de la portée; dans la
cas contraire, il est en dehors de celle-ci.

L’équation (11¥) montre que, pour les portées avec points
d’appui a des niveaux différents, I'effort horizontal p déter-
minant le paramétre ¢ ne doit plus étre considéré comme
égal a Deffort maximum p, au point d’appui supérieur. kn
aucun cas, p, ne doit étre choisi a une valeur plus élevée
que leffort maximum p, fixé par I’Ordonnance. En posant
Pr= P, Ueffort au point le plus bas selon la figure 3 et
I’équation (11*) ne doit pas dépasser:
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P = D:— Vraige’ Y2 = D: — Vel + 3]

Pour une courbe parabolique, on peut poser

j’nclas 3 le

yl == 2 % P
et
oo PR O
EE= V-a 2
ce qui permet d’établir I’équation:
h? 2 e al
pZ (?.—2 + 2) —Pp (217: —h- ynelqe) + d eln;_ =0 (14-*)

En résolvant cette derniére équation, on obtient deux va-
leurs: P'une pour le cas out le point le plus bas de la courbe
est situé a Dintérieur de la portée, et I"autre pour le cas ou
il est en dehors. Une valeur imaginaire de p signifie que,
pour les conditions données, aucune solution n’est possible,
c’est-a-dire qu’on ne peut pas tendre les conducteurs donnés
sur la portée donnée et avec le dénivellement donné, sans
que la tension maximum p, ne dépasse la limite fixée p,.
Dans un pareil cas, on devra alors choisir un conducteur de
section plus grande ou en métal présentant une plus grande
résistance a la rupture, ainsi que le montre I'exemple sui-
vant:

Une portée de 400 m avec dénivellation de 200 m doit

étre installée avec un fil de fer de 5 mm présentant une
résistance a la rupture de 4500 kg/cm?2.

L’effort maximum admissible est les 24 de 4500, soit
3000 kg/cm2, le poids spécifique virtuel pour 2 kg/m de
neige: ypeige = 109,8-10-3 kg/em?.

En introduisant ces valeurs dans I'équation (14*), on a:

ot (igg + 2)-—p (23000 — 2- 104 109,8 - 103) +

109,82 - 10-° 4%-10% _
4

0.

2,25 p2 — 3800 p - 48+ 105 = 0,
d’ott

3800 + 1144 - 10> — 432- 105
p= 45

Le membre sous la racine carrée étant négatif, p donne une
valeur imaginaire. Il n’est donc pas possible, dans ces con-
ditions, de tendre le fil.

[Au sujet de la validité et de I'application de Péquation
(14*), voir au chapitre 1°* de la partie principale, équa-
tion (3).]

3° L’équation des conditions d’une ligne aérienne pour
portées avec points d’appui au méme niveau.

On sait que lorsque la température varie d’une différence
t—to, la longueur Iy d’un fil de coefficient de dilatation
linéaire o varie de: (t—to) alo.

De méme, lors d’une variation de T’effort de tension spé-
cifique de p— po, ce méme fil de module délasticité E
varie de
Ly
(P—po) - &

ou p et po sont les efforts de tension spécifiques réels.
Comme on I’a vu, ceux-ci sont a vrai dire différents d’un
point a Pautre pour chaque condition, et vont en augmentant
a partir du point le plus bas de la chainette. Dans un calcul
absolument exact, il faudrait donc introduire pour «p» et
«po» les valeurs moyennes correspondantes (rapportées a ’en-
semble de I'arc), Toutefois, selon Hoock (voir plus loin,
au chapitre 4) on ne commet qu'une erreur négligeable dans
les cas ordinaires out les points d’appui sont au méme niveau,

en introduisant I'effort de tension spécifique (le plus faible)
du point le plus bas. Dans ces formules «p» et «po» restent
dont les efforts au point le plus bas de la chainette.

Pour une modification des conditions lo, po, t0 aux con-
ditions I, p, t, on a donc d’une facon générale:

Il = (=t a lo + (P=P) (1)

. ., a .
Or, pour la demi-portée 5 lorsque les deux appuis sont au

méme niveau, on a selon l'équation (8%) et du fait que

c = % pour les conditions de pose:
b_a,dn  on
2 2 ' 48 pyt | 3840 pyt

ou, dans la plupart des cas (sauf s'il s’agit de treés grandes
portées), les termes de troisiéme puissance peuvent étre
négligés a cause de leur petitesse, de sorte que l'on a la
formule approchée:

lo o a a2 yoz)
2 2 (1+24p0"

En supposant que le poids spécifique virtuel varie du fait
de la charge supplémentaire de yo a 7, en méme temps que
po a p, on a pour les nouvelles conditions:

l a ( a® p?
?_'z_(1+24p2)

De ces deux derniéres équations et de I’équation (15%) on
tire: .

a? P N
l—l():a2—4(1;—}702')=(t‘tu)a'l0+(p_p0)f
ei_y_“’_&*)_ - b1

ou 2 (p2 PE = (t—ty) i -+ (P=Po) % B

Dans ces formules, on peut poser avec une approximation
encore suffisante:

— = 1.
a

Ce rapport étant en réalité légéerement > 1, cette simplifi-
cation a le méme effet qu'un « trop faible ou un E trop
grand, ce qui donne une variation linéaire un peu trop
faible selon I’équation (15*%). On verra au chapitre 4 que
cette erreur est toutefois sans importance dans les cas or-
dinaires. ‘

Cette simplification permet de poser

'21—4 (”—2 = ;,_02) = (t—t) @+ (p=po) - % (16a")

2 2

P Do

et 'on obtient, par transformation, Péquation des conditions

d'une ligne aérienne (a points d’appui au méme niveau,
forme parabolique):

yi-at- E

2 2
3 o __y*-a*-E
P Lk Eaaad

+ (=)« B=po| =25 (16

4° L’équation des conditions pour portées avec points
d’appui a des niveaux différents.

En résumé, on sait donc qu’une ligne flexible tendue
entre deux points fixes quelconques prend toujours la forme
d’une chainette, qui différe si peu d’une parabole dans la
majorité des cas pratiques, que D’écart est négligeable. Les
efforts de tension a chaque point peuvent donc étre calculés
d’aprés la relation bien connue p’ = p 4 y'y’, ou la valeur
y" est pour chaque point égale a son ordonnée au-dessus de
la tangente au point le plus bas, choisie comme axe des x
(figure 3%). L’effort de tension sera donc maximum au point
d’appui le plus élevé; sa valeur maximum admissible p, dé-
pend de la résistance du métal a la rupture et du coefficient
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de sécurité prescrit. La formule (14*) indiquée au chapitre 2
permet de déterminer I'effort p au point le plus bas de la
courbe en partant de Deffort maximum admissible p,.

Il reste a poser effort de tension p correspondant a de
nouvelles conditions y et t, en fonction des conditions de

y

X2

-
P sevusze

Fig. 3%

pose connues po, Yo et to, comme on I’a déja fait au chapitre
précédent pour les portées horizontales.

En considérant exactement

9
le probléme on remarque et - i »
immédiatement que la formule + - P==P noyen 2p
(16*) pour points dappui

au méme niveau n’est pas utilisable pour les portées incli-
nées. En effet, on ne peut pas introduire sans autre dans
cette formule la portée comme distance horizontale a, car la
variation de Deffort doit étre fonction de la variation de la
longueur (I—10) de I'arc avec la corde b=1f (a, h). En
outre, la formule (16*) est basée sur une approximation qui
n’est pas acceptable dans ce nouveau cas. Dans I'ancien cas,
on avait posé pour la variation de la longueur (I —1I) =

(p— po) 2 en tenant compte de D’élasticité, les grandeurs
E g P

et po désignant les efforts au point le plus bas, alors qu’il
ne peut s’agir en réalité que des variations des efforts moyens
(p—po) par rapport a I’ensemble de la chainette. Par
contre, pour le calcul des longueurs I et L, ce sont les efforts
p et po au point le plus bas que l'on doit considérer. En
établissant la formule (16*), on a donc rendu égaux et iden-
tiques deux efforts qui sont en réalité distincts. Dans 1’an-
cien cas, on pouvait agir de la sorte, car I'erreur ainsi com-
mise ne dépasse généralement pas quelques pour-cents.
Comme on le verra a la fin de ce chapitre, la formule (16%)

; a
S 7
r= =
|
|
-~ |
Ni<l |
|
s |
N’_‘_‘ _____
N
X
N
G 3
l
a I
!
I
|

pour portées horizontales est un cas spécial de la formule
générale valable pour les portées inclinées. Quand il s’agit
de portées dont les points d’appui sont a des niveaux diffé-
rents, I’effort moyen peut atteindre des valeurs complétement
différentes.

L’effort moyen p peut se définir comme Deffort p’ =
p-+y'y" de la parabole, intégré sur la distance horizontale
a entre les points d’appui et ramené a cette grandeur prise
comme base (voir figure 4¥). Si I'on dessine donc pour une

(

portée AC la courbe AEG des efforts p’ = p -+ 7y, leffort

moyen p est égal, selon la définition ci-dessus, a la hauteur
du rectangle de base MN = a = x1 — x2, ayant la méme sur-

face que I'aire AEGMN.
Si, pour un point quelconque P, effort p’ = p—+ y-y’, ou

AL Y ah.. ST
Y= 9 p T oaps +
on peut écrire
22 a2 bk
p’dx:p-dx+ 2p -dx+ 24p3'dx
Xa Xa }/2 Xg 7,4 2
p"dx=pg dx + —\ «%-dx—+ 5 xt-dx =
le AM 2p~xt 24 p e
y2 [x)3 — x23) pt (x15 - x25)
p(xlfx:)_i_ 2p( 3 ; + 24p3 5
il e ol 7 (et + 2 x t+ w0+ wnae® 4 af)
3 24 p3 5

dont le troisiéme terme peut étre négligé par rapport aux
deux premiers, de sorte que ’on peut écrire d’une fagon
générale pour 'effort moyen d’'un élément quelconque AOC
de la chainette:

_ 2
p=0p J‘gp (v + x122 + 27

Sous cette forme, cette équation est toutefois mal commode
pour les calculs, car elle exige le calcul préalable des abs-
cisses x1 et x2. Il est cependant facile de la transformer en
une fonction des grandeurs connues h et a.

On pose:
yx® g’
ki g e A g —
h=vy"1—v"2 2p 2 p
et a = x1—x3

(17)

On constate donc que la grandeur p pour les portées incli-
nées peut étre beaucoup plus grande que p, suivant les va-
leurs de h et a. Pour les portées horizontales, le terme ren-
fermant h disparait et I'on a:

)2 a?
24 p

p=p- Pisyf

Toutefois, méme pour les portées trés grandes, y n’atteint
jamais 10-! kg/cm3 et la fleche dépasse rarement 100 m, en
outre on doit choisir dans ces cas un métal présentant la plus
forte résistance a la rupture (p,=40 a 80 kg/em?). Il ré-

sulte donc de I’équation ci-dessus que p ne peut étre que de
quelques pour-cents supérieur a p, méme dans les cas ex-
trémes.

Pour les portées horizontales, il est donc admissible de
poser p ~ p.

On peut alors établir I’équation générale des conditions
et poser, comme pour la formule (16%):

AP |
I—1y = (t—to) @ lo+ (P — Po) 5 b

Selon la figure 4% et I'équation (8%), la longueur I est
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1 8 448
- (xl—x2)+ j/ (x1 xz)
p?
2
l=a +%(xl2+x1x2+x12)
Selon la formule (12a*), on peut poser pour xi.et x2:
bl
i ya 2
ph a
o e s
. ya 2
d’ott 1'on déduit:
a®> 3 p*h?
x4 X1X9 + x.2 = *4* n *}2 aff

1 £ h® 2% ad
TAT 9T 24pe
De méme:
h 9,2 a3
b= o 22" ups
i iy o L
l_lo=all_4([u }’2) =(t—to) @ - Iy + (p — Po) E'lo
e B e i i D e ) i
& y PN e Y s = N e
cos Y 24 (p"‘ Po") ty) @ - lp p D E 0
En posant, comme précédemment, — ? ~1, on a
a2 },2 7,02 1 . N
cos Y- o0 (7 2 p_nz) =(t~t)at 5 (pP—py)

Selon la formule (17%), on pose en outre:

phz y2 a?
P=P+ o a*yg p
= pth )/uz
Po = Po + 2 a2 24 py
— — pht  ?a? Po h? )/u a’
s p— + e + e s .
P=Po=P* o ¥ oup P 5 " up,

En introduisant cette valeur, il vient:

22 2 o2
Sap? - E - cos 1 — ;7};')“2 E-cosyp=(t—t)aE+p+
pE e Pkl
22 T 20 p T 2@ T 2ap,

et, par transformation:

h2
s (1 4 —2712—> 4o

Par rapport au premier terme de la grande parenthése, le

“I

z4p

2 2
terme }/20411 est négligeable, de méme que dans la plupart
des cas y2Z p, de sorte que 'on obtient finalement

Péquation générale des conditions d’une ligne aérienne

en forme de parabole:

P (14 ) + 7

Contrairement a ’équation (16%), cette équation peut étre
considérée comme équation générale des conditions, car
elle est valable dans tous les cas. Pour yw =10, h =0, elle
est identique a I’équation (16%) pour portées horizontales.

yoi-arE
24p

E cos p + (t—to) @ - E — P0(1+

B\ 2. 2. E
cos i + (t—to)) @+ E— Po(l + 2a‘)J =J’+

5° Les équations des conditions pour lignes aériennes
a isolateurs de suspension (chaines d’isolateurs).

Comme on I'a vu au chapitre 5c¢), dans les lignes a iso-
lateurs de suspension les tensions qui différent dans cer-
taines portées du fait de variations des conditions sont com-
pensées par la déviation des chaines d’isolateurs, de sorte
que les tensions horizontales de toutes les portées peuvent
étre finalement toutes considérées comme identiques.

Dans ce qui suit, on établira les équations des conditions
pour lignes a isolateurs de suspension avec points d’appui
au méme niveau et de niveaux différents.

Etat initial

70,2

Son
~

[

ES
Jdm

1974

I
a,-250m |

SEv#628

Fig. 5* und 6*

Soit un conducteur monté entre deux points d’arrét A et
B en n portées aux conditions po, 70, to avec chaines d’iso-
lateurs verticales (figure 5*). Si les conditions deviennent
¥, t, la tension horizontale équilibrée du conducteur est p*.
Pour une telle modification des conditions, les chaines des
isolateurs dévieront de certaines valeurs Aa.

En désignant par

po Deffort horizontal du conducteur en kg/cm? aux conditions
de pose avec chaines d’isolateurs verticales,

PL -e.Py+.-Py les tensions du conducteur, différentes pour
chaque portée, lors du passage des conditions du début
a celles de la fin, mais les points d’appui étant considérés
comme maintenus rigidement,
p* la tension équilibrée du conducteur aux conditions finales
t (figure 6%),

on a pour la variation de la longueur de chaque ﬁortée (for-
mule simplifiée de Bourquin):

_YM(L_L) F ok 10°
a2 (L L)+ 0
ol O signifie un allongement, lorsque p* > p,
et une réduction, lorsque p* < p,.
En ordonnant I’équation (19%) selon p, et p*, il vient:
o o _[ed? e . .
[24 pe p*] [24-;;*2 E'? 19a7
B2 2 @ 2 a? 22 @
Ll 24 5 E.
2 a‘~') 24 py J 24 7y RN

et en la comparant a I’équation (16a*) pour la k™¢ portée,
en multipliant celle-ci par @, et en I’erdonnant comme pour
I’équation (19a*),

S e [aks'ﬁ @y * po *
upe B P ) & et | 5y 7| (6a)

on voit que l'expression dans la parenthése de gauche de
Iéquation (19a*) est identique a la partie de gauche de

~cos p  (18%)

9

I'équation (16a*). En substituant I’équation (16a*) dans

I’équation (19a*), on a:

_ad (wE ay
w=Sr (-F)te-wem =g

s
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La déviation totale da des isolateurs au k™e support est
égale a la somme des modifications des longueurs 6 dans
toutes les portées de 1 a k, done

K
Aay = Z 0=
1
g (25— ”2)+[<z—m~ a+fp*—p»i]zka 2
| 24 PO p*ﬂ ' E ;

A Darrét terminus (n™¢ portée) Aa, = 0, car le point B est
rigide. On introduit dans I’équation
(20*) Ada =0, divise par 2a et obtient
I’équation des conditions pour sections
de ligne avec isolateurs de suspension
entre deux points d’arrét:

n
2

1 Vo*
n 24 p.2

Y
a, cos

o

6, =

ke

2 "
—Tp*z) + (e — to) « 4 (p* ”PO)F—O (20a”)

On pose en outre:

— = a¥? (21%)
>la
ordonne I'équation (20%) selon les puissances de p* et Ion
obtient finalement:
) | e a*--E ) yioa¥ E,
*3 - — = i
p* + p 24 - ? + (t—tg) ¢ E po 54 (22%)

Cette équation est identique a I’équation (16*), les portées a
étant remplacées par la portée a*. Pour les lignes a isolateurs
de suspension, les tensions du conducteur pour des sections
comprises entre deux points d’arrét ne doivent plus se cal-
culer portée aprés portée, mais en considérant une portée
moyenne a*, dont la grandeur se détermine a Dlaide de la
formule (21%).

Pour les lignes dont les appuis sont a des niveaux diffé-
rents, ’équation des conditions se déduit d’une facon ana-
logue. La formule de Bourquin modifiée pour ce cas est

O =

a3 Y eosy l/{(

7 *-—’)—F—(p —pr) (23%

pi p*

ou p* et py sont les efforts au point le plus bas, p—*et p:les
efforts moyens selon le chapitre 4. Selon la formule (17%),
on a:

— h 22 !
B * ol
p PP e T
. L x
pe= pr by gy (17%)

Le dernier terme de Iéquation (17%) a peu d’lmportan(e et

peut étre négligé. En introduisant les valeurs de p*

et p
des équations (17%) dans I’équation (23*), on a:

a; P2cosy /1 1 a ; hi
op = T(;— ;@)+ E (p*—p,) (1 + 2—a2> (23a*)
ol
— [ al 2 c(.)sw a,p, <1+ n )]
24 p? E 2a2

2

(1 ek 2’”7’;2)] (23b%)

akp

E

3 9% cosp
- [ 24 p*z T

L’équation transformée (18%) pour une seule portée est

3

a, ];‘-’cos Y _ a,p, i + _
24 pd E 2 a2
a’ylecosy a,p h?
u—tda s, + gl — (1 4 ) (e
J /-

En substituant ’équation (18a*) dans Péquation (23b*), il
vient:

(L _z
p:  p*

et, pour la déviation totale des isolateurs au k™¢ support:

"
a® cos
"k-=§ T( )+
' k k
; 1 h?
t—ty) a a+(p*—p]—E all+ 2ot (24%)
] ;

En posant dans I’équation (24%) da,= 0, en divisant par Ja,
on obtient I'équation des conditions pour des sections de
lignes avee isolateurs de suspension et portées inclinées entre
deux support d’arrét:

Z a’ cos 5
1 Yo 2

hZ

)+ wmt ot =g (14

22
p*

7§
r:

n 24 p2 T 2Upm
dla
" "
Z “ (1 + 2 a* )
(t—t) @+ (p*—p) & — ~ =0 (2429
a
Za3 cos
On pose ! = a®
dla
| @5°)
n ’
h2
Z a(l -+ S 2)
et e "‘"'}{‘ SRS A~
Ya

et 'on désigne par a* la portée moyenne et par u le facteur
d’inclinaison moyen.

En ordonnant I’équation (24a*) selon les puissances de
p*, on obtient finalement:

2 a*2E
24 p?

22 a* E

Ty (260

u'P*5+P*2[ +—t)aE—u- po]

L’équation (26%) peut étre considérée comme I'équation
générale des conditions des lignes a isolateurs de suspension.
Quand h est égal a zéro dans toutes les portées, I’équation
est identique a ’équation (la), resp. (22%). Quand toutes
les portées présentent la méme inclinaison vy, 'équation est
identique a I’équation (1).

6° Constantes physiques d’un conducteur en deux métaux.

Les constantes physiques d’un cable composé de deux
métaux différents (module d’¢lasticité, coefficient de dilata-
tion linéaire et poids spécifique) peuvent se calculer en par-
tant des constantes correspondantes des composants, comme
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indiqué au chapitre 7 de la partie principale. En désignant
par

g1 la section totale des fils d'un métal,

g2 la section totale des fils de I'autre métal,

q la section totale du cable complet,

Pi la part de effort afférant aux fils qi,

P> la part de Peffort afférant aux fils g2,

P la tension totale du cable,

71 le module d’élasticité des fils q1,

E> le module d’élasticité des fils q2,

E, le module d’élasticité du cable complet,

o1 le coefficient de dilatation linéaire des fils q1,

«2 le coefficient de dilatation linéaire des fils g2,

a, le coefficient de dilatation linéaire du cable complet,
on détermine tout d’abord le

module d’élasticité d’un cible en deux métaux.

Quand un tel cable, tendu entre des supports d’arrét de
facon a exclure tout déplacement des fils des différents com-
posants, est soumis a un effort de tension de P kg, les deux
métaux subissent le méme allongement Al. Pour les deux
métaux, ’équation est:

Al=1—lh= (t—t)al+ (p ——pn)ng (15%)
Dans ce cas, t=1t), po=0 et p=P/q. On a donec:
pour le premier métal: Al = B b
q-E
pour le second métal: Al = Py % (27%)
qz- E»
-
pour le cable complet: Al =- 5 Ej'),
ou, en sortant les efforts de tension:
; 5 Ay}
pour le premier métal: Py — L -Ey
o
) Al
pour le second métal: Py = —— q3-Es
l() *
(27a™)
Al
pour le cible complet: P = o q-E,
1
Al
ou, car P = Py P:: P = T(QI'El‘*'QZ'EZ)
{

De I’équation (27a*) on tire les équations suivantes pour
Peffort partiel P1 et P: afférant a chaque métal et pour le
module d’élasticité E, du cable complet:

q1 - Eq )
Py = (—21—— . P
! <q1~En+qe'E2

q2 Ez ) ,

(28%)

Py = |-
° (qz'Ez+Q1‘L1

s gy o L.p,
q q

Coefficient de dilatation linéaire d’'un cdble en deux métaux.
On part a nouveau de I’équation (15%), en considérant
la variation de température de to a t degrés du cable tendu
avec la tension de pose po, la distance entre les points d’ap-
pui restant invariable, La variation de la température pro-
voque une variation des efforts qui différe pour chacun des
deux métaux. Dans ce cas également, 'augmentation ou la
réduction doit étre la méme aussi bien pour les deux com-
posants que pour le cible complet.
De I’équation (15*) on tire:

(29%)
pour le premier métal: Aol _ (¢ — to) @y + (P, — Py, _1
N q - E

1. A 1
pour le second métal: =" — (4 — ¢) ay + (P — Pa,) ——
Iu qa* EQ

5 . Ay 1

pour le cable complet: =% — (4 — ¢)) &, + (P — P,)

ll) q- Es
ou, en sortant les efforts de tension: (29a%)

pour le premier ;11étal:P| — P, = [Al—l — (6 — to) al]Ql - E;
0 E

pour le second métal: p, —p, = l A[_l —(t—t) a2~ q:- E»
b .
A . . Al |

pour le cable complet: p — p — T (t—t)a,|q-E
b i

ou encore, en introduisant pour g¢-'E, la valeur correspon-
dante de I’équation (28%):
Al é .
P—Py= —l)——(t‘—to) @ (q1-E1+qz-E2) (30%)
U

En outre, P1 + P:=P et P10+ P20 = Po. En addition-

nant les deux premiéres équations (29a*), il vient:

Al %
P—P.= T(Ql -E\+ q2-Eo)—(t—to)-(q1 Ey a1-}-q:Ez09) (317)
Des équations (30%) et (31%) on tire finalement:
g1 Ei a1 4 q2 Es a9
@By + g2 E;

| (32%)

(Annexe II suit.)

Technische Mitteilungen. — Communications de nature technique.

Eine grosse Warmwasseranlage.
621.364.6 : 725.21

Das grosse, neue Warenhaus Decré in Nantes verlangte
fiir das Restaurant, die Bar, den Coiffeursalon und die Toi-
letten tiglich 5000 Liter warmes Wasser, das stets die Tem-
peratur von 90° C haben muss. Die Warmwasserverbrauchs-
stellen sind in den verschiedenen Stockwerken vertikal unter-
einander gruppiert. Dies fiihrte zur Wahl eines einzigen
Warmwasserkessels, der natiirlich wirtschaftlicher ist als einige
kleine. Er arbeitet nach dem Heisswasserspeicherprinzip, in-
dem er die billige Nachtenergie ausniitzt und das warme
Wasser aufspeichert.

Wegen seines Volumens war es unmdoglich, ihn im Waren-
haus selber unterzubringen ; er wurde deswegen auf dem Dach
aufgestellt, wodurch sich auch eine dusserst cinfache Vertei-
lung des warmen Wassers ergab.

Das von der Stadt gelieferte Wasser war seiner Qualitiit
nach fiir galvanisiertes Eisen gefihrlich, und sein Druck zu
gross, als dass ein kupferner Druck-Behilter in Frage gekom-
men wire; so entschloss man sich, einen Auslaufspeicher aus
6 mm Kupfer, innen verzinnt, mit 5100 1 Nutzinhalt und mit
einem Leergewicht von 1600 kg zu bauen, der von einem
10 em dicken, geteerten und mit einer Zementschicht und
olgestrichenem Segeltuch umgebenen Korkmantel isoliert
wurde. Dessen drucklose Speisung erfolgt aus einem separa-
ten Becken mit Schwimmer. Eine elektromagnetische Drossel-
klappe sorgt dafiir, dass ausser der Heizzeit kein kaltes Was-
ser einfliessen kann, damit das warme Wasser bis auf den
letzten Tropfen tatsdchlich warm ausfliesst. Sechs elektrische
Heizrohre von je 10 kW Leistung besorgen die Heizung; sie
sind im Reservoir unterhalb der Warmwasserausflusséffnung
eingebaut, so dass sie stets in mindestens 250 1 Wasser tau-
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