Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 25 (1934)

Heft: 18

Rubrik: Communications ASE

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

gehalten wird. Die praktischen Erfahrungen bestätigen diese Feststellung und haben dazu geführt, im allgemeinen die Verstimmung innerhalb bestimmter Grenzen zu halten. Für Netze mit sehr grossen Erdschlußströmen (500 A und mehr) dürfte etwa 5 bis 10 % als die oberste Verstimmungsgrenze zu betrachten sein. Wenn der Erdschlußstrom klei-

ner ist, kann die Grenze höher gelegt werden, ohne dass sie aber den Wert von 20 bis 30 % überschreiten sollte. Aus den Kurven ist schliesslich ersichtlich, dass bei Netzen mit grosser Ableitung die Verstimmung mit Vorteil kleiner zu wählen ist als in solchen mit kleinerer Ableitung, damit gleich günstige Löschverhältnisse vorliegen.

Technische Mitteilungen. — Communications de nature technique.

Indirekte Beleuchtung des Dufourplatzes in Zollikon. 698 971 7

In den nach modernen Gesichtspunkten angelegten Dufourplatz in Zollikon münden fünf Hauptstrassen, deren beachtenswerter Fahrverkehr auf diesem Platze durch Kreiselverkehr geregelt wird.

Der Platz, sowohl die Fahrbahnen als auch die umliegenden Trottoirs, werden von einem Beleuchtungsmast aus be-

Der Mast ist an den Zeitschalter der allgemeinen Strassenbeleuchtung angeschlossen. Vier Reflektoren sind teilnächtig, zwei Reflektoren sowie die Lampen für die Beleuchtung der Uhren, Wegweiser und Verkehrssignale durchnächtig geschaltet.

Die absolut blendungsfreie, dem Bedürfnis entsprechend verteilte Beleuchtung wird von Fussgängern und besonders von Autofahrern als angenehm empfunden. *H. Sameli.*

Masse:

Höhe des Reflexionsschirmes 12 m

Durchmesser des Reflexionsschirmes 3 m

Anzahl Reflektoren 6

Glühlampen 6 · 500 Watt

Durchmesser der Ver-

kehrsinsel 15 m

bei Nacht.

Fig. 1. Beleuchtungsmast am Dufourplatz in Zollikon.

leuchtet. Um eine angenehme, möglichst blendungsfreie Beleuchtung zu erhalten, wurde eine indirekte Beleuchtung versucht. Ein horizontal liegender, innen weiss gestrichener Reflexionsschirm wird von einer Anzahl auf einem Kreisring angeordneter Reflektoren bestrahlt und wirft ein vollständig diffuses Licht auf den Platz. Der Reflexionsschirm wurde so geformt, dass eine möglichst zweckmässige Lichtverteilung entsteht, was hinreichend gelungen ist. Er wird mit den Reflektoren von einem massiven Betonmast getragen, der überdies drei Transparentwegweiser und vier beleuchtete Verkehrssignale sowie drei elektrische Uhren trägt. Die Uhren werden durch eine unter Dach aufgestellte Mutteruhr gesteuert.

Die elektrischen Stark- und Schwachstromleitungen sind in Rohrleitungen im Mastinnern verlegt und in einem geräumigen Kasten unter der Rundbank über Sicherungen mit den Kabelleitungen verbunden.

Das Vorzeichen von Blindstrom und Blindleistung in Vektordiagrammen ¹).

621.3.012.1

Bei der Berechnung komplizierterer elektrischer Anlagen ist eine eindeutige Definition der Blindleistung und ihres mathematischen Vorzeichens nötig. Während bei der Wirkleistung, deren Erzeugung und Verbrauch einen eindeutigen physikalischen Sinn hat, die Wahl des Vorzeichens keine besonderen Schwierigkeiten bereitet, muss man sich bei der Definition des Vorzeichens der Blindleistung an gewisse willkürliche Abmachungen halten.

Für die vektorielle Darstellung der Blindleistung ist nun (wie im zitierten Aufsatz ausführlich gezeigt wird) die Wahl des mathematischen Koordinatensystems sowie des Drehsinns der Vektoren massgebend. Das mathematische Koordinaten-

¹⁾ Polhausen und v. Timascheff, ETZ 1934, Heft 12, S. 301.

system kann ein rechts- oder, wie heute allgemein gebräuchlich, ein linksläufiges sein. Ausserdem kann der Drehsinn der Vektoren rechts- oder, gemäss der Turiner Abmachung der CEI vom Jahre 1911, linksläufig angenommen werden. Es ergeben sich somit vier Formen der vektoriellen Darstellung, von denen heute nur noch eine, nämlich diejenige, die sowohl dem linksläufigen mathematischen Koordinatensystem als auch dem Linksdrehsinn der Vektoren entspricht, angewendet wird.

Bei der Darstellung der Blindleistung ist unter Benützung der zuletzt gewählten Form noch auf folgendes zu achten: Je nachdem man bei einem und demselben elektrischen Objekt (z. B. bei einer verlustbehafteten Drosselspule) vom Spannungsvektor ausgeht und den Strom in seine Wirk- und Blindkomponenten zerlegt, oder vom Stromvektor ausgeht und den Spannungsvektor in die entsprechenden Komponenten zerlegt, erhält man eine Blindstromkomponente mit negativem Vorzeichen, oder eine Blindspannungskomponente mit positivem Vorzeichen. Demnach kann bei einem und demselben elektrischen Objekt je nach der Wahl des Bezugsvektors die Blindleistung mit dem negativen oder positiven Vorzeichen in der Rechnung erscheinen. Um auch hier eine eindeutige Regel zu schaffen, schlagen die Verfasser (in Anbetracht der überwiegenden Bedeutung der elektrischen Parallelsysteme) mit Recht vor, die Spannung als Bezugsvektor einzuführen. Demgemäss muss also die von einer Drosselspule aufgenommene induktive Blindleistung als negativ und die von einem Kondensator aufgenommene kapazitive Blindleistung als positiv bewertet werden.

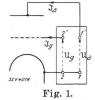
Am Beispiel einer streckenweise durch Drosselspulen und Kondensatoren kompensierten Fernleitung wird die Zweckmässigkeit der vorgeschlagenen Berechnungsweise der Blindleistung überzeugend nachgewiesen. Der von den Verfassern gemachte Vorschlag, bei Leistungsübertragungen die Zählrichtung mit der Energieflussrichtung zusammenfallen zu lassen, ist im allgemeinen nicht zu empfehlen, da beim Wechsel der Energierichtung sich auch automatisch die Zählrichtung umkehren muss, was dann bei der Berechnung der Blindleistung leicht zu Irrtümern führen kann. Es ist zu empfehlen, die Zählpfeile möglichst symmetrisch und bei Anlagen mit wechselnder Energierichtung ohne jede Rücksicht auf die Strömung der Wirk- und Blindenergien einzutragen und, wie auch die Verfasser betonen, alle elektrischen Komponenten, also auch Wirk- und Blindleistung, eines bestimmten Stromkreiselementes auf einen und denselben Zählpfeil (Bezugspfeil) zu beziehen.

Im Interesse einer möglichst klaren und prägnanten Ausdrucksweise empfiehlt es sich, die Bezeichnungsweise der Blindleistungen, die in der Praxis häufig verwendet wird und die auch die Verfasser übernommen haben, zu ändern und zu vereinfachen. Statt bei einer Drosselspule zu schreiben, sie nehme induktive Blindleistung auf, was aber gleichbedeutend sei mit einer Abgabe von kapazitiver Blindleistung, und bei einem Kondensator die entsprechend umgekehrten, komplizierten Redewendungen zu gebrauchen, wäre es gewiss einfacher und zweckmässiger, wenn man z. B. von einer Drosselspule, oder auch von einer Asynchronmaschine, sagen würde, sie nehme Blindleistung auf, oder auch: sie arbeite induktiv, während ein Kondensator, oder eine übererregte Synchronmaschine, Blindleistung abgibt, d. h. kapazitiv arbeitet. Verknüpft man den Begriff der Blindleistung mit dem Wort Magnetisierungsleistung, so erhalten die Ausdrücke Blindleistung «aufnehmen» und «abgeben» auch einen physikalischen Sinn. Bei dieser Benennungsweise wird eine Uebertragungsleitung, die, auf eine bestimmte Zählrichtung bezogen, z. B. kapazitiv arbeitet, bezogen auf die entgegengesetzte Zählrichtung, induktiv arbeiten. A. von Brunn.

Hochfrequenztechnik und Radiowesen — Haute fréquence et radiocommunications

Der Rückkopplungsgenerator.

Von Prof. Dr. F. Tank, ETH, Zürich.


1. Teil

Allgemeine Grundzüge der Theorie des Röhrengenerators. 621,396,611

§ 1. Während zu Anfang der Entwicklung des Röhrengenerators vor allem der Betrachtung der Leistung und des Leistungsumsatzes grosse Wichtigkeit beigemessen wurde, spielt heute die Frage der Frequenzkonstanz die ausschlaggebende Rolle. Der eigentliche Generator wird mit einer kleinen Röhre betrieben, und die Erzeugung der nötigen Leistung ist Aufgabe der an den Generator angeschlossenen Verstärkerstufen geworden. Es möchte daher scheinen, dass die Theorie des Röhrengenerators an Bedeutung eingebüsst hätte. Dem ist nicht so, denn das Prinzip der Schwingungserzeugung durch Rückkopplung ist von sehr grossem allgemeinem schwingungstechnischem Interesse, und die systematische Bearbeitung aller damit im Zusammenhang stehenden Fragen hat die Schwingungsforschung in hohem Masse bereichert.

Zunächst galt es, die grosse Zahl verschiedener Schaltungsmöglichkeiten von einem einheitlichen Standpunkte aus überblicken und zusammenfassen zu können. Sodann besitzen die selbsterregten Schwingungen, welcher Art sie auch sonst sein mögen, eine Reihe gemeinsamer typischer Merkmale, welche alle auf der Tatsache der nichtlinearen Zusammenhänge zwischen Strömen und Spannungen beruhen, so die Erscheinungen der Amplitudenbegrenzung, die Abweichung der Wellen von der Sinusform, die grundsätzliche Verknüpfung der Frequenz mit der Amplitude usw. Ausserdem ergibt sich bei gekoppelten Systemen das eigenartige Verhalten, das als «Ziehen» bekannt ist, und im Falle der Einwirkung einer fremden, zusätzlichen elektromotorischen Kraft sind die Eigenschaften der Frequenzanpassung sehr bemerkenswert.

 \S 2. Der Röhrengenerator setzt sich zusammen aus der als Verstärker wirkenden Elektronenröhre und aus der äusseren Schaltung. Der Einfachheit halber und entsprechend der geläufigsten Verwendung der Elektronenröhre sei im folgenden stets mit verschwindendem Gitterstrom ($I_{\rm g}=0$) gerechnet. Die äussere Schaltung ist Träger wichtiger, die Schwingung bestimmender Elemente; sie hat auch die Aufgabe, einen Teil der in ihr vorhandenen Schwingungsenergie abzuzweigen zwecks Steuerung der Röhre und zwecks Nachlieferung frischer, verstärkter Energie. Gemäss ihrer Lage zwischen Anode und Kathode einerseits und Gitter und Kathode anderseits kann sie ganz allgemein durch einen «Vierpol» nach Fig. 1 ersetzt werden.

Für einen solchen Vierpol gelten Beziehungen folgender Art:

$$\begin{array}{ll} \mathfrak{U}_{\mathfrak{g}} = & \mathfrak{A}_{11} \ \mathfrak{U}_{\mathfrak{a}} - \mathfrak{A}_{12} \ \mathfrak{J}_{\mathfrak{a}} \\ \mathfrak{J}_{\mathfrak{g}} = & -\mathfrak{A}_{21} \ \mathfrak{U}_{\mathfrak{a}} + \mathfrak{A}_{22} \ \mathfrak{J}_{\mathfrak{a}} \end{array} \tag{1}$$

wobei die Koeffizienten-Determinante / \mathfrak{A} / = 1 ist 1). Für den äussern Widerstand \mathfrak{R}_a im Anodenkreise lässt sich daher leicht herleiten

$$\mathfrak{R}_{a} = -\frac{\mathfrak{U}_{a}}{\mathfrak{F}_{a}} = -\frac{\mathfrak{U}_{22}}{\mathfrak{V}_{21}}.$$
 (2)

Ferner möge ein «Rückkopplungswiderstand» definiert werden als

$$\mathfrak{R}_{g} = -\frac{\mathfrak{U}_{g}}{\mathfrak{F}_{a}} = -\frac{1}{\mathfrak{U}_{21}}.$$

¹⁾ Cauer, Vierpole, Elektr. Nachr. techn. Bd. 6 (1929), S. 272; Strecker-Feldtkeller, Grundlagen der Theorie des allgemeinen Vierpols, Elektr. Nachr. techn. Bd. 6 (1929), S. 93.

und

Die Widerstände \Re_a und \Re_g sind berechenbar, sobald ein bestimmter Vierpol bzw. eine bestimmte Schaltung vorliegt, und daher als bekannte Grössen anzusehen.

Im Gegensatz zu der strengen Linearität der soeben hergeleiteten Beziehungen sind die Verhältnisse an der Röhre nicht mehr linearer Natur. Doch kann man zunächst für kleine Strom- und Spannungsänderungen einen quasi-linearen Bereich abgrenzen, für welchen gilt

$$\mathfrak{J}_{\mathbf{a}} = S\left(\mathfrak{U}_{\mathbf{g}} + D\,\mathfrak{U}_{\mathbf{a}}\right) \tag{4}$$

Dabei bedeutet S die Steilheit und D den Durchgriff der Röhre. Der später einzuführende innere Widerstand R genügt bekanntlich der Beziehung

$$R_{\rm i} = \frac{1}{SD}.$$
 (5)

Möller 2) hat wohl als erster das «Prinzip der Amplituden und Phasenbilanz» in durchgebildeter Form der Theorie der selbsterregten Röhrengeneratoren zugrunde gelegt. Dieses Prinzip drückt aus, dass der Anodenstrom über den äussern Widerstand \Re_a , die Rückkopplung $\Re_{\mathfrak{g}}$ und die Röhre einen Anodenstrom hervorrufen muss, der mit dem ursprünglichen in Phase ist und an Amplitude ihm mindestens gleich-kommt oder ihn übertrifft. Man kann auch sagen, dass der durch die Steuerspannung $\mathfrak{U}_{\mathfrak{s}\mathfrak{t}}=\mathfrak{U}_{\mathfrak{g}}+D\,\mathfrak{U}_{\mathfrak{a}}$ in der Röhre hervorgerufene Anodenstrom in Phase gleich und dem Betrage nach grösser oder gleich sein muss wie der Anodenstrom, welcher die Steuerspannung, d. h. $\mathfrak{U}_{\mathfrak{q}}$ und $\mathfrak{U}_{\mathfrak{s}}$, erzeugte. Die mathematische Formulierung führt zunächst zu einer mit Gl. (4) nahezu identischen Beziehung

$$S[\mathfrak{U}_a + D\mathfrak{U}_a] \geq \mathfrak{I}_a$$

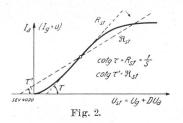
 $S \ [\mathfrak{U}_{\mathfrak{g}} + D \ \mathfrak{V}_{\mathfrak{a}}] \geq \mathfrak{J}_{\mathfrak{a}},$ welche sich, da $\mathfrak{U}_{\mathfrak{g}} = - \mathfrak{J}_{\mathfrak{a}} \ \mathfrak{R}_{\mathfrak{g}}$ und $\mathfrak{U}_{\mathfrak{a}} = - \mathfrak{J}_{\mathfrak{a}} \ \mathfrak{R}_{\mathfrak{a}}$ ist, umformen lässt in

$$-\left[\Re_{\mathfrak{g}}+D\Re_{\mathfrak{a}}\right]\geqslant\frac{1}{S}$$
 (6)

Wir wollen diese Beziehung die Generatorgleichung des Röhrengenerators nennen³). Im eingeschwungenen Zustande gilt das Gleichheitszeichen und an Stelle der Anfangssteilheit S dann eine von der Schwingungsamplitude abhängige und kleinere mittlere Steilheit S_m .

Es ist angenommen, dass der Durchgriff D nur wenig von der Kennlinienkrümmung abhänge, also im Gegensatz zu S und Ri im betrachteten Schwingungsbereiche praktisch konstant sei. Wenn auch diese Annahme nur beschränkte Gültigkeit besitzt, so ermöglicht sie doch eine vorteilhafte Interpretation der Generatorgleichung (6). In derselben steht nämlich auf der linken Seite eine Kombination äusserer Schaltelemente mit dem Röhrendurchgriff, d. h. ein Ausdruck, welcher amplitudenunabhängig und von vornherein berechenbar ist; auf der rechten Seite finden sich dagegen einzig Grössen, welche mit den nichtlinearen Eigenschaften der Röhre und damit mit den Schwingungsamplituden verknüpft sind, nämlich die Steilheit S bzw. die mittlere Steilheit Sm. Wir wollen den Ausdruck

$$-\left[\Re_{a}+D\Re_{a}\right]=\Re_{st}$$


als «Steuerwiderstand der Schaltung» bezeichnen und den reziproken Wert von S

$$\frac{1}{S} = R_{\rm st}$$

als Widerstand der Steuerspannungs-Anodenstrom-Charakteristik (vergl. Fig. 2) oder kurz als «Steuerwiderstand der Röhre».

- 2) Möller, Elektronenröhren, Vieweg, Braunschweig.
- 3) Die von uns bevorzugte Form $-\left[\Re_{\rm g}+D\,\Re_{\rm a}\right]\geqslant \frac{1}{S}$ lässt sich leicht in die bekannte Barkhausensche Generatorbeziehung überführen $-\frac{\text{ll}_{\rm g}}{\text{ll}_{\rm a}}=\Re\geqslant D+\frac{1}{S\,\Re_{\rm a}}$. Vergleiche Barkhausen, Elektronenröhren (Sender), Hirzel, Leipzig.

Dann lässt sich das in Gl. (6) niedergelegte Generatorprinzip auch so ausdrücken: Notwendige Bedingung für das

Auftreten von Selbst-erregung ist, dass der «Steuerwiderstand der Schaltung» grösser oder höchstens gleich ist wie der «Steuerwiderstand der Röhre». In Formeln heisst dies

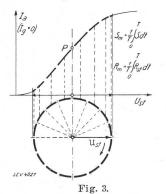
$$\Re_{\rm st} \gg R_{\rm st}$$
 (7)

Eine anschauliche Deutung dieser Forderung ergibt sich aus Fig. 2, in welcher \Re_{st} und R_{st} als Neigungen zweier Geraden aufgetragen sind, von welchen die erste (Rst) unveränderlich und flacher liegen muss als die zweite, während diese (R_{st}) im Laufe des Anschwingvorganges ihre Steilheit vermindert und im stationären Zustand mit jener zusammenfällt.

Bemerkenswert ist ferner an der Generatorgleichung (6) bzw. (7), dass links eine komplexe, von der Wechselstromfrequenz abhängige Grösse steht, und rechts eine frequenzunabhängige reelle Grösse. Setzen wir

$$\Re_{\mathsf{st}} = - \left[\Re_{\mathsf{g}} + D \Re_{\mathsf{a}} \right] = X + j Y$$

so ergibt die Zerlegung in Reelles und Imaginäres sofort zwei Beziehungen

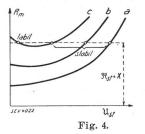

$$X \ge \frac{1}{S} \tag{8}$$

$$Y = 0. (9)$$

von welchen wir die erste die Amplitudenbedingung und die zweite die Frequenzbedingung nennen wollen, denn die erste gibt die Beziehung an, welcher die Amplitude im Selbsterregungsfall unterliegt, während aus letzterer die Frequenz zu ermitteln ist.

Wir wollen uns in Erinnerung rufen, dass die hergeleiteten Resultate nicht ganz streng gültig sind, denn weder ist das infolge der Krümmungen der Charakteristiken notwendige Auftreten höherer Harmonischer mitberücksichtigt worden, noch sind die Einzelheiten des Anschwingvorganges, insbesondere auch hinsichtlich geringer Veränderungen der Frequenz, berechenbar. Zu letzterem Zwecke hätten wir auf die symbolische Rechnungsmethode verzichten und direkt auf die Differentialgleichungen zurückgreifen müssen, ein Verfahren, das infolge mangelnder Einfachheit nur in bestimmten Fällen als lohnend zu bezeichnen ist.

§ 3. Die sich einstellende Endamplitude folgt aus der mittleren Steilheit Sm, welche man aus der Beziehung (8) durch Einsetzen des Gleichheitszeichens erhält. Ermittelt man für eine Reihe verschiedener Werte von \mathfrak{F}_a die Anoden und Gitterspannungen $-\mathfrak{F}_a$ \mathfrak{R}_a und $-\mathfrak{F}_a$ $\mathfrak{R}_{\mathfrak{g}}$, so lassen sich die entsprechenden Werte der Steuerspannung $\mathfrak{U}_{\mathfrak{s}\mathfrak{l}}=\mathfrak{U}_{\mathfrak{g}}+D\,\mathfrak{U}_a$ angeben und damit auch gemäss der in Fig. 3 angedeu teten Konstruktion die dazu gehörigen Beträge der mittleren Steilheit S_m oder des mittleren Steuerwiderstandes R_m der Röhre. Je nach der Lage



des mittleren Arbeitspunktes in der Mitte, am Knie oder an einem noch flacher verlaufenden Teil der Steuerspannungscharakteristik ergeben sich Kurven von Typus a, b oder c der Fig. 4, an Hand deren auch die verschiedenen Arten Schwingungseinsatzes des diskutiert werden können 4).

Die Schnittpunkte dieser Kurven mit der horizontalen Geraden von der

⁴⁾ Vergl. auch die Theorie der Schwingkennlinien; Möller, Elektronenröhren l. c.

Ordinatenhöhe $\Re_{st} = X$ geben die Lösungen für die stationären Zustände nach Gl. (8) und (9). Während bei Veränderung des Betrages von X die Amplitude der Steuerspannung \mathfrak{U}_{st} längs der Kurve a stetig folgt, treten an den Kurven b und c bei den labilen Stellen (vergl. Fig. 4) Sprünge ein (harter Schwingungseinsatz, Abreißstellen).

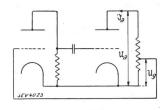
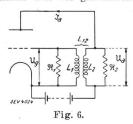



Fig. 5.

Die beim Röhrengenerator nötige Verstärkerwirkung lässt sich entweder durch eine einzelne Röhre oder auch durch mehrere in Kaskade geschaltete Verstärkerröhren erzielen. Im zweiten Falle ist auch eine Phasenumkehr in der Steuerwirkung möglich, wie z. B. in der Schaltung nach Fig. 5.

Einer zunehmenden Gitterspannung der ersten Röhre entspricht ein abnehmender Anodenstrom der zweiten Röhre und damit ein negativer Betrag der resultierenden Steilheit und des Gesamtdurchgriffes. Dies hat zur Folge, dass bei der Zweirohrschaltung oft gerade solche Schwingungen sich erregen können, welche bei der Einrohrschaltung nicht entstehen. Für viele Anwendungen ist diese Tatsache nicht unwichtig. Man hat nämlich bei den induktiven Rückkopplungsschaltungen (Transformatorschaltungen) das Vorzeichen der rückgekoppelten Gitterspannung in der Hand, da man die Enden der gitterseitig liegenden Spule beliebig polen kann. Bei der galvanischen oder kapazitiven Rückkopplung

ist dies aber, wie man sich leicht überlegen kann, nicht möglich. In diesem Falle ist daher eine Phasenumkehr der rückgekoppelten Gitterspannung nur durch Einführung einer zweiten Röhre möglich.

§ 4. Die hergeleiteten Beziehungen mögen nun an Hand einiger Beispiele erläutert werden, und zwar wollen wir zu diesem Zwecke den in Fig. 6 angegebe-

nen, sehr allgemeinen Fall der induktiven Rückkopplungsschaltung betrachten, der dann im einzelnen spezialisiert werden kann. Unter den in Fig. 6 angegebenen Voraussetzungen errechnet man

$$\Re_{\mathbf{a}} = \frac{\Re_2 \{ j \omega L_2 \Re_1 - \omega^2 (L_1 L_2 - L_{12}^2) \}}{\Re_2 (\Re_1 + j \omega L_1) + j \omega L_2 \Re_1 - \omega^2 (L_1 L_2 - L_{12}^2)}$$
(10)

und

$$\Re_{g} = \frac{j \omega L_{12} \Re_{1} \Re_{2}}{\Re_{2} (\Re_{1} + j \omega L_{1}) + j \omega L_{2} \Re_{1} - \omega^{2} (L_{1} L_{2} - L_{12}^{2})}$$
(11)

a) Als erster Spezialfall sei herausgegriffen

$$\Re_1 = \infty$$
.

Dann wird

$$\Re_{a} = \frac{j \omega L_2 \Re_2}{\Re_2 + j \omega L_2} \tag{12}$$

und

$$\Re_{\mathfrak{g}} = \frac{j \omega L_{12} \Re_2}{\Re_2 + j \omega L_2}.$$
 (13)

Daraus folgt

$$\Re_{\mathbf{a}} = \frac{L_2}{L_{19}} \, \Re_{\mathbf{g}}. \tag{14}$$

Die Generatorgleichung (6) ergibt

$$-\Re_{\mathfrak{g}}\left[\left[1+D - \frac{L_2}{L_{12}}\right] \geq \frac{1}{S}. \tag{15}$$

Diese Beziehung lässt sich nur bei negativem und hinreichend grossem L_{12} erfüllen. \Re und $\Re_{\mathfrak{g}}$ sind dann in Gegenphase. Schreibt man

$$\Re_2 = X_2 + j Y_2$$

und zerlegt man (15) gemäss den Gl. (8) und (9) in einen reellen und einen imaginären Teil, so erhält man als Amplitudenbedingung

$$-\frac{\omega^2 L_{12} L_2 X_2}{X_2^2 + (\omega L_2 + Y_2)^2} \left[1 + D \frac{L_2}{L_{12}} \right] \ge \frac{1}{S} \quad (16)$$

und als Frequenzbedingung

$$X_2^2 + Y_2^2 + \omega L_2 Y_2 = 0. ag{17}$$

Im einfachsten Falle besteht \Re_2 aus einem mit einem Ohmschen Widerstande in Serie geschalteten Kondensator

$$\Re_2 = R_2 - \frac{j}{\omega C_2},$$

wobei (16) und (17) dann übergehen in

$$\frac{L_{12}}{D} \gg L_2 + C_2 R_2 R_1$$

und

$$\omega^2 = \frac{1}{L_2 C_2 \left[1 - R_2^2 \frac{C_2}{L_2}\right]} \cdot 5)$$

Aus (17) folgt ferner, dass Y_2 negativ und daher \Re_2 immer kapazitiv sein muss, und zwar nach (15) und (14) in einem solchen Masse, dass $\Re_{\mathfrak{g}}$ und $\Re_{\mathfrak{d}}$ rein Ohmisch werden. Es wird daher \Re_2 zusammen mit L_2 ein durch Eigenschwingungen ausgezeichnetes System bilden, das bei nicht zu grosser Eigendämpfung ziemlich genau in einer seiner Eigenfrequenzen erregt wird. Im Falle mehrerer Eigenfrequenzen pflegt im stationären Schwingungszustande sich nur eine einzige zu behaupten. Auf welche derselben die Auswahl trifft, ist eine Frage, welche mit den hier entwickelten Mitteln noch nicht behandelt werden kann und auf welche wir daher später noch zurückzukommen haben.

b) Es ist jedoch durchaus nicht gesagt, dass ℜ₃ und ℜ₃ immer streng oder doch genähert phasenrein sein müssen. Ebensowenig ist die Möglichkeit der Schwingungserregung auf eigentliche Schwingungskreise oder Systeme von solchen beschränkt. Dies soll im folgenden Falle gezeigt werden, wo wir wählen wollen (vergl. Fig. 6)

$$\Re_1 = R_1$$

und $\Re_2 = \infty$.

Die Rechnung, welche nicht näher ausgeführt sein möge, ergibt

$$\Re_{a} = \frac{j \omega L_{2} R_{1} - \omega^{2} (L_{1} L_{2} - L_{12}^{2})}{R_{1} + j \omega L}$$
(18)

und

$$\Re_{g} = \frac{j \,\omega \, L_{12} \, R_{1}}{R_{1} + j \,\omega \, L_{1}} \tag{19}$$

worauf die Generatorgleichung (6) bzw. die Amplitudenbedingung (8) und die Frequenzbedingung (9) sofort angegeben werden können. Letztere beiden lauten

$$-\frac{L_{12}}{D} \ge L_1 \frac{R_1}{R_1} + L_2 \tag{20}$$

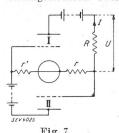
und

$$\omega^2 = -R_1^2 \frac{L_{12} + DL_2}{DL_1(L_1 L_2 - L_{12}^2)}$$
 (21)

bzw. unter Heranziehung von (20) für den stationären Zustand

 $^{^5)}$ Ebenso einfach ist der Fall, wenn \Re_2 aus einem Kondensator mit Parallelwiderstand zusammengesetzt ist.

$$w^2 = \frac{R_1 R_1}{L_1 L_1 - L_{12}^2} \tag{21a}$$


Es ist sehr bemerkenswert, dass hier die Frequenz nur durch Induktivitäten und Widerstände, nicht aber durch irgendwelche Eigenperioden von eigentlichen Schwingungskreisen bestimmt ist, und dass sowohl Ra als auch Rg starke Phasenverschiebungen gegeneinander aufweisen. Wie in Gl. (15) muss auch hier L_{12} negativ und mindestens grösser als DL_2 sein, so dass ω^2 in Gl. (21) positiv wird. Bemerkenswert ist ferner, dass selbst, wenn die Anschwingbedingung (20) nicht erfüllt ist, doch ein positives ω^2 nach Gl. (21) eintreten kann. Es ist dies der Fall, wenn bei negativem L_{12} die Bedingung erfüllt ist

$$DL_2 < |L_{12}| < \frac{L_1}{SR_1} + DL_2.$$

Dann verhält sich das betrachtete rückgekoppelte System wie ein gedämpfter Schwingungskreis mit definierter Eigenschwingung. Die Experimente bestätigen dies vollkommen ⁶). Aehnliche Schwingungen lassen sich bei rein kapazitiver Rückkopplung erzeugen mit Systemen, welche nur Widerstände und Kapazitäten enthalten; nur muss dann eine negative Steilheit S vorhanden sein, d. h. man muss eine Zweirohrschaltung verwenden oder Mehrgitterröhren mit fallenden Charakteristiken.

§ 5. Jeder Generator besitzt eine fallende Charakteristik. d. h. mit zunehmender Stromstärke fällt seine Klemmenspannung. Es muss daher grundsätzlich möglich sein, die Theorie des Röhrengenerators auch auf die Theorie der Selbster-regung elektrischer Systeme an fallenden Charakteristiken zurückzuführen. Solche Ueberlegungen sind schon früh angestellt worden, wobei namentlich der einfache Röhrengenerator mit dem durch die fallende Lichtbogencharakteristik angeregten Schwingungskreis verglichen wurde und wobei stets die auffallende Tatsache hervorgehoben wurde, dass durch die Lichtbogencharakteristik nur ein Serie-Resonanzkreis anzuregen ist, während die Elektronenröhre in der Regel nur in Verbindung mit einem Parallel-Resonanzkreis betrieben werden kann. Diese Verhältnisse wurden wohl am vollständigsten durch Steimel⁷) geklärt, auf dessen Untersuchungen wir uns im folgenden stützen.

Nach Steimel lassen sich mit Hilfe von Elektronenröhren zwei Arten negativer Charakteristiken herstellen, die er als «stromgesteuerte» oder «lichtbogenähnliche» Charakteristiken

der Klasse A und als «spannungsgesteuerte» oder «dynatronähnliche» Charakteristiken der Klasse B bezeichnet. Beide können mit einer Schaltung nach Fig. 7 erhalten werden, und zwar ergibt sich die Klasse A, wenn man R als variabeln äussern Widerstand auffasst, der vom Strome I durchflossen wird, und an dessen Klemmen die Spannung U gemessen wird. Zur Klasse B gelangt man,

wenn man R gleich Null setzt und nur r als veränderlichen äusseren Widerstand ansieht, an dem nun Strom und Spannung gemessen werden.

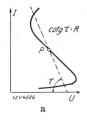


Fig. 8.

lasse A: Stromgesteuerte oder lichtbogenähnliche Charakteristik.

Klasse B: Spannungsgesteu-erte oder dynatronähnliche Charakteristik.

Die Charakteristiken der Klassen A und B zeigen die in Fig. 8 wiedergegebene Form, wobei eigentümlich ist, in welcher Weise der fallende Teil infolge geringerer Verstärkerwirkung der Röhre in weniger stark fallende bzw. positive Aeste übergeht. Als massgebender Kreis ist der Kreis der Röhre I zu betrachten, während die Röhre II lediglich als Schaltungskunstgriff zum Zwecke der Phasenumkehr der das Gitter der Röhre I steuernden Spannung eingeführt ist.

Für den Hauptkreis gilt

$$\frac{\mathfrak{U}_{\mathfrak{q}}}{D} = \mathfrak{J}(R + r + R_{\mathfrak{l}}). \tag{22}$$

Nun möge die Spannung II, anfänglich durch einen Strom S1 verursacht sein, so dass wir setzen können

$$\mathfrak{U}_{\mathfrak{g}} = \alpha \ r \, \mathfrak{J}_{1}. \tag{23}$$

Ganz entsprechend den Ueberlegungen von § 2 ist Labilität bzw. Selbsterregung vorhanden, wenn der durch S1 erzeugte Strom & grösser ist als &1, also

$$\frac{\Im}{\Im_1} \ge 1 \tag{24}$$

was zusammen mit (22) und (23) zu der Beziehung führt

$$\frac{\alpha r}{D(R+r+R_{\rm i})} \ge 1$$

$$-\left[-\alpha r + D(R+r)\right] \ge \frac{1}{S}.$$
 (25)

Würden wir $R+r=\Re_{\mathfrak{g}}$ und $-a\,r=\Re_{\mathfrak{g}}$ setzen, so hätten wir die genaue formale Uebereinstimmung mit der Generatorgleichung (6) erreicht.

Es ergeben sich nun bei der Spezialisierung von (25) auf die Schaltungen nach Klasse A und B interessante Unterschiede im Hinblick auf die Bedingungen, welche die «äusseren» Widerstände R bzw. r zu erfüllen haben. Für Klasse A erhält man

$$R < \left(\frac{\alpha}{D} - 1\right)r - R_i \tag{26}$$

und für Klasse B

$$r > \frac{R_i}{\frac{\alpha}{D} - 1}. (27)$$

Es lässt sich nun leicht beweisen, dass $\left(\frac{\alpha}{D}-1\right)$ $r-R_1$

bzw.
$$\frac{R_i}{\frac{\alpha}{D}-1}$$
 gleich dem Betrage $\frac{\partial U}{\partial I}$ des negativen Wider-

standes der fallenden Charakteristik sind. Die Bedingungen (26) und (27) lassen sich daher, wie in Fig. 8 angedeutet, graphisch darstellen durch die verschiedene Neigung der «Widerstandsgeraden» gegenüber der Neigung der fallenden Charakteristik. Das Gegensätzliche in den Bedingungen der Klasse A und der Klasse B tritt hier deutlich hervor. Nur die eingezeichnete Lage der Widerstandsgeraden besitzt Schnittpunkte mit den steigenden Teilen der Charakteristik und ermöglicht daher stabile Endamplituden. Da im Resonanzfall ein Serieresonanzkreis einen kleinen Widerstand, ein Parallelresonanzkreis einen grossen Widerstand bedeutet, ist ersterer geeignet zur Schwingungsanregung gemäss (26) nach Klasse A und letzterer zur Schwingungsanregung gemäss (27) nach Klasse B. Auch in bezug auf die Erzeugung sogenannter Kippschwingungen mit Systemen, welche nur Widerstände und Induktivitäten oder nur Widerstände und Kapazitäten besitzen, verhalten sich Organe mit fallender Charakteristik nach Klasse A oder B reziprok.

(Fortsetzung folgt.)

⁶⁾ Vergl. F. Tank und K. Graf, Helv. phys. acta, Bd. 1 (1928), S. 508. F. Tank und L. Zelwer, Helv. phys. acta, Bd. 3 (1930), S. 329.
7) K. Steimel, Z. Hochfrequenztech., Bd. 36 (1930), S. 161.

Statistique de l'énergie électrique

des entreprises électriques publiques.

Elaborée par l'Office fédéral de l'économie électrique et l'Union de Centrales Suisse d'électricité.

Cette statistique comprend la production d'énergie de toutes les entreprises électriques livrant à des tiers et disposant d'installations de production d'une puissance supérieure à 300 kW. On peut pratiquement la considérer comme concernant toutes les entreprises livrant à des tiers, car la production des usines dont il n'est pas tenu compte ne représente que 0,5 % environ de la production totale.

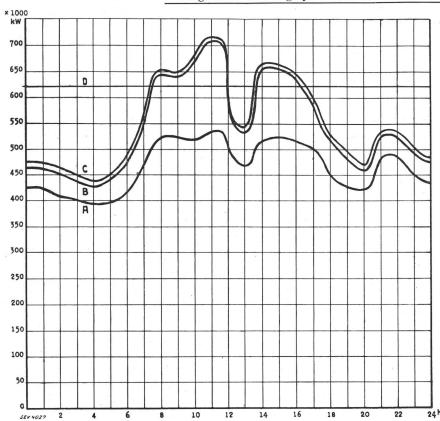
La production des chemins de fer fédéraux pour les besoins de la traction et celle des entreprises industrielles pour leurs besoins propres, ne sont pas prises en considération. Une statistique de la production et de la distribution de

ces entreprises paraîtra une fois par an dans le Bulletin.

	Production et achat d'énergie							₹.	Accumulation d'énergie				gie						
Mois	Production hydraulique				Production thermique		prov d'insta des	Energie provenant d'installations des auto- producteurs		Energie importée		Energie fournie aux réseaux		Diffé- rence par rapport à l'année	em dans d'ac	Energie magasin s les bas ccumula fin du r	née ssins tion	const pendan — vic	ences tatées t lemois dange olissage
	1932/33	1933/34	1932/33	1933/34	1932,33	1933/34	1932/33	1933/34	1931/32	1932/33	1933/34	précé- dente	1931/32	1932/33	1933/34	1932/33	1933/34		
					en mi	llions d	e kWh					0/0		en mil	lions d	e kWh			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
Octobre	302,8	331,4	0,3	0,2	9,2	5,5	_		314,4	312,3	*)	+ 7,9	395	478	483	+ 16	- 2		
Novembre .	316,2			0,6	2,2	2,4	0,6	0,6	299,1			+ 5,0	359	455	460	- 23			
Décembre .	1	347,0	1,1	2,6	3,9	6,0	0,6	1,4	317,9	323,9		+10,2	298	388	374	- 67	- 86		
Janvier	307,2	338,4	3,8	2,3	6,4	9,5	0,6	1,7	303,6	318,0	351,9	+10,6	246	279	284	-109	— 90		
Février	283,5	299,1	0,8	0,8	3,9	5,6	0,7	2,5	302,4	288,9	308,0	+ 6,6	139	229	198	- 50	- 86		
Mars	303,7	317,6	0,2	0,5	3,2	4,5	1,7	0,7	288,2	308,8	323,3	+ 4,7	75	185	156	- 44	- 42		
Avril	300,1	320,5	0,1	0,3	1,0	0,7	0,1		295.6	301.3	321.5	+ 6,7	66	179	169	- 6	+ 13		
Mai	310,7			0,3	8,0	8,0	_		303,2	,	,	+11,1	162	235	231	+ 56	+ 62		
Juin	300,9	353,9	0,1	0,4	7,6	7,5			297,8	308,6		+17,2	267	322	320	+ 87	+ 89		
Juillet	310,4	363,2	0,1	0,3	7,7	7,8	_	_	302,1	318,2	371,3	+16,7	395	430	429	+108	+109		
Août	343,3		0,3		7,5		_		316,4	351,1			448	482		+ 52			
Septembre .	340,8		0,2		7,5		-		323,8	348,5		1.	462	485		+ 3			
Année	3737,9		7,4	8	68,1		4,3	154 36	3664,5	3817,7		*	_	_		_			
Oct.—Juillet	3053,8	3348,7	6,9	8,3	53,1	57,5	4,3	6,9	3024,3	3118,1	3421,4	+9,7	_	_		_			

		Consommation d'énergie															
Mois	domes	iges stiques et anat¹)	Indus	strie 1)	chi	etro- mie, lurgie, nie ¹)	Trac	etion	tion de	ns de	non c les exe d'éne	ompris cédents rgie et npage	les exc d'éner	mpris cédents gie et	Diffé- rence par rapport à l'année		
	1932/33	1933/34	1932/33	1933/34	1932/33	1933/34	1932/33	1933/34	1932/33	1933/34	1932/33	1933/34	1932/33	1933/34	précé- dente 4)	1932/33	1933/34
						er	n million	s de k	Wh	= v					0/0	en 106	kWh
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Octobre	98,6	104,2	47,0	48,7	23,1	36,6	19,0	20,9	50,3	49,0	222,5	226.8	238,0	259,4	+ 9.0	74,3	*) 77,7
Novembre .	,	112,8	,	,	25,6		18,5		46,5			236,2			+ 7,6		
Décembre .	115,0	128,3	50,1	51,8	19,1	20,4	19,8	24,5	47,6	50,9	242,4	263,7	251,6	275,9	+ 9,7	72,3	81,1
Janvier	117,6	123,8	49,5	50,5	16,2	19,2	23,1	22,8	49,9	48,9	250,5	253,8	256,3	265,2	+ 3,5	61,7	86,7
Février	100,0	105,5	43,4	46,5	21,9	17,4	20,4	20,8	42,8	42,4	214,7	222,8	228,5	232,6	+ 1,8	60,4	75,4
Mars	101,7	109,4	46,2	47,5	26,4	25,6	21,0	21,2	44,1	44,6	222,3	230,3	239,4	248,3	+ 3,7	69,4	75,0
Avril	88,2	93,2	44,6	46,6	29,5	33,1	15,9	16,1	42,6	44,7	200,1	205,2	220,8	233,7	+ 5,8	80,5	87,8
Mai	90,0	94,6	44,8	49,8	35,8	35,8	16,3	16,5	48,5	48,9	205,5	214,5	235,4	245,6	+ 4,3	83,3	108,5
Juin	84,6	91,6	43,7	50,4	32,1	35,4	16,2	17,0	45,2	48,9	196,6	214,1	221,8	243,3	+ 9,7	86,8	118,5
Juillet	84,6	91,0	45,8	50,3	32,7	36,6	17,5	18,2	44,5	53,1	200,5	217,3	225,1	249,2	+10,7	93,1	122,1
Août	88,6		47,9		33,6		17,4		52,0		211,0		239,5			111,6	
Septembre .	92,4		48,7		33,9		17,2		48,9		216,4		241,1			107,4	
Année	1165,3		559,9		329,9 (172,7)		222,3		562,9 (56,6)		2611,0		2840,3 (229,3)			977,4	
Oct.—Juillet	984,3	1054,4 (26,1)	463,3	491,5 (6,4)			187,7	191,1	462,0 (41,2)		2183,6	2284,7	2359,7 (176,1)	2514,4 (229,7)	+ 6,6 (+30,4)	758,4	907,0

^{*)} A partir du 1er décembre 1933 y compris la quote-part suisse de l'usine d'Albbruck-Dogern, qui est entièrement destinée à l'exportation.


1) Les chiffres entre parenthèses indiquent l'énergie fournie sans garantie de continuité de livraison à des prix correspondant aux excédents d'énergie.

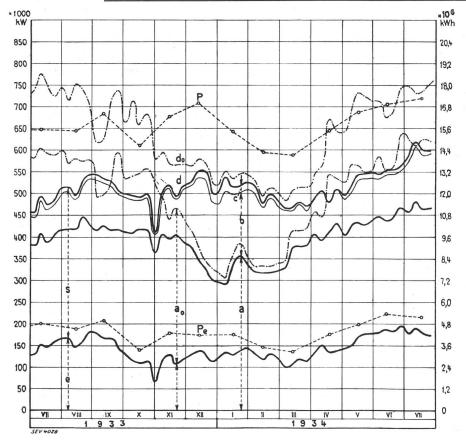
2) Les chiffres entre parenthèses représentent l'énergie employée au remplissage des bassins d'accumulation par pompage.

3) Les chiffres entre parenthèses indiquent l'énergie fournie sans garantie de continuité de livraison à des prix correspondant aux excédents d'énergie et la consommation des installations de pompage.

4) Concerne les colonnes 14 et 15.

Diagramme de charge journalier du mercredi 18 juillet 1934.

Légende:


nibl	es:						1	0 ⁸ kW
orts	d'e	au	(()—	D)	•	•	622
ion .)	sai	son	ıni	ère		•		450
								100
					Τ	ot	al	1172
	l'e orts ion .)	orts d'e ion sais .)	l'eau, d orts d'eau ion saison .)	l'eau, disports d'eau (Cion saisonni	l'eau, dispon orts d'eau (O— ion saisonnière)	l'eau, disponibi orts d'eau (O—D) ion saisonnière. .)	l'eau, disponibilité orts d'eau (O—D) . ion saisonnière .)	l'eau, disponibilités orts d'eau (O-D)

2. Puissances constatées:

- O-A Usines au fil de l'eau (y compris usines à bassin d'accumulation journalière et hebdomadaire)
- A-B Usines à accumulation saisonnière
- B-C Usines thermiques + livraison des usines des CFF, de l'industrie et importation (non représentée, car trop faible).

3. Production d'énergie:		10	⁶ kWh
Usines au fil de l'eau			11,2
Usines à accumulation saisonnière			1,8
Usines thermiques			_
Production, mercredi le 18 juillet 1934			13,0
Livraison des usines des CFF, de l'in trie et importation	du:	s-	0,3
Total, mercredi le 18 juillet 1934 .			13,3
Production, samedi le 21 juillet 1934			11,3
Production, dimanche le 22 juillet 1934		•	8,2

Diagramme annuel des puissances disponibles et utilisées, juillet 1933 à juillet 1934.

Légende:

- 1. Production possible:
 - (selon indications des entreprises)
- a₀ Usines au fil de l'eau
- d₀ des usines au fil de l'eau et à accumulation en tenant compte des prélèvements et du remplissage des accumulations (y compris 2c).
- 2. Production effective:
- a Usines au fil de l'eau
- b Usines à accumulation saisonnière
- c Usines thermiques + livraisons des usines des CFF et de l'industrie + importation
- d production totale + livraisons des usines des CFF et de l'industrie + importation.
- 3. Consommation:
- s dans le pays
- e exportation.
- 4. Puissances max. constatées le mercredi le plus rapproché du milieu du mois:
- P puissance max. enregistrée par toutes les entreprises simultanément
- Pe puissance max. de l'exportation.
- NB. L'échelle de gauche donne pour les indications sous 1 à 3 les puissances moyennes de 24 h, celle de droite la production d'énergie correspondante.

Communications de nature économique.

Starke Zunahme der elektrischen Küche in Frankreich.

Im Maiheft der BIP, Zeitschrift der «Société pour le développement des applications de l'électricité», wird eine Statistik über die Entwicklung der elektrischen Küche in Frankreich und den nordafrikanischen Kolonien veröffentlicht. Nach dieser ergibt sich auf Ende September 1933 folgendes Bild:

							e September
						1932	1933
Kochherde						3 168	8 861
Backöfen							6 981
Réchauds						18 118	$28\ 475$
Elektrische	1	Res	taı	ıra	nts	54	129

Der Bericht stellt fest, dass neben der Schaffung angemessener Tarife durch die Elektrizitätswerke namentlich der Umschwung in der öffentlichen Meinung zugunsten der elektrischen Küche die Ursache ihrer starken Entwicklung sei. Verschiedene Konstruktionsfirmen für Haushaltapparate seien auf die Herstellung elektrischer Apparate übergegangen, was beweise, dass sie in der elektrischen Küche neue Entwicklungsmöglichkeiten sehen.

Bern—Langnau—Luzern elektrisch.

Am 15. August 1934 wurde der elektrische Betrieb auf der 95 km langen SBB-Strecke Bern-Langnau-Luzern aufgenommen.

Der elektrische Kremationsofen in Biel.

Wir werden darauf aufmerksam gemacht, dass im erwähnten Artikel von G. Keller, Brugg, der übrigens lediglich als technischer Bericht über diese gewiss interessante Anwendungsmöglichkeit von Elektrowärme und nicht als Propagandaartikel gedacht war, als Energieverbrauch pro Kremation der Wert von 30 kWh demjenigen von 25 bis 35 m³ Gas gegenübergestellt ist, was insofern unrichtig wäre, als die erste Zahl ohne, die zweite mit Anheizverlusten verstanden ist. Aus dem vorhergehenden Text geht dies allerdings hervor, aber nur für einen sehr aufmerksamen Leser, weshalb wir nicht anstehen, hier ausdrücklich noch darauf hinzuweisen.

Aus den Geschäftsberichten bedeutenderer schweizerischer Elektrizitätswerke.

S. A. l'Energie de l'Ouest Suisse, Lausanne, sur l'année 1933.

Le mouvement d'énergie a atteint 111·106 kWh.

Les recettes d'exploitation se sont montées à		frs. 2 847 131
Le report du solde actif de 1932 a été de		65 325
L'excédent des intérêts créanciers sur les interestre des intérêts créanciers sur les interestres de la constant de la constan	érêts	
débiteurs a été de		33 750

Les frais d'exploitation et d'achat d'énergie se sont 1 279 732

Sur le solde de 1 666 474 frs. on a consacré 945 057 frs. à des amortissements et à des versements à des fonds de réserve. Le capital-actions versé touche un dividende de 4,5 % (soit 660 000 frs.), le personnel 10 000 frs.; 51 416 frs. sont portés à compte nouveau.

Le capital-obligations est de 45 000 000 frs.

On espère mettre en service partiel les installations de la Dixence dans le courant de l'automne.

Elektrizitätswerk Olten-Aarburg A.-G., vom 1. April 1933 bis 31. März 1934.

Der Energieumsatz (Selbsterzeugung plus Fremdenergiebezug) betrug $549\cdot 10^6$ kWh.

Données économiques suisses.

(Extrait de «La Vie économique», supplément de la Feuille Officielle Suisse du commerce).

	Official Suisse du con	interce).	
No.		Jui 1933	llet 1934
-		1500	1994
1.	Importations)	128,4	115,0
	(janvier-juillet) en 106 frs	(899,2)	(827,6)
	Exportations	68,5	62,3
	(janvier-juillet) J	(485,9)	(467,5)
2.	Marché du travail: demandes		
	de places	50 864	49 198
3.	Index du coût de la vie) Juillet (131	129
	Index du commerce de 1914 {		
	gros $J = 100$	92	89
	Prix-courant de détail (moyenne		
	de 34 villes)	9	
	Eclairage électrique	77	
	cts/kWh	44 (87)	43 (87)
	Caz ets/m3 ((Juin 1914)	28 (131)	27 (129)
	Coke d'usine à gaz $= 100$)	(-52)	(/)
	frs/100 kg	6,27 (128)	6,01 (123)
4.	Permis délivrés pour logements	, ()	-, -, - (-20)
	à construire dans 28 villes .	1472	649
	(janvier-juillet)	(8 349)	(5576)
5.	Taux d'escompte officiel . %	2	2
6.	Banque Nationale (p. ultimo)	_	_
	Billets en circulation 106 frs	1430	1364
	Autres engagements à vue 106 frs	514	441
	Encaisse or et devises or 106 ffs	1824	1657
	Couverture en or des billets		
	en circulation et des autres		
	engagements à vue $^{0}/_{0}$	93,83	91,81
7.	Indices des bourses suisses (le		
	25 du mois)		
	Obligations	101	105
	Actions	118	115
	Actions industrielles	158	155
8.	Faillites	82	82
	(janvier-juillet)	(515)	(566)
	Concordats	30	24
	(janvier-juillet)	(213)	(208)
9.	Statistique hôtelière:		
	Moyenne des lits occupés sur		
	100 lits disponibles (au mi-		
	lieu du mois)	33,3	36,6
$ _{10}$.	Danata d'amalaitation de torre	Down le 1e	trimestre
10.	Recettes d'exploitation de tous	1933	trimestre 1934
	les chemins de fer, y compris	1000	1001
	les CFF	47.006	40.050
	Marchandises	47 906	48 052
	(janvier-décembre) en {	(217 156)	40.602
	voyageurs	48 869	49 603
	(janvier-décembre) /	(222.705)	_

Prix moyens (sans garantie) le 20 du mois.

		Août	Mois précédant	Année précéd
Cuivre (Wire bars) .	Lst./1016 kg		33/0/0	41/10
Etain (Banka)	Lst./1016 kg	229/17/6	230/10/0	215/-
Zinc	Lst./1016 kg	13/13/9	13/7/6	17/7/6
Plomb	Lst./1016 kg	10/12/6	10/18/9	13/5
Fers profilés	fr. s./t	84.50	84.50	75.—
Fers barres	fr. s./t	92.50	92.50	80.—
Charbon de la Ruhr II 30/50.	fr. s./t	35.20	35.20	36.20
Charbon de la Saar I 35/50 .	fr. s./t	32.50	32.50	30.—
Anthracite belge	fr. s./t	42.50	42.05	61.30
Briquettes (Union) .	fr. s./t	36.50	36.50	39.—
Huile p. moteurs Die-				
sel (en wagon-citerne)	fr. s./t	76.50	78.—	75.50
Benzine	fr. s./t	125.50	115.—	120.—
Caoutchouc brut	d/lb	$7^{3}/_{7}$	$7^{1}/_{16}$	$0/47/_{32}$

Les Prix exprimés en valeurs anglaises s'entendent f.o.b. Londres, ceux exprimés en francs suisses, franco frontière (sans frais de douane).

Die aus dem Energiegeschäft erzielte Bruttoein- nahme betrug	6 767 290
andere Einnahmen betrugen	$1\ 033\ 427$
Total	7 800 717
Die Ausgaben setzen sich zusammen aus	
Obligationenzinsen	$1\ 275\ 000$
Steuern und Konzessionsgebühren	842 925
Unkosten, Betrieb und Unterhalt	1 158 650
Abschreibungen und Rückstellungen	1 780 111
Die Aktionäre erhalten (Aktien 1. Ranges 8 %,	
2. Ranges 7 %)	2 650 000
Die statutarischen Vergütungen betragen	

Das Aktienkapital 1. Ranges beträgt 20 Millionen, dasjenige 2. Ranges 15 Millionen, die Obligationenschuld 30 Millionen Franken.

Die Werke von Gösgen und Ruppoldingen, die Verteilanlagen, Liegenschaften und Materialvorräte stehen mit 41,057 Millionen zu Buche, die Beteiligungen und Verträge mit 16,47 Millionen. Es besteht überdies noch ein Bankguthaben von 13,13 Millionen Franken.

Geschäftsbericht der «Radio Schweiz» pro 1933.

Die «Radio Schweiz», Aktiengesellschaft für drahtlose Telegraphie und Telephonie, betreibt die Sende- und Empfangsstationen in Münchenbuchsee, Riedern, Prangins und Colovrex (die beiden letztgenannten dienen speziell dem Völkerbunde). Dank der Entwicklung des direkten Ueberseeverkehrs mit Japan, China, Süd- und Nordamerika sind die Betriebseinnahmen gegenüber dem Vorjahre und der Gebührenanteil zugunsten der Schweizerischen Telegraphen verwaltung nicht unwesentlich gestiegen. Der Ueberschuss über die Betriebsausgaben betrug 407 360 Fr. Die Abschreibungen und die Einlagen in den Reservefonds nahmen 307 891 Fr. in Anspruch.

Die Aktionäre erhielten eine Dividende von 4 %. Das Aktienkapital beträgt 2,1 Millionen Franken.

Die Anlagen figurieren in der Bilanz mit 4,824 Millionen Franken, worauf bis jetzt 2,397 Millionen Franken abgeschrieben worden sind.

Normalisation et marque de qualité de l'ASE.

Marque de qualité de l'ASE.

Fil distinctif de qualité de l'ASE.

En vertu des normes pour le matériel destiné aux installations intérieures, et sur la base des épreuves d'admission, subies avec succès, il a été accordé aux maisons mentionnées et pour les produits désignés ci-dessous, le droit à la marque de qualité de l'ASE, resp. au fil distinctif de qualité de l'ASE.

Les objets destinés à être vendus en Suisse sont reconnaissables aux désignations suivantes:

Les transformateurs de faible puissance portent la marque de qualité de l'ASE, reproduite ci-dessus. Les conducteurs isolés présentent, au même endroit que le fil distinctif de firme, le fil distinctif de qualité, déposé, portant en noir sur fond clair les signes Morse reproduits ci-dessus. Les interrupteurs, prises de courant, coupe-circuit à fusibles et boîtes de dérivation portent la marque de qualité ci-dessus; en outre, soit leur emballage, soit une partie de l'objet luimême est muni d'une marque de contrôle de l'ASE. (Voir publication au Bulletin ASE 1930, No. 1, page 31.)

Prises de courant.

A partir du 15 juin 1934.

A. W. Widmer, Zurich (Représentant général de Stotz-Kontakt G. m. b. H., Mannheim-Neckarau).

Marque de fabrique:

- I. Prises de courant murales, bipolaires, pour 250 V 6 A:
 - A. pour montage sur crépi dans locaux secs,
 - pour fiches avec tiges de 4 mm, resp. une tige de 4 et une de 5 mm;
 - 1. No. 14204 i, avec cape en résine artificielle moulée brune;
 - 2. » 14204 w, avec cape en résine artificielle moulée blanche;
 - B. pour montage sur crépi dans locaux humides, pour fiches avec tiges de 4 mm, resp. une tige de 4 et une de 5 mm;
 - 3. No. 14204 kwis, dans boîtier en résine artificielle moulée brune, sans presse-étoupe
 - 14204 kwik, dans boîtier en résine artificielle moulée brune, sans presse-étoupe;
 - C. pour montage sur crépi dans locaux mouillés, pour fiches avec deux tiges de 4 mm, resp. une tige de 4 et une de 5 mm;
 - No. 14204 kwisK, dans boîtier en résine artificielle moulée brune, sans presse-étoupe, petit modèle;

- No. 14204 kwikK, dans boîtier en résine artificielle moulée brune, avec presse-étoupe, petit modèle;
 No. 14204 wisK, dans boîtier en résine artificielle
- 7. No. 14204 wisK, dans boîtier en résine artificielle moulée brune, sans presse-étoupe, grand modèle;
- No. 14204 wikK, dans boîtier en résine artificielle moulée brune, avec presse étoupe, grand modèle;
- 9. No. 14204 wg, dans boîtier en fonte;
- D. pour montage sous crépi dans locaux secs, pour fiches avec tiges de 4 mm, resp. une tige de 4 et une de 5 mm;
 - 10. No. 14204 gps, ..., avec plaque protectrice en verre ou en résine artificielle moulée.

A partir du 15 juillet 1934.

Appareillage Gardy S. A., La Jonction, Genève.

· Marque de fabrique: GARDY

Prises de courant bipolaires pour fixation à la paroi, avec contact de terre (2P+T) 250 V = ou 500 V ~, 15 A, avec cape en résine artificielle moulée noire (../01) ou brune (../03) pour montage sur crépi dans locaux secs: Type No. 30100/01, ../03 construction normale (feuille de normes SNV 24305).

Conducteurs isolés.

A partir du 15 juin 1934.

Friedrich Raum, Zurich (Représentant de Kabel- und Metallwerke Neumeyer A.-G., Nürnberg).

Fil distinctif de firme: vert/rouge/bleu.

Conducteurs à gaine de caoutchouc, cond. simples, fil massif resp. câblé, GS, 1 à 240 mm² (construction selon le § 11 des normes de l'ASE pour conducteurs isolés).

Cond. à gaine de caoutchouc résistant à la corrosion, cond. simples, fil massif resp. câblé, GSk, 1 à 240 mm² (construction selon le § 11 des normes de l'ASE p. cond. isolés).

Conducteurs à gaine de caoutchouc renforcée, cond. simples, fil massif resp. câblé, SGS, 1 à 150 mm² (construction selon le § 12 des normes de l'ASE pour conduct. isolés).

Cond. à gaine de caoutchouc renforcée résistant à la corrosion, cond. simples, fil massif resp. câblé, SGSk, 1 à 150 mm² (constr. selon le § 12 des normes de l'ASE p. cond. isolés).

Conducteurs à revêtement tubulaire, cond. multiples, fil massif, R, 1 à 16 mm² (construction selon le § 13 des normes de l'ASE pour conducteurs isolés).

Fils pour lustrerie, FA, cond. simples, fil massif, et cond. multiples, fil toronné, 0,75 à 1,5 mm² (construction selon le § 18 des normes de l'ASE pour conducteurs isolés).

Cordons torsadés, conducteurs multiples, VS, fil toronné, 0,75 à 4 mm² (construction selon le § 21 des normes de l'ASE pour conducteurs isolés). Cordons ronds, conducteurs multiples, RS, fil toronné resp. flexible câblé, 0,75 à 20 mm² (construction selon le § 22 des normes de l'ASE pour conducteurs isolés).

Cordons à gaine de caoutcouc, conducteurs multiples, GAS, fil toronné, 0,75 à 2,5 mm² (construction selon le § 23 des normes de l'ASE pour conducteurs isolés).

Cordons pour appareils mobiles, cond. multiples, AS, fil toronné resp. flexible câblé, 1 à 20 mm² (construction selon le § 24 des normes de l'ASE pour conduct. isolés). Cordons renforcés pour appareils mobiles, cond. multiples, ASv, fil toronné resp. flex. câblé, 1 à 20 mm² (construction selon le § 25 des normes de l'ASE pour conduct. isolés).

A partir du 1er juillet 1934.

AEG Elektrizitäts-Aktien-Gesellschaft, Zurich (Représentant de Allgemeinen Elektricitäts-Gesellschaft, Berlin).

Fil distinctif de firme: jaune/bleu, torsadé.

Cordons armés pour appareils mobiles PAS, cond. multiples, fil toronné ou câblé, flexible, 1 à 20 mm² (construction selon le § 26 des normes de l'ASE pour conduct. isolés).

Coupe-circuit.

A partir du 15 juin 1934. Appareillage Gardy S. A., La Jonction, Genève.

Marque de fabrique:

GARDY

Socles de coupe-circuit unipolaires montés dans coffret en tôle, pour 500 V 25 A (filetage E 27):

Type No. 07500 avec sectionneur pour le neutre, plaque de base peu élevée.

» 07501 sans sectionneur pour le neutre, plaque de base peu élevée,

» » 07520 avec sectionneur pour le neutre, plaque de base élevée,

» 07521 sans sectionneur pour le neutre, plaque de base élevée.

A partir du 1er juillet 1934.

Roesch frères, Fabrik elektrotechn. Bedarfsartikel, Koblenz.

Marque de fabrique:

Socles pour coupe-circuit à vis, unipolaires, 500~V~60~A (filetage E 33):

Type U.Z. 60 No. 603, sans sectionneur pour le neutre, sans prise derrière.

Boîtes de dérivation.

A partir du 1er juillet 1934.

A. Bürli, articles électriques, Lucerne.

Marque de fabrique: BURLEX

Porte-bornes pour boîtes de dérivation ordinaires étanches à la poussière, pour 500 V avec socle rond en porcelaine, vissable, et bornes interchangeables:

a) 4 bornes au max., pour 6 A
b) 4 bornes au max., pour 15 A.

Communications des organes des Associations.

Les articles paraissant sous cette rubrique sont, sauf indication contraire, des communiqués officiels du Secrétariat général de l'ASE et de l'UCS.

70^{me} anniversaire de Messieurs Ed. Tissot. et K. Sulzberger

M. Ed. Tissot.

Cette année également, l'ASE a le plaisir de fêter le 70^{me} anniversaire de deux de ses membres les plus fidèles et les plus méritants. A cette occasion elle leur présente ses plus sincères félicitations et leur souhaite tout particulièrement de conserver longtemps encore la santé et la vivacité d'esprit dont un sort favorable les a si abondamment comblés. Pour cet anniversaire, que Monsieur Sulzberger fête le 24 et Monsieur Tissot le 28 août, le comité de l'ASE a composé une adresse dans laquelle il les remercie des réels et inoubliables services rendus à l'Association; c'est à M. Sulzberger, président et collaborateur des plus actifs de nos principales commissions, que revient le mérite d'avoir introduit

M. K. Sulzberger.

la marque de qualité de l'ASE; M. Tissot, l'initiateur de la commission d'étude pour la traction électrique qui joua un rôle décisif dans l'électrification des chemins de fer fédéraux, a présidé pendant de longues années avec une compétence inégalée aux destinées de l'ASE, dont il a su mener fermement la barque à travers les périodes les plus difficiles de son existence.

Dans l'espoir que l'ASE pourra toujours compter sur des collaborateurs aussi fidèles et actifs, nous souhaitons que l'industrie électrique profite longtemps encore de la précieuse expérience de Messieurs Sulzberger et Tissot, ad multos annos!