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La courbe d'échauffement exacte et universelle.
Par R. Jaques, Aix-les-Bains. 621.3.017.7

Le calcul pratique des échauffements nécessite souvent
la connaissance de la courbe d'échauffement exacte. La courbe
classique ne permet cependant pas de tenir compte des facteurs
qui varient avec la température, tels que le coefficient de
transmission de la chaleur, ou la résistivilé du cuivre. L'auteur

décrit la construction de courbes qui répondent à ces
exigeances. Puis il montre comment, pour un mode de
refroidissement déterminé, il n'est besoin de tracer une fois pour
toutes qu'une seule courbe-type qui, moyennant un diagramme
fort simple, interprétera tous les problèmes courants de
réchauffement des machines électriques. Des cycles complexes
peuvent ainsi être facilement résolus.

Zur Berechnung von Erwärmungen elektrischer Maschinen
ist in der Praxis oft die Kenntnis der genauen Erwärmungskurve

nötig. Die Kurve der klassischen Erwärmungsgleichung
erlaubt jedoch nicht, denjenigen Grössen Rechnung zu tragen,
welche mit der Temperatur ändern, z. B. der Wärmeüber-
gangszahl, oder dem Kupferwiderstand. Im folgenden wird
die Konstruktion von Kurven abgeleitet, welche alle diese
Einflüsse berücksichtigen. Ferner wird gezeigt, wie, für eine
bestimmte Kühlungsart, ein- für allemal eine ICurve gezeichnet

werden kann, die mit Hilfe eines einfachen Diagrammes
die Lösung aller praktischen Erwärmungsprobleme der
elektrischen Maschinen ergibt. Komplizierte Erwärmungszyklen
können damit leicht gelöst werden.

L'étude de l'échauffement des machines
électriques et des transformateurs travaillant en
surcharge ou avec de fréquentes variations de charge,
au moyen des formules connues, demande de
multiples opérations si l'on veut suivre les variations
progressives de la température avec une précision
suffisante. C'est le cas surtout dès que l'échauffement

ne suit plus exactement la courbe classique
_ t

définie par la formule # doo (1 — e T), p. ex.
pour le refroidissement naturel d'un appareil. Pourtant,

lorsqu'il s'agit d'un cycle de charges imposé,
il est indispensable, pour le constructeur aussi bien
que pour l'exploitant, de suivre la courbe de
température à travers tout le cycle pour se rendre
compte où se trouve la meilleure solution des
problèmes qui se posent.

Si les courbes de température sont assez faciles
à construire pour le cas classique où le coefficient
de transmission de la chaleur reste constant, il n'en
est plus de même lorsqu'il varie avec la température.

Nous nous proposons dans cette étude d'indiquer

la construction de courbes universelles qui,
établies une fois pour toutes, seront applicables
telles quelles à tous les cas de la pratique, et cela
avec une précision rigoureuse quelle que soit la
loi de l'échauffement. Ces courbes nous permettront

de tenir compte également d'autres facteurs
qui varient avec la température, tel que p. ex. la
résistivité du cuivre, dont la variation entraîne une
variation des pertes.

A. Courbe pour un coefficient de transmission
de la chaleur constant.

On a l'équation classique

0 (1— e-~S (1)

0 étant l'échauffement qui s'établit après un temps
t, » la température finale pour une durée indéfinie

du régime, T la constante de temps.
Cette équation permet de tracer la courbe

d'échauffement bien connue.
A chaque cas qui se présentera avec un $oo ou

un T différents correspondra une autre courbe.
Cependant toutes ces courbes peuvent être réduites
en une seule; autrement dit, nous pouvons dessiner
une courbe qui à elle seule représentera la courbe
d'échauffement pour n'importe quel cas, quitte à
conformer chaque fois les axes du système des
coordonnées aux nouvelles données.

A cet effet nous écrirons l'équation (1) sous la
forme suivante

4- =in—V <iMs)

et nous tracerons la courbe dans un système de

coordonnées rectilignes ayant pour abscisses-L^et pour
0

ordonnées -q— (fig. 1). Dans le quadrant I du sys-
V oo

tème figure un rayon {J portant une graduation en
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degrés de température, et dans le quadrant III un
rayon t portant une graduation en heures, établie

à la même échelle que la graduation de sur l'axe

X. Parallèlement à l'axe X nous tracerons une

horizontale par le pointy — 1.
1/oo

Le point d'intersection du rayon ß avec g,^marquera

sur la graduation une température qui sera,
par hypothèse, la température finale ß^ du
régime; alors, une horizontale par un point P
quelconque de la courbe indiquera sur le rayon ß la
température instantanée ßi, tandis que la verticale

par P indiquera sur l'axe X la valeur du

correspondant, puis sur le rayon t directement le temps
tj, étant entendu que ce rayon devra former avec

l'axe X un angle ß dont le cosinus soit égal ~.
Nous allons exposer ci-après l'établissement et

l'utilisation pratique d'un diagramme, illustré par
un exemple.

On travaillera avantageusement avec un
graphique omnibus qu'il suffira de compléter, dans
chaque cas, par les deux rayons ß et t qui feront
fonction d'axes des coordonnées pour la lecture de
la courbe. Ce graphique omnibus contiendra (voir
le tracé en traits pleins de la fig. 2) les axes du
système cartésien, X et Y, portant les graduations

Courbe d'échauffement pour un coefficient de transmission
de la chaleur constant.

indiquées dans la figure. L'échelle qui convient le
mieux pour la graduation ß est, pour nos besoins,

ß
celle choisie dans la fig. 2, où le point ~^—= 1 coïncide

oo

avec la division N 50. S'il y a lieu on inscrira
une deuxième échelle. Des cercles concentriques
établiront la graduation collective pour tous les

rayons ß et t. Après cela on inscrira la courbe
universelle suivant l'équation (lbis), avec son asymptote,

savoir l'horizontale gß^.
Munis de ce graphique omnibus nous allons

maintenant étudier divers problèmes de la pratique.

a) Echauffement pendant une surcharge (fig. 2).

Supposons qu'un transformateur d'une puissance
nominale de 5000 kVA ait en pleine charge des pertes

fer de 18 000 W et des pertes cuivre de 54 000 W :

que le refroidissement du transformateur soit artificiel,

p. ex. par circulation d'huile dans un réfrigérant

continue à pleine charge. Quelle serait la température

finale de l'huile pour une surcharge de 20 %,
et pour combien de temps pourra-t-on admettre
cette surcharge, en partant du régime à pleine
charge, sans que l'échauffement de l'huile dépasse
60°? On désirerait avoir une courbe de l'échauffement

en fonction du temps.
Le poids total sans huile est de 8700 kg, le poids

de l'huile 2700 kg. On en calcule la capacité de
chaleur à C 0,12 • 8700 + 0,5 • 2700 2400 Wh
par degré.

Les pertes totales en marche normale sont:
Pn 18 000 + 54 000 72 000 W, et pour la sur¬

charge
Ps 18 000 + 78 000 96 000 W.

ß„ désignera la température normale de l'huile
correspondant à la dissipation des pertes normales
Pn (ici 50°).

On détermine et T définis par

Ä» A T=-£-, (2,

où K est le coefficient de transmission de la chaleur,
pour toute la surface contribuant au refroidissement,

en watts par degré.
On trouve ß^ 66,5° et T 1,67. Les points

d'intersection des cercles graduateurs pour ß 66,5°

et t 1,67 avec resp. la verticale par ~ 1

fixent les axes ß et f.
On veut limiter l'échauffement à 60°; nous trouvons

sur le diagramme qu'à l'intervalle 50°—60° de
l'axe $ correspond la portion E50 — ECl0 de la courbe,
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et l'intervalle t50 — 160 de l'axe t. Ce dernier
mesure un temps t 1,6 heure.

Pour donner la courbe d'échauffement demandée
il ne reste qu'à reproduire la portion E50 — Eß0 de
la courbe à une échelle appropriée.

Le diagramme a sur le calcul l'indiscutable avantage

de permettre de se rendre compte immédiatement

du résultat à attendre d'un changement de K
ou de C.

Dans les figures qui suivent nous n'avons plus
représenté les parties du graphique omnibus qui ne
sont pas nécessaires aux explications.

b) Refroidissement et service intermittent (fig. 3).

Pour la courbe du refroidissement pur, c'est-à-
dire après coupure de toute charge productrice de

chaleur, on a la formule classique

d - d0e — ~Y ou -jt ln A
d (3)

Cette courbe sera inscrite dans le graphique de
la même manière que la courbe d'échauffement
vue au chapitre a).

Pour l'étude du service intermittent les deux
courbes — échauffement et refroidissement — se

SA. V-

Y

1 s
\ jVl

pN 1

//*\/ / / \Il' \it \/ ' \1 1 \'
60 50 W 30 20 10 0

S£V*S+5

Fig. 3.

Diagramme pour un

service intermittent.

Xi\\ i

\

X

trouveront inscrites dans un même diagramme
(fig. 3).

Supposons que le transformateur de notre
exemple ait à supporter un fonctionnement
comportant une surcharge de 20 % entrecoupée d'intervalles

de repos complet (la température maximum
admise dans l'huile est de 60°) et que la durée de la
marche en surcharge soit de 2 heures.

Les axes & et t sont construits comme il a été dit
au chapitre a). On tire ensuite l'horizontale 60°—-
Ego, la verticale E60 — f60, l'on fait t60 — tx égal
2 heures, puis on tire la verticale tx —- Ex et
l'horizontale Ex — êx. U résulte une température êx
45°, jusqu'à laquelle il faut laisser le transformateur
se refroidir. Le temps nécessaire à ce refroidissement

est mesuré sur l'axe t entre les verticales Rx —
C et Reo — tf0 égal à l/2 heure. Ex — E60 et Rx —
Rno sont les portions de courbes correspondant aux
périodes d'échauffement et de refroidissement.

c) Refroidissement durant une charge réduite, fig. 4.
Cycle de charges alternantes (service périodique),

fig. 5.

En désignant par Pr les pertes pour la marche à
charge réduite, et par dr la température finale après
une durée indéfinie de cette charge, on a

P. C
dd

~dT Kû

ce qui donne comme solution

t
~T~

ln d0-dr
d — dr

(4)

Cette équation est semblable à celle du
refroidissement pur (éq. 3), il suffit de remplacer dans

Y 1

i

ii 4

< iT
0 X

Fig. 4.

Refroidissement

après une réduction

de charge.

cette dernière #0 par d0—t)r et t) par ü — dr, pour
pouvoir utiliser la même courbe.

Dans la fig. 4 la courbe 2 est identique à la
courbe 1, mais décalée de êr dans le sens des
ordonnées. La courbe 2 réalise dans sa partie
dessinée en trait gros, en adoptant la nouvelle origine
rt) ^ i ^0 7

(^0 ^r
U 1 equation 7p= ln In -

d-dr'
Dans la

différence des
y pour deux points quelconques de la

courbe la position de l'origine O' sur l'axe X'
n'intervient pas. Mais rappelons que nous avons affaire

Fig. 5.

Echauffement et

refroidissement pour
un service périodique

ici avec une particularité de la courbe logarithmique,

de sorte que ce procédé n'est pas applicable
sans autre à d'autres courbes.

Nous allons appliquer ce résultat à notre exemple
(fig. 5). Supposons qu'après une marche pendant
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un certain temps à 6000 kVA la charge se trouve
réduite à 4000 kVA. Les pertes qui étaient de 96
kW pour 6000 kVA deviennent 18 + 34,5 52,5
kW pour 4000 kVA. La température maximum
admissible dans l'huile étant 60°, la température finale
pour une marche de durée indéfinie à 4000 kVA

P P
serait #.= -=Z, où K - soit 36,5".

K i)n
Nous réunissons de nouveau la courbe de

refroidissement avec la courbe d'échauffement dans un
système d'axes commun, mais en décalant la courbe
de refroidissement parallèlement à elle-même jusqu'à
ce que l'axe de ses abscisses se trouve à la hauteur
du point êr de l'axe #, — cet axe ayant été repris
de la fig. 2, de même que l'axe t. — Dans cette
position réciproque des courbes, les conditions de
marche peuvent être aisément contrôlées.

En tirant l'horizontale par t= 60° et une
horizontale i quelconque, on délimite les portions de
courbes Em — E; et Rm — iî(-, et l'on obtient le
temps nécessaire pour les parcourir en tE et t!(. La
durée de la marche à 6000 kVA devant être de
2 heures, la position de l'horizontale i est déterminée

par tE; puis tR indiquera la durée minimum de
la marche à 4000 kVA nécessaire pour ne pas
dépasser 60° durant le cycle. A la fin de cette période
on a la température $,- 45,5°.

B. Courbe d'échauffement pour un coefficient
de transmission de la chaleur variable avec la

température.
La courbe d'échauffement classique que nous

venons d'étudier ne convient plus dès que le
coefficient de transmission de la chaleur n'est pas constant.

Dans ce qui suit nous allons étendre notre
étude aux cas où ce coefficient varie en fonction
de la température.

Nous allons d'abord déduire les formules qui
vérifient cette condition.

Tandis que pour un coefficient constant nous
avions l'équation différentielle classique

p c4t- + k* <5>

il nous faudra écrire, pour un coefficient variable
en fonction de la température

P C
dd
dT -+- k f ($) d (6)

Cette forme fondamentale de l'équation
différentielle de réchauffement est valable pour tous
les régimes; elle se spécialise sous les formes énu-
mérées ci-dessous pour les trois cas que nous avons
déjà distingués plus haut.

I. P C
dtf
"dT k f (d) d

pour une période d'échauffement,

ddII. 0 C
dt u f (ß) d

pour une période de refroidissement pur,

d dIII. Pr= C
dt u f (d) d

pour une période de refroidissement sous une
charge réduite, ou à vide après une marche en
charge.

Les équations I et III ont la même forme, mais
à l'intégration leurs solutions deviendront
différentes l'une de l'autre, parce que le rapport de la
température instantanée à la température finale
qui constituera la variable indépendante, est pour
I, < 1 et pour III, > 1.

d) Courbe d'échauffement (équation I).
Nous introduirons, dans les développements qui

suivent, deux termes de référence analogues à ceux
employés dans les formules classiques de réchauffement,

savoir $oo qui est la température finale pour
une durée indéfinie du régime envisagé, et T qui
est la constante de temps. Mais cette dénommée

C
constante de temps, qu'il faut définir par T=—Kr n'a plus à présent une valeur constante tout.
u f (d)
le long de l'échauffement, mais elle est une fonction

de la température. Nous définissons comme
constante de temps, pour les besoins de notre
courbe, la valeur bien déterminée subsistant à la
température finale #oo, et posons

TM. oo
n f (#*>)

et
k i (fU (7)

En développant l'équation I et en introduisant
les relations (7), il vient

_
f d#- JT^F

ou x —

(x)

et F (x)

avec F (x) < 1, (8)

di {d)

ft- f <0„)

Cette intégrale n'a mie solution définie que pour
certaines formes de la fonction F(x). On obtient

dVpar exemple avec F(x) x2

t f dx
tZ 3 i-*2 2Ir £g (x)

Par contre l'intégrale (8) peut en principe
toujours être résolue par un développement en série.
F(x) étant < 1, on a

$<1+F + lF (*)]2+ [F (,)]• +...) d x

Ce développement est valable pour une fonction
F(x) <1 quelconque. Pour une fonction de la
forme F(x) — x<* on a
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X

"2^ ^(1 +*«4-*2*-f-*3<*-!- ....)dx
0

et l'on obtient finalement

TXT[(2a + l
1Y&J

ß Y
ïZ) (9)

La série converge très rapidement pour de faibles
fi

valeurs de mais pour les valeurs plus élevées
U oo

on aura avantage à utiliser le théorème des
accroissements finis.

Nous allons indiquer la marche à suivre pour le
calcul, avec a 1,25 à titre d'exemple.

/ ß Y'25
On a avec F(x) =x1,25 - J

(Öl—=nÄn[(ä"H4,75
(9bis)

En vue de se rendre compte de la grandeur de
l'erreur possible, lorsque la série est arrêtée avec le

on détermine la va-membre
n a —(— 1

leur limite de R, qui est trouvée
[(âï-

R < n a -)- 1

(£f
-( ß Y

ßZ)
c'est-à-dire que l'erreur est plus petite que le
dernier membre dont il a été tenu compte, multiplié

(~
par

-dï
Quatre membres de la série suffisent pour

calculer =—à 0,1 % près, si 1,25 et cela pour des
^ oo

ß
valeurs de allant jusqu'à 0,5. Pour les valeurs" oo

plus élevées nous aurons recours au théorème des
accroissements finis.

ß\
- I, on a
o/

-=— étant une fonction f
oo <?o

f,( — + 0
V oo XJ oo/ v,

ß

Sur l'étendue de la courbe qui pratiquement
nous intéresse, on obtient une précision suffisante
en admettant pour 0 la valeur V2, à condition que

ß
les espaces A -5— soient suffisamment réduits. Mais

XJ oo

nous pouvons aussi déterminer la valeur exacte de
ß

0, ce qui nous permettra de choisir les A-^~ à notre
gré.

ß
En écrivant, pour abréger, li pour A-^~, et x pour

ß
-q—, on a
$00

f (x 4-h) — f (x) f' (x 4- 0 h) h

en introduisant (éq. 8) les fonctions

djcf (x)

il suit

f (x + h) - f (x) — h.
1 -{x + 0h)°<

En différentiant cette équation selon x, on obtient

f'(x + ft) f (x) ~1_(x + h)« 1— x»

{x+0h)«-i / d (0h)\
a fl-(x+ 0h)«Y \ d*

les intervalles h sont momentanément présumés

égaux, pour éviter un membre avec ^— ; du même

faitd^0h)devient négligeable; son influence, mi-
d x

nime, est d'ailleurs facile à contrôler en fin de calcul.

De ce fait l'équation se réduit à

(X + h)" — x" a (x + 011)«-

[1 — (x + fc)«] (1 — x«)h [1 -(X±0h)«]2
Pour éliminer la différence (x + h)<*—xa qui se

compose de deux valeurs sensiblement égales, on
/

peut écrire (x + h)<* sous la forme x<*l 1-| J Ce

terme peut très bien être remplacé par x* ^1 -(- a ^

étant donné que la valeur de — ne dépassera guère

un dixième. Il suit

C<* (l + a — x<*

h\ '

1—x- 1 + a — 1 —xa h
V x)

a x<*- ^1 + (a — 1)
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"r('+4) 1 — JC«

l+(o —1)
0h

/, 0h\

(9 h
La valeur du terme 1 + (a —1 est très voi-

*
sine de 1 pour les valeurs que peuvent prendre ici
les éléments a, © et h. On peut le négliger et
l'on obtient après quelques transformations

0 a — ]/(a — 1) a avec a - — (10)
h

X" a —

Cette expression peut être encore transformée
avantageusement. A cet effet on la mettra sous la
forme

221-(1 1
a \ a J a

Les valeurs de © se trouvant assez voisines de
Z2 pour des espaces h pas trop grands, on posera

Fig. 6.

Valeurs de 0 dans le théorème
des accroissements finis,

appliqué au calcul de la courbe
d'échauffement, pour a — 1,25.

© 0,5 + 0' ce qui permet d'augmenter notablement

la précision du calcul. Il vient

(2a —1) 0'—0'2 O,25

0'2 est négligeable par rapport aux autres
termes, ce qui fait obtenir finalement

0'
8 (a — 0,5)

et 0 0,5 + 0' (11)

Dans la fig. 6 la valeur de 0 est représentée en
fonction de x pour plusieurs valeurs de h.

La courbe d'échauffement ainsi calculée pour
a 1,25 est représentée dans la fig. 7. A titre de

Fig. 7.

Courbes
d'échauffement et de
refroidissement pour

un coefficient de
transmission de la

chaleur variable avec
la température
suivant la loi

comparaison ont été également inscrites dans cette
figure les courbes pour a — 2 et pour a 1, cette
dernière étant la courbe d'échauffement classique.

L'utilisation de la courbe est illustrée par la
fig. 8.

Exemple: Soit à construire un transformateur
de 400 kVA destiné à un réseau de traction. La
température ambiante peut atteindre 50°; on admet
pour la marche à pleine charge un échauffement

limite de l'huile de 40°. Le transformateur devra
pouvoir supporter une surcharge de 50 % pendant
2 heures sans que l'échauffement de l'huile dépasse
50°. Le refroidissement sera naturel.

Le projet fait ressortir des pertes fer de 2,8 kW
et des pertes cuivre de 5,7 kW, soit des pertes totales
de 8,5 kW en marche normale. Les pertes totales
résultent à 15,6 kW pour la surcharge de 50 %.
On a calculé une capacité de chaleur de 820 watt-
heures par degré.

L'échauffement final que l'huile atteindrait
après une durée indéfinie de la surcharge se
calcule à

P„
<* d.

15,6
8,5

40 650

Le cercle graduateur 65° marque sur le point
#oo; le rayon que l'on fait passer par #oo constitue
l'axe # (fig. 8).

D'autre part on a

Pj 15 600

Tx oo

65

820
"24Ö"

240 W/degré et

3,42 h.

Le point d'intersection du cercle graduateur t
t

3,42 avec la verticale= 1 fixe l'axe t. La forte

obliquité de l'axe t le rend incommode pour les
constructions à effectuer. Par contre le point

d'intersection du cercle avec la verticale -=-=3 fournit
t *

l'axe -x- sur lequel on pourra porter plus aisément
o

les valeurs de t à l'échelle J/3.

Fig. 8.

Diagramme de
l'échauffement pour

un coefficient de

transmission de la
chaleur variable avec

la température.
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Notre courbe universelle pour a ^=1,25 représente,

avec les axes 0 et £ que nous venons de
construire, le régime exact de la température.

Nous aurons, en partant de la température
initiale # 40° sur l'axe 0, le point Ei0 de la courbe
et de là le point t4a sur Taxe £. Nous avançons sur
l'axe £ d'un intervalle ti0 — tx 2 heures. Au point
tx correspondra le point Ex de la courbe et le point
0A. sur l'axe 0. i)x indique une température de
53,5°. Nous constatons que dans notre projet réchauffement

limite se trouve dépassé et qu'il est à
remanier. Mais grâce à notre diagramme nous
pouvons aussi nous rendre compte immédiatement
pendant quelle fraction de temps la température se
trouverait au-dessus de la limite.

Des relations géométriques entre les données qui
interviennent dans l'écliauffement sont esquissées
en traits mixtes, à l'aide desquelles on suit aisément
l'effet d'un changement de ces données.

e) Courbe de refroidissement.

L'équation différentielle II du refroidissement
pur était

d0
0 C

d £
k f (0) 0

nous introduisons la constante de temps valable à
la température initiale 0O, savoir

T0

et obtenons
K f (0O)

f (0„) d 0

(12)

0 f(0)
avec les symboles

0
- — d £

il vient

A
T"i / \ 0 f (Ö)

* ~~
0O

Ct (X) ~ fW
X

%= "Sfw ' °ù f (x) <1 (13)

pour les fonctions de la forme F(x) •=x* que nous
avons à considérer ici, la solution est donnée par

£ 1 1 1 f 1 l)
«H 1 R 1 h-' T8H x «-1 U-1 /

soit pour x —jr—
00

a—1 (14)

Pour les deux cas a 1,25 et a 2 que nous
avons choisis comme exemples dans le cadre de cette
étude, l'équation (14) devient

/» /-s— \ rzs* mrs

r 4 M/"^ lj Pour a 1,25 f (14"«)

ïjr 1 pour « 2±o
0 (14*«)

Il est à remarquer que la courbe de refroidissement

n'est plus, ici, l'image réfléchie de la courbe
d'échauffement, tel que cela se présente, comme on
sait, pour les courbes classiques (voir la fig. 7).

Faisant suite à notre dernier exemple, nous voulons

examiner jusqu'à quelle température le
transformateur se refroidira pendant 3 heures de repos.

f) Refroidissement durant un régime à charge
réduite. — Service périodique.

En partant de l'équation III que nous avons
établie pour ce cas, et qui dans sa forme était analogue
à l'équation I, nous pouvons adopter le développement

suivi pour cette dernière, et obtenons

_ f dx
J l-F(x)

mais avec F (;t) )> 1, (15)

où Tr est la constante de temps à la température
finale 0r, vers laquelle tend le régime à charge
réduite, et où

* -4-, F (x)
0 f(0)
0,f(0,)

') Il est à noter que l'axe O—$o est le seul axe de
température qui puisse convenir pour le refroidissement à partir
d'une température i?o, et non p. ex. l'axe & [E] qu'on avait
pour l'écliauffement. Cet axe ne peut être utilisé que pour
les courbes où a — 1.

Fig. 9.

Diagramme du
refroidissement pour

un coefficient de
transmission de la

chaleur variable avec
la température.

La température maximum atteinte était 53,5°. Le
cercle graduateur pour 0 53,5°, coupe g^ en 0O

(fig. 9). O — 0O fera fonction d'axe de température
pour la période de refroidissement1).

L'axe £ du temps se construit par
\<x—1

Tar° =r- (i)°
l'indice n désignant le régime normal. Nous trouvons

après 3 heures de refroidissement une température

ßy 23,5°.
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Pour amener l'intégrale à une solution analogue

à I, nous substituons — à x. Avec F (*) xx nous
y

obtenons alors

t
T~r

if<*—1

a — 1

soit avec y-

2a —I'
0,

ir2 06—1

3a-l
ir3 06—1 +...

â

_L J_ ß)Tr a-1 \êj
06 — 1

a —1

1 (!-)+—•— ($
1 + 2 l + 3_+«/

a — 1

a—1

i (vx—1
a-l\dj V (H

cc — 1

(t) +
1 (T)

1 + 2 « VV
1. + 3 —

a — 1

1 + n =r
a — 1

î < i (!-)"" ^

3 <*

+ +

(16)

pour on a le terme analogue avec
Or

0«'

La courbe se calcule de la même manière que
la courbe d'échauffement, elle se trouve également
représentée dans la fig. 7. Cette courbe est établie
pour dr 50, et cela en faisant entrer dans le calcul
la première seulement des deux composantes de

l'équation (16). En effet, la deuxième composante,
qui n'est autre chose que la constante de l'intégrale,
se trouve annulée d'elle-même pour un nouvel axe
des ordonnées que l'on fait passer par le point de

la courbe qui correspond à où &„ est la tempé-
"0

rature initiale.

La courbe peut être utilisée pour n'importe
quelle valeur de ûn bien qu'elle soit établie pour
ûr 50. Il suffit de multiplier les valeurs de & par
50 0,

V car on a
d

50 50 ' .-J-c est-a-dire qu onv

trouve ainsi un point #" de la courbe qui corres-
0

pond au rapport donné Cette multiplication
s'effectuera automatiquement sur le diagramme.

Exemple: Supposons que le transformateur de

l'exemple cité plus haut doive supporter exceptionnellement

un régime forcé, alternant entre 2 heures
de pleine charge et 2 heures de surcharge de 50 %
(fig. 10).

Les axes $ et t pour la période d'échauffement
en surcharge ont été construits précédemment dans
la fig. 8 et peuvent être reportés de là.

La température finale en pleine charge, qui sera
désignée par #r, était 40". Nous traçons l'horizontale

r par le point &r 40 situé sur l'axe # et pla-

Fig. 10.

Diagramme du service périodique pour un coefficient
de transmission de la chaleur variable avec la température.

çons la courbe Rch du refroidissement en charge en
face de la courbe d'échauffement et à telle hauteur
que son axe XK se couvre avec l'horizontale r. Celle-
ci coupe le cercle graduateur 50 en H. Si nous
traçons un rayon O H et projetons sur lui
horizontalement l'axe #, nous pourrons y lire les

températures & multipliées par—, c'est-à-dire par ^. Il
nous suffira donc d'incliner l'axe Y^ de la courbe
de refroidissement jusqu'à être parallèle à O H, en
donnant une rotation au diagramme du refroidissement

autour du centre 0R, pour mettre l'échelle de
la courbe Rch en harmonie avec l'échelle des

températures lues sur l'axe d.
L'axe t pour le refroidissement sera construit

C C
avec Tr / o \ r Dans le cas présent

"(î:)"
on a &r &n.

Le tracé en pointillé de la fig. 10 représente le
cycle recherché. La température oscillera entre 47°

et 55,8°.
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C. Les courbes d'échauffement qui tiennent
compte de la variation des pertes cuivre en

fonction de la température.
La résistivité du cuivre des enroulements et avec

elle les pertes cuivre varient selon une fonction
presque linéaire de la température, exprimée
sous la forme q&= q0 (l + a0 9). Dès lors les pertes
cuivre deviennent

Pô=Pb (1+0*0) (17)

où ab est le coefficient de température du cuivre
pour la température de base b°,

Pb sont les pertes cuivre à la température b",
P$ les pertes cuivre à la température (b + #)°.

Nous avons à considérer
1° le refroidissement direct du cuivre dans le

milieu refroidissant qui le baigne,
2° le refroidissement de ce milieu lui-même

a) véhiculant des pertes cuivre seulement,
b) véhiculant des pertes cuivre et des pertes

fer, ces dernières étant constantes.

Nous examinerons en premier lieu le cas 1° qui
constitue un cas élémentaire, pour lier ensuite les
autres cas au premier par de simples relations.

Cas F. Le refroidissement du cuivre dans son
milieu refroidissant est exprimé par l'équation

P,, Pb(l-{-ab9) C
dû
HT H f {û) û (18)

b est ici la température du milieu refroidissant
baignant les enroulements, û 1'échauffement du
cuivre au-dessus de b.

Nous définissons de nouveau la température
finale et la constante de temps à la température
finale :

q
P<x> PbO- T ab Aoo) j,

C C
— K^o

~~ «f(i)
(19)

nous développons d'après (18) en introduisant (19),

f(0oo)&= l + T f(0.o) dû
î(û)û

'
1+0*0«, î(û)û

' dt +
avec les symboles

û 9 i {9) 1 +- ab 9t=f'FW= iTTUA' 0 (x) 1+0t^ (20>
9

il vient

9^i(9xy

h'\- d x
*(x) -F(x) (21)

Cas 2° a. Dans le cas que nous allons étudier ci-
après, l'échauffement 9 sera celui du milieu
refroidissant au-dessus de la température ambiante —
p. ex. dans le cas d'un transformateur à bain d'huile
celui de l'huile; dans le cas d'une machine munie
d'un circuit de ventilation fermé, celui de l'air au-

dessus de la température du réfrigérant d'air —.
Le cuivre se trouvera porté à un échauffement 9CU

au-dessus du milieu refroidissant — mettons ici de
l'huile —, soit 9 + 9CU au-dessus de l'ambiance. On
aurait, en conséquence, à remplacer dans l'éq. (21)

T T t \ I"i" tt/, 9 / <_\le terme 0 (x) — t _ Q Par un terme 0 (f)
1 +- Oo (Û +- 9CU)

1 -+ ab 9X

pour pouvoir appliquer ici cette
1 H~ ao ($oo+9cuoo)

1 11

équation. Désirant cependant conserver la forme
simple de 0 (x), nous prendrons comme température

de hase pour les pertes cuivre non pas
l'ambiante, mais l'ambiante plus #caoo. Ce faisant nous
convenons que le cuivre se trouve à son échauffement

final 9CUX au-dessus de l'huile pendant toute
la période considérée. En effet, en raison de l'ordre
de grandeur très différent des constantes de temps
pour l'échauffement de l'huile d'une part et celui
du cuivre d'autre part, on peut étudier ces échauffe-
ments indépendamment l'un de l'autre.

Dans des cas spéciaux, où les deux constantes de

temps seraient du même ordre de grandeur, on

pourra le plus souvent exprimer (9 + 9CU) par une
fonction approchante de 9, et écrire 9) (f)
1 H~ ao T(^)

en modifiant les développements qui
1 -+- a0 cp (û0o)

suivent, en conséquence.

Cas 2° b. Lorsque les pertes se composent de

pertes fer qui sont constantes et de pertes cuivre,
variables avec la température, nous formons le
rapport: pertes cuivre sur pertes totales, pour une
température de base b°,

Pb (22)
* b

les pertes totales pour une température 9 deviennent

alors
P# Pb (1+Pbab9) (23)

Nous obtenons ici également

t l d x4Too J 0 (x) - F (x)

1 4- Pb ab A

mais avec 0 (x)

9Î(9)
1 +- Pb ab fle¬

et F (x) - floo f {9H
(24)

c'est-à-dire nous possédons avec ces équations (24)
la formule généralisée pour les trois cas considérés.

Nous mettons 0 (x) sous une forme plus
commode

1 TPbabfl°° \ AT Pb «/,

Ao.

qui devient, en introduisant le symbole

Q Pb tt* Ûoo

Pb Üb floo +1
0 (*)=1— (1— *) ß

floo +-1

(25)
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Avec une fonction F (x) xx nous avons finalement

s- d x
(l-x») - (l-x)ß
dx 1f d x

[l-TbM
(26)

Le facteur - y) (*) est pratiquement

!—T—1~ß1—Jt*
constant sur de larges étendues de x, pour des ß
allant jusqu'à 0,4, valeur rarement atteinte. Nous
écrirons donc

1_ - R [ d *
Tœ J 1—x* (27)

où la constante B qui remplace ip (x) sera calculée

pour un x moyen de l'étendue envisagée.
On aperçoit tout de suite l'avantage de cette

formule qui permettra d'utiliser les mêmes courbes

que nous avons établies plus haut sans avoir tenu
compte de la variation des pertes cuivre avec la
température et pour lesquelles nous avions

f d x- 3 1-x«
Cette variation se traduira

premièrement par une augmentation de lY,
deuxièmement par une apparente augmentation de

la constante de temps qui devient B • T^.
On a pour la détermination de ^

P
d —foo rr

XV oo

rj
1 + Pb ab doo

(n> 1 -hPh ab dn

K.(^(!)"
où P fnJ sont les pertes totales du régime envisagé,
calculées avec la résistivité du cuivre à la température

{)„,
'dn est la température normale à la charge

normale,

désignant la température finale du régime,
calculée comme au chapitre d sans tenir compte
de la variation de la résistivité, il vient, en
introduisant

d' fn)

-(f)"""
'ht 1 +pbah iL

(28)
1 +pb ab dn

On aura avantage à établir un tableau donnant
lüoo en fonction de et de ph, ou bien de relever

sur un abaque qu'il est facile de construire
d'après (28).

On dispose encore des formules

P P' OO X

1 -\-pb abß
(n) 1 -\-pbabd,biK—K-(f)=If,2,)

pour calculer T00 =^. La multiplication de Tx
xV oo

par B se traduira par une simple rotation de l'axe t.
Notons qu'à pb et ab calculés pour la température

de base b définie pour chacun des cas 1° et 2°, on
peut substituer sans grande erreur pn et an, valeurs
correspondant à la température de marche normale
pour laquelle sont données les garanties de
l'appareil.

Ce que nous venons d'exposer pour réchauffement

est valable dans le même sens pour le
refroidissement sous une charge réduite; il n'y a qu'à
remplacer I?,*, dans les formules par #r.

D. Comparaison des méthodes de calcul en
usage.

Afin de fixer les idées sur les erreurs qui
peuvent résulter de l'application des différentes
méthodes de calcul en usage qui négligent l'influence
de l'un ou l'autre des facteurs variables avec la tem-

Fig. 11.

Comparaison des diverses
méthodes de calcul de la

température finale.
P,
Pn

1 tfoo 1

V Pn J L1+ ab 71b Un J

pérature, nous avons établi ci-après un tableau
comparatif des résultats obtenus avec elles d'une
part, et avec les formules exactes d'autre part.

Déjà la fig. 11 représente, en fonction de la réelle
température finale $oo, courbe 1 : la température
finale &«*, (« i) calculée d'après la formule clas-

P
sique #>=, "rT» courbe 2 : la température finale

* n

doo (« 1,25) calculée en tenant compte de la variation

du coefficient de transmission de la chaleur
/p Y'8

d'après la formule i)„ J pour le refroidissement

naturel, courbe 3 : la température finale
réelle en tenant compte, en outre, de la variation
de résistivité du cuivre et calculée d'après la

formule - dn sri+iw.
Ll -\-pbabdn

<*, avec pb — 0,75

et ab — 0,0034. Nous constatons les divergences
notables qui apparaissent dans le calcul de la température

finale.

Le tableau I se rapporte au calcul de^y, c'est-

à-dire de l'augmentation de température en de-
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grés par minute, pour l'huile d'un transformateur
soumis à une surcharge après une marche

continue à pleine charge. Elle a été calculée, premièrement,

pour le début de la surcharge où & 50°, et
deuxièmement lorsque réchauffement de l'huile a
augmenté de 10°, donc # 60".

Données:
Echauffement de l'huile en marche normale 0n —

50°,

Température ambiante 40°,
Rapport pertes cuivre sur pertes totales, à 75°, p75

0,75,
Pertes cuivre pour une surcharge de 25 % s= 1,56 X

pertes normales,
b 10 • 1,56°>8 + 40° 54° (échauffement normal

du cuivre 10°),

234,5 + 54
°'00347'

^ i
Ph 0,74, calculé au moyen de la relation^

l+a6(75—b). p75
1

formules classiques, donne des résultats absolument
erronés. On calculerait avec elle des durées de
surcharge admissibles qui seraient trop fortes de plus
de 50 %.

Les résultats se révèlent analogues pour le calcul
de l'échauffement du cuivre.

E. Conclusion.

Le fait d'introduire comme constante de temps
dans les équations de l'échauffement une valeur
invariable qui est celle existant à la température
finale, permettra de tenir compte d'une façon générale

des variations soit des pertes, soit du coefficient
de transmission de la chaleur, en fonction du temps
aussi bien qu'en fonction de la température, sous la
forme suivante

d xd t
T.: - (P) - F (K)

Tableau I.

dtf
dt feK] Kr] feHér-K>] pb ab dos

Pt,abdoo +1

IV

comme I

dos

Too

(en minutes)

dd
d t

(en degrés/min.)

50
50

»„•1,42 71

0,705

T1 n

èr-il

50
50

»„ • l,42oe 66

0,758

r.(tr
T„ 0,934

y:2"

50
50

\ • l,420,s r l 68,5
Li + Pb Ob d„ ]

0,73
/ d„ \<x —1

r-te) =r-°.925

"•21,1
n

50
50

comme II, 66

0,758

T1 n

_1_

Tx n

16

60 60 60 60
tfoo 71 66 68,5 66

d
Ûoo

0,845 0,91 0,875 0,91

Too T„ T, • 0,934 T„ • 0,925 Y
dtf
d t Y'11-* n

CO i—1O ^ 5,95
-* n

Il appert que si l'élévation de température par
minute est sensiblement la même au début, pour les
trois méthodes I, II et III, elle diffère de plus en
plus à mesure que la température augmente. Lorsque,

dans le cas présent, l'huile a atteint une
température de 60°, on trouve des valeurs trop défavorables

de 10 % si l'on calcule d'après la formule
classique, et trop favorables de 23 % si l'on calcule
en tenant compte de la variation du coefficient de
transmission de la chaleur seulement. Mais la
méthode IV, que l'on peut également rencontrer en
pratique et qui calcule la température finale en
tenant compte de la variation du coefficient de
transmission de la chaleur, et lui applique ensuite les

Si nous avons p. ex. une charge variable durant
la journée et donnée en fonction du temps, on

écrira pour les pertes P — P1@ ^ et on aura

d(0 *(£)
T~ K()-f(£)

La solution de l'intégrale sera toujours possible
par une intégration graphique. Mais en général les
courbes traitées dans cette étude suffiront en
pratique.
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