**Zeitschrift:** Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

**Band:** 26 (1935)

**Heft:** 11

Artikel: Synchronisieren in Hochspannungsanlagen ohne Spannungswandler

Autor: Rump, S.

**DOI:** https://doi.org/10.5169/seals-1058456

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

## **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 27.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

lastungszustand berechnet werden. Wird dieser Zustand verändert, so ändert sich bei gleichbleibenden Werten für C und D der Parameter, welcher sich nach einem Annäherungsverfahren, auf das hier nicht näher eingegangen werden soll, exakt bestimmen lässt. Mit diesem neuen Parameter werden die Seile für den veränderten Zustand ebenso berechnet, wie angedeutet wurde.

In der Tabelle I sind die hauptsächlichsten Berechnungswerte für die Phase «Rechts» wieder-

Sämtliche Rechnungen wurden mit einer «EOS»-Rechenmaschine ausgeführt, die sich für diese Zwecke als sehr brauchbar erwiesen hat. Ferner wurde für die Bestimmung der Funktionswerte eine sechsstellige Hyperbeltafel von Kennely benutzt.

# Synchronisieren in Hochspannungsanlagen ohne Spannungswandler.

Von S. Rump, Zürich.

621,316,729

Die Tatsache, dass sich jeder Durchführungsisolator auf einfachste und billige Weise als dielektrischer Spannungswandler ausbilden lässt, der in den meisten Fällen gleichsam die Funktionen eines üblichen Spannungswandlers übernehmen kann, bildet den Ausgangspunkt des nachstehenden Aufsatzes. Es werden drei verschiedene Anordnungen für Synchronisierung und Messung von Spannung und Frequenz beschrieben, die alle das Merkmal tragen, dass sie den Verschiebungsstrom von Klemmen oder Stützisolatoren ausnützen, die als dielektrische Spannungswandler ausgebildet sind und die teuren, elektromagnetischen Spannungswandler umgehen. Besondere Würdigung findet die rein statische Lösung mit elektrostatischem Synchronoskop.

L'étude ci-dessous repose sur le fait que chaque isolateur de traversée se laisse très facilement et à peu de frais modifier en un transformateur de potentiel diélectrique qui, dans la plupart des cas, est susceptible de remplir les mêmes buts qu'un transformateur de potentiel ordinaire. L'auteur décrit trois solutions pour la synchronisation et pour la mesure de la tension et de la fréquence, toutes caractérisées par le fait qu'elles utilisent le courant de déplacement d'isolateurs de borne ou de support modifiés en transformateurs diélectriques de potentiel, lesquels remplacent avantageusement les transformateurs de potentiel électromagnétiques par trop onéreux. L'auteur examine plus spécialement la solution purement statique, avec synchronoscope électrostatique.

Heute ist es mehr als je nötig, die Anlagen zu verbilligen, und es werden dem Ingenieur immer neue Aufgaben gestellt, um Ersparnisse zu erreichen. Nur derjenige, welcher eine wirklich billige und doch technisch vollwertige Lösung schafft, darf auf einen Erfolg rechnen.

Es wurde darum schon lange daran gearbeitet, die Spannungsanschlüsse der Messinstrumente an Hochspannungsleitungen durch eine kapazitive Kopplung zu ermöglichen, um dadurch die teuren und platzraubenden Spannungswandler zu vermeiden. Der Gedanke, die Hochspannungsdurchführungen mit Messbelägen zu versehen und diese für Spannungsanschlüsse zu verwenden, ist deshalb sehr zeitgemäss und richtig. Ausser einer vernachlässigbaren Verteuerung der Durchführungen stehen dieser Vereinigung zweier Apparate zu einem einzigen keine Nachteile gegenüber. Besonders geeignet sind die heute allgemein verwendeten Kondensatordurchführungen, da diese Metalleinlagen besitzen, welche als Messbeläge benutzt werden können. Deren Kapazität und die demgemäss zur Verfügung stehende Leistung sind grösser als bei anderen Klemmentypen.

Die mittels einer Durchführung erzielten Leistungen sind immerhin auch bei Kondensatorklemmen noch relativ klein, was lange Zeit verhinderte, den obigen Vorschlag mit Erfolg in die Praxis einzuführen. Erst durch eine Anregung von Sieber gelang es, eine für den Betrieb brauchbare Einrichtung zu schaffen, welche das Problem für alle praktischen Fälle löst.

Zuvor sei untersucht, welche Messeinrichtungen verlangt werden. Sie können je nach Art ihrer Anschlüsse in 2 Gruppen aufgeteilt werden, und zwar:

- I. Anschlüsse an Sammelschienen-Spannungen.
- II. Anschlüsse an Spannungen der abgehenden und ankommenden Leitungen.

- I. An die Sammelschienen-Spannungen werden folgende Messeinrichtungen angeschlossen:
  - Wattmeter,
  - b) Zähler,
  - Relais,
  - d) Voltmeter für Messung der Sammelschienen-Span-
  - e) Frequenzmesser,
  - Synchronoskop 1).
  - Für diese Zwecke ist nur ein Spannungswandler an den Sammelschienen nötig, welcher in bezug auf Genauigkeit und Leistungsfähigkeit ausreicht.
- II. An der Spannung der abgehenden Leitungen sind folgende Messeinrichtungen angeschlossen:
  - a) Synchronoskop 1),b) Voltmeter,

  - Frequenzmesser
    - (b und c werden hauptsächlich für Synchronisierzwecke verwendet).

Aus diesen Ueberlegungen geht hervor, dass ein Spannungswandler an den Sammelschienen für die meisten Messzwecke genügen würde. Lediglich für die Synchronisierung ist je ein Spannungsanschluss an jeder der zu synchronisierenden Leitungen nötig, oder mit anderen Worten: Es werden weitaus die meisten Spannungswandler bzw. Spannungsanschlüsse nur für Synchronisierzwecke verwendet, während man sich für alle anderen Zwecke mit einem Spannungswandler an den Sammelschienen begnügen kann. Wenn eine Ersparnis durch Spannungsanschlüsse an elektrostatische Einrichtungen, wie Durchführungen, zu erreichen ist, müssen in erster Linie die Synchronisiereinrichtungen für diesen Zweck entwickelt werden, während für alle anderen Zwecke dieses Problem nur von sekundärer Bedeutung ist.

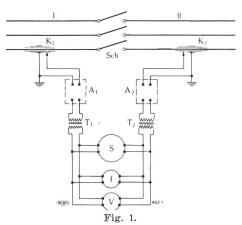
<sup>1)</sup> Zum Synchronisieren sind für das Messen der Phasenlage zwei Spannungen nötig, nämlich die Sammelschienenspannung und die Spannung der zu synchronisierenden Leitung.

In unseren folgenden Untersuchungen wollen wir uns der Einfachheit halber auf die Synchronisiereinrichtungen beschränken, da diese nach dem oben Gesagten die wichtigsten sind; eine sinngemässe Uebertragung auf andere Messzwecke ist jedoch ohne weiteres möglich.

Um Messeinrichtungen an kapazitive Spannungsteiler (Durchführungsisolatoren) anzuschliessen, wurden folgende Vorschläge gemacht:

1. Einrichtungen mit Verstärkerröhren, welche die zur Verfügung stehende Leistung durch Röhren verstärken, so dass die nötige Leistung für die Instrumente erreicht wird.

2. Transformierung des Verschiebungsstromes durch Messwandler auf eine normale Grösse. Der Verschiebungsstrom des Spannungsteilers, welcher mit der angelegten, bzw. der zu messenden Spannung proportional, aber sehr klein ist, wird durch einen Transformator auf eine normale Grösse (beispielsweise 1 Amp.) transformiert. Der Transformator ist in Serie mit der Kapazität des Spannungsteilers geschaltet und an Erde gelegt.


3. Einrichtungen mit elektrostatischen Instrumenten. Der Energieverbrauch solcher Instrumente ist sehr klein; sie lassen sich darum mit Vorteil für Anschluss an kapazitive

Spannungsteiler verwenden.

Wir wollen jetzt die Vor- und Nachteile der einzelnen Methoden besprechen:

#### 1. Einrichtungen mit Verstärkerröhren.

Bei der heutigen Entwicklung der Verstärkerröhren liegt es nahe, die Spannung im angeschlossenen Messkreis durch die Spannung des Messbelages der kapazitiven Spannungsteiler zu steuern, so dass sie mit der zu messenden Spannung proportional ist und die im Spannungsteiler vorhandene Leistung auf eine nützliche Grösse verstärkt wird. Die prinzipielle Einrichtung geht aus Fig. 1 hervor. Das



Synchronisiereinrichtung mit Röhrenverstärker zum Anschluss an Kondensatorklemmen.

nschuss an Kondensatorkiemmen.
Zu synchronisierende Netze.
Schalter.
Kondensatordurchführungen des
Schalters Sch mit Messbelägen.
Röhrenverstärker.
Anpassungstransformatoren.
Synchronoskop.
Doppelfrequenzmesser.
Doppelvoltmeter. IIK1, K2  $\begin{array}{cccc}
 & A_1, & A_2 \\
 & T_1, & T_2 \\
 & S
 \end{array}$ 

Synchronoskop, das Voltmeter und der Frequenzmesser sind übliche elektrodynamische Instrumente. Dazu gehören zwei Verstärker mit den nötigen Hilfsquellen sowie einige weitere Hilfsapparate. Diese

Anordnung arbeitet prinzipiell fehlerfrei, weil Phasenlage und Grösse der Spannung richtig übertragen werden, vorausgesetzt, dass die Verstärker richtig bemessen sind. Für die Heizung der Glühkathoden und die Anodenspannung sind Hilfsgleichstromquellen nötig. Um Hilfsmaschinen oder Batterien zu vermeiden, werden Gleichspannungen für Anode und Gitter zweckmässig durch Gleichrichter mit Siebkreisen für das Glätten der gleichgerichteten Spannung ersetzt. Diese Gleichrichter werden durch das Lichtnetz gespeist und arbeiten genau wie eine Einrichtung für Wechselstromanschluss eines normalen Radio-Apparates.

Für die Bestimmung der Verstärkerröhren, Gleichrichter usw. ist der Leistungsbedarf der angeschlossenen Instrumente massgebend, welcher aus Tabelle I für die allgemein erhältlichen Instrumente hervorgeht.

Leistungsbedarf der Instrumente.

Tabelle T

|                       | Herkunft    | Total unached and WA |                  |                                                           |
|-----------------------|-------------|----------------------|------------------|-----------------------------------------------------------|
| Instrument            |             | Leistungsbedarf VA   |                  |                                                           |
|                       |             | Kreis I              | Kreis II         | Total                                                     |
| Synchronoskop         | a<br>b<br>c | 5<br>6<br>11         | 13<br>12,5<br>20 | 18<br>18,5<br>31                                          |
| Voltmeter             | _           | 8                    | 8                | 16¹)                                                      |
| Frequenzmesser        | a<br>b<br>c | 2<br>1,5<br>25       | 2<br>1,5<br>25   | 4 <sup>1</sup> )<br>3 <sup>1</sup> )<br>50 <sup>1</sup> ) |
| 1) für 2 Instrumente. |             |                      |                  |                                                           |

Diese Daten sind den Preislisten bekannter Firmen entnommen und dürften allgemeine Gültigkeit haben.

Zu einer Synchronisiereinrichtung gehören: 1 Synchronoskop, 2 Voltmeter und 2 Frequenzmesser.

Wie später gezeigt wird, ist es erwünscht, den Leistungsverbrauch möglichst klein zu halten und wir wollen darum die Instrumente der Herkunft «b» unseren Ueberlegungen zugrunde legen. stungsverbrauch der beiden Kreise ist:

I. 
$$6 + 8 + 1,5 = 15,5$$
 VA.  
II.  $12,5 + 8 + 1,5 = 22$  VA.

Da die beiden Verstärkerkreise (Fig. 1) gleich sein müssen, sind sie für den grössten Leistungsverbrauch zu bemessen, d. h. für ca. 22 VA. Verstärker für eine solche abgegebene Leistung müssen für eine 10- bis 12fache Anodenleistung gebaut sein und werden darum verhältnismässig sehr teuer. Dabei ist vorausgesetzt, dass die Verstärker-Stromkreise angepasst sind, d. h. der innere Widerstand der Röhren muss gleich dem Widerstand der Instrumentenkreise sein. Um dies durch beliebige Instrumente zu erreichen, wird ein Anpassungstransformator zwischen die Verstärker und die Instrumentenkreise geschaltet, wie Fig. 1 zeigt. Dieser Transformator erhöht einerseits die durch die Röhre abgegebene Leistung, anderseits wird aber die Verlustleistung des Transformators zum Eigenverbrauch der Instrumente addiert, so dass die durch diese Transformierung erreichte bessere Ausnützung der Röhren sich nur bedingt auswirkt. Daraus geht hervor, dass die Röhrenverstärker ziemlich leistungsfähig sein müssen und infolgedessen teuer werden, so dass sie nur bei höheren Spannungen, wo die Preise der Spannungswandler erheblich anwachsen, Vorteile bieten.

Solange die Röhren in Ordnung sind, arbeiten diese Einrichtungen für Synchronisierzwecke befriedigend; nur sind genaue Spannungsmessungen nicht möglich, indem diese von der Spannung der Hilfsquellen abhängig sind, und Spannungsschwankungen im Hilfsnetz sind praktisch nicht zu vermeiden. Die Hauptnachteile dieser Einrichtungen sind: hoher Preis, Kompliziertheit der Schaltung und dadurch gegebene Wahrscheinlichkeit von Störungen sowie der Verschleiss der Verstärkerröhren, der von Zeit zu Zeit Auswechslungen nötig macht. Um die Anschaffungskosten der Röhren zu reduzieren, könnten Spezialinstrumente kleineren Leistungsverbrauches verwendet werden. Dadurch geht aber der Hauptvorteil dieser Einrichtungen, dass normale Instrumente verwendbar sind, verloren.

## 2. Transformierung des Verschiebungsstromes durch Messwandler auf eine normale Grösse.

Der Gedanke, welcher dieser Anordnung zugrunde liegt, ist, den kleinen Verschiebungsstrom des Spannungsteilers, welcher mit der angelegten, bzw. zu messenden Spannung proportional ist, auf eine normale Grösse zu transformieren, so dass übliche, stromverbrauchende Instrumente verwendet werden können. Das Schaltbild geht aus Fig. 2

Co ist die Kapazität zwischen dem Durchführungsbolzen 1 und dem Messbelag 2. Mittels des

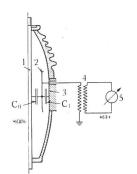



Fig. 2.

Durchführung benützt als statischer Spannungsanschluss mit Transfor-mator für Transformierung des Verschiebungsstromes des Span-nungsteilers auf eine gewünschte Grösse.

- Durchführungsbolzen.
- Messbelag.
  Geerdeter Flansch der Durchführung.
  Messwandler.
  Instrument.
  Kapazität zwischen dem Durch-

- Kapazitat zwischen dem Durch-führungsbolzen 1 und dem Messbelag 2. Kapazität zwischen dem Mess-belag 2 und dem Flansch 3.

Messwandlers 4 wird ein der Kapazität  $C_o$  entnommener Verschiebungsstrom auf die gewünschte Grösse transformiert und dem Instrument 5 zugeführt. Dies erscheint alles sehr einfach, aber bei den Versuchen hat sich herausgestellt, dass diese Anordnung mit einer ganzen Reihe unerwünschter Einflüsse behaftet ist. Dies ist darauf zurückzuführen, dass die Kapazität  $C_o$  mit der Induktivität des Transformators 4 in Serie geschaltet ist und die Magnetisierungsleistung des Transformators durch die Klemme gedeckt werden muss. Bei dieser Ueberlegung ist in Betracht zu ziehen, dass die Spannung eines Hochspannungsnetzes nicht rein sinusförmig ist, sondern mehr oder weniger Oberwellen enthält, welche mit dem Belastungs- und Schaltzustand ständig ändern, und zwar so, dass beim Betrachten im Oszillographen die Kurvenform wie lebendig erscheint. Es besteht also die Möglichkeit, dass die Messanordnung mit einer der Oberwellen in Resonanz gerät und die Messung dadurch beeinflusst wird. In der Synchronisiereinrichtung darf nur die Grundwelle massgebend sein, während die Oberwellen unter keinen Umständen einen merkbaren Einfluss auf das Synchronoskop haben dürfen, d. h. eine Resonanz mit einer der Oberwellen oder die Wirkung eines durch Oberwellen erzeugten Stromes ist unbedingt zu vermeiden, da sonst dieselbe das Synchronisieren unzulässig beeinflussen kann und Fehlschaltungen hervorruft.

Um diese Schwierigkeiten zu umgehen, wurde versucht, die Induktivität des Transformators und die Kapazität  $C_1$  bei der Grundfrequenz in Resonanz zu bringen. Dies hat den Vorteil, dass Magnetisierungsleistung des Transformators durch die Kapazität C1 kompensiert, und die zur Verfügung stehende Leistung durch den Transformator nicht merkbar reduziert wird, sondern für die Messeinrichtung praktisch unbeschnitten bleibt. Bei Aenderungen der Betriebsfrequenz wird die eingestellte Resonanz gestört, was in erster Linie die Phasen der Spannungen und Ströme im Resonanzkreis ändert und besonders für das Synchronisieren verhängnisvoll werden kann, d. h. eine Abgleichung auf Resonanz ist nicht zulässig. Es muss also darauf verzichtet werden, die max. mögliche Leistung für die Messeinrichtung herauszuholen. Da aber die Kapazität der Kondensatorklemmen viel grösser ist als bei anderen Klemmen, ist die verfügbare Leistung bei dieser Klemmenart verhältnismässig gross, so dass man hier auf die Resonanzschaltung verzichten kann, ohne dass die dadurch erlittene Einbusse unerträglich wird.

Diese Ueberlegungen zeigen, dass die Einstellung der Einrichtung grosse Kenntnisse und Erfahrung beansprucht, um die Fehlerquellen des Betriebes alle zu berücksichtigen.

Die Betriebserfahrungen scheinen mit diesen Ueberlegungen gut übereinzustimmen; sie werden z. B. von Niethammer folgendermassen charakterisiert: «Das Urteil der Praxis ist vorläufig noch nicht übereinstimmend; in mancher Anlage kann man parallel schalten, in anderen nicht» 2). Mit anderen Worten, es kommt sehr auf die richtige Einstellung an, und der Typ, bzw. die Kapazität der Durchführung dürfte jedenfalls auch von massgebendem Einfluss sein.

#### 3. Einrichtung mit elektrostatischen Instrumenten.

Für einen kapazitiven Spannungsanschluss, wie eine Durchführung, ist es gegeben, elektrostatische Instrumente zu verwenden; denn die unter 2) erwähnten Fehler, bedingt durch Serieschaltung von

<sup>2)</sup> E. u. M. 1928, Heft 1, S. 13, letzte Zeile u. ff.

Kapazitäten mit Induktivitäten kommen dabei nicht vor.

Diese Methode bedingt aber die Verwendung eines elektrostatischen Synchronoskops. Ein solcher Apparat wird von der Micafil A.-G., Zürich-

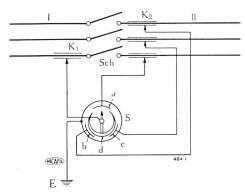



Fig. 3.

Fig. 3.

Statisches Synchronoskop angeschlossen an die Durchführungen eines Schalters.

I, II Zu synchronisierende Netze.
Ki, K2 Kondensatorklemmen mit Messbelag.
Sch Schalter.
S synchronoskop.
a, b, c Segmente des festen Systemes des Synchronoskopes, an welche das statische Drehfeld des Netzes II durch die Klemmen K2 angelegt ist.

d Bewegliches System, an welches die Spannung des Netzes I durch die Klemme K1 geführt ist.

E Erde, mit welcher das Gehäuse des Synchronoskopes verbunden ist.

Altstetten angewendet. Er besteht nach Vorschlag von Sieber aus einem festen und einem beweglichen System. Das feste System ist prinzipiell in 3 Segmente aufgeteilt und durch Anschluss

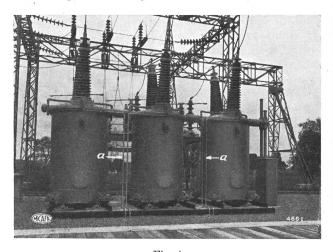



Fig. 4. 150-kV-Oelschalter im U.-W. Rathausen mit den Anschlüssen a für das Synchronoskop Fig. 5.

an 3 Hochspannungsklemmen wird in ihm ein statisches Drehfeld erzeugt (Fig. 3). Das bewegliche System wird über eine Klemme mit den zu synchronisierenden Netzteilen verbunden. Sind die Spannungen der beiden Systeme nicht synchron, so dreht sich das bewegliche System fortlaufend in der einen oder anderen Richtung, je nach dem Schlupf der beiden Spannungen. Bei Synchronismus steht der Zeiger still, und wenn die Phasen der beiden zu synchronisierenden Netzteile übereinstimmen, steht er in einer bestimmten Stellung, genau wie bei einem elektrodynamischen Instrument, und der Schalter kann geschlossen werden 3). Für den Schaltwärter besteht also kein Unterschied, ob er mit einem elek-

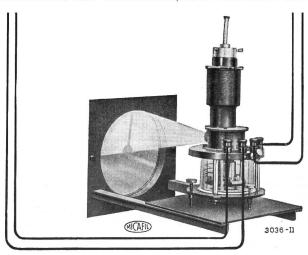
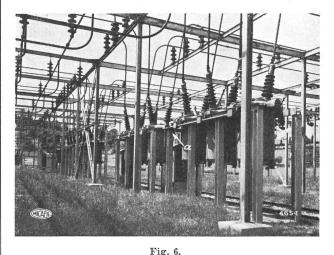
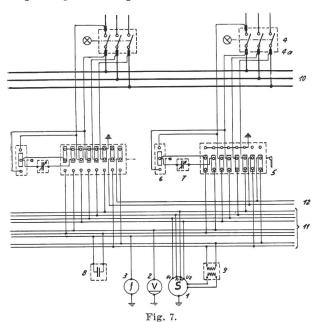




Fig. 5. Elektrostatisches Synchronoskop mit den vier Anschlussleitungen (a in Fig. 4).

trostatischen oder einem elektrodynamischen Instrument eine Synchronisierung vornimmt. Das statische Instrument ist sehr robust und hat einen minimalen Energieverbrauch, so dass es direkt an den Klemmen der kapazitiven Kopplung, ohne Verstärkung oder andere Kunstgriffe, angeschlossen werden kann. Es muss nur dafür gesorgt werden, dass die Spannung am Synchronoskop innerhalb zulässiger Grenzen




U.-W. Brislach (50 kV). a Anschlüsse für das elektrostatische Synchronoskop.

liegt. Dies wird durch Anschluss einer Kapazität zwischen Messbelag und Erde erreicht, welche meistens im Anschlusskabel zwischen der Klemme und dem Instrument enthalten ist, so dass keine zusätzliche Kapazitäten nötig sind.

Fig. 4. zeigt einen 150-kV-Oelschalter im Unterwerk Rathausen der Schweizerischen Kraftübertra-

<sup>3)</sup> Siehe Palm-Rump, Bull. SEV 1931, Nr. 6.

gung A.-G., mit den Anschlüssen für das elektrostatische Synchronoskop. In den vier Röhren «a» sind die vier Anschlussleitungen des Synchronoskops (Fig. 5) verlegt.



Anschluss von elektrostatischen Instrumenten an die Mess-beläge von Oelschalterklemmen.

Elektrostatisches Synchronoskop. 2 Elektrostatisches Volt-1 Elektrostatisches Synchronoskop. 2 Elektrostatisches Voltmeter. 3 Elektrostatischer Frequenzmesser. 4 Dreipolige Oelschaltergruppe. 4a Elektrostatischer Spannungsteiler, d. i. Klemme mit Messbelag. 5 Walzenumschalter mit abnehmbarem Griff. 6 Walzenumschalter mit festem Griff. 7 Vorschaltkondensator für das Voltmeter (dient zur Korrektur der durch die Kapazität des Messkabels bedingten Spannungsdifferenzen). 8 Vorschaltkondensator für den Frequenzmesser (dient zur Korrektur der durch die Kapazität des Messkabels bedingten Spannungsdifferenzen, ist aber nur beschränkt nötig.) 9 Liehttransformator zum Synchronoskop. 10 Hochspannungs-9 Lichttransformator zum Synchronoskop. 10 Hochspannungs-sammelschienen. 11 Hilfssammelschienen. 12 Hilfsstromquelle.

Es ist nicht nötig, beide Seiten des Synchronoskopes an kapazitive Spannungsteiler anzulegen; auch ein Anschluss an einen Spannungswandler ist natürlich ohne weiteres möglich und unter Umstän-

den zweckmässig. Wie einleitend gesagt, sind in vielen Fällen Spannungswandler an den Sammelschienen vorhanden, an welche die dreiphasige Seite der Synchronisier-Einrichtung angeschlossen werden kann, während die einphasige Seite von einem in dem zu synchronisierenden Anlageteil vorhandenen kapazitiven Spannungsteiler gespeist wird, so dass ein Spannungswandler in diesem Anlageteil überflüssig ist. Fig. 6 zeigt das 50-kV-Unterwerk Brislach des E. W. Basel, welches so angeordnet ist und als mustergültig gelten kann. Es sind im ganzen 7 Oelschalter mit Anschlüssen für ein elektrostatisches Synchronoskop ausgerüstet. Was diese Anlage kennzeichnet, sind die kaum sichtbaren Kabelanschlüsse «a» an einem Schalterpol sowie das Fehlen sämtlicher Spannungswandler an den abgehenden Lei-Die dadurch erreichten Ersparnisse sind nicht allein durch Weglassen der Spannungswandler, sondern auch durch Ersparnisse an Raum, Isolatoren, Leitungen, Eisenträgern usw. bedingt, welche sich besonders für höhere Spannungen bis zu ganz erheblichen Beträgen summieren. Dazu werden die Anlagen bedeutend einfacher und übersichtlicher.

Die Betriebserfahrungen mit dem elektrostatischen Synchronoskop sind einwandfrei. Der Apparat wird ohne Anstände oder Schwierigkeiten vom Klienten selber, ohne Beiziehen des Lieferanten, installiert und in Betrieb gesetzt und hat bisher in keinem Fall zu Beanstandungen geführt.

Zu einer vollständigen Synchronisiereinrichtung gehört nicht allein ein Synchronoskop, sondern auch ein Voltmeter und ein Frequenzmesser, welche ebenfalls in elektrostatischer Ausführung erhältlich sind und sich dem statischen Synchronoskop gut anpassen. Fig. 7 zeigt eine solche Einrichtung mit Synchronoskop, Voltmeter, Frequenzmesser usw. Diese Instrumente sind umschaltbar, so dass sie beliebig an einen der zu synchronisierenden Anlageteile gelegt werden können.

# Technische Mitteilungen. — Communications de nature technique.

### Le chariot électrique sur les patinoires artificielles.

629.113.65:725.261

L'assemblée de discussion de l'ASE 1), tenue au printemps 1933 à l'Ecole polytechnique fédérale de Zurich, donna une impulsion sensible au véhicule à accumulateurs en Suisse, comme on le constate facilement par le nombre de ces véhicules mis en service depuis lors. Les voitures de laitiers, dont il était déjà question à ce moment-là, ont subi des perfectionnements et sont maintenant fort appréciées; en outre, si au début c'étaient surtout des petites laiteries qui s'en servaient, elles finirent par s'introduire également dans les gros établissements laitiers. Cette note complémentaire est consacrée au chariot pour patinoires artificielles.

La mentalité sportive du public se répercuta ces dernières années par la création de patinoires artificielles dans plusieurs grandes villes, afin de pouvoir patiner tout l'hiver par n'importe quel temps. Le patinage artistique et le hockey sur glace prirent un essor considérable, ces disciplines posant des exigences toujours plus fortes quant à la qualité de la glace. La machinerie pour la production de la glace

1) Voir compte rendu, Bull. ASE 1933, No. 24.

ne suffit plus à elle seule; on exigea aussi un travail mécanique de la surface glacée. Tandis qu'à l'étranger on utilise à ces fins les différents engins - chasse-neige, balai rotatif et rabot - en combinaison avec des tracteurs à essence, en Suisse on employa pour la première fois à la «Ka-We-De» (patinoire artificielle) de Berne un tracteur à accumulateurs électriques, et ceci avec un excellent résultat. Les qualités principales, la marche silencieuse, la suppression absolue des gaz d'échappement, la grande mobilité et la possibilité d'utiliser l'énergie de nuit à très bas prix, se sont avérées de beaucoup supérieures à tout ce que peuvent offrir les tracteurs à essence. A cela il faut ajouter les autres avantages propres à tous les véhicules à accumulateurs, telles la simplicité de surveillance et d'entretien, l'insensibilité au froid, la propreté, etc.

Les figures 1 à 3 illustrent l'emploi des tracteurs électriques pour l'entretien des patinoires artificielles de Berne et de Bâle. En voici une brève description:

Un moteur série de 7,5 kW fortement surchargeable entraîne, au moyen d'un réducteur à vis sans fin et d'un différentiel logés dans un carter, les deux roues motrices munies