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Ueber die Verwendung sogenannter Operatoren in der Theorie
der Wechselströme.

Von Th. Boveri, Baden. 517.433

Der Autor stellt sich die Aufgabe, auf Grund einschlägiger,

am Schlüsse angegebener Literatur eine kurze Darstellung

der besonders in Amerika viel angewendeten Rechnung
mit Operatoren anstatt mit Differentialquotienten zu geben
und ihre Anwendung auf die Behandlung von Schwingungsvorgängen

zu zeigen. Er hofft, dass der Ingenieur darnach die
Methode anwenden könne, ohne unbedingt die grundlegenden
Arbeiten studieren zu müssen. Dies erfordert allerdings die
Mitteilung von Beweisen für alle wichtigen Ausdrücke, selbst
wenn dabei volle mathematische Strenge dem Autor nicht
möglich war, denn das stark abgekürzte, beinahe stenographische

Verfahren der Operatorenrechnung erschwert an sich
die Beurteilung, ob eine bestimmte Formel für den gerade
vorliegenden Fall auch wirklich passt. Nur durch die Kenntnis

der Beweise, wenigstens in ihren Grundzügen, kann das

unbedingt nötige Sicherheitsgefühl erzeugt werden.

: 621.3.025

L'auteur se propose d'exposer brièvement, en se basant
sur la documentation citée à la fin, une méthode de calcul
fort usitée en Amérique et qui se sert d'opérateurs au lieu
de dérivées, puis en donne des applications aux phénomènes
d'oscillation. Il espère que cela permettra à l'ingénieur de sa
servir de cette méthode sans devoir nécessairement étudier
les travaux fondamentaux. Pour cela l'auteur a cependant
dû donner des démonstrations pour toutes les expressions
importantes, même lorsqu'il lui a été impossible de s'en tenir
rigoureusement aux mathématiques, car la méthode abrégée,
presque sténographique, du calcul opératoriel ne permet
qu'assez difficilement de se rendre compte si telle ou telle
formule doit s'appliquer au cas envisagé. Seule la connaissance

au moins élémentaire des démonstrations est capable
de donner le sentiment de sûreté indispensable.

Unter einem Operator versteht man in der
Mathematik ein Symbol p, welches man wie einen Faktor

vor ein anderes Symbol x setzt, wobei aber px
nicht eine Multiplikation, sondern eine Differentiation,

und zwar in unserem Falle nach der Zeit,
bedeuten soll. Wir schreiben deshalb

PX
dx 2

d2*
p*x -, — etc.dt ' 1 dt2

und unter Umkehrung der Operation

f-S* d t

Ob man jede Differentiation nach der Zeit so
darstellen darf, steht von vornherein nicht fest; man
überzeugt sich aber zunächst leicht, dass es jedenfalls

bei der Exponentialfunktion zulässig ist, denn
es gilt ja

X .4ept; —j7" — p Aept — px;dt

d2x
dt2

p2Aept p2x

Da pt eine reine Zahl sein muss, hat p die Dimension

einer Frequenz.
Allgemein prüft man die Zulässigkeit der

Operatorenschreibweise dadurch, dass man einmal alle
durch die p vorgeschriebenen Differentiationen und
Integrationen wirklich anschreibt, bzw. ausführt
und parallel dazu mit den p nach den Regeln der
Algebra rechnet. Bei sinngemässer Umdeutung der
p von gewöhnlichen Zahlwerten in Differentialoperatoren

im Schlussresultat der zweiten Methode
muss sich derselbe Ausdruck wie nach der ersten
Methode ergeben. Umgekehrt können auch, um
dieses Resultat zu erreichen, eventuell auftretenden,
komplizierten Operator-Ausdrücken bestimmte,
allgemein gültige Bedeutungen beigelegt werden. Es

ergibt sich [vgl. z. B. Sokolnikoff 1) ], dass die Ope-

') Siehe Literatur am Schluss der Arbeit.

ratorenschreibweise bei linearen Differentialgleichungen

beliebiger Ordnung zulässig ist, wenn sie
konstante Koeffizienten haben. Eine solche
Gleichung hat den Typus

dnjc d"'1 x d*
al (Jjn-l + ••• +an-l • ^-+«nV — f(0 (1)dt"

wobei die a Konstanten sind. Dieselbe Gleichung,
jedoch mit f (t) =0 heisst die zugehörige homogene

Gleichung.
In Operatorenform schreibt sich Gl. (1)

(Pn + ai PnA + ••• + an-l Pan) • X f (t) (2)

Für die homogene Gleichung kann dieser Ansatz
sofort gerechfertigt werden, wenn man in Gl. (1)
als Lösung einsetzt

x eP4

Die in Gl. (2) auftretende Klammer muss dann Null
werden und liefert, wenn alle Wurzeln verschieden
sind, n verschiedene p-Werte. Somit erhält man
aus Gl. (2) auch rt verschiedene partikulare
Lösungen

Xi epi'; x2 ep2' etc.

Man überzeugt sich leicht, dass jede davon eine
Lösung bleibt, wenn man sie mit einer beliebigen
Konstanten multipliziert und daher ist die allgemeine
Lösung der homogenen Gleichung

X Ct-etP -f- c2-ep2' + 3 Pn * (3)

Die p-Werte heissen die Eigenwerte des Problems,
weil mit andern Werten eine Lösung, selbst mit ganz
beliebigen Konstanten, überhaupt nicht möglich ist.

Um nun endlich auch noch die inhomogene
Gl. (1) zu lösen, genügt es, irgendeine partikulare
Lösung

x u(t) (4)

für diese zu finden. Da diese Gl. (1) befriedigt und
da Gl. (3) dieselbe Gleichung mit f(t) —0 erfüllt,
so befriedigt auch die Summe von Gl. (3) plus
Gl. (4) Gl. (1) und da sie n Konstanten enthält, ist
es die allgemeine Lösung.
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II.
Die Schreibweise mit Operatoreil bedeutet nichts

anderes als eine Ausdehnung der in der Wechsel-
stromtechnik schon lange bekannten, hauptsächlich
von Kennelly und Steinmetz in die Praxis
eingeführten «symbolischen» Methode auf nicht rein
sinusförmig verlaufende Vorgänge.

Die symbolische Methode hat sich mit der Zeit
immer mehr in der Elektrotechnik eingebürgert,
trotzdem sie anfänglich von Manchen scharf
bekämpft wurde, wobei man aber eben übersehen
hatte, dass es sich nicht um besondere, für die
Elektrotechnik ersonnene Kunstgriffe handelt,
sondern um in der Mathematik allgemein mit grossem
Erfolg verwendete Methoden.

Eine zeitlich sinusförmig schwingende Grösse
kann bekanntlich durch einen mit der
Winkelgeschwindigkeit co 2nj (/ Frequenz) rotierenden
Vektor dargestellt werden. Multiplikation desselben

mit — 1 ist gleichbedeutend mit einer Drehung
um 180°; multipliziert man statt dessen zweimal
hintereinander je mit ± y — 1 ±j, so erhält man
dasselbe Endresultat; die Zwischenstufe, Multipli¬

kation mit ± j, bedeutet
daher Drehung in positivem,

bzw. negativem Sinne
um 90". Besonders wichtig
ist diese Schreibweise bei
der Differentiation.
Bedeutet in Fig. 1 F einen
Vektor und d F seine
Aenderung bei Drehung
um den Winkel d<y, wobei
die Länge /F/ konstant

bleibe, so gilt, weil der Kreisbogen überall
senkrecht zum Radius verläuft

AV jVA<p (5)

und nach Differentiation nach der Zeit t

*y
t

K \V\ •Sin<f

—- +x
\V\'Cos<p Axe des Reellen

ll/l

Fig. 1.

dV
~dT jV

d cp

~dr jV(o (5a)

Hiermit kann man sofort einen berühmten Satz
von Euler ableiten. Man drehe den Vektor V aus
seiner Anfangslage, in der er mit der positiven Axe
des Reellen, +*, zusammenfallen möge, um den
Winkel cp in positivem Sinne. Es wird nach Fig. 1

V |F|- (cos cp -\- j • sin cp)

Anderseits denke man sich die Drehung durch
vektorische Summierung vollzogen, d. h. Integration
der vielen kleinen Kreisbogensehnen dV; aus Gl.
(5) erhält man

Ü ~r j ^ &P VP In

\y\
oder

V [Fl • e'f ; e 'P cos cp -\- j sin cp (6)

Die Bedeutung der symbolischen Methode liegt
hauptsächlich in Gl. (5a). Sie gestattet,
Differentialquotienten nach der Zeit unmittelbar durch die
zu differenzierende Grösse zu ersetzen, ebenso
Zeitintegrale durch die zu integrierende Grösse wegen

V M Vdt jco -if; \ F dt =—J—
dt J joj J co

Differentialgleichungen werden damit also formell
in algebraische verwandelt.

Das Auftreten der Exponentialfunktion in Gl.
(6) wird noch besser an Hand der Differentialgleichung

für eine Sinusschwingung verständlich. Es
seien L die Induktivität einer Spule, i der Strom in
ihr, C die Kapazität eines damit in Reihe geschalteten

Kondensators und ±q die Ladungen auf dessen
Belegungen; dann ergibt der Energiesatz

Li2
konstant

2
1 2C

Wir differenzieren nach t und beachten

dq

dt
Es wird

Li di
dt + i=0

Mit i gekürzt und nochmals nach t differenziert,
folgt die bekannte Differentialgleichung der
harmonischen Schwingung

dH
d¥ LC

co

Man soll also eine Funktion finden, die gleich ihrer
negativ genommenen zweiten Ableitung ist. Dies
leistet neben sin und cos auch die Exponentialfunktion,

die ja an sich gleich ihren sämtlichen
Ableitungen ist. Damit die zweite Ableitung gleich der
negativ genommenen Ausgangsfunktion wird, hat
man den Exponenten imaginär zu machen, wie sich
aus folgender Rechnung ergibt:

i Aept;
di

p Aept ;
d2i

p2Aeptdt * dt2

somit aus Gl. (7) :

p2 Aept — co2Aept; p2 — co2; p -^jco (8)

bedeutet nichts anderes als die Kreis-co lLC

frequenz, denn nach Gl. (6) ist ja

i ^4ept — Ae±iat A (cos cot sin co t)

und da sin und cos die Periode 2n haben, gilt eben
für die Periodendauer T
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T o f 1 0J
coT 2 n; _/ — —i In

p hat nach Gl. (8) zwei Werte; die allgemeine
Lösung von Gl. (7) ist also zu schreiben:

i Ax e'ut -)- A2e~'ut
(A j +d2) coscot A~j (A1 — A2) sinojt
A ' cos cot -)- A " sin co t ; (8a)

A' — A1 + A2; A" — j (Ax-A2)
Sollen hierbei A' und A" reell sein, so müssen Ax
und A wie man sagt konjugiert komplex sein, d. h.
die Form haben

A1 a -\~jb; A2 — a — jb; A' 2a; A" — — 26

worin a und b reell sind. Sie bestimmen die Phase
der Schwingung, denn

A sin (cot -f- xp) A (sin co t cos xp cos co t sin xp)

also A • sin xp A' ; A- cos xp A"

Um eine erzwungene Sinusschwingung darzustellen,
kann man sich auch mit einer Exponentialfunktion
begnügen, muss sich dann aber entscheiden, ob der
reelle oder der imaginäre Teil für sich den Vorgang
beschreiben soll. Meist nimmt man den imaginären
Teil, setzt also

A sin (cot -|- xp) Im. Aei + V")

Im. Ae^-e>at Im. A0 eiot mit A0 AeM

m.
In den soeben angestellten Rechnungen haben

wir schon die Operatorenmethode benützt, jedoch
die Exponentialfunktion noch angeschrieben. Wir
behandeln nun die gedämpfte Schwingung, bei der
in Reihe mit der Induktivität L und der Kapazität

C noch ein Widerstand R liegt unter Weglassung
dieser Zwischenstufe. Der Energiesatz ergibt

_d_/Li^
dt \ 2-o- +37 ^ +i*R o

dt \2C
d i
d7— L i —1—i i2R (9a)

Durch Kürzung mit i, nochmalige Differentiation
nach t und leichte Umgruppierung wird hieraus

d2i
"dt2" r-^ + ci=° <9>

Gegenüber Gl. (7) tritt das Dämpfungsglied j--
neu auf. Da sich auch Gl. (9) durch Exponentialfunktionen

befriedigen lässt, führen wir den
Operator p ein.

Rpi+-£r=0 (9b)p2 i
Es hebt sich t weg

P2 + -

R
CL - 0

woraus

R
P ~ ~oT~t2 L

R

Yl

V

±j]/^L~ 4L2 ~a±ib

R2

4L2
1

CL

(10)

Die allgemeine Lösung von Gl. (9) wird

i _/41e_at+bt -f- A2e~at~bt e~at [ (A1 A2) cos 61

-|-j (Ax — A2) sinbt] e~at (,4'cos6t + ^4" sinht)
Sie unterscheidet sich von Gl. (8a) durch das

Dämpfungsglied e_at und durch die von m

leicht verschiedene Kreisfrequenz

w-b
R2

iL2'
1 i R2

wobe'
CL > TP

Im übrigen muss für die Diskussion von Gl. (10)
auf die Literatur verwiesen werden. Bei von
Brunn2) findet man sie ausgedehnt auf den Fall
negativer Widerstände, dort Expedanzen genannt,
und es resultieren

1 R2
für - > - y eigentliche Schwingungen,

G 4L
1 R2

fiir-^- <( -j-^r aperiodische Vorgänge,

für R 0 gedämpfte Vorgänge,
für R <Y 0 anschwellende Vorgänge.

Letztere Möglichkeit erwähnt übrigens schon K. W.
Wagner 3).

Theoretisch ist besonders auch der Spezialfall

1

~C

R2

4L
d. h. verschwindende Quadratwurzel, zu beachten.
Man erhält dann nur einen p-Wert, muss aber trotzdem

zwei Integrationskonstanten unterbringen. Dies
geschieht für den uns hier allein beschäftigenden
Fall einer Differentialgleichung zweiter Ordnung
durch den z. B. bei von Brunn (1. c.) zu findenden
Ansatz

i (Ax + A21) ep1 (10a)

in welchem nur ein einziger p-Wert, aber zwei
Konstanten Al und A2 vorkommen. Aus naheliegenden
Gründen nennt man diesen Wert eine zweifache
Wurzel von Gl. (10).

IV.
Die Operatorenmethode gestattet nicht nur

Differentialgleichungen in algebraische zu verwandeln,
sondern, mit der nötigen Vorsicht, sie sogar von
vornherein in der letztgenannten Form anzusetzen.
Wir schreiben dazu (Gl. (9a) als Spannungsgleichung,

indem wir beachten, dass eine äussere,
«eingeprägte» Klemmenspannung nicht angenommen
war, es sich also um sogenannte freie Schwingungen
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handelt. Mathematisch entspricht dem eine homogene

Differentialgleichung. Wir dividieren also
durch i

O_;R + I^+| Ü+I' H 7=r \ i d t

Die drei Glieder bedeuten die drei Klemmenspannungen

an Widerstand, Induktivität und Kapazität,
deren Summe gleich Null ist. In Operatorenform
geschrieben erhalten wir

0 i R -(- p L i +
oder, durch i gekürzt

P c

0 — R + p L - Z
P L

(H)

(IIa)

woraus wieder Gl. (10) folgt. Da nun p nichts
anderes als eine Erweiterung des Begriffes jco ist, wie
sich aus dem Vergleich von Gl. (8) und Gl. (10)

ergibt, so können wir auch pL bzw. als Erwei-
pL

terungen der üblichen symbolischen Blindwider-

standsbegriffe jwL bzw. .—— ansehen und die Gl.

(11) für die gedämpfte Schwingung, formal so
anschreiben, wie wenn ein stationärer Wechselstrom
vorläge, allerdings wegen der Homogenität von Gl.
(9) unter verschwindender Klemmenspannung. Daraus

ergeben sich dann die p-Eigenwerte.
Wie eben bemerkt, bedeutet der Ausdruck (IIa)

eine Art erweiterte Impedanz für den freien Strom,
weshalb wir ihn wie üblich mit Z bezeichnen. Wir
wollen aber den Begriff gleich noch in anderer Art
erweitern, nämlich auf andere Zustandsgrössen. Soll
etwa die Klemmenspannung am Widerstand, t/R
iR erfasst werden, so gilt statt Gl. (11)

0 ür+ir ÜR +A
und durch Kürzen mit IJK statt Gl. (IIa)

1
0 1+TT RpC — Z\ (IIb)

Analog ergäbe sich für die Kondensatorspannung

und

0 UcPCR + UcP2 _ _|_ uc 0

0 — pCR p2 + 1 — Z2 (11c)

Man erhält Ausdrücke wie Gl. (IIb) und Gl. (11c),
indem man die Ausgangsgleichung multipliziert mit
dem Quotienten alte Variable in der Ausgangsgleichung

durch neue, gesuchte Variable.
Die Ausdrücke (IIa), (IIb) und (11c) führen

offensichtlich alle zu denselben p-Werten. Dies

rührt im Grunde genommen daher, dass jede
Differentialgleichung von der Form der Gl. (9), die man
nach Gl. (9b) auch in Operatorenform schreiben

kann, auch durch pi und — erfüllt wird, wenn sie
P

i selbst befriedigt, weil ja i in jedem Gliede
vorkommt, und die Gleichung ohne weiteres mit p
erweitert oder gekürzt werden kami. Gl. (9) ist also
nicht nur die Differentialgleichung des Stromes,
sondern auch der Spannung an Widerstand, bzw.
Kondensator, bzw. Drosselspule, sowie der
Kondensatorladung usw.

Viele Autoren, z. B. K. W. Wagner3) und
Fraenckel4), nennen Z Widerstandoperator, doch
wollen wir hier diesen Ausdruck vermeiden, da Z
infolge der soeben vorgenommenen Erweiterung des

Begriffes weder die Dimension eines Widerstandes
zu haben braucht, noch ein Operator im ganz engen
Sinne der eingangs gegebenen Definition ist.

In den Gl. (9), (9a) und (9b) waren wir von
einer Reihenschaltung von R, L und C ausgegangen.
Das ist nicht unbedingt nötig. Es möge, gleichzeitig
als erstes Beispiel, für die Anwendung der
Operatorenmethode überhaupt, die Eigenfrequenz einer
Parallelschaltung von Induktivität L und Kapazität
C berechnet werden. Bei der Eigenfrequenz herrscht
Resonanz; der Strom scliliesst sich vollständig im
Innern des durch L und C gebildeten Kreises, während

die äussern Zuleitungen zu den Verzweigungspunkten

keinen freien Strom führen. Anderseits
herrscht eine endliche Spannung zwischen diesen
Punkten, also ist, im Gegensatze zu Gl. (IIa), die
Impedanz des freien Stromes zwischen den Ver-
zweigungspunkten nicht 0, sondern unendlich zu
setzen. Man überzeugt sich leicht, dass diese Regel
den richtigen p-Wert liefert, denn

1
_

1 PL
Z ~ pL+P ' - l+p2LC ~ °°

Der Nenner muss Null sein:

1+P*LC-0;p=j]/±:; *
Einer unveröffentlichten Studie von Herrn Dr. W.
Wanger entnehme ich die Berechnung der
Eigenfrequenz einer verlustlosen Doppelleitung von der
totalen Induktivität L, bzw. Kapazität C, bei der im
Resonanzfalle ebenfalls kein freier Strom in den
Zuleitungen vom Generator fliesst, während doch
Spannung zwischen den Klemmen herrscht, so dass
der soeben geschilderte Ansatz am Platze ist. Nach
Fraenckel, 1. c., Seite 158, bestehen zwischen Spannung

und Strom am Anfang (1) und Ende (2) der
Leitung unter sinngemässer Berücksichtigung der
geänderten Bezeichnungen die Beziehungen

f/1 U2 cos co ]/LC + jJ2 y^Tsinw j/ZTC

7j I2 cos oj ]/L C-\- j XJ2 -j- sin co ]L C
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Leerlauf bedeutet /2 0, also

U2 cos w Ihe yy
sin oj )/LC tg m\/LC

tg co ]/LC 0; co Yi C kit (k 1,2,3...)
kit

W JÏC
Für den Kurzscliluss, U<= 0, erhält man analog

T
z

j h ]/-§ sin M VLC "j/-

I2 cos co j/TC cotg co]/L C

cotg co yZ,C 0;co\ LC /9, ^ (2fc-l)jr(2fe-l).—;co =- 7^=2 2 yz, C

Im Verhältnis 2 : 1 der Eigenfrequenzen für die
Grundwellen kommt die Tatsache zum Ausdruck,
dass die einfache Leitungslänge bei Leerlauf gleich
einer halben und bei Kurzschluss gleich einer viertel

Wellenlänge ist.

V.
Die Operatorenmelhode gestattet auch, mittels

eines von Heaviside entdeckten und von K. W.
Wagner 2) zuerst bewiesenen Satzes die Anfangsbedingungen

zu berücksichtigen. Freie Schwingungen
entstehen dadurch, dass dem System zur Zeit t 0
eine elektrische Grösse, etwa eine Klemmenspannung

aufgedrückt wird, welche vorher, für t < 0,
Null war, und nachher, für t > 0, im einfachsten
Falle konstant bleibt. Dieses Verhalten stellen wir
dar, indem wir die als dauernd konstant angenommene

Grösse mit der Einlieits- oder Stossfunktion

S(t) —
0

x/2

für t < 0

» i 0
1 » t > 0

(12)

multiplizieren [Berg 5) ].
Für die Zwecke der Operatorenrechnung ist es

bedeutungsvoll, dass man nach K. W. Wagner, 1. c.,
Gl. (12) in folgender Form darstellen kann:

+ Jc

S(t)
2 71 j

etp •
dp

(12a)

Hierin ist die Integrationsvariable p eine komplexe
Grösse von der Dimension einer Frequenz; die
Werte, die sie annehmen kann, werden durch die
Punkte der A-F-Ebene dargestellt, wobei, wie oben,
die X-Aclise diejenige des Reellen, die Y-Achse
diejenige des Imaginären sei. Das bestimmte Integral
(12a) ist längs eines ganz bestimmten Weges
auszuwerten, als solcher ist in Gl. (12a) derjenige längs
der Y-Achse vorgeschrieben, wobei der Nullpunkt
durch einen kleinen Halbkreis zu umfahren ist,
weil e'P/p dort unendlich wird, d. h., wie man in
der Funktionentheorie sagt, singulär ist.

Eine Ableitung von Gl. (12a) auf Grund
funktionentheoretischer Ueberlegungen wäre den in
diesem Aufsatze angedeuteten Zusammenhängen besonders

angepasst [Rothe0), S. 50 ff.]. Dem Ingenieur
liegt es aber im allgemeinen näher, von der bekannten

Fourierschen Reihe auszugehen (Fraenckel, 1. c.,
Seite 71 ff.)

^ oo oo

y 4- 2 an sin » 9 X! cos n cp (13)
^ 1

worm
2tt

1

27r

a„ — \y sinnep d cp; b„ — —\ y cos nep dep (13a)
7t J 7t J

0 0

Wir dürfen in Gl. (13) auch von —oo bis + cc
summieren, denn es ist

cos nep cos - nep) ; sin nep — sin — nep)

i>.„ b„; a.„ — a„, also

bn cos nep — b.n cos — nep) ; a„ sin nep —

a.„ • sin — nep)

haben aber dann für die Koeffizienten a'„ und b,[

nur die halben Werte von Gl. (13a) einzusetzen.
Ausserdem wollen wir die Exponentialfunktion
einführen. Es ist

a'„ sin nep -f- b'„ cos nep Realteil (—j a'n + K)e i"f
Re (C„ei"

27r

C„ — ja'„ + bn 2^ ^y( ~jsin nep -f cos n ep)dep

o
27T

24r^ye"in95 d<P

o

Nun führen wir eine Längenkoordinate x ein und
denken uns die Periode von —l bis +1 erstreckt;
dann wird

+

' Re C„
jll TT X

•.-fi:
-1

-jiur x

y e • dx 1

Endlich strecken wir die Periode beidseitig ins Un-

xendliche und führen eine dritte Variable z
/

ein. Es wird

+

y Re \ C„ ei" z • dn; :-=t\— Xye-i1"72 dz

Das erste dieser beiden letzten Integrale nennt
man ein Fouriersches Integral. Die Ausrechnung
für unsere spezielle Stossfunktion ergibt
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-t-oo

jn ff z dZ= —
e\mr z

2 jn 7t 2 jn it

+ oo

y Re

mit

pt jn 7t z;

n
—oo

dp dra

(14)

folgt nun wirklich Gl. (12a).
Dabei ist, entsprechend der Multiplikation der

Variablen z mit j der Integrationsweg um 90° nach
vorwärts gedreht, verläuft also, wie schon erwähnt,
nun von —jeo bis +joo, d. h. längs der Axe des

Axe des Jmagmdrent */
A

-IS-
Axe des Reellen

Fig. 2.

Imaginären, statt wie in Gl. (14) von —co bis -j-oo
längs der Axe des Reellen. Für das Folgende ist es

von Bedeutung, ob auf dem soeben genannten Wege
der Nullpunkt nach rechts, wie in Fig. 2 angedeutet,

oder nach links zu umfahren ist. Um dies in
einfacher Weise zu prüfen, setzen wir in Gl. (12a)

t 0, betrachten also die Funktion—. Ist r der
P

Radius des kleinen Umgehungskreises, so können
wir schreiben:

p r e'P ; dp j • r • e ifdcp ; — jd cp

Beim Umfahren nach rechts liefert der Kreis dann
zum Integral den Beitrag

+ TT/2

/= J-
2 nj p

-ff/2

und beim Umfahren nach links

+- (14 a)

3 ff

F -
dp

2 nj )p
ff/2

Da nun S(t) für t — 0 gerade gleich + sein soll,
so gibt das Umfahren nach rechts den richtigen
Wert, sofern das Integral auf dem übrigen Teil des

Weges verschwindet. Das ist nun in der Tat der
Fall. Es ist nämlich

1 Cdp
2 *j p

'

-jR

+JR
1 fdp

2 7tj p
+jr

1
lnp

jr + jR

+lnp
-jR +J'r'

(15)

Allgemein gilt aber für eine komplexe Zahl (Rothe,
1. c., S. 8)

In z In |z| -f- j • arcus (z)

Damit wird aus Gl. (15)

—. Tlnr—lnR+lnR—lnr-f-
2^/L

TT TT TT TT

kj I
2 2 2_ 2

VI.

h

In Abschnitt IV wurde der Begriff Z der Impedanz

des freien Stromes derart erweitert, dass für
irgendeine Systemgrüsse S, die unter dem Einfluss
einer äussern Wirkung P zustande kommt, gesetzt
werden darf

s z
P spielt dabei die Rolle der Funktion u(t) in der
Lösung der inhomogenen Gl. (1).

Wird nun P als Stoss einer für t, > 0 konstanten
Grösse Q im Sinne von Gl. (12) eingeführt, so
haben wir zu schreiben

+ ]

S
2 7tj J pZ

—j~

(16)

Dabei wurde Z unter das Integralzeichen genommen,

weil es ja z. B. nach Gl. (IIa), (IIb) und
(11c) eine Funktion des Operators p ist und
indem wir gleichzeitig die Integrationsvariable p in
Gl. (12a) als Operator p ansehen, was uns vollständig

frei steht, da p in Gl. (12a) nur die Bedingung
erfüllen muss, von der Dimension einer Frequenz
zu sein.

Nach K. W. Wagner wird nun das Integral (16)
berechnet, indem man den Integrationsweg längs
der Axe des Imaginären durch einen sehr grossen
Halbkreis vom Radius R, sei es nach links oder
nach rechts, zu einem geschlossenen ergänzt (vgl.
Fig. 2). Damit gewinnt man den Vorteil, den
sogenannten Hauptsatz der Funktionentheorie anwenden

zu können, laut welchem das Linienintegral
einer Funktion längs einer geschlossenen Kurve in
der Ebene der komplexen Zahlen gleich 0 ist, wenn
die Funktion im Innern der Kurve keine sogenannten

singulären Stellen hat. Ist hingegen p,, eine
solche Stelle, so gilt, wenigstens wenn sie isoliert ist,
die sogenannte Laurenlsche Reihe:

f(p)
b,

P—Pv ip-Pv)2
S an(p-PvT (17)

o

Dieser Ausdruck wird tatsächlich für p= pv unendlich.

Man nennt b1 das Residuum von pv und das
soeben erwähnte Linierrintegral wird im Falle von
Singularitäten im Innern gleich der Summe von
deren Residuen mal 2jij. Diese Tatsache kam schon
in Gl. (14a) zum Ausdruck, denn das Residuum
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von ist einfach gleich 1 und daher das Linien-
p — 0

integral von — rund um den Nullpunkt herum
P

gleich 2nj, da andere singulare Stellen nicht
vorhanden sind

Die Eigenwerte von p sind nach Gl. (IIa), (IIb)
und (11c) dadurch ausgezeichnet, dass für sie

e P'

Z 0 wird ; da also dort unendlich wird,

bedeuten sie bezüglich der eben genannten Funktion
singulare Stellen. Setzt man voraus, dass die reellen

Teile aller p-Eigenwerte wie in Gl. (10) negativ
sind, so liegen die sie repräsentierenden Punkte
alle links der Ordinatenachse. Es sind also keine
«Expedanzen» angenommen und das Folgende gilt
daher nicht für Selbsterregungsvorgänge.
Längs des Weges OABC ist also sicher

1 Ç e P* dp
2 jij J pZ

Wie man sieht, spielt es hierbei eine Rolle, dass

unser kleiner Halbkreis um 0 sich nach rechts
erstreckt, so dass der Nullpunkt, der ja singulär ist,
sich nicht innerhalb der umfahrenen Fläche
befindet.

Es sei nun t negativ, dann ist auch

+j~

«-à" F 'dp 0
P

und da man für diesen Fall unmöglich annehmen
kann, dass die betrachtete Systemgrösse von 0
verschieden ausfällt, so gilt auch

+j°°

2 jtj J Zp
dp 0

—ic

und endlich längs ABC

1 ept d p
2 Jtj J Zp

0 (18)

längst CDA denselben Wert wie längs

wobei natürlich ABC einen sehr grossen Radius R
haben muss. Hat nun t denselben Absolutwert wie
vorher, aber positives Vorzeichen, und schreibt man
dafür statt p in Gl. (18) —p, so hat jedenfalls

ept dp
P

ABC. Setzt man mit K. W. Wagner weiter voraus,

dass-^r wenigstens auf gewissen Kreisen CDA um 0
z

mit sehr grossem Radius, die alle singulären Stellen
umfassen, eine bestimmte endliche Grenze nirgends
überschreitet, so ist längs CDA auch

3Ptd P 0
2 jtj J pZ

gewährleistet. Damit bleibt dann endlich

+ JOO

(18a)

—j°

wobei q„ das Residuum des Nullpunktes und 2qv
die Summe der Residuen an den Stellen pr, für
welche pZ gleich Null wird, bedeuten. Um nun
diese Residuen zu berechnen, bezeichnen wir mit

Z '— p pv
den Radius von kleinen Kreisen um die verschiedenen

Punkte pv in der p-Ebene. Nach der bekannten

Reihe für die Exponentialfunktion wird
2 +2

ept epvt • ezt epi'! (1 + zt -f + (19)

Für —schreiben wir die schon unter Gl. (17) er-
pZ

wähnte Laurentsche Reihe an

+ 7 (19a)1 (Z) — —~2 — 2 °n Z" + -£ + _Ï-T + -•
p ZS 0 z z

Indem wir die Ausdrücke (19) und (19a) miteinander

multiplizieren und den Faktor von —
herausgreifen, erhalten wir

qv eppt (6j + fc2 jy + • 2Ï
als das gesuchte Residuum für den Punkt pv.

Für den Punkt p-=0 sei Z Z(0) und in einem
kleinen Abstand z vom Nullpunkt auf Grund der
bekannten Taylorschen Reihe

Z Z(0) + zZ'+|*Z" +
sZ zZ (0) -f- z2Z' -)- Z" ^ zZ (0)

Da für p 0 eP' 1 wird, gilt also

;pt\ 1 1

\p Z/p=o ~Z(0)z'aS°e° Z (0)

Damit folgt aus Gl. (16) und (18a) endlich der
Satz von Heaviside-Wagner

+j°°

S £j\ pZ Z{0)+ Q eP"'(fel + -0
-i~ (20)

Für die praktische Benützung eignet sich besser
eine noch etwas einfachere Form, die sich ergibt,
wenn in Gl. (19a) die Koeffizienten bk bk_, usw.
bis auf bx alle Null sind; dann wird, bei sehr
kleinem z,

1_ bi. z —
p Z z ' 6jp

Man setzt für Z wieder eine Taylorsche Reihe an

Z Z (pv) -f- Z' (pv) z + Q* Z' (p„) z
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letzteres, da ja Z(pv)

Z'z=Z
bxpv

Damit schreibt sich (20)

Q

0, und erhält endlich

; bx
1

Pv Z' (p)„

s
Z(0)

pPVt

71 (pZ')v
(20a)

VII.
Um die Bedeutung der Formel klar zu machen,

behandeln wir gleich das einfache Beispiel des Ein-
sclialtens einer Drosselspule an eine Gleichstromquelle

auf die gewöhnliche Art und nach Heaviside.
Die Differentialgleichung des freien Stromes ist

0 i, R + L

woraus integriert folgt

di._L _ _ 3 a t
dt ' i, L

R -yt+C — y- t

In if — —j~t -[- C; i, e C1 e

Der erzwungene Strom ist ie ^ und der Gesamtstrom

Es

i if -)- ic C1e -\-

fiir t 0 i 0 also

u
R

0 c £w £ - £
R

somit endgültig
• U Ia
l=~R

In Operatorenform schreibt sich

Z R pL; Z' L; pv pj —
R

(p Z')i — — R', Z(0) R

also aus Gl. (20a) mit Q=U und S i direkt

i=4+p
Es bedeutet also hier

- R

Q

R

U
den durch die

Z(0) R

Gleichstromquelle erzwungenen Endstrom, der nach

U —h
Abklingen des freien Stromes e L allein

R
übrig bleibt. Wir haben noch zu prüfen, oh in
Gl. (19a) alle bk bis auf bt null sind. Dies kann
auf Grund einer einfachen allgemeinen Ueber-
legung geschehen. Wenn die Wurzeln pv p2, p3
usw. alle verschieden sind, so gilt

pZ zx{p-Pj)(p- p2) (p-pv) ZjzlZ2 z„ (21)

wobei Z1 eine Funktion von p ist, die in p,, p„, p3

usw. endlich bleibt. Tatsächlich ist ja dann pZ 0,
sobald p Pi oder p., oder p3 usw.

Entwickelt man —= in die Reihe (19a), so ist
pZ

man also sicher, dass z in keinem Nenner mit
höherer Potenz als 1 vorkommt, denn in

1

Jz Zi z,

sind alle z verschieden und mit Ausnahme des
gerade betrachteten zv als konstant zu betrachten.
Fallen hingegen in Gl. (21) gewisse Wurzeln
zusammen, so wird

pZ Zj (p — p£ • (p — p2p (p — p3)k»

und es ist Gl. (20) statt (20a) anzuwenden. Diesem
Fall sind wir schon bei der Erwähnung der Gl.
(10a) begegnet und es traten in derselben wie in
(20) im Faktor der Exponentialfunktion Potenzen
von t auf. Da im Falle unserer Drosselspule
überhaupt nur ein p-Wert vorkommt, ist es klar, dass
Gl. (20a) angewendet werden durfte.

Ganz ähnlich verläuft die Verfolgung des Ein-
schaltens eines Kondensators. Es ist

Z R + ±;Pl=-£,z'=-£ (22)

also

RC

(p Z')j R; Z (0) oo

u u -jc
1 — + 7? e

oo R
IL.e-K
R

Um auch die Ladung

q \i dt - ' —
J P

darzustellen, bilden wir aus Gl. (22) das neue
zugehörige Z nach der nach Gl. (11c) angegebenen
Regel. Der Quotient aus alter und neuer Variablen

ist — p und daher
9

Zq Rp +

Pl Z =R-, (pZq), i-; Zq(0) ~
Weiter wird

1

RC

q=Uc(l-e RC)

[vgl. Fraenckel I.e., Seite 195, Gl. (28) und (27)].
Wir betrachten endlich als Beispiel für das

Auftreten zweier p-Werte noch das Einschalten einer
Reihenschaltung von R, L und C an eine
Gleichstromquelle. Für den Strom gilt hier

und für p

P -

Z=K + pL+ ^ 0
pC

J£
2 L

(IIa)

j ]/zrc 4L^= °±ib' (10)
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ferner mit direkter Benützung von Gl. (lia)

Z' — L — 4^; pZ' pL --^=R + 2pLpiL p G

Der letzte Ausdruck wird für die beiden Eigenwerte

pL — R — R ± 2j ßL ; Z (0) oo

also

U- e~at
i - r (e'*'1 — e~ibt)

2 jbL
C/e -al
2 jbL
U e~ at

bL

(cos bt-\- j sin bt — cos bt-\-j sin bt)

sin b t

[Fraenckel I.e., S. 199, Gl. (58)].
Es stellt sich naturgemäss die Frage, ob mit der

Operatorenmethode statt Einschalt- auch Ausschaltvorgänge

behandelt werden können. Dies trifft
grundsätzlich zu, doch ist zu beachten, dass ein
Ausschaltlichtbogen keinen konstanten Widerstand
aufweist. Da konstante Koeffizienten in der Aus-
gangs-Differentialgleichung eine Voraussetzung für
die Zulässigkeit der Operatorenrechnung sind, müs¬

sen wir ein Beispiel wählen,
bei dem die Verhältnisse im
Ausschaltlichtbogen zalilen-
mässig keine Rolle spielen.
Gleichzeitig können wir
dabei den Fall behandeln, dass
die eingeprägte Grösse Q
keine Spannung, sondern ein
Strom ist. Es handle sich

nach Fig. 3 um das Ueberbrücken einer Drosselspule

L und ihres Parallelwiderstandes R durch den
Schalter S zur Zeit t>=0, wodurch also der
«eingeprägte» Strom I in der Parallelschaltung von L und
R plötzlich zum Verschwinden gebracht wird. Da

Q

ÖÖÖOÖÖ

1 i
S'-<

R

kiinr^
t£ V <,gtj

Fig. 3.

in Gl. (20)
Z(0)

den stationären Endwert der

betrachteten Variabein bedeutet, denke man sich

einfach dem Ein8chaltvorgang den Wert

lagert. Es stellt dann

S Q S

Z(0)
über-

epvt

" (pZ')v
den Ausschaltvorgang der Grösse -

ePi't
Z(0)

S - Q 2
*- 0» (pZ')v

dar, oder

(23)

den Ausschaltvorgang der Grösse Q/Z(0). Als
Variable wählen wir die Klemmenspannung U an L
und R und erhalten damit

1

R
1

P L
R-b pL
~RplT

Z ist also hier eine Leitfähigkeit. Für die freie
Schwingung ist 1 0, also auch Z 0. Es folgt
für p

R -b pL 0; p T-

Ferner

Z'
L R —|— pL

RpL R2 p2 L? R2

pZ'=* L
R2

1

R

Damit schreibt sieb Gl. (23)

-5-t
U — IRe L

Für t 0 wird U — IR, worin die bekannte Regel
für die Dimensionierung eines Parallelwiderstandes
zum Schutze einer Spule zum Ausdruck kommt.

Viele andere, kompliziertere Beispiele, die die
Vorteile des Heavisideschen Satzes besonders klar
in Erscheinung treten lassen, findet man hei K. W.
Wagner, 1. c.

VIII.
Zum Schlüsse soll noch gezeigt werden, wie der

Heavisidesche Satz in seiner ursprünglichen Form
20a erweitert werden kann auf kompliziertere Stoss-
funktioneu und besonders auf das Einschalten
sinusförmig variierender Grössen. Zu diesem Zwecke
schreibt man die Stossfunktion mit einer neuen In-
tegrationsvariabeln

p' p — y

worin y eine komplexe Konstante ist.

+j~ +j»
1 f etp' dp' e~ï{ f etp d

~ 2 jrj \
p' 2jtj \ p-

dp
y

und daher

S (t) • ert

+ joo

1 etp d p
2 nj J p - y

(24)

Das Multiplizieren von S (t) mit e^'bedeutet bei
negativ reellem y das Abklingen der zur Zeit t 0

eingeschalteten Grösse mit dem Dämpfungsfaktor
— y und hei komplexem y das Einschalten einer
gedämpften Sinusschwingung. Praktisch besonders
wichtig ist natürlich das Einschalten einer reinen,
ungedämpften Sinusschwingung von der
Kreisfrequenz co, wofür also

7 — j(°
wird. Für diesen Fall schreibt sich die Stossfunktion

nach Gl. (24)
+j»

S (t) ei<Jt
dp

2 *j J P-j°>

Es ist nun im ersten Gliede von Gl. (20a) Z statt
von 0 von demjenigen Argumente zu nehmen, für



622 BULLETIN No. 22 XXYI. Jahrgang 1935

welches, wie in der ursprünglichen Ableitung, der
Nenner des Stossintegrales verschwindet, also von
p jco. Ebenso ist im Nenner des zweiten Gliedes
als Faktor von Z' der Eigenwert derjenigen Grösse
zu setzen, die im Nenner des Stossintegrales steht,
also pv — jco. Endlich setzen wir, entsprechend der
Multiplikation von S(t) mit ei"' statt der konstanten

eingeprägten Grösse Q die Sinusschwingung in
komplexer Form

Qmo • ei"' Qm • ePl' • ei<Jt — Q m

wo ip der Phasenwinkel ist, und erhalten aus
Gl. (20a)

Q ei (6)1 + 1p) Q Cj(6)t + V) e(P,, -j")t
S X1" l y XÜ

Z (jco) v (pv — jco) Z'v

Qmei("' + V') y Qm ePy'+iV-

Z(jco) v (Pv-joj)Z'v
Diese Formel findet sich, ohne Beweis, bei Fraenckel,
Seite 203.

Ein einfaches Beispiel bildet das Einschalten
einer Drosselspule an Wechselspannung; vgl.
Fraenckel, Seite 204.

Als etwas komplizierteren Fall betrachten wir
zum Schlüsse das Einschalten eines kurzgeschlossenen

ganz symmetrisch gebauten Transformators vom
Uebersetzungsverhältnis 1 : 1 an eine Wechselspan-
nung. K. W. Wagner hat diesen Fall für Gleichstrom

behandelt. Die Transformatorgleichungen
lauten symbolisch mit R1 — R:,=R; L1<=L„^=L
U ij R —|— pL + i2pM; 0 i2 R i2 pL ixpM

p M
1 R+pL

also

u it[R+rL-
Für den freien Strom ist

p2iTZ R-\-pL-~ 0 oder (R-\-pL)2 p2M2;
R-\- pL

R R
R + pL + pM; p, - -g; j—g
p hat also hier zwei Werte, trotzdem kein
Schwingungskreis mit Kondensator vorliegt.

Z'
2p M2 p2 M2 L -P f- ;u 2 (L + M)

(pz')i

(Pz%

R+pL (R-j-pL)'2

R

L-M
R

Z+m'

2 (L — M) — — 2 R

2 (L+M) — 2R

(jco Z')l 2 jco (L - M); (jco Z')2 2 jco (L + M)

Damit folgt aus Gl. (25) mit Z(jco)<=Zn

R2 _ w2 LZ+co2 M2 2 jcoLR

i U
ei ("i + VO

R —|— j co L,

R
t + iV

ZK [2 R -\- jco (L - M)]
R

e L+Mt+j^
2 [Rja)(L~h M)]

(26)

Wir schalten im Nullpunkt der Spannung ein.
Benützen wir, wie im Schluss des Abschnittes II
angegeben wurde, als Schwingungsausdruck den
imaginären Teil von ei ("t+1/'), so ist ip 0 zu setzen.
Für t 0 bleibt

i U
1

Zk 2 [R jco (L - M)\

1

2 [R -)- jco (L + ^Z)]_
(26a)

Da im EinBclialtmoment der Strom 0 ist, muss
der Ausdruck 26a auch Null sein. Man
überzeugt sich leicht hiervon, indem man Zk aus
dem oben gegebenen Ausdruck einsetzt. Der freie
Strom, welcher den erzwungenen Strom im
Zeitpunkte Null zu Null ergänzen muss, besteht aus
zwei Teilen, die sehr verschieden rasch abklingen.

Der Teil mit der grossen Zeitkonstante
L -fM

~R
entspricht dem Hauptfeld, der Teil mit der kleinen

L — M
Zeitkonstante Tl— dem Streufeld. Nach Gl. (26)

R
ist der zweite Teil viel grösser als der erste. Ist

die Zeitkonstante „— trotz ihrer relativen Klein¬
st

heit infolge kleinen ohmsclien Widerstandes immer
noch gross gegen die Periodendauer, so erreicht
der Einschaltstromstoss nahezu die doppelte Amplitude

des Dauerkurzschlußstromes.
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