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Ueber die Verwendung sogenannter Operatoren in der Theorie
der Wechselstrome.

Von Th. Boveri, Baden.

Der Autor stellt sich die Aufgabe, auf Grund einschligi-
ger, am Schlusse angegebener Literatur eine kurze Darstel-
lung der besonders in Amerika viel angewendeten Rechnung
mit Operatoren anstatt mit Differentialquotienten zu geben
und ihre Anwendung auf die Behandlung von Schwingungs-
vorgingen zu zeigen. Er hofft, dass der Ingenieur darnach die
Methode anwenden kionne, ohne unbedingt die grundlegenden
Arbeiten studieren zu miissen. Dies erfordert allerdings die
Mitteilung von Beweisen fiir alle wichtigen Ausdriicke, selbst
wenn dabei volle mathematische Strenge dem Autor nicht
moglich war, denn das stark abgekiirzte, beinahe stenogra-
phische Verfahren der Operatorenrechnung erschwert an sich
die Beurteilung, ob eine bestimmte Formel fiir den gerade
vorliegenden Fall auch wirklich passt. Nur durch die Kennt-
nis der Beweise, wenigstens in ihren Grundziigen, kann das
unbedingt nétige Sicherheitsgefiihl erzeugt werden.

L

Unter einem Operator versteht man in der Ma-
thematik ein Symbol p, welches man wie einen Fak-
tor vor ein anderes Symbol x setzt, wobei aber px
nicht eine Multiplikation, sondern eine Differentia-
tion, und zwar in unserem Falle nach der Zeit, be-

deuten soll. Wir schreiben deshalb

dx | g, _ dx
de ’ P°X = e

und unter Umkehrung der Operation

Px =

£=Sxdt
P

Ob man jede Differentiation nach der Zeit so dar-
stellen darf, steht von vornherein nicht fest; man
iiberzeugt sich aber zunichst leicht, dass es jeden-
falls bei der Exponentialfunktion zulidssig ist, denn
es gilt ja

dx
x = Ae™; T = pAe"": px;
2
(cihzx“ = p°de™ = pix

Da pt eine reine Zahl sein muss, hat p die Dimen-
sion einer Frequenz.

Allgemein priift man die Zuldssigkeit der Opera-
torenschreibweise dadurch, dass man einmal alle
durch die p vorgeschriebenen Differentiationen und
Integrationen wirklich anschreibt, bzw. ausfiihrt
und parallel dazu mit den p nach den Regeln der
Algebra rechnet. Bei sinngemisser Undeutung der
p von gewohnlichen Zahlwerten in Differentialope-
ratoren im Schlussresuliat der zweiten Methode
muss sich derselbe Ausdruck wie nach der ersten
Methode ergeben. Umgekehrt kénnen auch, um
dieses Resultat zu erreichen, eventuell auftretenden,
komplizierten Operator-Ausdriicken bestimmte, all-

gemein giiltige Bedeutungen beigelegt werden. Es
ergibt sich [vgl. z. B. Sckolnikoff )], dass die Ope-

1) Siehe Literatur am Schluss der Arbeit.

517433 : 621.3.025

L’auteur se propose d’exposer briévement, en se basant
sur la documentation citée a la fin, une méthode de calcul
fort usitée en Amérique et qui se sert d’opérateurs au lieu
de dérivées, puis en donne des applications aux phénoménes
d’oscillation. 1l espére que cela permetira a Uingénieur de se
servir de cette méthode sans devoir nécessairement étudier
les travaux fondamentaux. Pour cela lauteur a cependant
dii donner des démonstrations pour toutes les expressions
importantes, méme lorsqu’il lui a été impossible de s’en tenir
rigoureusement aux mathématiques, car la méthode abrégée,
presque sténographique, du calcul opératoriel ne permet
qu’assez difficilement de se rendre compte si telle ou telle
formule doit s’appliquer au cas envisagé. Seule la connais-
sance au moins élémentaire des démonsirations est capable
de donner le sentiment de sureté indispensable.

ratorenschreibweise bei linearen Differentialglei-
chungen beliebiger Ordnung zulidssig ist, wenn sie
konstante Koeffizienten haben. Eine solche Glei-
chung hat den Typus

dnx dn-l X dx
W'i—_alW—F et gt = ) @)

wobei die @ Konstanten sind. Dieselbe Gleichung,
jedoch mit f () =0 heisst die zugehorige homo-
gene Gleichung.

In Operatorenform schreibt sich Gl. (1)

P'+ap+ ... +a,p+ta)x = 1@ (2)

Fiir die homogene Gleichung kann dieser Ansatz
sofort gerechfertigt werden, wenn man in GL (1)
als Losung einsetzt

x == ePt

Die in Gl. (2) auftretende Klammer muss dann Null
werden und liefert, wenn alle Wurzeln verschieden
sind, n verschiedene p-Werte. Somit erhilt man
aus Gl. (2) auch n verschiedene partikulare Lé&-
sungen

x, = et etc.

Man iiberzeugt sich leicht, dass jede davon eine Lé-
sung bleibt, wenn man sie mit einer beliebigen Kon-
stanten multipliziert und daher ist die allgemeine
Lésung der homogenen Gleichung

X = c-ePt 4 cyeeft + ... 4 c,-efnt (3)

Die p-Werte heissen die Eigenwerte des Problems,
weil mit andern Werten eine Losung, selbst mit ganz
beliebigen Konstanten, itberhaupt nicht méglich ist.

Um nun endlich auch noch die inhomogene
Gl (1) zu l8sen, geniigt es, irgendeine partikulare
Lésung

x:u(t) (4)

fiir diese zu finden. Da diese Gl. (1) befriedigt und
da Gl. (3) dieselbe Gleichung mit f(t) = 0 erfiillt,
so befriedigt auch die Summe von Gl. (3) plus
Gl. (4) Gl (1) und da sie n Konstanten enthilt, ist
es die allgemeine Losung.
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II.

Die Schreibweise mit Operatoren bedeutet nichts
anderes als eine Ausdehnung der in der Wechsel-
stromtechnik schon lange bekannten, hauptsichlich
von Kennelly und Steinmetz in die Praxis einge-
fithrten «symbolischen» Methode auf nicht rein
sinusférmig verlaufende Vorginge.

Die symbolische Methode hat sich mit der Zeit
immer mehr in der Elektrotechnik eingebiirgert,
trotzdem sie anfiinglich von Manchen scharf be-
kdmpft wurde, wobei man aber eben iibersehen
hatte, dass es sich nicht um besondere, fiir die
Elektrotechnik ersonnene Kunstgriffe handelt, son-
dern um in der Mathematik allgemein mit grossem
Erfolg verwendete Methoden.

Eine zeitlich sinusférmig schwingende Grosse
kann bekanntlich durch einen mit der Winkelge-
schwindigkeit w =2xf (f = Frequenz) rotierenden
Vektor dargestellt werden. Multiplikation dessel-
ben mit — 1 ist gleichbedeutend mit einer Drehung
um 180°; multipliziert man statt dessen zweimal

hintereinander je mit = }/—1= *j, so erhilt man
dasselbe Endresultat; die Zwischenstufe, Multipli-
kation mit * j, bedeutet
Y daher Drehung in positi-
f v vem, bzw. negativem Sinne
um 90°. Besonders wichtig
a9 ) ist diese Schreibweise bei
[V-sing . o
der Differentiation. Be-
deutet in Fig. 1 V einen
Vekior und dFV seine
Aenderung bei Drehung
um den Winkel dg, wobei
die Linge /V/ konstant
bleibe, so gilt, weil der Kreisbogen iiberall senk-
recht zum Radius verlduft

indren

Axe des Jmagi

— X
Axe des Reellen

[Vi-cose
wl

SEVaart

Fig. 1.

dV=jVdgp (5)
und nach Differentiation nach der Zeit ¢
dV . dg .

Hiermit kann man sofort einen berithmten Satz
von Euler ableiten. Man drehe den Vektor V aus
seiner Anfangslage, in der er mit der positiven Axe
des Reellen, +-x, zusammenfallen mége, um den
Winkel ¢ in positivem Sinne. Es wird nach Fig. 1

V = |V|-(cos @ + j-sin )

Anderseits denke man sich die Drehung durch vek-
torische Summierung vollzogen, d. h. Integration
der vielen kleinen Kreisbogensehnen dV; aus Gl.
(5) erhilt man

12
¥

v

: : 14
=JSd(ﬁ =Jjy =In ——
Vi

S"A <

0

oder

V= |V|:-e%; e = cosp -+ jsing (6)

Die Bedeutung der symbolischen Methode liegt
hauptsichlich in Gl. (5a). Sie gestattet, Differen-
tialquotienten nach der Zeit unmittelbar durch die
zu differenzierende Grosse zu ersetzen, ebenso Zeit-
integrale durch die zu integrierende Grisse wegen

V=iSth=]w-iV, Sth.-_.'-
de jw

hid

Differentialgleichungen werden damit also formell
in algebraische verwandelt.

Das Auftreten der Exponentialfunktion in Gl.
(6) wird noch besser an Hand der Differentialglei-
chung fiir eine Sinusschwingung verstindlich. Es
seien L die Induktivitét einer Spule, ¢ der Strom in
ihr, C die Kapazitiit eines damit in Reihe geschal-
teten Kondensators und +¢ die Ladungen auf dessen
Belegungen; dann ergibt der Energiesatz

T2 ¢
3 —+ 2c = konstant
Wir differenzieren nach ¢ und beachten
_ _dq
T de
Es wird
. di q .
Lig+—<i=0

Mit i gekiirzt und nochmals nach ¢ differenziert,
folgt die bekannte Differentialgleichung der harmo-
nischen Schwingung

Man soll also eine Funktion finden, die gleich ihrer
negativ genommenen zweiten Ableitung ist. Dies
leistet neben sin und cos auch die Exponentialfunk-
tion, die ja an sich gleich ihren simtlichen Ablei-
tungen ist. Damit die zweite Ableitung gleich der
negativ genommenen Ausgangsfunktion wird, hat
man den Exponenten imaginér zu machen, wie sich
aus folgender Rechnung ergibt:
di dzi

T pAe™; = p2Ade

Ry,
i = Ae™; i =

somit aus Gl. (7):
p?Aet= — wlde"; p?= — ¥ p =1 jow (8)
w:‘l/Llebedeutet nichts anderes als die Kreis-

frequenz, denn nach Gl. (6) ist ja
i = Ae" = Aeto' = 4 (coswt 4 jsinwt)

und da sin und cos die Periode 27 haben, gilt eben
fiir die Periodendauer T
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1 o woraus
ol =2m f=7 =795
p hat nach Gl. (8) zwei Werte; die allgemeine Ls- | P = L + ‘/4 L2~
sung von Gl. (7) ist also zu schreiben:
i = A% 4 ATt = 2Lj: ‘/CL 4L2 —a—jb (10)

(4, + A,) coswt + j (A, — A,) - sinwt =
A’ coswt + A”sinw t;
A=A+ Ay; A" =j(4,—A,)
Sollen hierbei A" und 4" reell sein, so miissen A,

und A, wie man sagt konjugiert komplex sein, d. h.
die Form haben

A —a+jb; Ay =a—jb; A’ =2a; A" =—2b

(8a)

worin ¢ und b reell sind. Sie bestimmen die Phase
der Schwingung, denn

Asin (wt + p) =
A.sinyp=A"; A-cosypy = A"

A (sinwtcosy -+ cos wtsiny)
also

Um eine erzwungene Sinusschwingung darzustellen,
kann man sich auch mit einer Exponentialfunktion
begniigen, muss sich dann aber entscheiden, ob der
reelle oder der imaginire Teil fiir sich den Vorgang
beschreiben soll. Meist nimmt man den imagindren
Teil, setzt also

A -sin (wt 4+ ) =Im. Aei@t+¥) =
Im. Aei?.eiot — Im. A ei®! mit 4, = Ael?¥

III.

In den soeben angestellten Rechnungen haben
wir schon die Operatorenmethode beniitzt, jedoch
die Exponentialfunktion noch angeschrieben. Wir
behandeln nun die gedimpfte Schwingung, bei der
in Reihe mit der Induktivitit L und der Kapazi-
tit C noch ein Widerstand R liegt unter Weglassung
dieser Zwischenstufe. Der Energiesatz ergibt

d (Li#\ 4a [q
E(T)”’H 2C

2
(-) 4+ 2R =0
% iR (9a)

Durch Kiirzung mit i, nochmalige Differentiation
nach ¢ und leichte Umgruppierung wird hieraus

dzi d: i
Tt Tm o= ©)
Gegeniiber Gl. (7) tritt das Dimpfungsglied § g

neu auf. Da sich auch Gl. (9) durch Exponential-
funktionen befriedigen lésst, fithren wir den Ope-
rator p ein.
. R . i
p*i 4+ TPL_}_W: 0 (9b)
Es hebt sich i weg

R 1
P2+I p+Cf=.O

Die allgemeine Losung von Gl (9) wird

i = Aenttbt | [ e—at-bt — g—at [(4, { A4,)cos bt
+jd,— 4,) sinbt] = e—2t (4’cosbt+ A" sinbt)
Sie unterscheidet sich von Gl. (8a) durch das Dimp-
fungsglied et und durch die von v = ‘/Cl

leicht verschiedene Kreisfrequenz

R2 1 R?
# —‘/CL 30 Yol o P
Im tubrigen muss fiir die Diskussion von Gl. (10)
auf die Literatur verwiesen werden. Bei von
Brunn ?) findet man sie ausgedehnt auf den Fall
negativer Widerstinde, dort Expedanzen genannt,
und es resultieren

fiir — eigentliche Schwingungen,

R?
T 7 4L
R2
urf < 4_L
fur R > 0 gedampfte Vorginge,
fiir R < 0 anschwellende Vorginge.

aperiodische Vorgénge,

Letztere Méglichkeit erwihnt iibrigens schon K. W.
Wagner °).
Theoretisch ist besonders auch der Spezialfall

1 _ R
C 4L

d. h. verschwindende Quadratwurzel, zu beachten.
Man erhilt dann nur einen p-Wert, muss aber trotz-
dem zwei Integrationskonstanten unterbringen. Dies
geschieht fiir den uns hier allein beschiftigenden
Fall einer Differentialgleichung zweiter Ordnung
durch den z. B. bei von Brunn (1. ¢.) zu findenden
Ansatz

i = (4, + A, t)e* (10a)

in welchem nur ein einziger p-Wert, aber zwei Kon-
stanten 4, und 4, vorkommen. Aus naheliegenden
Griinden nennt man diesen Wert eine zweifache

Wurzel von Gl. (10).

IV.

Die Operatorenmethode gestattet nicht nur Dif-
ferentialgleichungen in algebraische zu verwandeln,
sondern, mit der notigen Vorsicht, sie sogar von
vornherein in der letztgenannten Form anzusetzen.
Wir schreiben dazu (Gl. (9a) als Spannungsglei-
chung, indem wir beachten, dass eine #dussere, «ein-
geprigte» Klemmenspannung nicht angenommen
war, es sich also um sogenannte freie Schwingungen
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handelt. Mathematisch entspricht dem eine homo-
gene Differentialgleichung. Wir dividieren also
durch ¢

di 1

— 4+ =\ idt
&t S :
Die drei Glieder bedeuten die drei Klemmenspan-
nungen an Widerstand, Induktivitidt und Kapazitiit,
deren Summe gleich Null ist. In Operatorenform
geschrieben erhalten wir

. di ¢ .
0=iR+L -3 +L=iR+L-

; : 1 .
oder, durch i gekiirzt
1
— — = 11
0=R+4pL+ =27 (L1a)

woraus wieder Gl. (10) folgt. Da nun p nichts an-
deres als eine Erweiterung des Begriffes jo ist, wie
sich aus dem Vergleich von GL (8) und GIl. (10)
L Is Erwei
»C als Erwei-

terungen der iiblichen symbolischen Blindwider-

ergibt, so kénnen wir auch pL bzw.

— ansehen und die Gl

jwC

(11) fiir die gedimpfte Schwingung. formal so an-
schreiben, wie wenn ein stationdrer Wechselstrom
vorlige, allerdings wegen der Homogenitit von Gl.
(9) unter verschwindender Klemmenspannung. Dar-
aus ergeben sich dann die p-Eigenwerte.

Wie eben bemerkt, bedeutet der Ausdruck (11a)
eine Art erweiterte Impedanz fiir den freien Strom,
weshalb wir ihn wie iiblich mit Z bezeichnen. Wir
wollen aber den Begriff gleich noch in anderer Art
erweitern, niimlich auf andere Zustandsgrossen. Soll
etwa die Klemmenspannung am Widerstand, Uiy =
iR erfasst werden, so gilt statt Gl. (11)

standsbegriffe joL bzw.

. pL Uy
0=Ut+"g st re
und durch Kiirzen mit Uy statt Gl. (11a)

pL

1 :
0=14F + =7 (11b)

Analog ergibe sich fiir die Kondensatorspannung
Uc = % S idt = —;

0= UpCR+ Uyp? o+ U= 0

und
0'— 2 —

Man erhilt Ausdriicke wie Gl. (11b) und Gl (11c),
indem man die Ausgangsgleichung multipliziert mit
dem Quotienten alte Variable in der Ausgangsglei-
chung durch neue, gesuchte Variable.

Die Ausdriicke (11a), (11b) und (11lc) fithren
offensichtlich alle zu denselben p-Werten. Dies

(11c)

rithrt im Grunde genommen daher, dass jede Diffe-
rentialgleichung von der Form der Gl. (9), die man
nach Gl. (9b) auch in Operatorenform schreiben

kann, auch durch pi und 117 erfiillt wird, wenn sie

i selbst befriedigt, weil ja i in jedem Gliede vor-
kommt, und die Gleichung ohne weiteres mit p er-
weitert oder gekiirzt werden kann. Gl. (9) ist also
nicht nur die Differentialgleichung des Stromes,
sondern auch der Spannung an Widerstand, bzw.
Kondensator, bzw. Drosselspule, sowie der Konden-
satorladung usw.

Viele Autoren, z. B. K. W. Wagner?®) und
Fraenckel *), nennen Z Widerstandoperator, doch
wollen wir hier diesen Ausdruck vermeiden, da Z
infolge der soeben vorgenommenen Erweiterung des
Begriffes weder die Dimension eines Widerstandes
zu haben braucht, noch ein Operator im ganz engen
Sinne der eingangs gegebenen Definition ist.

In den GIl. (9), (9a) und (9b) waren wir von
einer Reihenschaltung von R, L und C ausgegangen.
Das ist nicht unbedingt nétig. Es mége, gleichzeitig
als erstes Beispiel, fiir die Anwendung der Opera-
torenmethode iiberhaupt, die Eigenfrequenz einer
Parallelschaltung von Induktivitit L und Kapazitit
C berechnet werden. Bei der Eigenfrequenz herrscht
Resonanz; der Strom schliesst sich vollstindig im
Innern des durch L und C gebildeten Kreises, wih-
rend die dussern Zuleitungen zu den Verzweigungys-
punkten keinen freien Strom fithren. Anderseits
herrscht eine endliche Spannung zwischen diesen
Punkten, also ist, im Gegensatze zu Gl. (11a), die
Impedanz des freien Stromes zwischen den Ver-
zweigungspunkten nicht 0, sondern unendlich zu
setzen. Man iiberzeugt sich leicht, dass diese Regel
den richtigen p-Wert liefert, denn

1_ 1

Der Nenner muss Null sein:

‘ . 1 P Vl
2 . e . — ]
1+p LC_O’P—’]/LC’ *=5=VIic

Einer unversffentlichten Studie von Herrn Dr. W.
Wanger entnehme ich die Berechnung der Eigen-
frequenz einer verlustlosen Doppelleitung von der
totalen Induktivitit L, bzw. Kapazitit C, bei der im
Resonanzfalle ebenfalls kein freier Strom in den
Zuleitungen vom Generator fliesst, wihrend doch
Spannung zwischen den Klemmen herrscht, so dass
der soeben geschilderte Ansatz am Platze ist. Nach
Fraenckel, 1. c., Seite 158, bestehen zwischen Span-
nung und Strom am Anfang (1) und Ende (2) der
Leitung unter sinngemisser Beriicksichtigung der
gednderten Bezeichnungen die Beziehungen

U =U,cosw|LC+jlI, I/% sinw J/LC

b= I cosw]/I,_C—i—jU2_l/% sinw J/LC
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Leerlauf bedeutet I, =0, also o
VL

Uy = Uycosw]LC Cc o

tg w]/ LC

= 1
Z= I,

— =—jJ

jUZ]/% sinw]/ﬁ

tgw)LC=0; w JLC=krx (k=1,2,3...)
kn

w=ﬁ

Fiir den Kurzschluss, U, =0, erhilt man analog

jIz'l/% sinw J/L C ]/%
Z = = —
Licosw]) LC J cotgw /L C <

cotgw})/LC = 0;0)/LC = 2k - 1)-%;(0 ——-%]:/%

Im Verhiltnis 2 : 1 der Eigenfrequenzen fiir die
Grundwellen kommt die Tatsache zum Ausdruck,
dass die einfache Leitungslinge bei Leerlauf gleich
einer halben und bei Kurzschluss gleich einer vier-
tel Wellenlidnge ist.

V.

Die Operatorenmethode gestattet auch, mittels
eines von Heaviside entdeckten und von K. W.
Wagner ?) zuerst bewiesenen Satzes die Anfangshe-
dingungen zu beriicksichtigen. Freie Schwingungen
entstehen dadurch, dass dem System zur Zeit t =20
eine elektrische Grosse, etwa eine Klemmenspan-
nung aufgedriickt wird, welche vorher, fiir ¢ <0,
Null war, und nachher, fiir ¢ > 0, im einfachsten
Falle konstant bleibt. Dieses Verhalten stellen wir
dar, indem wir die als dauernd konstant angenom-
mene Grosse mit der Einheits- oder Stossfunktion

0 fir t< o0
S(t) = L o» t=0 (12)
1 » t>0

multiplizieren [Berg?®)].

Fiir die Zwecke der Operatorenrechnung ist es
bedeutungsvoll, dass man nach K. W. Wagner, 1. c.,
Gl. (12) in folgender Form darstellen kann:

S (f) — (12a)

1

2rnj

£ jos
Hierin ist die Integrationsvariable p eine komplexe
Grosse von der Dimension einer Frequenz; die
Werte, die sie annehmen kann, werden durch die
Punkte der X-Y-Ebene dargestellt, wobei, wie oben,
die X-Achse diejenige des Reellen, die Y-Achse die-
jenige des Imaginidren sei. Das bestimmte Integral
(12a) ist lings eines ganz bestimmten Weges auszu-
werten, als solcher ist in Gl. (12a) derjenige lings
der Y-Achse vorgeschrieben, wobei der Nullpunkt
durch einen kleinen Halbkreis zu umfahren ist,
weil e'?/p dort unendlich wird, d. h., wie man in
der Funktionentheorie sagt, singular ist.

Eine Ableitung von Gl. (12a) auf Grund funk-
tionentheoretischer Ueberlegungen wire den in die-
sem Aufsatze angedeuteten Zusammenhéngen beson-
ders angepasst [Rothe ¢), S. 50 ff.]. Dem Ingenieur
liegt es aber im allgemeinen niher, von der bekann-

ten Fourierschen Reihe auszugehen (Fraenckel, 1. c.,
Seite 71 ff.)

Yy =3

4+ Y a,sinng+ Y. b,cosng (13)
1 1

worin
27T 2w

a, =%Sysinntp dg; b, =%Sycoan)drp (13a)
0 0

Wir diirfen in Gl (13) auch von —oco bis +oc

summieren, denn es ist

cos np = cos (—nyp); sin ngp = — sin ( —ney)
b-n = bn; A, = —0q,, also
b, cos np = b, cos (—ny); a, sin np =

a., - sin (—ngp)

haben aber dann fiir die Koeffizienten a', und b,
nur die halben Werte von Gl. (13a) einzusetzen.
Ausserdem wollen wir die Exponentialfunktion ein-
fithren. Es ist

a’, sin ngp + b’ cos ngp = Realteil (—ja, + b})ein?
= Re (Cein ?)

2T

1
C,=—ja',+b, = z—;rgy( —jsinng 4 cosngp)dyp

0
2

= %tg ye-in¢ dg

0
Nun fiithren wir eine Lingenkoordinate x ein und
denken uns die Periode von —I bis +1 erstreckt;
dann wird

Endlich strecken wir die Periode beidseitig ins Un-

endliche und fiihren eine dritte Variable z=— xT

ein. Es wird
+ oo 15
y=ReSCn einmz. dn; C,,=%Sye—i"“-dz

— oo —o00

Das erste dieser beiden letzten Integrale nennt
man ein Fouriersches Integral. Die Ausrechnung
fiir unsere spezielle Stossfunktion ergibt
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+oo o
1 i einmz 1
C = — —]ﬂTrZ,d = — =
! 289 i 2jnm 2jnn
o 0
+ oo
jﬂlZ
y = Re L.Se d (14)
2xj) n
mit B
. p dn
t = 5 — = —
p jn Tz} =

folgt nun wirklich GL. (12a).

Dabei ist, entsprechend der Multiplikation der
Variablen z mit j der Integrationsweg um 90° nach
vorwiirts gedreht, verlduft also, wie schon erwihnt,
nun von —jco bis +joo, d. h. lings der Axe des

Axe des Jmag:ndrenf *y

g2 \\\\
g N
& .
/ : R ;
o) \
! ’}51 ' X0’ Vo #x i
pu__iL__G0A0 g i, Fig. 2.
\ '\, . 1 Axedes Reellen -
YRRz 4
A kS #
\ y
N ,
s, "
SEvegrz S |C =2

Imaginiren, statt wie in Gl. (14) von —co bis -}oo
lings der Axe des Reellen. Fiir das Folgende ist es
von Bedeutung, ob auf dem soeben genannten Wege
der Nullpunkt nach rechts, wie in Fig. 2 angedeu-
tet, oder nach links zu umfahren ist. Um dies in
einfacher Weise zu priifen, setzen wir in Gl. (12a)

t =0, betrachten also die Funktion % Ist r der

Radius des kleinen Umgehungskreises, so konnen
wir schreiben:

| o Am
p= r-ei?; dp =]-r-el?’drp; ?p= Jd 'z

Beim Umfahren nach rechts liefert der Kreis dann
zum Integral den Beiirag

+ /e
1 (dp 1
‘Tyrjg?—_'_? (14 a)

—7fy

und beim Umfahren nach links

II

72
Da nun S(z) fiir t =0 gerade gleich + 4 sein soll,
so gibt das Umfahren nach rechts den richtigen
Wert, sofern das Integral auf dem iibrigen Teil des

Weges verschwindet. Das ist nun in der Tat der
Fall. Es ist ndmlich

1 4 17a 1 - R
ar P_ > (lop|41 15
2”].SP+27KJSP 2717-( P.‘*'DP (15)

—iR +ir —ijR  +ir

Allgemein gilt aber fiir eine komplexe Zahl (Rothe,
l.e.,S. 8)

Inz = In|z| 4 j.arcus (z)

Damit wird aus Gl. (15)

L_ [lnr—lnR+lnR—lnr+
2 7y
. T T JT T
ki (_2+§+ 2 “2)]= 0

VL
In Abschnitt IV wurde der Begriff Z der Impe-

danz des freien Stromes derart erwcitert, dass fiir
irgendeine Systemgrosse S, die unter dem Einfluss
einer dussern Wirkung P’ zuslande kommt, gesetzt
werden darf
i = Z
P spielt dabei die Rolle der Funktion u(z) in der
Losung der inhomogenen GI. (1).

Wird nun P als Stoss einer fiir £ > 0 konstanten
Grisse Q im Sinne von Gl. (12) eingefiihrt, so ha-
ben wir zu schreiben

+joo
_ Q0 (e
S =5 \oz (16)

—] oo

Dabei wurde Z unter das Integralzeichen genom-
men, weil es ja z. B. nach Gl. (1la), (11b) und
(11¢) eine Funktion des Operators p ist und in-
dem wir gleichzeitig die Integrationsvariable p in
Gl. (12a) als Operator p ansehen, was uns vollstén-
dig frei steht, da p in Gl. (12a) nur die Bedingung
erfiillen muss, von der Dimension einer Frequenz
zu sein.

Nach K. W. Wagner wird nun das Integral (16)
berechnet, indem man den Integrationsweg ldngs
der Axe des Imaginiiren durch einen sehr grossen
Halbkreis vom Radius R, sei es nach links oder
nach rechts, zu einem geschlossenen ergiinzt (vgl.
Fig. 2). Damit gewinnt man den Vorteil, den so-
genannten Hauptsatz der Funktionentheorie anwen-
den zu koénnen, laut welchem das Linienintegral
einer Funktion lings einer geschlossenen Kurve in
der Ebene der komplexen Zahlen gleich 0 ist, wenn
die Funktion im Inncrn der Kurve keine sogenann-
ten singuldren Stellen hat. Ist hingegen p, eine
solche Stelle, so gilt, wenigstens wenn sie isoliert ist,
die sogenannte Laurentsche Reihe:

bl b2
p—pPvy (@P-pPv)?

Dieser Ausdruck wird tatsichlich fiir p— p, unend-
lich. Man nennt b, das Residuum von p, und das
soeben erwihnte Linienintegral wird im Falle von
Singularitdten im Innern gleich der Summe von
deren Residuen mal 277j. Diese Tatsache kam schon
in Gl. (14a) zum Ausdruck, denn das Residuum

f(p) = -+ ot ZO a,(p—p.)" (17)



XXVIe Année 1935 BULLETIN No. 22 619
r . . . .. +jss
vou ist einfach gleich 1 und daher das Linien- 1 et
p—0 mgp_z-‘: Q0+ZQv (18a)
integral von — rund um den Nullpunkt herum ~joo

gleich 27j, da andere singuldre Stellen nicht vor-
handen sind . '
Die Eigenwerte von p sind nach Gl. (11a), (11b)
und (llc) dadurch ausgezeichnet, dass fiir sie
e pt
Z =0 wird; da also dort FZ unendlich wird, be-

deuten sie beziiglich der eben genannten Funktion
singuldre Stellen. Setzt man voraus, dass die reel-
len Teile aller p-Eigenwerte wie in Gl. (10) negativ
sind, so liegen die sie reprisentierenden Punkte
alle links der Ordinatenachse. Es sind also keine
«Expedanzens angenommen und das Folgende gilt
daher nicht fiir Selbsterregungsvorginge.

Liangs des Weges OABC ist also sicher

1 Septdp —0

2 nj pZ

Wie man sieht, spielt es hierbei eine Rolle, dass
unser kleiner Halbkreis um 0 sich nach rechts er-
streckt, so dass der Nullpunkt, der ja singuliir ist,
sich nicht innerhalb der umfahrenen Fliche be-
findet.

Es sei nun ¢ negativ, dann ist auch

1 Fertd

>,

SO =57\ 5 =
T e

und da man fiir diesen Fall unméglich annehmen
kann, dass die betrachtete Systemgrosse von 0 ver-
schieden ausfillt, so gilt auch
s
1 Se"' dp 0
2xnj ) Zp

—joo

und endlich lings ABC

1 e"tdp_0
2xj ) Zp

wobei natiirlich ABC einen sehr grossen Radius R
haben muss. Hat nun ¢ denselben Absolutwert wie
vorher, aber positives Vorzeichen, und schreibt man
dafiir statt p in Gl (18) —p, so hat jedenfalls

eftdp

(18)

lingst CDA denselben Wert wie lidngs
ABC. Setzt man mit K. W. Wagner weiter voraus,
dass% wenigstens auf gewissen Kreisen CDA um 0
mit sehr grossem Radius, die alle singuléren Stellen

umfassen, eine bestimmte endliche Grenze nirgends
iiberschreitet, so ist lings CDA auch

1 e"’dp_O
2#xj ) pZ

gewihrleistet. Damit bleibt dann endlich

wobei g, das Residuum des Nullpunktes und X',
die Summe der Residuen an den Stellen p,, fiir
welche pZ gleich Null wird, bedeuten. Um nun
diese Residuen zu berechnen, bezeichnen wir mit
2==P—DPv

den Radius von kleinen Kreisen um die verschie-
denen Punkte p, in der p-Ebene. Nach der bekann-
ten Reihe fiir die Exponentialfunktion wird

eft= eP?t. e = PV (1 - 2t + =8 t2-+— ) (19)
21

Fir schreiben wir die schon unter Gl. (17) er-

1
pZ
wihnte Laurentsche Reihe an

1

1 b by b,
f(z) = ﬁ—ZOI a2+ ottt (19a)

Indem wir die Ausdriicke (19) und (19a) miteinan-
1
der multiplizieren und den Faktor von o heraus-

greifen, erhalten wir

t t?
0y =€ (b, 4+ b, ﬁ+ b, - ﬁ+ 550)

als das gesuchte Residuum fiir den Punkt p,.

Fiir den Punkt p—=0 sei Z=Z(0) und in einem
kleinen Abstand z vom Nullpunkt auf Grund der
bekannten Taylorschen Reihe

Z=27(0) + zz'+§z~+....

3
3Z = zZ (0) + 222" + %Z” F 22 57 (0)
Da fiir p=0 ePt=1 wird, gilt also

ert o 1 1 - 1
P20 Z(0)7 0 T Z(0)

Damit folgt aus Gl. (16) und (18a) endlich der
Satz von Heaviside-Wagner
+iee
_ 0 \e‘" 0
2@ )pZ Z(0)

t
4+ QY emt(b, + bzﬁ-y- )
> !
(20)
Fiir die praktische Beniitzung eignet sich besser
eine noch etwas einfachere Form, die sich ergibt,
wenn in Gl (19a) die Koeffizienten b, b, , usw.
bis auf b, alle Null sind; dann wird, bei sehr

kleinem z,

1 b, R

Cbp

Man setzt fiir Z wieder eine Taylorsche Reihe an

L=Z(p)+ 2 (p)zs—+ =2 (py)=

AL
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letzteres, da ja Z(p,) = 0, und erhilt endlich

1
L2=7 =+ =
1Pv PvZ (ph
Damit schreibt sich (20)
Q
20
=20 Sgm @
VII.

Um die Bedeutung der Formel klar zu machen,
behandeln wir gleich das einfache Beispiel des Ein-
schaltens einer Drosselspule an eine Gleichstrom-
quelle auf die gewdhnliche Art und nach Heaviside.
Die Differentialgleichung des freien Stromes ist

0_‘1“R+L‘W’ T— _Tdt
woraus integriert folgt

R R
R . ——t+C ——t
ft"l"‘c; Ly =€ L = Cle L

.. U
Der erzwungene Strom ist i,— —- und der Gesamt-

R

Ini; =—

strom

| =

t

i=i+4i,=Ce " 4

=

Es sei
fir t=0 1=0 also

4,
R,

= o

0=C + ¢, =-

somit endgiiltig

— Ry
i=%(l—e Lt)

In Operatorenform schreibt sich
Z=R+pL; Z’=L; py=p;, = —
PZ)y=—R; Z2(0)=
also aus Gl. (20a) mit Q—=U und S —1i direkt

U -2t U —?t)
U g UG

R
L

0] U .
Z(O = den durch die

Gleichstromquelle erzwungenen Endstrom, der nach

Es bedeutet also hier -~

R

Abklingen des freien Stromes —%-e_it allein

iibrig bleibt. Wir haben noch zu priifen, ob in
Gl. (19a) alle b, bis auf b, null sind. Dies kann
auf Grund einer einfachen allgemeinen Ueber-
legung geschehen. Wenn die Wurzeln p,, p,, p;

usw. alle verschieden sind, so gilt

pZ=2Z (p-p,)(p- py)(p—pv) =22, 552, (21)

wobei Z, eine Funktion von p ist, die in p,, p,, p,

usw. endlich bleibt. Tatsiichlich ist ja dann pZ =0,
sobald p = p, oder = p, oder = p, usw.

Entwickelt man i in die Reihe (19a), so ist

pZ
man also sicher, dass z in keinem Nenner mit ho-
herer Potenz als 1 vorkommt, denn in

A1
pZ  Ziz myenty

sind alle z verschieden und mit Ausnahme des ge-
rade betrachteten z, als konstant zu betrachten.
Fallen hingegen in Gl. (21) gewisse Wurzeln zu-
sammen, so wird

pZ=2Z (p—p)4 - (p—p) (p—py)"

und es ist GL. (20) statt (20a) anzuwenden. Diesem
Fall sind wir schon bei' der Erwihnung der Gl
(10a) begegnet und es traten in derselben wie in
(20) im Faktor der Exponentialfunktion Potenzen
von ¢ auf. Da im Falle unserer Drosselspule iiber-
haupt nur ein p-Wert vorkommt, ist es klar, dass
Gl. (20a) angewendet werden durfte.

Ganz dhnlich verlduft die Verfolgung des Ein-

schaltens eines Kondensators. Es ist
1 1 1
Z=R+R, P1 = —RC’ 7 = _‘W (22)
(pZ'), = R; Z(0) = o0
also
. U U -z U -z
'=%TR'® TR°
Um auch die Ladung
=S 1dt = L
p

darzustellen, bilden wir aus Gl. (22) das neue zu-
gehorige Z nach der nach Gl (1lc) angegebenen
Regel. Der Quotient aus alter und neuer Variablen

ist sz und daher
q

Weiter wird

Z =R; (pZ), =

t
q= UC(l — e—R—C>

[vgl. Fraenckel I c., Seite 195, Gl. (28) und (27)].

Wir betrachten endlich als Beispiel fiir das Auf-
treten zweier p-Werte noch das Einschalten einer
Reihenschaltung von R, L und C an eine Gleich-

PiL= RC

stromquelle. Fiir den Strom gilt hier
1
Z=R+pl+ =0 (Lla)
und fiir p
R .4/1 R :
P=‘ﬂiﬂG?iﬁ=—“m(m
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ferner mit direkter Beniitzung von Gl. (11a)

1 1
Z'=L — W,pz = pL —E=R+2PL

Der letzte Ausdruck wird fiir die beiden Eigen-

werte
pL—piC—R—Ri2jﬁL; Z(0) = oo
also
i= [;’j‘;;";t (eibt_e—jbt) —
Ue-at . . ..
2].T(cosbt—+—]sjlnbt — cosbt+jsinbt) =
U.e—at

T Slnbt

[Fraenckel 1. c., S. 199, Gl. (58)].

Es stellt sich naturgemdss die Frage, ob mit der
Operatorenmethode statt Einschalt- auch Ausschalt-
vorginge behandelt werden koénnen. Dies trifft
grundsitzlich zu, doch ist zu beachten, dass ein
Ausschaltlichtbogen keinen konstanten Widerstand
aufweist. Da konstante Koeffizienten in der Aus-
gangs-Differentialgleichung eine Voraussetzung fiir
die Zuldssigkeit der Operatorenrechnung sind, miis-
sen wir ein Beispiel wihlen,
bei dem die Verhiltnisse im
Ausschaltlichtbogen zahlen-
missig keine Rolle spielen.
Gleichzeitig konnen wir da-
bei den Fall behandeln, dass
die eingeprigte Grosse Q
keine Spannung, sondern ein
Strom ist. Es handle sich
nach Fig. 3 um das Ueberbriicken einer Drossel-
spule L und ihres Parallelwiderstandes R durch den
Schalter S zur Zeit =0, wodurch also der «einge-
prigte» Strom I in der Parallelschaltung von L und
R plétzlich zum Verschwinden gebracht wird. Da

in Gl (20) %

trachteten Variabeln bedeutet, denke man sich ein-

Fig. 3.

den stationiren Endwert der be-

fach dem Einschaltvorgang den Wert — %0) uber-
lagert. Es stellt dann
op vt

s—ox &
¢ v (PZ')y

den Ausschaltvorgang der Grosse — 7(0) dar, oder
prt

S—_oXx 23

0% 7 (23)

den Ausschaltvorgang der Grésse Q/Z(0). Als Va-

riable wihlen wir die Klemmenspannung U an L
und R und erhalten damit

I 1 1 R-+pL

7 == o =" P&
USSR pL™ RpL

Z ist also hier eine Leitfdhigkeit. Fiir die freie
Schwingung ist I =0, also auch Z=0. Es folgt
fiir p
R
R+pL=0;p=—-4F

Ferner

L R+pL L

Zr

T RpL R*p’l2  R®
'_R L_l
PE=T RTR

Damit schreibt sich Gl. (23)

Ry
L

U=—1IRe

Fiir t = 0 wird U= — IR, worin die bekannte Regel
fiir die Dimensionierung eines Parallelwiderstandes
zum Schutze einer Spule zum Ausdruck kommt.

Viele andere, kompliziertere Beispiele, die die
Vorteile des Heavisideschen Satzes besonders klar
in Erscheinung treten lassen, findet man bei K. W.
Wagner, 1. c.

VIII.

Zum Schlusse soll noch gezeigt werden, wie der
Heavisidesche Satz in seiner urspriinglichen Form
20a erweitert werden kann auf kompliziertere Stoss-
funktionen und besonders auf das Einschalten sinus-
formig variierender Grossen. Zu diesem Zwecke
schreibt man die Stossfunktion mit einer neuen In-
tegrationsvariabeln

‘=p—y
worin y eine komplexe Konstante ist.
+ioo +ioo
tp’ ’ —)/t tp

S () = —I.SL(,IP =e—.Se dp
2rj ) p 2nj ) p—y

—joo - joo

und daher
+ieo
tp
S () et = i.se dp (24)
2zj)p-y

—joo

Das Multiplizieren von S(t) mit et bedeutet bei
negativ reellem y das Abklingen der zur Zeit t=0
eingeschalteten Grosse mit dem D#mpfungsfaktor
—y und bei komplexem y das Einschalten einer
geddmpften Sinusschwingung. Praktisch besonders
wichtig ist natiirlich das Einschalten einer reinen,
ungeddmpften Sinusschwingung von der Kreis-
frequenz w, wofiir also

y=Jw

wird. Fiir diesen Fall schreibt sich die Stossfunk-
tion nach Gl. (24)

+joo
S () elvt = 1 : e d'p
27j Jp—jw

e

Es ist nun im ersten Gliede von Gl. (20a) Z statt
von 0 von demjenigen Argumente zu nehmen, fiir
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welches, wie in der urspriinglichen Ableitung, der
Nenner des Stossintegrales verschwindet, also von
p— jw. Ebenso ist im Nenner des zweiten Gliedes
als Faktor von Z’ der Eigenwert derjenigen Grisse
zu setzen, die im Nenner des Stossintegrales steht,
also p, — jw. Endlich setzen wir, entsprechend der
Multiplikation von S{t) mit ei“! statt der konstan-
ten eingeprigten Grisse Q die Sinusschwingung in
komplexer Form

Qmo . elot = Qm

der Phasenwinkel ist,

. et . eivt — Qm el (0t+v)

wo und erhalten aus

Gl. (20a)
Q,, e @ + 1) Q,, e t+V) . e(py — jo)t
S = L 2
Z (jo) ; (p* — jw) Z',
Qe (0t + ) Q,, ey t+jv
— 25
Z (jw) Z (Py— jw)2Z', (25)

Diese Formel findet sich, ohne Beweis, bei Fraenckel,
Seite 203.

Ein einfaches Beispiel bildet das Einschalten
einer Drosselspule an Wechselspannung; vgl
Fraenckel, Seite 204.

Als etwas komplizierteren Fall betrachten wir
zum Schlusse das Einschalten eines kurzgeschlosse-
nen ganz symmetrisch gebauten Transformators vom
Uebersetzungsverhilinis 1 : 1 an eine Wechselspan-
nung. K. W. Wagner hat diesen Fall fiir Gleich-
strom behandelt. Die Transformatorgleichungen
lauten symbolisch mit R, =R,=R; L, =L,—=L

U=i,R~+i pL+ i,pM; 0 =i,R—+i,pL +i pM

Iy = —1; R—Z—% also
. 2 M2
v =i (rpr— )

Fiir den freien Strom ist

p? M2

o =0 oder (R+pL)?=p2M?2
+ L
R R

R‘l“PL:iPMer:‘L_—MaPz= LM

p hat also hier zwei Werte, trotzdem kein Schwin-
gungskreis mit Kondensator vorliegt.

2P Mz2 p2 M2 L

f= [ — =2 M
Z =L R—+pL " (R+4-pL)? (L+ 0
R
(pZ’)l = —m'2(L—M)=_
R
(pZ), = — = -2(L+M)=—2R

(jo Z'), = 2jo (L—M); (jo Z'), = 2 jo (L + M)

Damit folgt aus Gl. (25) mit Z(jw) =Zy=

R2—? L2+ 0 M2+2jwLlR
R4+jolL

R 5
—mt+l1,[)

- [ej ©t+ )
TV Ze TRR4jod - M)
i
S J (26)
2[R+ jo(L+ M)]
Wir schalten im Nullpunkt der Spannung ein. Be-
niitzen wir, wie im Schluss des Abschnittes II an-

gegeben wurde, als Schwingungsausdruck den ima-
gindiren Teil von ei(“t+¥), so ist =0 zu setzen.

Fiir t =0 bleibt

S E R
 1Zkx 2[R+ jo (L - M)]

1
_2m+m@+Mﬂ‘%”

Da im Einschaltmoment der Strom 0 ist, muss
der Ausdruck 26a auch Null sein. Man iiber-
zeugt sich leicht hiervon, indem man Z, aus
dem oben gegebenen Ausdruck einsetzt. Der freie
Strom, welcher den erzwungenen Strom im Zeit-
punkte Null zu Null erginzen muss, besteht aus
zwel Teilen, die sehr verschieden rasch abklingen.

Der Teil mit der grossen Zeitkonstante L—R—~ ent-
spricht dem Hauptfeld, der Teil mit der kleinen
L ;{M dem Streufeld. Nach Gl. (26)

ist der zweite Teil viel griosser als der erste. Ist

Zeitkonstante

die Zeitkonstante - trotz ihrer relativen Klein-

R
heit infolge kleinen ohmschen Widerstandes immer
noch gross gegen die Periodendauer, so erreicht
der Einschaltsiromstoss nahezu die doppelte Ampli-
tude des Dauerkurzschlullstromes.

Literatur.

1. Sokolnikoff, Higher mathematics for Engineers and Phy-
sicists. New York and London. Mec.Graw Hill, 1934,
Chapter X.

2. A. von Brunn, Die Expedanz als Ursache der Selbster-
regung und der allgemeinen Resonanz. Bull. SEV, 13. 3.
1935.

3. K. W. Wagner, Ueber eine Formel von Heaviside zur
Berechnung von Einschultvorgingen. Archiv fiir Elektro-
technik, IV. Band, 1916, Heft 5 und 6.

4. TIraenckel, Theorie der Wechselstrome.
lin, Springer, 1930, Kapitel XIII.

5. Gramisch-Tropper-Berg, Rechnung mit Operatoren. Miin-
chen und Berlin, Oldenbourg, 1932.

6. Rothe, Ollendorf, Pohlhausen, Funktionentheorie. Berlin,
Springer, 1931.

3. Auflage, Ber-



	Über die Verwendung sogenannter Operatoren in der Theorie der Wechselströme

