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können in ähnlichen Formeln ausgedrückt werden. Darauf
näher einzugehen, würde aber hier zu weit führen.

Allerdings müssen bei allen diesen Berechnungen die
Verluststunden T„ oder der Verlustfaktor /v bekannt sein,
weil die Verlustkosten sich aus Leistungskosten und Energiekosten

zusammensetzen. Um den Verlustfaktor zu berechnen,

ist die von Rossander angegebene Methode sehr
verwendbar und zuverlässiger, als die von Spinath benutzte
Treppenkurve. Weil diese Methode ausserhalb Schwedens
wenig bekannt zu sein scheint, möchte ich sie in diesem
Zusammenhang kurz erwähnen.

Rossander hat auf empirischem Wege gefunden, dass die
Dauerkurve der Belastung mit genügender Genauigkeit durch
folgende Gleichung ausgedrückt werden kann:

y eo + (l —£o) £^

Sämtliche Werte sind im Verhältnis zur Maximalbelastung
und zur Totalzeit (im allgemeinen 8760 Stunden), die beide
gleich 1 gesetzt werden, ausgedrückt,
y Belastung zur Zeit t (beide in Relativzahl).
Bei t — 1 ist y 1

£0 — Minimalbelastung (Relativzahl zur Maximalbelastung),
y £o bei t 0

£o — Relative Benutzungsdauer der Maximalbelastung

X - 1 — £

£-£o
In dem Gebiet von 1800 bis 4000 Benutzungsstunden ist
folgende von Härlin angegebene Formel oft genauer:

y —— 1 —* (1 — £o) ' (1 — t)
Auf Grund dieser Gleichungen, die als symbolische Kurven

anstatt der wirklichen Belastungskurven verwendbar
sind, kann der Verlustfaktor sehr leicht berechnet werden.
Die Exponentialfunktionen sind einfach zu integrieren und
geben nach Rossander

/, £2o +
2 £0 (l-£0) (1—£0)2

X 1 + 2 A -j- 1

und nach Härlin

/v 1 + (1—£q)2 2 (1 £p)

Falls die Minimalbelastung klein ist, was oft in
Verteilungsnetzen vorkommt, kann man £o — 0 setzen, und dann
vereinfachen sich die Formeln zu

/.

/v

2 X -{- 1 2 — £
2 £3

nach Rossander und

1 + £
nach Härlin.

Bei dem von Spinath gegebenen Beispiel mit £ 0,36
(3160 h) erhält man

nach Rossander /, 0,22, 0,19, 0,18
nach Härlin fv — 0,19, 0,17, 0,15

jenachdem £o 0, 0,12 und 0,20 gesetzt wird.
Wenn man einen besonders breiten Spitz hat, wie Spinath

in Fig. 1 voraussetzt, stimmt Rossanders Formel mit £o — 0

am besten, sonst bei normaler Spitzenbreite, wie in Fig. 3,
die Härlinsche Formel mit £o 0 oder 0,1.

Sten Velander, Stockholm.

Erwiderung.
Herrn Prof. Sten Velander sei für seine Bemerkungen

und Ergänzungen zu meinem Aufsatz «Nötige Unterlagen zur
Ermittlung der wirtschaftlichsten Kabeltypen bei der Planung
von Kabelanlagen» bestens gedankt.

Obwohl die in den Fig. 2, 4 und 5 als Qopt eingezeichneten

Querschnitte nicht mit den theoretisch korrekten Qopt
zusammenfallen — diese liegen, da kl (in der Anmerkung
auf S. 255 mit A bezeichnet) ungleich Null ist, nicht im
Schnittpunkt der Leitungs- und Verlust-Kostenkurve, sondern
etwas weiter nach rechts verschoben im Schnittpunkt von

fe
kg Q mit — — ändert dies nichts an der Schlussfolgerung,

die die Schaulinien nur unterstützen sollten: dass unter
sonst gleichen Bedingungen zu kleineren Verlustfaktoren
kleinere wirtschaftliche Querschnitte gehören.

Die analytische Ermittlung von / v nach Rossander oder
Härlin ist sicher ein willkommener Behelf, besonders wenn
die Form der Belastungskurve, durch die die Verluststunden
gegeben sind, unbekannt ist. Liegt diese jedoch vor, wobei
die Darstellung in Treppenkurve oder in Polarkoordinaten
erfolgen kann, ist meines Erachtens die Ermittlung von /
aus dieser Kurve eindeutiger und deshalb vorzuziehen.

W. Spinath, Wien.

Die Ermittlung des günstigsten Durchhangs von Freileitungen an ungleich
hohen Aufhängepunkten.

Von J. Pasching, Wien. fi21.31B.05fi.

Es wird eine einfache Berechnungsmethode für denjenigen
Durchhang eines Seiles zwischen zwei ungleich hohen

Aufhängepunkten gegeben, bei dem die Beanspruchung im
höher gelegenen Aufhängepunkt ein Minimum wird. Ein
Beispiel erläutert den Berechnungsgang.

1

L'auteur expose une méthode simple pour le calcul de
la valeur de la flèche d'un câble tendu entre deux points
de hauteur différente, pour laquelle l'effort au point
d'attache le plus élevé passe par un minimum. Un exemple
numérique illustre cette méthode.

Der nachstehende Aufsatz stellt sich die Aufgabe,
zwischen zwei Punkten verschiedener Höhenlage
ein Seil derart zu spannen, dass die Beanspruchung
im höher gelegenen Aufhängepunkt, in welchem
die grösste Spannung auftritt, ein Minimum wird 1).

Gegeben sei der horizontale und vertikale
Abstand s bzw. d der beiden Stützpunkte, sowie y, das
Gewicht der Leitung pro Längeneinheit.

1) Die gleiche Aufgabe löste Hch. Schenkel in seinem
Aufsatz «Grosse Spannweiten und ihre Grenzen», ETZ 1932,
S. 27 ; doch ist die dort angegebene Methode bedeutend
langwieriger und mit Prohieren verbunden.

Den Berechnungen werde die Gleichung der
Kettenlinie

1 Soi çy H (i)

zugrunde gelegt, was bei den verhältnismässig grossen

Durchhängen erforderlich erscheint, und ein
rechtwinkeliges Koordinatensystem in der üblichen
Weise angenommen. Es ist dann (s. Fig. 1)

2) Die grundlegenden Beziehungen finden sich z. B. in
dem Aufsatz von A. Jobin «Die Berechnung der Freileitungen

mit Rücksicht auf die mechanischen Verhältnisse der
Leiter», Bull. SEV 1919, S. 159, 189 und 210.
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S x-2 — Xx, (2)

d y2 — yr (3)

Bekanntlich ist bei der Kettenlinie der Zug S

proportional der Ordinate y
S y y. (4)

Wenn S2 ein Minimum werden soll, muss daher
auch y2 eines werden; y2 in Gl. (1) eingesetzt
ergibt

Fig. 1.

H „y» — @o§
y

rx2
H

(5)

Nun enthält Gl. (5) für das Minimum y2 zwei
unabhängige Variable x2 und H, so dass für x2 und
H noch eine Bedingungsgleichung gefunden werden
muss; diese ergibt sich aus Gl. (3), wenn darin y2
und yx durch Gl. (1) ausgedrückt werden und man
für x1 aus Gl. (2) einsetzt wie folgt:

d
H
y

y ** - y te -s)

H H (6)

Zur Vereinfachung werden an Stelle von x., und
H die neuen unabhängigen Veränderlichen a und ß
eingeführt, für welche die Transformationsglei-
chungen lauten

y
H

y(x2- s)

H ~ ß- (8)

Mit a und ß schreiben sich die Gl. (5) und (6)
folgendermassen :

* «^9 ®°ä "• (9)

d (a ß) — s (©oê a — ©o§ ß) — 0 (10)

Es soll jetzt y2 in Gl. (9) ein Minimum werden
unter gleichzeitigem Bestehen von Gl. (10).
Bezeichnet man Gl. (9) und (10) symbolisch in der
folgenden Weise

y2 y2(a, ß), (9a)

cp (a, ß) — 0, (10a)

so müssen für das Auftreten eines Extrems die Gl.
(11) erfüllt sein:

ày2
ô a
à y,
<5 ß

0,
0 a

(ii)

Aus Gl. (11) kann man nun X eliminieren und
dann mit Gl. (10) jene Werte von a und ß berechnen,

die in Gl. (9) das Minimum von y2 bestimmen.
Für die in den Gl. (11) vorkommenden

Differentialquotienten erhält man folgende Ausdrücke:
à y2 s ©0§ a,
ö a

ày2
d ß
d cp

ö a
ô cp

((Sin a — ~rj-a
a ß a-\-ß

(« + ß)2

— d — s • Silt a,

©0§ a,

à ß
d -f- s Sin ß.

Setzt man diese in Gl. (11) ein und eliminiert
daraus X, so ergibt sich

©o§ a — (a -t- ß) Sin aJ (d 4- s • Sin ß)

©0§ a (d — s • Sin «).
Dividiert man diese Beziehung sowie Gl. (10)

durch s, so erhält man die folgenden Relationen:

^©0§ a -— (a -f- ß) Sin -—K ©in ß)

©0§ a (- — Sin a),

d
s

©0§ a — ©0§ ß

a -1— /9

Aus Gl. (12) und (13) folgt, dass a und

(12)

(13)

nur

vom Verhältnis — abhängen; es können daher für
s

d
die Werte a und ß in einer Tabelle zusammengestellt

werden. Weil nun die Berechnung dieser
Tabelle mit Hilfe der Gl. (12) und (13) sehr

langwierig wäre, wird aus diesen — eliminiert, worauf

sich nach einigen Umformungen ergibt:
Sitt (a ß) (« -+- ß) Sin « Sitt ß (14)

Nimmt man jetzt in Gl. (14) für a einen
bestimmten Wert an und berechnet daraus ß
(Näherungsverfahren), so entspricht diesen Werten a und

ß, für welche das Verhältnis — aus Gl. (13) gefunden

werden kann, ein Kleinstwert von y, bzw. S„.
Wiederholt man diese Rechnung für eine grössere

Anzahl von a, so resultiert eine Tabelle für — a, ß,

die aber noch unrunde Werte von — enthält; durch
s

Interpolation ergibt sich schliesslich die Tabelle I
d

mit runden Werten von —.
s
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Tabelle 1.

d d
ß

s
a ß

s
n

0 1,200 1,200 0,90 1,976 0,707

0,05 1,240 1,161 0,95 2,016 0,691

0,10 1,281 1,123 1,00 2,055 0,676

0,15 1,324 1,086 1,05 2,094 0,662

0,20 1,367 1,051 1,10 2,132 0,649

0,25 1,410 1,017 1,20 2,207 0,624

0,30 1,454 0,985 1,30 2,278 0,602

0,35 1,499 0,955 1,40 2,348 0,581

0,40 1,543 0,925 1,50 2,413 0,563

0,45 1,588 0,898 1,70 2,537 0,532

0,50 1,633 0,871 2,00 2,705 0,494

0,55 1,677 0,847 2,50 2,95 0,45

0,60 1,721 0,823 3,00 3,16 0,41

0,65 1,765 0,801 4,00 3,49 0,37

0,70 1,808 0,780 5,00 3,76 0,34

0,75 1,851 0,760 7,00 4,17 0,30

0,80 1,893 0,741 10,00 4,60 0,26

0,85 1,935 0,724

Wie ans der Tabelle ersehen werden kann, ist ß

für alle Werte von — positiv, weshalb aus Gl. (8)
s

folgt, dass der Scheitel der Kettenlinie mit günstigstem

Durchhang immer innerhalb der Aufhängepunkte

liegt.
Hat man für die gegebenen Werte d und s der

Tabelle die Grösse von a und ß entnommen, so
können damit alle Daten der Kettenlinie in
einfachster Weise berechnet werden. Man findet aus
Gl. (7) und (8)

* - (")
Aus Gl. (2) ergibt sich

xx x2 — s. (16)
Aus Gl. (5) und (7) erhält man

@0§ a
y2 *2 ——• (17)

Aus Gl. (3) folgt
Yi y2 — d. (18)

Für den vertikalen Abstand des höchsten Punktes
vom Tiefsten, /, kann aus Gl. (7) und (17) der
folgende Ausdruck gefunden werden

/ r 1. (i9)

In Gl. (15) bis (19) ist y nicht enthalten; die
geometrischen Verhältnisse an der Kettenlinie
günstigsten Durchhangs sind also von y vollständig
unabhängig.

Die Zugkraft im tiefsten Punkt ergibt sich aus
Gl. (7)

H y ^ (20)

Die Zugkräfte in den Aufhängepunkten können aus
Gl. (4) berechnet werden

S2 yy2, (21)
St y Yi- (22)

Es sollen jetzt noch die für den allgemeinen
Fall abgeleiteten Formeln für gleich hohe Stützen
spezialisiert werden; für diesen Fall silt :

d 0,
" o,
s

X2

a
— x1 x; s 2x,
3 a0.

Setzt man in Gl. (14) a <= ß — a0, so ergibt sich
nach einigen Umformungen die folgende Gleichung

- Scmg «o-
«o

Löst man diese Gleichung mit Hilfe eines
Näherungsverfahrens auf, so erhält man

a0 1,1997 ~ 1,2,
welcher Wert auch in Tabelle I aufgenommen
wurde.

Führt man nun den eben gefundenen Wert von
a0 in Gl. (17), (19), (20) und (21) ein, so ergeben
sich die folgenden Beziehungen 3) :

y 1,5089 x ~ ~ x,

f 0,6753 *

H Y

2

2

~3 *

y x
1,2'1,1997

S 1,8102 H ~ 1,8 H.
Beispiel: Gegeben d 150 m

s 400 m
y — 3,93 kg/m.

0,375 findet manFür das Verhältnis —
s 400

durch Interpolation aus der Tabelle
a 1,521,
ß 0,940.

Durch Einsetzen in Gl. (15) bis (22) ergeben sich
die folgenden Werte:

1 521
400

1,521 V 0,940
247,2 m

x1 247.2 — 400 — 152,8 m

y2 247,2 389,7 m
1,521

389,7 - 150 239,7 m
1,521 - 1

1,521
_

Ti

/ 247,2 227,2 m

H 3,93

S2 3,93

Sj 3,93

247,2ijk 638,8

• 389,7 1532 kg
• 239,7 942 kg.

3) Die Berechnung des günstigsten Durchhangs bei gleich
hohen Aufhängepunkten findet sich zuerst in dem Werk von
E. E. Blavier «Nouveau traité de télégraphie électrique»,
Paris, Lacroix, II. Bd., S. 463. — Auch M.Jüllig behandelt in
seinem Aufsatz «Ueber die mechanische Beanspruchung elektr.
Luftleitungen» in der Zeitschr. f. Elektrotechn., Wien 1899,
Heft 17, diesen Fall. — Blavier gibt für «o einen Wert zwischen
1,1998 und 1,1999 an; bei Jüllig ist ao mit 1,199678 angegeben.


	Die Ermittlung des günstigsten Durchhangs von Freileitungen an ungleich hohen Aufhängepunkten

