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ASSOCIATION SUISSE DES ÉLECTRICIENS

BULLETIN
RÉDACTION:

Secrétariat général de l'Association Suisse des Electriciens
et de l'Union des Centrales Suisses d'électricité, Zurich 8

XXVIIe

Le secrétariat général et l'inspectorat des ins lallations à

fort courant de VASE ont publié dans le Bulletin 1919, nos 6

et 7, des directives détaillées pour le calcul des lignes aériennes,

établies par Abel Jobin. Du fait des progrès réalisés
depuis lors dans la construction des lignes, surtout celles à grandes

portées avec isolateurs de suspension, ainsi que des modifications

apportées aux prescriptions fédérales sur les lignes
aériennes, ces directives ne concordent plus avec les conditions

nouvelles, de sorte qu'il est devenu nécessaire de les
reviser et de les compléter. Le secrétariat général a donc
chargé l'auteur de procéder à cette revision, afin que les
intéressés disposent à nouveau de directives pratiques, adaptées

à la technique moderne. Nous espérons que ces directives

leur rendront les mêmes services que celles d'Abel
Jobin. Les directives de 1919 sont d'ailleurs épuisées de sorte
qu'une réimpression s'imposait.

Cette élude indique la marche générale à suivre dans le
calcul mécanique des lignes aériennes. Pour en faciliter
l'usage, la première partie mentionne les diverses formules
au fur et à mesure qu'elles apparaissent au cours des
calculs, tandis que les considérations théoriques et le développement

des formules sont reportés, à quelques exceptions
près, dans les annexes.

Les théories fondamentales des anciennes directives ont
pu être conservées; il a suffi, de les adapter aux nouvelles
prescriptions fédérales et de les compléter en tenant compte
du développement de la technique des lignes aériennes.

L'auteur expose tout d'abord le calcul des modifications
des lignes ensuite des sollicitations maximum, des charges
additionnelles et des variations de température prévues par
l'ordonnance fédérale sur les installations à fort courant du
7 juillet 1933; suit le calcul de la flèche et la détermination
des distances au sol ou aux objets en travers de la ligne.
Un chapitre est consacré aux grandes portées, un autre à

différents cas spéciaux: lignes ordinaires, lignes à grandes
portées à isolateurs fixes ou mobiles, efforts engendrés par
les lignes sur les supports, conducteurs constitués par deux
métaux différents. Pour terminer, l'auteur expose l'effet de
charges exceptionnelles (p. ex. plus de 2 kg de givre par
mètre) sur les lignes. Des exemples pratiques montrent
l'application des formules.

Pour des raisons techniques, l'article doit être réparti sur
deux numéros. Plus tard on pourra en obtenir des tirages
à part. (Réd.)

EDITEUR ET ADMINISTRATION:
S. A. Fachschriften-Verlag & Buchdruckerei, Zurich 4

Stauffacherquai 36/40

1936

651.315.056

Unter diesem Titel veröffentlichten das Generalsekretariat
und das StarkStrominspektorat des SEV im Bulletin 1919,
Nr. 6 und 7, eine ausführliche Wegleitung zur Berechnung
von Freileitungen, bearbeitet von Abel Jobin. Die inzwischen
erzielten Forlschritte der Technik des Leitungsbaus, besonders

des Baus von Weitspannleitungen mit Hängeisolatoren,
sowie die Aenderung der Bundesvorschriften für Freileitungen

hatten zur Folge, dass diese Wegleitung mit den neuen
Verhältnissen nicht mehr übereinstimmt, so dass deren
Revision, bzw. Ergänzung dringend nötig wurde. Das General-
Sekretariat beauftragte daher den Verfasser mit dieser
Revision, um den Interessenten wieder eine brauchbare, dem
heutigen Stand der Technik entsprechende Wegleitung zur
Verfügung zu stellen, die ihnen, wenn möglich, gleich grosse
Dienste leisten soll, wie seinerzeit die Jobinsche Wegleitung.
Da die Wegleitung vom Jahre 1919 vergriffen ist, war
eine umfassende Neubearbeitung des ganzen Gebietes nicht
zu umgehen.

Die vorliegende Abhandlung hat den Zweck, allgemein
über den Gang der Berechnung der Freileitungen mit Rücksicht

auf die mechanische Festigkeit der Leiter zu
orientieren. Zum handlichen Gebrauch sind im ersten Teil die
Formeln mit erläuterndem Text dem Gang der Berechnung
folgend zusammengestellt, während theoretische Abhandlungen

sowie die Ableitung der Formeln, abgesehen von
kleinern Ausnahmen, in die Anhänge verlegt wurden.

Die grundlegenden Theorien konnten von der frühern
Abhandlung übernommen werden; sie waren lediglich den
neuen Bundesvorschriften anzupassen und entsprechend den
Fortschritten der Technik im Leitungsbau zu ergänzen.

Zunächst wird im folgenden die Berechnung der Zu-
standsänderungen der Leitungen auf Grund der
Höchstbeanspruchungen, Zusatzlasten und Temperaturen, welche die
bundesrätliche Verordnung über Starkstromanlagen vom 7.

Juli 1933 vorschreibt, auseinandergesetzt, dann folgt die
Berechnung des Durchhanges und die Bestimmung von Abständen

gegen den Erdboden oder die Leitung querende Objekte ;
ein weiteres Kapitel ist den grossen Spannweiten gewidmet,
worauf spezielle Fälle zur Behandlung kommen: Regelleitungen,

Weitspannleitungen mit festen und solche mit
beweglichen Isolatoren, ferner die von den Leitern auf die
Tragwerke ausgeübten Kräfte und die Leiter, welche aus
zwei verschiedenen Metallen bestehen. Zum Schluss wird
das Verhalten einer Leitung bei ausserordentlichen Belastungen

(z. B. über 2 kg/m Rauhreifansatz) erläutert. Beispiele
zeigen die Anwendung.

Aus technischen Gründen muss der Artikel auf zwei
Nummern verteilt werden. Von der ganzen Arbeit sind später

Sonderdrucke erhältlich. (Red.)

Reproduction interdite sans l'assentiment de la rédaction et sans indication des sources
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Le calcul mécanique des lignes aériennes.

Par E. Maurer, Innertkirchen.
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1" Calcul des modifications des conditions
des lignes dont les tensions maxima, les charges

supplémentaires et les températures
sont prescrites.

Selon les prescriptions fédérales x), les calculs de
la tension des conducteurs et de la flèche correspondant

à la contrainte supplémentaire maximum des
conducteurs sont à baser sur les hypothèses
suivantes:

a) La température locale la plus basse, sans charge
supplémentaire, ni vent.

b) Une charge supplémentaire uniformément ré¬

partie de neige et de glace (givre), de 2 kg
par mètre courant, à la température de 0° C,
sans vent.
Dans ces conditions, la tension ne doit pas

dépasser les % de la résistance à la rupture du
conducteur. Les propriétés mécaniques des conducteurs
les plus usuels servant de hase aux calculs sont
indiquées dans le tableau I2).

Pour les lignes à grandes portées, l'hypothèse b)
entre pratiquement seule en ligne de compte; lors-

p3-+-p2 ûtA i

24 pl+<' t0) a E-p0 y2 a2£
24 (la)

L'équation (la) est l'équation (1) simplifiée
pour portées dont les points d'appui sont au même
niveau. Les désignations sont les suivantes:
a la portée, c'est-à-dire la distance horizontale entre les

points d'appui, en cm,
h la dénivellation des points d'appui, en cm,
a le coefficient de dilatation linéaire du conducteur, rap¬

porté à 1° C,
E le module d'élasticité du conducteur en kg/cm2,
po la composante horizontale connue de la tension du con¬

ducteur aux conditions de pose, à la température de pose
to en ° C connue également,

70 le poids correspondant connu du conducteur et de la
charge supplémentaire, rapporté à une longueur du
conducteur de 1 cm et une section de 1 cm2 (70 s'exprime
donc en kg/cm3),

p la composante horizontale cherchée de l'effort de tension
du conducteur en kg/cnt2, à la température supposée t,

y le poids correspondant du conducteur et de la charge sup¬
plémentaire en kg/cm3, rapporté à une longueur de 1 cm
et une section de 1 cm2,

y l'angle d'inclinaison de la droite reliant le3 points d'ap¬
pui, par rapport à l'horizontale.

Données relatives à la résistance et à rallongement, et contraintes maxima admissibles des conducteurs les plus usuels.
Selon l'art. 89, chiffre 3, de l'Ordonnance sur les installations à fort courant, les calculs des flèches de toutes les lignes
aériennes dont les conducteurs sont constitués par des matériaux usuels, doivent être basés sur les chiffres indiqués
dans ce tableau, à moins que d'autres chiffres caractéristiques n'aient été prouvés pour le matériau utilisé, en vertu

d'une attestation d'un laboratoire d'essais des matériaux d'une école polytechnique suisse.
Tableau I.

Nature du conducteur Section

en mm2

a 3

Résistance à

p w
la rupture du

soéciLn «""««»«f
P ' ou des brins

du câble

en kg/mm2

Dimin. de la

resistance

par câblage,

en % de la

resistance
â la rupture

Limite d'élasticité

Contrainte

en kg/mm2

Module d'Élasticité en kg/mm2

pour une contrainte
atteignant la limite d'élasticité

Fils Câbles

Contrainte

maximum

en kg/mm2

Allongement
â la rupture

en % de

la longueur
mesurée

Coellicient dt

dilatation
linéaire

par t » C

Fil de cuivre, dur
Fil de cuivre, dur
Fil de cuivre, demi-dur
Fil de cuivre, demi-dur
Câble de cuivre, 7—19 brins
Câble de cuivre, plus de 19 brins
Câble de bronze
Fil de fer
Câble d'acier (galvanisé), 7 brins
Câble d'aluminium pur, 7—19 brins
Câble d'aluminium pur, plus de 19

brins
Câble d'aldrey, 19 brins
Câble d'aldrey, 37 brins

jusqu'à 20
> 20

jusqu'à 28
>28

jusqu'à 20
jusqu'à 60

8,9

8,9

9

8.7
7.8
7.9

2,75

2,75
2,75

40
38
30
28
42
42
65
45

120
19

18
30
30

10

2
6

16
15
12
11
16
15
28
25
50

19

13 000
12 500
12 000
11 500
13 200
13 200
13 000
19 000
20 000

6 300

6 300

11 000
10 000
11 000

18 500
5 500

5 200
6 000
5 700

27
25
20
18
28
28
43
30
80

2,5

2,5
5

5

12l) I 2,5

18

17x10-6

17x10 6

17x10-6

16,7x10-6
12,3x10-6
11,5x10-6

23x10-6

23x10-6
^ "• -) • " ; v ~ —

') Pour les câbles aluminium-acier, la coutrainte maximum admissible de l'aluminium peut atteindre jusqu'à 13 kg/mm

qu'il s'agit de portées inférieures à 100 m, il faut
par contre examiner si les prescriptions sont également

remplies aux températures les plus basses,
selon le cas a).

Après détermination de la tension maximum à

0° C et sous une charge de neige, les contraintes
sur une portée peuvent être calculées pour d'autres
températures et d'autres charges supplémentaires à

l'aide des formules (16*) de l'annexe I:

Quand le conducteur n'est affecté d'aucun poids
supplémentaire, y est égal au poids spécifique du
conducteur en kg/cm3.

Pour une charge supplémentaire de 2 kg, le poids
total par unité de longueur et de section devient:

Pà
h2

Ta2 + P2
y_o «z e

24 pl
cos ip -j- —10) a E — p0 • 11

yneige

h2

2 a2

0,02
kgc/r

y2 a2 E
24

cos tp

(2)

(1)

A) Ordonnance fédérale sur l'élablissement, l'exploitation
7 juillet 1933 (art. 88), appelée dans la suite «Ordonnance».

2) Ordonnance, art. 89.

et l'entretien des installations électriques à fort courant, du
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où q est la section du conducteur en cm2. On
désigne souvant yneige par poids spécifique virtuel.

Pour les portées avec appuis au même niveau,
jusqu'à 500 m environ, la composante horizontale
peut être remplacée avec une approximation suffisante

par la tension elle-même. On introduit donc
dans l'équation (la) :

pour p„ la tension maximum choisie du conducteur
en kg/cm2, qui ne doit pas dépasser la
valeur maximum fixée par l'Ordonnance,

pour f0 0,

pour y0 le poids spécifique du conducteur +
surcharge par cm °'02 t / sy -\ en kg/cmd,

qsection

pour a et E les valeurs correspondantes du métal
du conducteur.

Pour une température choisie t, on peut alors
calculer l'effort horizontal correspondant du conducteur

p, déterminant la flèche à cette température.
L'équation étant au troisième degré en p, il est

plus simple d'admettre pour p différentes valeurs,
de les introduire dans l'équation et de calculer la
température qui correspond à la valeur admise pour
p. La fonction p — F (t) est alors relevée dans un
graphique permettant de lire les valeurs de p
correspondant à des températures déterminées.

Pour les portées dont les appuis sont à des
hauteurs différentes, l'effort de tension à l'appui le
plus élevé pz est sensiblement plus grand que la
composante horizontale. On donne à pz la valeur
maximum choisie, qui ne doit pas dépasser la
valeur maximum prescrite par l'Ordonnance, et on
calcule la composante horizontale à l'aide de

l'équation :

+ 2 — p • (2 pz — h

courbe du conducteur, tirée parallèlement à la
droite reliant les deux appuis, et le point de cette
droite situé perpendiculairement au-dessus du point
de contact de la tangente. Lorsque les appuis sont
au même niveau, ce point de contact coïncide avec
le point le plus bas de la chaînette; la droite
verticale dans laquelle se trouve la flèche divise donc

Fig. t.

en deux parties égales la portée et la courbe du
conducteur entre les appuis. Lorsque les niveaux
des appuis sont différents, cette droite est déplacée
quelque peu vers l'appui le plus élevé, mais cet
écart n'est pas considérable. On peut donc admettre
également dans ce cas avec une approximation suf-

1/2
v \ _i_ ' schnee

f schnee/ I ^

où p est la composante horizontale cherchée. Cette
formule, développée à l'annexe I (équation 14*)
en supposant que la ligne forme une parabole, est
également valable avec une grande approximation
pour la chaînette, si la portée ne dépasse pas 500 m
et si l'inclinaison de la droite reliant les appuis ne
dépasse pas 30° sur l'horizontale. Elle donne pour
p des valeurs un peu plus faibles que celles qui
seraient obtenues par un calcul exact de la
chaînette. Lorsque la tension de pose des conducteurs
est conforme à la valeur de l'effort horizontal
calculé de la sorte, la tension à l'appui supérieur est
un peu inférieure à la valeur admise par l'Ordonnance,

ce qui est avantageux au point de vue de la
sécurité contre la rupture. L'effort p ainsi calculé
est introduit à la place de p0 dans l'équation (1)
pour les calculs subséquents.

2" Calcul de la flèche d'après les tensions
déterminées au chapitre 1.

Dans cette étude, la flèche est toujours la
distance entre le point de contact de la tangente à la

fisante que la flèche est la distance entre le milieu
de la droite reliant les deux appuis et le point de
la courbe situé perpendiculairement au-dessous, ce

qui simplifie sensiblement les calculs.
Pour déterminer la grandeur de la flèche, on

procède comme suit:
On suppose que le câble soit coupé au point de

contact de la tangente parallèle à la droite AB
(figures 1 et 2). Les deux tron¬
çons du câble conserveront leur

i ' position si l'on exerce à l'en¬
droit de la coupure la tension

correspondante. En désignant par G le poids du
câble entre A et B, et par H la composante
horizontale de la tension au point C, l'équation des

couples au point B devient :

a) /• H

b)

(fig. 1),

t-P —

G

Y

G_

Y

a

a

T

pour une portée horizontale

pour une portée inclinée

(fig. 2).

En posant s =/ • cos xp et P —
H

cos xp
de sorte que

les deux équations a) et b) deviennent identiques.

Lorsque la portée n'est pas très grande, on peut
admettre que la longueur du conducteur est égale
à la droite AB. En désignant par g le poids par
unité de longueur, on a G=ga (fig. 1) et G

S ' s

(fi"". 2), de sorte que
cos xp
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/ ~r (Fig.l) et f= - (Fig. 2)
o • H 8 • H cos wV

er

En divisant g et H par la section q on a— y et

— p et il vient finalement
9

pour une portée horizontale

/
et pour une portée inclinée

y • «-
8 -p

(4)

/ y
8 • p cos yj

(4a)

Si l'on désigne par /„ la flèche de la portée
horizontale et par / la flèche d'une portée de même
grandeur, mais inclinée de l'angle ip, on a:

/ fo
COS xp

(5)

Les deux équations (4) et (5) permettent de
calculer avec une approximation suffisante les flèches
des portées horizontales jusqu'à 300 mètres et celles
des portées inclinées au maximum de 30° jusqu'à
500 mètres.

Pour les portées plus grandes, il n'est plus
admissible de remplacer la longueur de l'arc de la
chaînette par la corde. On doit utiliser les équations

beaucoup plus compliquées mais plus exactes,

dérivées des propriétés de la chaînette. Le
paramètre de la chaînette c est ply. Lorsque les appuis
sont au même niveau, l'ordonnée du point le plus
bas de la chaînette (point C dans la figure 1) est
égal à c; les ordonnées aux points A et B se calculent

à l'aide de l'équation 3) :

- (ec +- e c) ©ûê

La flèche devient donc:

/ — y —c - c ©Oê
2 • c

ou, en développant les termes en série:

t--£- a*
381 •

(6)

(7)

(«)

On peut négliger les termes de puissance supérieure.
Si l'on supprime le terme de quatrième puissance

et que l'on introduise c=—, l'équation (8) devient

identique à l'équation (4).
La relation formulée par l'équation (5) entre les

flèches d'une portée horizontale et d'une portée
inclinée de même grandeur f f0lcos tp est alors
valable avec une grande précision pour la chaî-

3) Développement, voir annexe I, équations (1*) à (5*).

nette1), ce qui simplifie extrêmement les calculs
des flèches.

Si l'on dispose de tables des fonctions hyperboliques,

les calculs peuvent être rendus plus faciles
en transformant l'équation (7) comme suit:

/ ©in2 a
4 c

(7a)

3° Courbe du conducteur.
Détermination des distances au sol ou aux objets

croisant la ligne.
L'Ordonnance sur les installations à fort courant

prescrit certains écartements minima entre les
conducteurs et le sol, ainsi que d'autres croisements
avec des lignes à fort ou à faible courant. La dé-
termination de ces écartements est basée sur la
flèche maximum qui peut se présenter (avec ou
sans charge supplémentaire). Lors dn calcul de la
flèche, on doit examiner tout d'abord si c'est la
flèche à 0° C et charge de 2 kg de neige par mètre,
ou la flèche à la température maximum qui est la
plus grande, Selon l'Ordonnance, la température
maximum à considérer est celle de + 40° C. Pour
pouvoir déterminer les écartements, il faut naturellement

connaître la courbe du conducteur.
Comme on l'a indiqué précédemment, l'équation

de la chaînette est

y \ 0 C • ©oë (-") (6)

ou, en développant les termes par puissances:

y c + -,2c 24 C3 720
(6a)

le paramètre étant c =—. Les termes supérieurs

à la quatrième puissance peuvent être négligés.
Pour faciliter les calculs, on peut transformer
légèrement l'équation (6a). On déplace l'axe des
abscisses en introduisant la nouvelle ordonnée
y' y — c au point le plus bas, en augmentant de

c tous les termes. Il vient:

y' c
x\ 1

~c~/
~

24 +
1

720

(9)
Le paramètre c étant de l'ordre de 500 à 1500 m

pour les cas pratiques, le quotient — est généralement

< 1 et les puissances sont d'un calcul facile.
A l'aide de l'équation (9), on peut donc tracer la
courbe du conducteur.

On dispose généralement d'un profil en long de
la ligne. Lorsque son échelle des niveaux est
suffisamment grande, la courbe du conducteur peut être
dessinée sur ce plan et Ton peut mesurer directe-

4) Développement, voir ETZ 1925, p. 989, et 1932, p. 28

et 29.
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ment les distances au sol ou aux croisements et
autres. Ce simple procédé n'est toutefois pas approprié

en général aux lignes dont les points d'appui
sont fixes. En effet, du fait de la déclivité du
terrain, la composante horizontale et par suite le
paramètre diffèrent à chaque portée, de sorte qu'il
faudrait calculer et dessiner une courbe spéciale pour
chaque portée inclinée. Dans le cas des lignes à

chaînes d'isolateurs, les courbes de toutes les portées

ont le même paramètre et appartiennent donc
à la même chaînette. 11 suffit dans ce cas de
calculer cette courbe, de la dessiner et de confectionner

un chablon, à l'aide duquel on reporte la courbe
dans le profil en long.

Au cas où des accidents de terrain ou des croisements

se rapprochent fortement de la courbe du
conducteur, il est utile de calculer l'écartement
minimum. La détermination exacte selon les propriétés

de la chaînette conduit à des calculs compliqués;

d'autre part, si Ton remplace la chaînette
par une parabole de même paramètre, les résultats
sont généralement trop inexacts. On peut toutefois

Fig. 3.

résoudre ce problème avec une assez bonne exactitude

pour les portées jusqu'à 400 m et des inclinaisons

jusqu'à 30°, de la façon suivante:
On part de nouveau des équations (4) et (4a):

/
/

y,
8 p

a'
8 c

y
8 p • cos xp 8c- cos xp 8 c'

(4)

(4a)

Ces équations montrent que, pour une portée
inclinée, le paramètre c doit être remplacé par c <=
c- cos xp, si l'on veut représenter la courbe par une
parabole. Avec le nouveau paramètre, le calcul des
coordonnées de la courbe se fait à l'aide des équations

5) :

c' • h
— c

h a
— cos xp

CL 2*

xp

y • '

a
Y (10)

5) Développement, voir annexe I, équations (12*) et
(13*).

y!

p • h • cos xp a

y • a 2

y

<">

2p • cos xp

y y[ + h ou, ordinaire y' :
y • x'

2p • cos xp
(12)

Lorsque x1 présente une valeur négative, le point le
plus bas de la courbe se trouve à l'intérieur de la
portée, dans l'autre cas à l'extérieur de celle-ci.

Les deux exemples suivants montrent l'application
de ces équations. Les valeurs exactes déterminées

à l'aide de la chaînette sont indiquées entre
parenthèses.

Premier exemple.
Un câble de cuivre demi-dur d'une section de 1,5 cm2

doit franchir une portée de a 451 m avec dénivellation
h 92,8 m, selon la figure 4, de façon que dans le cas le
plus défavorable (0° C et 2 kg/m de neige) la tension

Fig. 4.

maximum ne dépasse pas le 85 % de la valeur maximum
admissible de 1800 kg/cm2 prescrite par l'Ordonnance. Il
s'agit de déterminer quelle est la distance entre le conducteur

et le point C du terrain (bord extérieur de la route)
à 0° C et 2 kg/m de neige.

On calcule tout d'abord j'neia, selon l'équation (2). Le
poids spécifique du cuivre est de 8,9'10-3 kg/cm3; d'où

y*. I«. 0,0089 + 0,02

1,5
: 0,0221 22,1 • 10-3 kg/cm2.

On calcule ensuite la composante horizontale p de la
tension maximum pz selon l'équation (3), en introduisant:

P.

a

et l'on obtient:

2 92,8' Ap"lw+2j

85 % de 1800 1530 kg/cm2
7'nsige 22,1 • 10-3 kg/cm3

45M02 cm, h 92,8-102 cm

- p (2 • 1530-92,8 • 102 -22,1 • 10"s)

22,l2 • 10"G • 4512 • 104
+

2,042 p2 — 2864 p + 250 • 103 0

2864 ± ]/820,22 • 10' - 204 • 10'

4,08
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On obtient 2 valeurs pour p: 1310 kg/cm2 et 364 kg/cin2.
La seconde valeur n'a pas de portée pratique. On pose donc:

c - 59 275 cm 592,75 m

p 1310 kg/cm2
1310

y 22,1 • 10s

tg ip — -?M- o,205 ; yj 11° 37 ; cos y) 0,9795
ci 451

Selon l'équation (10), on obtient pour le point d'appui
inférieur A:

592,75 • 92,8 • 0,9795 ooc _Xi — — 223,0 —
451

y\
1062

2 • 592,75 • 0,9795

106m (—107,1m)

9,68 m (9,71 m)

Le point le plus bas de la courbe se trouve donc
à y'1 9,68 m au-dessous du point d'appui inférieur A.
L'abscisse du point de la ligne au-dessus de C est x
301 — 106 195 m. L'ordonnée correspondante (hauteur au-
dessus du point le plus bas de la courbe) est

195"

2 • 592,75 • 0,9795
32,73 m (32,01 m).

La différence de niveau entre le point de la courbe au-
dessus de C et le point A (figure 4) atteint donc: 32,73 — 9,68

23,05 m (22,27 m). Le point C est à 54,4— (21 —|— 16)
17,4 m au-dessus du point A, la hauteur de la ligne au-

dessus du point C du terrain (bord extérieur de la route)
est de 23,05 —17,4 5,65 m selon le calcul avec la parabole,
tandis que le calcul exact d'après la chaînette donne une
distance de 4,9 m seulement. Elle ne satisfait donc pas
aux prescriptions de l'Ordonnance (art. 86). La différence
est de 75 cm (erreur de 15'%). Toutefois, pour des distances
ordinaires de 200 à 300 m, ces deux valeurs sont presque
identiques; pour une aussi faible différence, il ne vaut
presque pas la peine d'effectuer des calculs compliqués à

l'aide de la chaînette. Pour plus de sûreté, il est préférable
d'augmenter de 1 m la distance minimum admissible entre
conducteur et sol exigée par l'Ordonnance.

La flèche de cette portée est

f-
4512

8 • 592,75 • 0,9795
43,8 m

Le calcul exact d'après la chaînette donne 44,1 m. L'erreur
est de 30 cm, donc inférieure à 1 %.

Deuxième exemple.
Un câble aluminium-acier d'une section de 2,103 cm2 a

été tendu entre les points A et B (figure 5), de façon que
l'effort horizontal est de 1177 kg/cm2 sous une charge
supplémentaire de 2 kg/m de neige. Le poids du câble est de 815

grammes par mètre courant.
On a donc

0,00815 + 0,02
yneige

2,103
13,45 "10-3 kg/cm3.

Déterminer la distance entre la ligne et le point C du terrain.
On a donc

a 406 m y 13,45 • 10-3 kg/cm3
h 250 m p 1177 kg/cm2

P
cos v 0,8515 c ' 8ta ni

y 31° 37%' y

Selon l'équation (10), on obtient pour le point d'appui
inférieur A

25ft
Xl 875 • • 0,8515 — 203 256 m (302,57)

406
2562

2-875-0,8515
44 m(52'83)

Hauteur du point de la courbe au-dessus de C au-dessus du
point le plus bas de la courbe:

-SS-®-
La différence de niveau entre le point de la courbe au-dessus
de C et le point A est donc de

125,3 —44 81,3 m (81,21)

et par suite l'écartement de la courbe du point C 81,3 — 75

6,3 m (6,21 m).

Pig. 5.
S

La différence entre le calcul approximatif et le calcul
exact d'après la chaînette est donc dans cet exemple de 9 cm
seulement. La concordance est d'autant meilleure que la
portée est plus faible et que le paramètre de la courbe est
plus grand.

Pour la flèche, on a:

/ 4062

8-875-0,8515
27,65 m (27,62)

Ces chiffres (xi, xs, y^, y'2) montrent que le point le
plus bas de la parabole fictive s'écarte sensiblement de celui
de la chaînette. Toutefois, le point le plus bas se trouvant
à l'extérieur de la portée et de la courbe du conducteur,
cela est sans importance. Ces calculs montrent d'ailleurs
que la courbe calculée et la courbe réelle coïncident bien
dans la portée AB.

Pour le calcul de l'écartement minimum d'un
point de la courbe, il faut connaître l'angle d'inclinaison

de la courbe sur l'horizontale. En désignant
cet angle par r, on a pour un point quelconque de
la courbe la relation:

x
c' c - cos ip

(13)

où x est l'abscisse du point de la courbe représentée
comme une parabole fictive. L'écartement minimum

entre un point du terrain et la courbe du
conducteur est alors égal à la distance perpendiculaire,
nrultiplée par cos r.

(A suivre.)

Annexe I.
Développement des principales formules pour le calcul des lignes.

1° La théorie fondamentale (chaînette).
En supposant un câble souple de poids nul chargé à

différents points de forces verticales, le polygone funiculaire

est en équilibre lorsque la somme des projections de toutes
les forces sur deux axes perpendiculaires entre eux est égale
à zéro. On doit donc avoir dans la figure 1* les relations:
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Ht H2

Vl+V2 Pl + P2+ P»

o'est-à-dire que les composantes horizontales des tensions
dans les divers tronçons sont toutes de même grandeur et

que la somme des composantes verticales des tensions de

Fib. 1*.

tronçons quelconques est égale à la somme de toutes les
charges qui se trouvent entre eux.

Ainsi, pour un côté horizontal du polygone, sa tension
est égale à H, c'est-à-dire la tension la plus faible du système.

La composante verticale de la tension à un point
quelconque du polygone est égale à la somme des charges entre
ce point et le point le plus bas.

Dans les lignes aériennes, la charge est constituée avant
tout par le poids propre des conducteurs; lorsque la section
des conducteurs est constante, le poids est réparti régulièrement

sur toute la longueur de l'arc. A vrai dire, en cas de
charge supplémentaire due à la neige ou au givre, cela
n'est généralement pas le cas. Mais, pour simplifier les
calculs, on admet que ces charges supplémentaires sont également

réparties d'une façon régulière le long des conducteurs.
Soit g la charge totale (poids propre + poids supplémentaire)

par unité de longueur (cm). Le polygone des con-

Fig. 2*.

ducteurs devient alors une chaînette. En effet, selon la
figure 2*, où H est la composante horizontale et V la
composante verticale de la tension P dans le conducteur, on a:

V g l (1*)

tg T (2")
V Ail
H H

D'après l'équation (2*), on constate que la forme de la
courbe ne se modifie pas lorsque l'on fait varier ensemble
proportionnellement V et H, resp. g et H. On peut donc
poser :

H — cg (3*)
Le facteur de proportionnalité c est le paramètre de la

courbe. De l'équation (2*) on tire:

tg r -j- (4*)

La tangente de l'angle de la courbe par rapport à l'axe
des x est donc proportionnelle à l'arc. Par dérivation de
cette dernière formule, il vient:

Al

tgr

d tg r
d*
dy
d* '

1

d»
d (tg t)

dx
d2y
d«2

;

et
donc

dl ]/ d*2 dy2

On obtient ainsi l'équation différentielle:

(J2 ry 1 ~\ / / H V

d*2 flA+(-£-)"
d'où l'on tire l'équation de la chaînette:

y -y~ 1c + e (5*>

l'axe des x (figure 2*) se trouvant à une distance égale au
paramètre c de la tangente au point le plus bas et parallèle

l —
à celle-ci. On peut aussi exprimer — |^e c e c j par la fonction

hyperbolique (£o§ ' l'équation (5*) prend alors

la forme

y c • (S0§ (--) (5a*)

Pour faciliter les calculs, on développe l'équation (5*)
suivant la série de Mac-Laurin et on a:

x x a:

y C + ~2V + HH +l2Ö^ + (6*)

A l'aide de cette équation (6*), on peut déterminer pour
une abscisse quelconque x l'ordonnée correspondante y. Les
termes d'une puissance supérieure à la quatrième peuvent
être négligés dans tous les cas pratiques, car ils sont
relativement petits.

Lorsque les portées ne sont pas trop grandes et peu
inclinées, il suffit de ne considérer que les deux premiers
termes. L'équation (6*) devient dans ce cas:

„2
y c + 2 c

En déplaçant l'axe des abscisses dans la tangente au point
le plus bas, en introduisant la nouvelle ordonnée y' y — c,
on a:

y' 2 c
(6a*)

c'est-à-dire que la chaînette est dans ce cas une parabole.
La parabole représente la courbe des conducteurs dans

le cas où la charge est répartie régulièrement sur la projection
horizontale de la courbe. On a alors:

V— g'x; H g-c
dy _ V X

" cd x tgT H

et, par intégration y' y-, formule identique à l'équation

(6a*).
Il est intéressant de pouvoir déterminer la longueur de

l'arc l en tenant compte des modifications des conditions.
Selon l'équation (4*), on a

dyl — c • tg T c •

D'autre part, selon l'équation (5*):
d*

J3L J_ (eT _dx 2

et par conséquent:

i, ~

(7*)

On peut aussi exprimer -y{ec — e c) par la fonction hyper-
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bolique ©itt j ' l'équation (7*) prend alors la forme:

l c ©in (-^) (7a*)

Pour les fonctions hyperboliques ©in et (So§, il existe
des tables, comme pour les fonctions circulaires.

L'équation (7*) peut être développée en série de
puissances, comme l'équation (6*) et l'on obtient:

l x +
1

(8*)

En pratique, il suffit de considérer les deux premiers
termes. Des équations (5a*) et (7a*) on déduit en outre,
en considérant que

/- y2 — c2

©oë2 1: (9")

La valeur de l calculée d'après cette formule est la longueur
de la chaînette entre le point le plus bas et le point
d'ordonnée y.

Selon l'équation (3*), le paramètre est

H
(3a*)

En divisant par la section du conducteur, on obtient:

c
y

où p est la traction horizontale spécifique du conducteur
en kg/cm2, y le poids du conducteur -f- la charge
supplémentaire, par 1 cm de longueur et 1 cm2 de section. Si la
charge supplémentaire est nulle, y est alors égal au poids
spécifique du conducteur en kg/cm3.

L'effort de tension du conducteur en un point quelconque
se compose de la composante horizontale et de la composante

verticale donc:

p 1<V- + H2

L'effort minimum est au point le plus bas de la courbe, où
sa valeur est H ; l'effort maximum est aux points d'appui,
ou au point d'appui supérieur quand la portée est inclinée.
Il résulte des équations (1*), (3*) et (9*) et de l'introduction

de la charge spécifique g que

P 1Jgi. p + gi c2 g • ]/p + c2 s •y (10a*)

ou, en divisant de part et d'autre par la section du
conducteur:

p« yy (io*)

Dans cette équation, y est l'ordonnée de la chaînette,
rapportée à l'axe des abscisses se trouvant à la distance c au-
dessous du point le plus bas de la courbe. Si ce dernier est
considéré comme point zéro, on a y'~ y— c ou

Pn p + y y (il*)
où p est l'effort au point le plus bas, pn l'effort en un point
quelconque d'ordonnée y, resp. y'.

Quand il s'agit de portées pas trop grandes avec points
d'appui au même niveau, p„ peut être considéré comme égal
à p sans commettre de grande erreur.

2° Calcul des courbes des conducteurs de lignes avec
points d'appui à des niveaux différents.

Pour déterminer les courbes des conducteurs, on doit
connaître le paramètre, ainsi que la position des axes des
coordonnées. Lorsque les appuis des portées sont au même
niveau, ces données sont immédiatement connues, car l'axe
des ordonnées divise en deux parties égales la droite reliant
les deux appuis et est perpendiculaire à celle-ci.

Lorsque les appuis sont à des niveaux différents, on ne
connaît que le paramètre c, la différence des abscisses des

points d'appui égale à la portée « et la différence des
ordonnées égale à la dénivellation h. Il s'agit donc de
déterminer à l'aide de ces données les coordonnées des deux
points d'appui A et B (figure 3 de la partie principale,
chapitre 3) et ainsi la position des axes des coordonnées.

On résout ce problème en admettant tout d'abord que la
courbe des conducteurs soit une parabole. Selon la figure 3,

- xi a et y'ï — y'i h

Selon l'équation (6a*):
% z

y2 "Y7"und y\ 2 c
On a donc

h —— (xS — x2t) —— (xi + *i)le le

X-2 + X]
2 • c • h

et

x-i — xi a

Par addition et soustraction des deux dernières équations,
il vient:

x-2 c —— + " und I

Xi c —
(12*)

ou, car c -
_P_

y
X2

p • h

y ' a

p h

y - a

+ und

(12a*)

Pour la chaînette, le problème se résout d'une façon
analogue. On part de préférence de la forme explicite de l'équation

de la chaînette, en négligeant les puissances des
abscisses supérieures à la quatrième.

Comme pour la parabole, on a:

X2 — xi — a; y'2 — y'i — h

Toutefois, les ordonnées sont:

y- -*12- +y2 s, T yr,
x-,

d'où
2 c ' 24 c3 '

a) X2 — xi a

h) fc-£(*1 + «)-[l + -

2 c 24. c

(13*;

En résolvant l'équation (13*) selon xi et xi, on se heurte
à des équations du troisième degré, dont la solution est
très compliquée. Il est toutefois permis de remplacer
l'expression x2 + x2 par les valeurs approchées X{2 -(- X'2 calculées

selon l'équation (12*), resp. (12a*), et de réduire ainsi
l'équation (13b*) en une équation du premier degré, dont
on peut calculer la somme xi -j- X2 et par suite les valeurs
de xi et xï à l'aide de l'équation (13a*).

Si xi présente une valeur négative, le point le plus bas
de la courbe se trouve à l'intérieur de la portée; dans la
cas contraire, il est en dehors de celle-ci.

L'équation (11*) montre que, pour les portées avec points
d'appui à des niveaux différents, l'effort horizontal p
déterminant le paramètre c ne doit plus être considéré comme
égal à l'effort maximum p„ au point d'appui supérieur. En

aucun cas, p„ ne doit être choisi à une valeur plus élevée

que l'effort maximum p2 fixé par l'Ordonnance. En posant
pn pz, l'effort au point le plus bas selon la figure 3 et
l'équation (11*) ne doit pas dépasser:
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p pz — TW • y'. >•' — y >aSh + rî)

Pour une courbe parabolique, on peut poser

ri

xi

^n«lg> * X 1

2 P

p • h

-- 0 (14*)

y • a 2

ce qui permet d'établir l'équation:

p2 (~2 + 2) — P (2p* — h yn„„) +

En résolvant cette dernière équation, on obtient deux
valeurs: l'une pour le cas où le point le plus bas de la courbe
est situé à l'intérieur de la portée, et l'autre pour le cas où
il est en dehors. Une valeur imaginaire de p signifie que,
pour les conditions données, aucune solution n'est possible,
c'est-à-dire qu'on ne peut pas tendre les conducteurs donnés
sur la portée donnée et avec le dénivellement donné, sans

que la tension maximum p„ ne dépasse la limite fixée pt.
Dans un pareil cas, on devra alors choisir un conducteur de
section plus grande ou en métal présentant une plus grande
résistance à la rupture, ainsi que le montre l'exemple
suivant :

Une portée de 400 m avec dénivellation de 200 m doit
être installée avec un fil de fer de 5 mm présentant une
résistance à la rupture de 4500 kg/cm2.

L'effort maximum admissible est les % de 4500, soit
3000 kg/cm2, le poids spécifique virtuel pour 2 kg/m de

neige : y„ei,, 109,8 • 1()-3 kg/cm3.
En introduisant ces valeurs dans l'équation (14*), on a:

109,8- • 10-6 4^- 10s

-p (2 • 3000 - 2 • 104• 109,8 • 10"3) +

0.

2,25 p2 — 3800 p + 48 • 10» 0,

d'où
3800 ± V144 • 10 ' - 432-105

4,5

Le membre sous la racine carrée étant négatif, p donne une
valeur imaginaire. Il n'est donc pas possible, dans ces
conditions, de tendre le fil.

[Au ^ujet de la validité et de l'application de l'équation
(14*), voir au chapitre 1er de la partie principale, équation

(3).J

3° L'équation des conditions d'une ligne aérienne pour
portées avec points d'appui au même niveau.

On sait que lorsque la température varie d'une différence
t — to, la longueur lo d'un fil de coefficient de dilatation
linéaire a varie (le: (t—to) cdo.

De même, lors d'une variation de l'effort de tension
spécifique de p — po, ce même fil de module d'élasticité E
varie de

(P~Po) •

-g-

où p et po sont les efforts de tension spécifiques réels.
Comme on l'a vu, ceux-ci sont à vrai dire différents d'un
point à l'autre pour chaque condition, et vont en augmentant
à partir du point le plus bas de la chaînette. Dans un calcul
absolument exact, il faudrait donc introduire pour «p» et
«po» les valeurs moyennes correspondantes (rapportées à
l'ensemble de l'arc). Toutefois, selon Hoock (voir plus loin,
au chapitre 4) on ne commet qu'une erreur négligeable dans
les cas ordinaires où les points d'appui sont au même niveau,

en introduisant l'effort de tension spécifique (le plus faible)
du point le plus bas. Dans ces formules «p» et «po» restent
dont les efforts au point le plus bas de la chaînette.

Pour une modification des conditions lo, po, to aux
conditions l, p, t, on a donc d'une façon générale:

ï—ïo— (e- -to) « h + (P-Pu) -g (15*

Or, pour la demi-portée —, lorsque les deux appuis sont au

même niveau, on a selon l'équation (8*) et du fait que

c — pour les conditions de pose:
y

a5 yo*lo a a3 yd2

2
~~ Y + 48 Po'

"H 3340 p?

où, dans la plupart des cas (sauf s'il s'agit de très grandes
portées), les termes de troisième puissance peuvent être
négligés à cause de leur petitesse, de sorte que l'on a la
formule approchée:

jo a_ L a2

2 2 \ 24 Po2.'

En supposant que le poids spécifique virtuel varie du fait
de la charge supplémentaire de 70 à y, en même temps que
po à p, on a pour les nouvelles conditions:

2 2 V 24 p2)

De ces deux dernières équations et de l'équation (15*) on
tire:

lo
(t — to) « • lo + (p-Po)-/ =„ — (£ - wTi

0
24 \p~ Po /

a2 [y2 >-o2\ lo 10

24 (p2 ~ Ä?) ~ + C-Po)--
1

E

Dans ces formules, on peut poser avec une approximation
encore suffisante:

> - 1.
a

Ce rapport étant en réalité légèrement > 1, cette simplification

a le même effet qu'un a trop faible ou un E trop
grand, ce qui donne une variation linéaire un peu trop
faible selon l'équation (15*). On verra au chapitre 4 que
cette erreur est toutefois sans importance dans les cas
ordinaires.

Cette simplification permet de poser

(16a*)

et l'on obtient, par transformation, Véquation des conditions
d'une ligne aérienne (à points d'appui au même niveau,
forme parabolique):

p3 -f H:y«2 a2 - E
24 • Po2 + (t — <o) a • E—po

24
(16*)

4° L'équation des conditions pour portées avec points
d'appui à des niveaux différents.

En résumé, on sait donc qu'une ligne flexible tendue
entre deux points fixes quelconques prend toujours la forme
d'une chaînette, qui diffère si peu d'une parabole dans la
majorité des cas pratiques, que l'écart est négligeable. Les
efforts de tension à chaque point peuvent donc être calculés
d'après la relation bien connue p' p + 7'y', où la valeur
y' est pour chaque point égale à son ordonnée au-dessus de
la tangente au point le plus bas, choisie comme axe des x
(figure 3*). L'effort de tension sera donc maximum au point
d'appui le plus élevé; sa valeur maximum admissible pz
dépend de la résistance du métal à la rupture et du coefficient
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(le sécurité prescrit. La formule (14*) indiquée au chapitre 2

permet de déterminer l'effort p au point le plus has de la
courbe en partant de l'effort maximum admissible pz.

Il reste à poser l'effort de tension p correspondant à de
nouvelles conditions y et t, en fonction des conditions de

pose connues po, yo et to, comme on l'a déjà fait au chapitre
précédent pour les portées horizontales.

c.a.d .p=p„ ,-P +

portée AC la courbe AEG des efforts p' — p + y y', l'effort
moyen p est égal, selon la définition ci-dessus, à la hauteur
du rectangle de base MN — a —xi — X2, ayant la même
surface que l'aire AEGMN.

Si, pour un point quelconque P, l'effort p' p -j- y y', où

„< y'x~ 4.2-
2 p 24 p3

+ •

on peut écrire

p' dx p • dx -
2 p

1 dx y,i.xi

*1 V

dx -h
2p

x2 dx +

24 p3

A

dx

y'
24 p

• dx

p (*-**>+G'Xl'

Xi

y*/xi3-*23\ y4 Ixp - *g5\

2p\ 3 )+ 24 p3 \ 5

En considérant exactement
le problème on remarque
immédiatement que la formule
(16*) pour points d'appui
au même niveau n'est pas utilisable pour les portées inclinées.

En effet, on ne peut pas introduire sans autre dans
cette formule la portée connue distance horizontale a, car la
variation de l'effort doit être fonction de la variation de la
longueur (Z— Zo) de l'arc avec la corde b — f (a, h). En
outre, la formule (16*) est basée sur une approximation qui
n'est pas acceptable dans ce nouveau cas. Dans l'ancien cas,
on avait posé pour la variation de la longueur (Z— Zo) —

(p — po) -gr en tenant compte de l'élasticité, les grandeurs pP
et po désignant les efforts au point le plus bas, alors qu'il
ne peut s'agir en réalité que des variations des efforts moyens
(p—po) par rapport à l'ensemble de la chaînette. Par
contre, pour le calcul des longueurs Z et Zo, ce sont les efforts
p et po au point le plus bas que l'on doit considérer. En
établissant la formule (16*), on a donc rendu égaux et
identiques deux efforts qui sont en réalité distincts. Dans l'ancien

cas, on pouvait agir de la sorte, car l'erreur ainsi commise

ne dépasse généralement pas quelques pour-cents.
Comme on le verra à la fin de ce chapitre, la formule (16*)

jxl2 + X\ X2 + Xi2'xf\ y4 (xp + XIs X-2 + xr X22 + xi X23 + X24)

524 p

Fig. 4*.

pour portées horizontales est un cas spécial de la formule
générale valable pour les portées inclinées. Quand il s'agit
de portées dont les points d'appui sont à des niveaux
différents, l'effort moyen peut atteindre des valeurs complètement
différentes.

L'effort moyen p peut se définir comme l'effort p'
p + yy' de la parabole, intégré sur la distance horizontale
a entre les points d'appui et ramené à cette grandeur prise
comme base (voir figure 4*). Si l'on dessine donc pour une

dont le troisième terme peut être négligé par rapport aux
deux premiers, de sorte que l'on peut écrire d'une façon
générale pour l'effort moyen d'un élément quelconque AOC
de la chaînette:

— y
P P +T~z (xi2 + xi xî + x 2)

6p

Sous cette forme, cette équation est toutefois mal commode
pour les calculs, car elle exige le calcul préalable des
abscisses xi et X2. Il est cependant facile de la transformer en
une fonction des grandeurs connues h et a.

On pose:

h — y'\ — y' i -
y *r
2 p

y xj'
2 p

et a x\ — x%

puis, en éliminant les grandeurs xi et X2, il vient:

P P +
2 a2

y' a'
24 p

(17*

On constate donc que la grandeur p pour les portées inclinées

peut être beaucoup plus grande que p, suivant les
valeurs de h et a. Pour les portées horizontales, le terme
renfermant h disparaît et l'on a :

— V2 a2 1

p p-rhrP p + t y

Toutefois, même pour les portées très grandes, y n'atteint
jamais 10-1 kg/cm3 et la flèche dépasse rarement 100 in, en
outre on doit choisir dans ces cas un métal présentant la plus
forte résistance à la rupture (pz=40 à 80 kg/cm2). Il
résulte donc de l'équation ci-dessus que p ne peut être que de
quelques pour-cents supérieur à p, même dans les cas
extrêmes.

Pour les portées horizontales, il est donc admissible de

poser p ~ p.

On peut alors établir l'équation générale des conditions
et poser, comme pour la formule (16*):

Z— Zo (t-to) « Zo + (P - Po) -j-lo
Selon la figure 4* et l'équation (8*), la longueur Z est
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l a + (x,2 + ïiï! + X-/)

Selon la formule (12a*), on peut poser pour xi.et x*-.

p h a
*i — + T7 a 2

*2
p li a

y a 2

d'où l'on déduit:
a2 3 p2 7r

x{2 + X!X2 + xt2 — +
4 /-.*a"

En introduisant cette valeur, il vient:

h2 v2 <

De même:

l a +

/ö — a +

2a 24p2

h2

2 a 24 p02

'_i° a ' fi (f2 ~p,») a-lo+Cp-Po) jr-h
b cosy fj;(J2 - 6-<o) « «o + (P - pi.) jr k

En posant, comme précédemment,
*o

-1, on a

cos ip • g (|-g)-(,-(ll„t±rp_Ä
Selon la formule (17*), on pose en outre:

p p + p h2

2 a2 24 p
— Poh2 yh2 a2
Po Po + 7^ + ^

p~Po P + p /i2 y2 a2

2 a2

Po ù2 p,,2 a2

24 p
P°

2 a2 24 Po

En introduisant cette valeur, il vient:

y2 a2 v02 a2

24p2
E ' cos yj - 2 E ' cos V (t-to) « E + p +

p h2 « ,2 2^ a
2 «2 24 p

Po
2 a1

Po ù2 p,2 a2

24 Po

et, par transformation:

pS (* + Ta2) +p2 |^^-cosy + (t-to)«-f?

5° Les équations des conditions pour lignes aériennes
à isolateurs de suspension (chaînes d'isolateurs).
Comme on l'a vu au chapitre 5 c), dans les lignes à

isolateurs de suspension les tensions qui diffèrent dans
certaines portées du fait de variations des conditions sont
compensées par la déviation des chaînes d'isolateurs, de sorte
que les tensions horizontales de toutes les portées peuvent
être finalement toutes considérées comme identiques.

Dans ce qui suit, on établira les équations des conditions
pour lignes à isolateurs de suspension avec points d'appui
au même niveau et de niveaux différents.

lAdj üAa*
j a,-Z50m. az-300m. I a3-rsom. 1 av-voom. \ as-2S0m. I ae - 3S0m

SEVH-629

Fig. 5* und fi*.

Soit un conducteur monté entre deux points d'arrêt A et
B en n portées aux conditions po, yo, to avec chaînes
d'isolateurs verticales (figure 5*). Si les conditions deviennent
y, t, la tension horizontale équilibrée du conducteur est p*.
Pour une telle modification des conditions, les chaînes des
isolateurs dévieront de certaines valeurs A a.

En désignant par
po l'effort horizontal du conducteur en kg/cm2 aux conditions

de pose avec chaînes d'isolateurs verticales,

pi pk p„ les tensions du conducteur, différentes pour
chaque portée, lors du passage des conditions du début
à celles de la fin, mais les points d'appui étant considérés
comme maintenus rigidement,

p* la tension équilibrée du conducteur aux conditions finales
y, t (figure 6*),

on a pour la variation de la longueur de chaque portée
(formule simplifiée de Bourquin) :

24 (^-^)+ ¥-(p*~Pk) (i9*:

où ôk signifie un allongement, lorsque p* > pk
et une réduction, lorsque p* < pk.

En ordonnant l'équation (19*) selon pK et p*, il vient:

<\
24 • pk

ak

E
•r uk

24 • p*2
• P (19a*)

Po 1(> + ,4) - yu g
24 po

y- a2 y2 a'+ up=-WE-co*v'

Par rapport au premier terme de la grande parenthèse, le
Vs? a2

terme est négligeable, de même que dans la plupart
24 Po

y a2
des cas — p, de sorte que l'on obtient finalement

24

l'équation générale des conditions d'une ligne aérienne

en forme de parabole:

et en la comparant à l'équation (16a*) pour la kme portée,
en multipliant celle-ci par ak et en l'ordonnant comme pour
l'équation (19a*),
«k3 •y2 ak u k

2 =- - Pk (t-to) «-ak +24 • p,2

«k3 • y2 Or

24 • po4
(16a*)

on voit que l'expression dans la parenthèse de gauche de
l'équation (19a*) est identique à la partie de gauche de

+ P2
yu2 • <z2 • E

24 • pu2
cos y + (t — to) a E — Po 1(+4)] y2 u? E

24
cos y (18*)

Contrairement à l'équation (16*), cette équation peut être
considérée comme équation générale des conditions, car
elle est valable dans tous les cas. Pour y — 0, h — 0, elle
est identique à l'équation (16*) pour portées horizontales.

l'équation (16a*). En substituant l'équation (16a*) dans
l'équation (19a*), on a:

ôk-£ (S - S) +(f - ••* +
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La déviation totale Aa des isolateurs au kme support est
égale à la somme des modifications des longueurs <5 dans
toutes les portées de 1 à k, donc

K

Aak ö
1

S«3 /'yàl y2\
24 Ipo2 p*2/

1 ~l

(t — tiï a + (p* — p„) — I Ça (20")

A l'arrêt terminus (nme portée) Aa„ 0, car le point B est
rigide. On introduit dans l'équation
(20*) Aa — 0, divise par 2a et obtient
l'équation des conditions pour sections
de ligne avec isolateurs de suspension
entre deux points d'arrêt:

L'équation transformée (18*) pour une seule portée est

ak p,, / h'-a\ y2 cos y>

Pk E

U— to) « a,.

(' +l?) "
vK1 +^r)»«**>a\y\ cos y>

24 p

En substituant l'équation (18a*) dans l'équation (23b*), il
vient:

a; costp ni f-\ h\ V

+ (t-'o)««c + (P*-Po)-£ (1 +-^)
et, pour la déviation totale des isolateurs au fcme support:

/ri \
\ PI P*>

a(1 + T^) (24*'

24

2«3
l
n

2«
fe ~24p^) + (< - f0) " + (p* - pn)¥= ° (2°a4)

On pose en outre:

xy
i

n

z-
(21*)

ordonne l'équation (20*) selon les puissances de p* et l'on
obtient finalement:

+ P*
yàl • a*'- • E

24 - pu2
+ (t — to) « E — po

y- a*1 E
'

24~ (22*)

Cette équation est identique à l'équation (16*), les portées a
étant remplacées par la portée a*. Pour les lignes à isolateurs
de suspension, les tensions du conducteur pour des sections
comprises entre deux points d'arrêt ne doivent plus se
calculer portée après portée, mais en considérant une portée
moyenne a*, dont la grandeur se détermine à l'aide de la
formule (21*).

Pour les lignes dont les appuis sont à des niveaux
différents, l'équation des conditions se déduit d'une façon
analogue. La formule de Bourquin modifiée pour ce cas est

(V
<>'6k y- cos y> / 1

24 (à-*)« I + ^ (p* — p») <23*)

où p* et pk sont les efforts au point le plus bas, p* et pk les
efforts moyens selon le chapitre 4. Selon la formule (17*),
on a:

p*= ^ + 0
h2 y2 a2

pie Ph p Pk — -j-
2 a 24 p

(17*)

Le dernier terme de l'équation (17*) a peu d'importance et

peut être négligé. En introduisant les valeurs de p* et pk
des équations (17*) dans l'équation (23*), on a:

àk

où

Ö

a'b y2 cos i/i / 1 1

24 <->

al y2 cos v
24 pI

(-Ä)]r a3 y2 cos y) tlk P*
24 p*2 E (23b*)

y «scosyt /y._ jy' ZJ 24 V pI P*2

k k

<t - to) « ^ X + (p* — pl|^£
En posant dans l'équation (24*) Aak= 0, en divisant par Sa,
on obtient l'équation des conditions pour des sections de
lignes avec isolateurs de suspension et portées inclinées entre
deux support d'arrêt:

y a3 cos y>

i
n

I>
A

24 p'i 24 p*1 +

(t — to) « + p* — p)

On pose

Ç-O+Tïr)
E

0

S a

(24a*)

Ça3 COS tp

(25*)

2«

n

z°
et l'on désigne par a* la portée moyenne et par u le facteur
d'inclinaison moyen.

En ordonnant l'équation (24a*) selon les puissances de
p*, on obtient finalement:

u • p* ' + p*
r y\a*n
L24 p?

*2E I v2 a*2 jr
2 (t-t0) aE-u p0\

24
(26*)

L'équation (26*) peut être considérée comme l'équation
générale des conditions des lignes à isolateurs de suspension.
Quand h est égal à zéro dans toutes les portées, l'équation
est identique à l'équation (la), resp. (22*). Quand toutes
les portées présentent la même inclinaison ip, l'équation est
identique à l'équation (1).

6° Constantes physiques d'un conducteur en deux métaux.

Les constantes physiques d'un câble composé de deux
métaux différents (module d'élasticité, coefficient de dilatation

linéaire et poids spécifique) peuvent se calculer en partant

des constantes correspondantes des composants, comme
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indiqué au chapitre 7 de la partie principale. En désignant
par

qi la section totale des fils d'un métal,
q-2 la section totale des fils de l'autre métal,
q la section totale du câble complet,
Pi la part de l'effort afférant aux fils qri,
P» la part de l'effort afférant aux fils q-2,

P la tension totale du câble,
Ei le module d'élasticité des fils qi,
Ei le module d'élasticité des fils q-2,

E, le module d'élasticité du câble complet,
m le coefficient de dilatation linéaire des fils q\,
ti-z le coefficient de dilatation linéaire des fils q-2,

a, le coefficient de dilatation linéaire du râble complet,
on détermine tout d'abord le

module d'élasticité d'un câble en deux métaux.

Quand un tel câble, tendu entre des supports d'arrêt de
façon à exclure tout déplacement des fils des différents
composants, est soumis à un effort de tension de P kg, les deux
métaux subissent le même allongement Al. Pour les deux
métaux, l'équation est:

Al — l — lo (t — !o) cdo + (p — po)
/o

(15*)

Dans ce cas, t — to, po — 0 et p — Piq. On a donc :

Pi ' h
pour le premier métal: Al

pour le second métal: Al —

pour le câble complet: Al

qi • Ei
Pilo
q-2 • Es

Plo
q E,

(27*)

ou, en sortant les efforts de tension:

A /
pour le premier métal : Pi —— qi • Ei

•o

A l
pour le second métal : Ps —.— qi ' £2

h
A l

pour le câble complet: P — —j-- q-E,
'u

ou, car P Pi Pî : P A— (qt Et + qi E2)
h

(27a*)

De l'équation (27a*) on tire les équations suivantes pour
l'effort partiel Pi et P-2 afférant à chaque métal et pour le
module d'élasticité E, du câble complet:

p, P
\qi -Ei + q-> E'i)

P, qî'Eî P
\q-i - Es + q\ Ei/

E, — • Ei + ^-Eä

(28*)

q q

Coefficient de dilatation linéaire d'un câble en deux métaux.
On part à nouveau de l'équation (15*), en considérant

la variation de température de to à £ degrés du câble tendu
avec la tension de pose po, la distance entre les points d'appui

restant invariable. La variation de la température
provoque une variation des efforts qui diffère pour chacun des
deux métaux. Dans ce cas également, l'augmentation ou la
réduction doit être la même aussi bien pour les deux
composants que pour le câble complet.

De l'équation (15*) on tire:
(29*)

pour le premier métal : AL (t —10) «i + (Pi — Pi0) —^r
lo qi • Ej

pour le second métal : AL (t — t0) «2 + (P2 — P-2o) —
/o <72 * £2

pour le câble complet: AL (t _. to) a$ + (P — P0) —L—-
lo q • Es

ou, en sortant les efforts de tension:

pour le premier métal:pt _ plo —

pour le second métal : p., päo

pour le câble complet: p —. po

Al
lo

Al
lo

Al
lo

(29a*)

— (t — t0) "1 qi Ei

— (t — to) «2 q-2 Es

— (f — to) «, \q E

ou encore, en introduisant pour q ' E, la valeur correspondante
de l'équation (28*) :

P-Po Al
t — fo) «, j (qi • El + qt Ej) (30*

En outre, Pi + P2 — P et Pi0 -f- P20 Po. En additionnant

les deux premières équations (29a*), il vient:

P — Po -7— (q\-E\ + <72 " £2) — (f — fo)-(t/t Et «î+qi'Es«») (31*)
'0

Des équations (30*) et (31*) on tire finalement:

q\ Ei «i U q-i E. «s

91 Ei + <js E-2
(32*)

(Annexe II suit.)

Technische Mitteilungen. — Communications de nature technique.
Eine grosse Warmwasseranlage.

621.364.6:725.21

Das grosse, neue Warenhaus Decré in Nantes verlangte
für das Restaurant, die Bar, den Coiffeursalon und die
Toiletten täglich 5000 Liter warmes Wasser, das stets die
Temperatur von 90° C haben muss. Die Warmwasserverbrauchsstellen

sind in den verschiedenen Stockwerken vertikal
untereinander gruppiert. Dies führte zur Wahl eines einzigen
Warmwasserkessels, der natürlich wirtschaftlicher ist als einige
kleine. Er arbeitet nach dem Heisswasserspeicherprinzip,
indem er die billige Nachtenergie ausnützt und das warme
Wasser aufspeichert.

Wegen seines Volumens war es unmöglich, ihn im Warenhaus

selber unterzubringen ; er wurde deswegen auf dem Dach
aufgestellt, wodurch sich auch eine äusserst einfache Verteilung

des warmen Wassers ergab.

Das von der Stadt gelieferte Wasser war seiner Qualität
nach für galvanisiertes Eisen gefährlich, und sein Druck zu
gross, als dass ein kupferner Druck-Behälter in Frage gekommen

wäre; so entschloss man sich, einen Auslaufspeicher aus
6 mm Kupfer, innen verzinnt, mit 5100 1 Nutzinhalt und mit
einem Leergewicht von 1600 kg zu bauen, der von einem
10 cm dicken, geteerten und mit einer Zementschicht und
ölgestrichenem Segeltuch umgebenen Korkmantel isoliert
wurde. Dessen drucklose Speisung erfolgt aus einem separaten

Becken mit Schwimmer. Eine elektromagnetische Drosselklappe

sorgt dafür, dass ausser der Heizzeit kein kaltes Wasser

einfliessen kann, damit das warme Wasser bis auf den
letzten Tropfen tatsächlich warm ausfliesst. Sechs elektrische
Heizrohre von je 10 kW Leistung besorgen die Heizung; sie
sind im Reservoir unterhalb der Warmwasserausflussöffnung
eingebaut, so dass sie stets in mindestens 250 1 Wasser tau-
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