**Zeitschrift:** Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

**Band:** 23 (1932)

**Heft:** 22

**Artikel:** Die Resultate neuerer Forschungen über den Abschaltvorgang im

Wechselstromlichtbogen und ihre Anwendung im Schalterbau

(Ölschalter, Druckluftschalter, Expansionsschalter)

**Autor:** Kopeliowitsch, J. / Biermanns, J. / Mayr, O.

**DOI:** https://doi.org/10.5169/seals-1057470

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# ASSOCIATION SUISSE DES ÉLECTRICIENS

# BULLETIN

**RÉDACTION:** 

Secrétariat général de l'Association Suisse des Electriciens et de l'Union de Centrales Suisses d'électricité, Zurich 8 EDITEUR ET ADMINISTRATION:

Fachschriften-Verlag & Buchdruckerei S. A., Zurich 4 Stauffacherquai 36/38

Reproduction interdite sans l'assentiment de la rédaction et sans indication des sources

XXIIIe Année

 $N^{o}$  22

Vendredi, 28 Octobre 1932

## Die Resultate neuerer Forschungen über den Abschaltvorgang im Wechselstromlichtbogen und ihre Anwendung im Schalterbau (Oelschalter, Druckluftschalter, Expansionsschalter).

Bericht über den 8. akademischen Diskussionsvortrag,

veranstaltet von der Elektrotechnischen Abteilung der Eidgenössischen Technischen Hochschule Samstag, den 13. Februar 1932, in der Eidgenössischen Technischen Hochschule in Zürich.

(Referate gesammelt von F. G. Ruegg, dipl. Ing., Assistent an der ETH, Zürich.)

Mit der Veröffentlichung der am 8. akademischen Diskussionsvortrag unter dem Vorsitz von Herrn Prof. Dr. Bruno Bauer gehaltenen Referate und einer Zusammenfassung der Diskussion möchten wir einen Ueberblick über die heutigen Anschauungen und Tendenzen im Schalterbau einiger Grossfirmen geben, nämlich der A.G. Brown, Boveri & Cie., Baden (BBC), der Allgemeinen Elektrizitätsgesellschaft, Berlin (AEG), der Siemens-Schuckert-Werke, Berlin (SSW), und der Ateliers de Constructions Electriques de Delle, Lyon (ACED).

En publiant les conférences données à la 8° assemblée académique de discussion, présidée par M. le professeur D<sup>r</sup> Bruno Bauer, ainsi qu'un résumé de la discussion qui suivit, nous tenons à donner un aperçu des idées et tendances actuelles de quelques constructeurs de disjoncteurs, à savoir la S.A. Brown, Boveri et Cie, Baden (BBC), la Société Générale d'Electricité, Berlin (AEG), les Usines Siemens-Schuckert, Berlin (SSW), et les Ateliers de Constructions Electriques de Delle, Lyon (ACED).

(La rédaction.)

#### I. Referat 1)

gehalten von Dr. J. Kopeliowitsch, Ingenieur der A.-G. Brown, Boyeri & Cie., Baden (BBC).

Es werden zunächst die zwei grundsätzlich verschiedenen physikalischen Vorgänge im Wechselstromlichtbogen grosser Leistung besprochen: die Bogenentladung und der Löschund Zündvorgang beim Nulldurchgang des Stromes. Trotz sehr hoher Bogentemperatur scheint die Stoss- und nicht die thermische Ionisation die Hauptrolle zu spielen. Zeitlupenaufnahmen vom Lichtbogen in Luft zeigen, dass an den Elektroden eine äusserst heftige Metallverdampfung bzw. Ionisation der Gase stattfindet. Das Gesetz der Verfestigung der Lichtbogenstrecke sofort nach dem Abreissen des Bogens wird auf experimenteller Grundlage aufgestellt. Die Rückzündung kann nur dann erfolgen, wenn die wiederkehrende Spannung höhere Werte als die Zündspannung erreicht. Es wird der Verlauf der wiederkehrenden Spannung mathematisch dargestellt und daraus die Löschbedingung abgeleitet. Die Bedeutung der Eigenfrequenz des Kurzschlusskreises, sowie der Netzbelastung und des  $\cos \varphi$ für den Abschaltvorgang wird anhand zahlreicher Versuchsergebnisse erläutert: Tiefe Eigenfrequenz, grosse Netzbelastung bei hohem  $\cos\varphi$  sind für die Unterbrechung der Kurzschlüsse günstig. Bei gegebener Kurzschlussleistung ist die Eigenfrequenz in Höchstspannungsnetzen und deren Knotenpunkten am tiefsten, ebenso in Kabelnetzen. Die bestehenden Hochleistungsprüfanlagen, deren Leistungsfähigkeit kurz angedeutet wird, besitzen dagegen eine sehr hohe Eigenfrequenz, so dass die Schalter bei den Prüfungen bedeutend schärferen Beanspruchungen als im Betrieb unterworfen sind.

L'auteur discute d'abord les deux phénomènes physiques essentiellement différents qui se manifestent dans l'arc alternatif de forte puissance: la décharge sous forme d'arc et le phénomène d'extinction et de réamorçage de l'arc lorsque le courant passe par zéro. Malgré la très haute température de l'arc, il semble que la ionisation par choc joue un rôle prépondérant, et non la ionisation thermique. Des prises de vues au ralenti de l'arc dans l'air montrent qu'il se produit aux électrodes une vaporisation de métal et une ionisation des gaz très intenses. Partant de l'expérience, l'auteur établit la loi de la déionisation de la distance disruptive immédiatement après l'extinction de l'arc. Un réamorçage ne peut se produire que lorsque la tension se rétablissant entre les contacts prend des valeurs supérieures à la tension disruptive. Suit une représentation mathématique de l'allure de la tension de rétablissement dont on peut tirer les conditions nécessaires pour l'extinction de l'arc. L'auteur explique ensuite, en s'appuyant sur de nombreux essais, le rôle de la fréquence propre du circuit, ainsi que celui de la charge du réseau et du cos φ dans le processus de rupture: une fréquence propre peu élevée, une forte charge dans le réseau alliée à un  $\cos \varphi$ élevé sont favorables au travail des disjoncteurs. Pour une puissance de court-circuit donnée, c'est dans les réseaux à très haute tension, en leurs nœuds, ainsi que dans les réseaux de câbles, que la fréquence propre est la plus basse. Les installations d'essai à grande puissance existantes possèdent au contraire une fréquence propre très élevée, de sorte que, lors des essais, les interrupteurs sont soumis à des contraintes bien supérieures à celles qui peuvent se pré-

<sup>1)</sup> Etwas erweiterte Fassung, siehe z.B. Fussnote 5.

Im zweiten Teil wird über die Entwicklung der BBC-Schalterkonstruktionen berichtet. Die Beanspruchung des Oelschalters mit offener zwei- oder vielfacher Unterbrechung kann heute, dank weitgehender Erforschung der Vorgänge, vorausberechnet und sein Aufbau entsprechend durchgebildet werden, wodurch auch bei höchsten Abschaltleistungen die grösste Betriebssicherheit gewährleistet wird. Die öllosen Schalter, die mit Wasserdampf (Expansionsschalter) oder mit Druckluft arbeiten, erlauben ebenfalls grosse Leistungen mit kurzen Unterbrechungszeiten zu bewältigen. Die Anwendung von elastischen oder mit Ventilen versehenen Druckkammern ermöglicht betriebssichere Konstruktion. Bei Spannungen von 50 kV an scheint der ölarme Schalter mit Vielfachkammer besonders günstige Eigenschaften zu besitzen. Die Wirkungsweise des Druckluftschalters wird erklärt und seine Leistungsfähigkeit angegeben.

#### Vorwort.

Die Erfahrung zeigt, dass die Entwicklung der Hochspannungsapparate, wie Schalter, deren Arbeitsweise mit der Bildung von elektrischen Lichtbögen verknüpft ist, sich auf rein theoretischem Wege nicht durchführen lässt. Um Fortschritte zu erzielen, muss man die Vorstellungen über die Vorgänge auf experimenteller Grundlage aufbauen und die Schlussfolgerungen durch entsprechende analytische Versuche bekräftigen. Erst seitdem die führenden Firmen grosse Mittel für die Ausrüstung von Hochleistungsprüfanlagen sowie für weitgehende Versuche gestiftet hatten, gelang es, auf diesem Gebiet greifbare Ergebnisse zu erreichen. Die Vertiefung der Kenntnisse über die Eigenschaften des Wechselstromlichtbogens, über die physikalischen Vorgänge, die seine Entstehung, Erhaltung und Löschung bedingen, bildete meistens das Hauptziel der Untersuchungen.

Die erste theoretisch und experimentell tiefschürfende Arbeit über den Wechselstromlichtbogen in Oelschaltern stammt von B. Bauer, welcher im Auftrag des Generalsekretariates des SEV und VSE diese Fragen studierte und durch seine Veröffentlichungen aus den Jahren 1915 und 1917 einen Eckpfeiler für die Entwicklung der Schalterkonstruktionen aufgestellt hat 2). Der Einführung des Begriffes der Schalterarbeit und der Bauerschen Schalterarbeitskonstante sowie den Untersuchungen über die Energieentwicklung im Lichtbogen und die Gasbildung im Oel, verdanken wir zahlreiche weitere, von verschiedenen Seiten eingeleitete Arbeiten über den ganzen Fragenkomplex, die eine wertvolle Grundlage für den Schalterkonstrukteur bilden.

# I. Wechselstromlichtbogen grosser Leistung und seine Unterbrechung <sup>3</sup>).

1. Die Bogenentladung bei hoher Stromstärke.

Mit einer Bogenentladung bezeichnet man eine elektrische Gasentladung, die bei kleinem Ka-

 B. Bauer, Die Untersuchungen an Oelschaltern, Bull. SEV 1915, S. 141, 300; 1916, S. 85; 1917, S. 225, 273.

senter en exploitation régulière. — Grâce aux études approfondies des phénomènes, il est possible de calculer aujourd'hui à l'avance les contraintes qu'auront à supporter les interrupteurs à huile à rupture libre, double ou multiple, et de les construire en conséquence; ces interrupteurs offrent ainsi toute garantie de sécurité, même aux plus fortes puissances de rupture. Les interrupteurs sans huile, qui travaillent avec de la vapeur d'eau ou à l'air comprimé, permettent également de couper rapidement de fortes puissances. L'emploi des chambres de compression élastiques ou munies de soupapes permet de réaliser des constructions de toute sécurité. Pour des tensions supérieures à 50 kV, l'interrupteur à faible volume d'huile et à chambres multiples semble présenter des qualités particulièrement favorables. L'auteur termine par un exposé du fonctionement de l'interrupteur à air comprimé et de sa capacité de rupture.

thodenfall erfolgt. Manchmal wird eine Bogenentladung auch mit der Bedingung verknüpft, dass die Kathode während der Entladung glüht und je nach ihrer Zusammensetzung verdampft. In den letzten Jahren wurde allerdings gezeigt, dass ein Lichtbogen auch dann unterhalten werden kann, wenn sich seine Fusspunkte mit sehr grosser Geschwindigkeit an den Elektroden bewegen, ohne merkliche Brandspuren zu hinterlassen. Die Notwendigkeit einer glühenden Kathode als Grundbedingung für die Existenz eines Bogens wurde beispielsweise von Slepian in Frage gestellt. Anderseits sind die klassischen Versuche der Physik über die Bedeutung der glühenden Kathode unanfechtbar; man muss somit annehmen, dass verschiedene Arten von Bogenentladungen stattfinden können. Bei der in Schaltern üblichen Elektrodenanordnung, mit Ausnahme derjenigen des Deion-Schalters, kann mindestens einer der Ansatzpunkte an der Elektrode verhältnismässig ruhig Fuss fassen, so dass deren Abschmelzen nicht zu vermeiden ist.

Die Experimentalphysik, die eine sehr umfangreiche Literatur über den elektrischen Lichtbogen aufweist, beschäftigt sich fast ausschliesslich mit den Entladungen bei kleinen Strömen. Obwohl die physikalische Erforschung des Hochleistungslichtbogens, welcher im Schalterbau in Frage kommt, grosser Schwierigkeiten wegen bis jetzt praktisch undurchführbar war, kann man sich über die Vorgänge doch ein ziemlich genaues Bild machen.

Wie in Metallen erfolgt die Stromleitung auch im Lichtbogen durch die zum Potentialgefälle in entgegengesetzter Richtung sich bewegenden Elektronen. Nach theoretischen Berechnungen werden nur einige Promille des Stromes durch Ionen übertragen <sup>4</sup>). Um einen Lichtbogen in einer Gasatmosphäre zu zünden, muss diese zunächst ionisiert werden. Der Ionisierungsvorgang kann auf thermischem oder elektrischem Weg, oder noch durch die kombinierte Wirkung beider Vorgänge erfolgen. Die Bogenentladung ist durch eine besonders gute Leitfähigkeit der Gasstrecke gekennzeichnet, und da ihr zweites Merkmal die hohe Temperatur ist, kann man sich der Frage nicht verschliessen, ob nicht diese Temperatur bei der

<sup>3)</sup> Die Abschnitte 1 bis 3 dieses Kapitels, welche die physikalischen Eigenschaften des Wechselstromlichtbogens behandeln, können von Lesern, die für praktische Fragen grösseres Interesse haben, ohne Nachteil für die Verständlichkeit weiterer Ausführungen übersprungen werden.

<sup>&</sup>lt;sup>4</sup>) Compton, JAIEE 1927, S. 1197.

Ionisierung der Gase eine wichtige Rolle spielt 5). Die thermische Ionisation ist durch Stoss neutraler Teilchen oder auch durch Ionenstoss infolge hoher gaskinetischer Temperaturgeschwindigkeit unabhängig vom elektrischen Feld hervorgerufen, im Gegensatz zu der mehr bekannten Stossionisation, die hauptsächlich durch Elektronenstoss und seine Wechselwirkung mit Ionisation durch Ionenstoss im elektrischen Feld zustandekommt.

Die Betrachtungen können zunächst auf eine Wasserstoffatmosphäre beschränkt werden, da bekanntlich die Gase in Oel- wie auch in Wasserschaltern etwa 66 bis 70 % Wasserstoff enthalten, so dass der Lichtbogen vorwiegend in einer Wasserstoffatmosphäre brennt. Im weiteren haben die Versuche von Weedmore, Whitney und Bruce 6) gezeigt, dass die Eigenschaften eines Lichtbogens unter Oel oder in reinem Wasserstoff praktisch dieselben sind.

Zu interessanten Schlussfolgerungen gelangt man bei Anwendung des Nernstschen Isobaren-Theorems und der von Saha<sup>7</sup>) aufgestellten Beziehung für die thermischen Ionisierungs- bzw. Dissoziationsverhältnisse einer Gasatmosphäre. Diese Beziehung lautet:

$$\log \frac{x^2}{1-x^2} \cdot P = -\frac{A}{4.57 \cdot T} + \frac{\Sigma \nu C_p}{R} \log T + \Sigma \nu C \quad (1)$$

worin x den prozentualen Anteil der ionisierten bzw. dissoziierten Moleküle und P den totalen Druck des ionisierten Gases (in kg/cm<sup>2</sup>) darstellt. A ist die bei thermischer Ionisation bzw. Dissoziation eines Grammatoms aufgewendete Wärme,  $\Sigma \nu C$  und  $\Sigma \nu C_p$  sind chemische Konstanten des Gases, T stellt die absolute Temperatur und R die universale Gaskonstante dar. Um die thermische Dissoziation des molekularen Wasserstoffes in den atomalen Zustand zu berechnen, geht man von folgender Beziehung aus

$$H_2 + 4,37 \text{ Volt} = H + H$$
 (2)

 $(A = 102\ 000\ \text{cal}\ ^8) = 4,37\ \text{Volt};\ \mathcal{L}\ \nu\ C_p = 1,5\ R;$  $\Sigma \nu C = 0,2$ ). Für die Berechnung des thermischen Ionisationsgrades kann hingegen, unter Voraussetzung einer weitgehenden Dissoziation, die Grundbeziehung

benützt werden, wobei 13,6 Volt der Ionisierungsspannung des atomalen Wasserstoffes entspricht; für den molekularen Wasserstoff muss mit 15,9 ± 0,2 V gerechnet werden.

möchte ich diese Betrachtungen hier niederlegen.

6) C. R. der CIGR 1929, T. I., S. 314; JIEE, Vol. 67,

In Fig. 1 ist der prozentuale Dissoziationsgrad des Wasserstoffes, berechnet nach der Beziehung (2) in Funktion der absoluten Temperatur T und für verschiedene Drücke P = 0,1, 1, 10 und 100 kg/cm<sup>2</sup> als Parameter aufgetragen. Die Kurven zeigen, dass

- a) mit zunehmendem Druck höhere Temperaturen für den gleichen Dissoziationszustand erforderlich sind,
- bei den hohen, im Lichtbogen herrschenden Temperaturen eine weitgehende Dissoziation des Wasserstoffes stattfindet.

Versucht man hingegen den thermischen Ionisationsgrad des Wasserstoffes nach Beziehung (1) und (3) zu berechnen, so zeigt sich, dass bei Atmosphärendruck eine merkliche Ionisation erst bei einer Temperatur höher als ca. 10 000° K auftritt: Geht man aus vom molekularen Zustand, so sind bei  $T = 10\,000^{\circ}$  K bloss 0,56 % der Teilchen ionisiert. In Fig. 1 ist noch die prozentuale Abnahme der elektrischen Durchschlagsfestigkeit des Wasserstoffes in Funktion der Temperatur eingezeichnet, unter Annahme, dass diese Festigkeit umgekehrt proportional der Gasdichte ist.

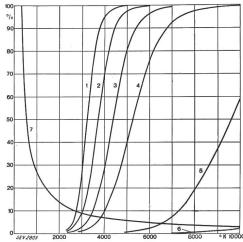



Fig. 1.

Dissoziationsgrad von Wasserstoff in Funktion der absoluten Temperatur ( $^{\circ}$  K), berechnet nach der Formel von Saha für  $^{\circ}$  0,1, 1, 10 und 100 kg/cm² (Kurven 1, 2, 3 und 4). Kurve 7 stellt die Durchschlagsfestigkeit der Gase in Funktion der absoluten Temperatur dar (Gesetz von Paschen. Lonisationsgrad der Metalldämpfe  $U_1$  = 7,6 V (Kurve 5) und des Wasserstoffes  $U_1$  = 13,5 V (Kurve 6).

Um einen Einblick in die Vorgänge im Lichtbogen anhand der Fig. 1 zu gewinnen, muss zunächst die Frage nach dessen Temperatur beantwortet werden. Ueber diesen Punkt liegen einige Messungen an Gleichstromlichtbogen vor. Nach Mathiesen 9) erreicht in einem Kohlebogen von 16 mm Länge bei 10 A die Anodentemperatur 4926° K, die Temperatur der positiven Säule rund 2600° K und in der Nähe der Kathode beträgt sie rund 3500° K. Messungen von Ornstein und Ver-

<sup>5)</sup> O. Mayr erörtert diese Frage in ETZ 1932, S. 76, und da ich mich mit diesem Problem Ende 1931 ebenfalls befasste und zu gegensätzlichen Schlussfolgerungen gelangte,

<sup>1929,</sup> S. 557.

7) Z. f. Ph., Bd. VI, S. 40; Phyl. Mag. 1920, S. 472.

8) cal = Gramm-Kalorie; kcal = Kilogramm-Kalorie.

<sup>9)</sup> Untersuchungen über elektr. Lichtbogen, Leipzig 1921. Verlag Haberland, S. 53.

meulen mittels Spektralanalyse ergaben für einen Bogen zwischen Kupferelektroden eine Temperatur von 6000 bis 7000° K 10). Engel und Steenbeck finden 5720°K unter Anwendung einer neuen Methode (Absorption der Röntgenstrahlen im Lichtbogen) 11). Unter Berücksichtigung des höchsten Wertes von 7000° K kann der Fig. 1 entnommen werden, dass der Lichtbogen in vollkommen dissoziiertem, jedoch thermisch kaum ionisiertem Wasserstoff brennen würde. Berechnet man den thermischen Ionisationsgrad der Metalldämpfe (welche naturgemäss in der Lichtbogenatmosphäre enthalten sind) für diese Temperatur, so ergibt sich, dass etwa 7 % der Atome ionisiert sind, was zur Erklärung der guten Leitfähigkeit eines Leistungslichtbogens bei reiner Metalldampfatmosphäre gerade ausreichen könnte. Die weiter angeführten Versuche zeigen aber, dass die Metallart der Elektroden auf den Spannungsabfall in einem langen Lichtbogen keinen merklichen Einfluss hat, was sehr wahrscheinlich dadurch bedingt ist, dass der Metalldampf nur einen Bruchteil der ionisierten Gase bildet 12). Um mit der thermischen Ionisation allein die gute Leitfähigkeit des Bogens erklären zu können, muss somit eine viel höhere Bogentemperatur angenommen werden, wofür allerdings noch keine experimentellen Anhaltspunkte vorhanden sind. Die Messungen von Nottingham 13) zeigen anderseits, dass im Kupferbogen die Elektronen eine sehr hohe Geschwindigkeit haben, die einer Temperatur von 20 000° K entspricht; ihre Ionisationsfähigkeit ist deshalb grösser als diejenige der Moleküle. Danach muss die Ionisation durch Elektronenstoss im Lichtbogen eine viel wichtigere Rolle spielen als die ther-

Wenn man annimmt, dass die Bogenentladung bei grossem Strom die vollständige Aufspaltung des Wasserstoffes bedingt, wodurch die Ionisationsspannung der Bogenatmosphäre herabgesetzt wird und die Stromleitung mit dem kleinsten Energieaufwand vor sich geht, so ergibt sich aus Fig. 1 für einen Ueberdruck von 10 kg/cm² eine Lichtbogentemperatur von über 7000° K, für einen solchen von 100 kg/cm<sup>2</sup> eine Temperatur von über 9000° K. Darüber hinaus wird wahrscheinlich die Temperatur auch bei wachsendem Strom nicht steigen, dagegen der Bogenquerschnitt, wenn nicht durch die künstliche Einschnürung das Atmen des Bogens verhindert wird. In diesem Falle können Stromdichte

<sup>10</sup>) Z. f. Ph, Bd. 70, 1931, S. 564; siehe auch L. Ornstein, Phys. Z., XXXII, 1931, S. 517.

<sup>11</sup>) Wiss. Ver. Siemens Konz. 1931, Bd. X, H. 2, S. 155 (Literaturübersicht s. S. 156-158).

<sup>12</sup>) Nach den Untersuchungen von A. Hagenbach und K. Langbein, Arch. Gen. Bd. 46, S. 329, 1918, liegt beim Wolframbogen die Temperatur des Kathodenfleckes (3000°C) unterhalb der Siedetemperatur von Wolfram (5100° C), so dass die Kathode geschmolzen (Schmelztemperatur 2800° C) jedoch nicht verdampft wird. Inwiefern dieses Ergebnis auf Lichtbogen grosser Stromstärke übertragen werden darf, lässt

sich vorläufig nicht sagen.

13) Nottingham, J. Frankl. Inst. 1928, Bd. 206, S. 43, 1929, Bd. 207, S. 299.

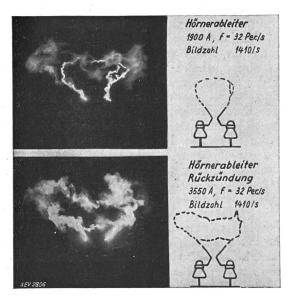
und Bogentemperatur sehr hohe Werte annehmen 14).

Die Zerspaltung des Wasserstoffes erfolgt unter Aufnahme grösserer Wärmemengen; umgekehrt ist die Wiedervereinigung einzelner Wasserstoffatome zu Molekülen von der Befreiung entsprechender Energie begleitet. Diese Umwandlung erklärt die Zunahme der Wärmeleitfähigkeit des atomalen Wasserstoffes, welche nach Langemuir 15) 6000° K das 18,5fache derjenigen des molekularen Wasserstoffes erreicht. Im übrigen sinkt, wie die Kurven Fig. 1 zeigen, der Dissoziationsgrad des Wasserstoffes, ausser im oberen Teil, sehr rasch mit abnehmender Temperatur.

Die Voränge, welche zur Elektronenemission an der Kathode führen, kann man sich der klassischen Theorie entsprechend so vorstellen, dass die aus der glühenden Kathode emittierten Elektronen im Gebiete des Kathodenfalles so weit beschleunigt werden, dass eine Stossionisation (etwa nach einer freien Weglänge) stattfindet. Die erzeugten positiven Ionen werden in umgekehrter Richtung gegen die Kathode beschleunigt, um bei Anprall ihre Bewegungsenergie in Wärme umzuwandeln, welche die Kathode zum Glühen bringt. Diese Ionen beteiligen sich gleichzeitig, wenn auch nur unbedeutend, im Stromtransport.

Die Stromdichte an der Kathode, bedingt durch Glühemission, wurde von Richardson durch die Formel

$$I = a \cdot \sqrt{T} e - e^{-b/T} \tag{4}$$


dargestellt, die allerdings die Wirkung des elektrischen Feldes im Kathodenfall nicht berücksichtigt. Nach der skizzierten Theorie entsteht hingegen die Elektronenemission an der Kathode unter gemeinsamer Wirkung der Raumladung und des elektrischen Feldes im Kathodenfall und der Erhitzung des Kathodenmaterials durch Ionenbombardement. Die Zeitlupenaufnahmen, mit ca. 1500 Bildern pro Sekunde, welche wir vom Hochleistungslichtbogen gemacht haben, zeigen deutlich, dass an der Kathode eine äusserst heftige, explosionsartige Verdampfung des Elektrodenmaterials bzw. Ionisierung der Gasstrecke stattfindet, die auf eine sehr hohe Temperatur hindeutet. Der Metalldampf bzw. der ionisierte Strang wird wie aus einer Rakete, senkrecht zur Lichtbogenansatzstelle, ausgestossen und bildet ein hell leuchtendes Gasbüschel (Fig. 2a und 2b) 16).

Obwohl theoretisch den Vorgängen an der Anode allgemein kleinere Bedeutung zugeschrieben wird und nachgewiesenermassen eine Bogenentladung bei kalter Anode ohne weiteres unterhalten werden kann, sind die äusseren Erscheinungen an der Anode eines Hochleistungslichtbogens von genau gleicher Beschaffenheit wie an der Kathode.

Seeliger, Phys. der Gasentladungen, Leipzig 1927,
 S. 196. H. Gerdien und A. Lotz, Z. f. tech. Ph. 1923, S. 159; 1924, S. 515. 15) GER 1926, S. 153.

<sup>16)</sup> Vergl. auch Seeliger, loc. cit. S. 275; H. Müller, Hescho-Mitt., S. 1393.

Die negative Raumladung vor der Anode sorgt für einen genügenden Anodenfall, um die erforderliche Ionenmenge vor der Anode zu bilden. Die Zeitlupenaufnahmen beweisen, dass auch an der Anode eine ebenso heftige Verdampfung des Metalls bzw. Ionisation der Gase auftritt. Bei genauer Auswer-



Zeitlupenaufnahmen vom Wechselstromlichtbogen in Luft. Bildfrequenz: 1410/s; I=1900/3550 A; f=32 Per./s. Elektroden: Hörner aus Kupfer.

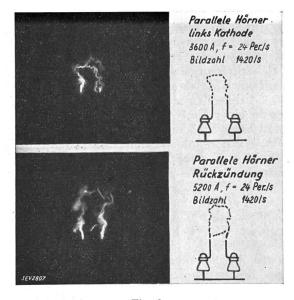



Fig. 2b. Zeitlupenaufnahmen vom Wechselstromlichtbogen in Luft. Bildfrequenz: 1420/s; I=3600/5200 A; f=24 Per./s. Elektroden: Parallele Hörner aus Kupfer.

tung der Bilder sieht man allerdings, dass das leuchtende Büschel praktisch die gleiche Länge wie an der Kathode erreicht, die Kathode aber am Anfang und Ende einer Halbwelle heller glüht als die Anode. Das glühende Dampfbüschel scheint ausserdem an der Kathode rascher zu wachsen, was auf

grössere Verluste im Kathodenfall und grössere Geschwindigkeit der Elektronen zurückgeführt werden muss. Der zwischen den beiden Kathoden- und Anodenbüscheln liegende Lichtbogenstrang kann je nach Art der Stromschleife und der Kontakte (Fig. 3a und 3b) verschiedene Formen aufweisen

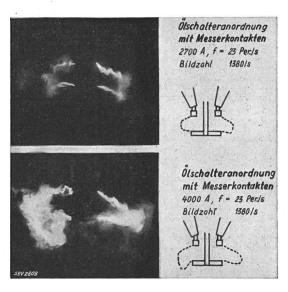



Fig. 3a. Zeitlupenaufnahmen vom Wechselstromlichtbogen in Luft. Bildfrequenz: 1380/s;  $I=2700/4000~\mathrm{A};~f=23~\mathrm{Per./s}.$  Elektroden: Lamellen- und Messerkontakte, schleifenförmige Strombahn wie in Oelschaltern.

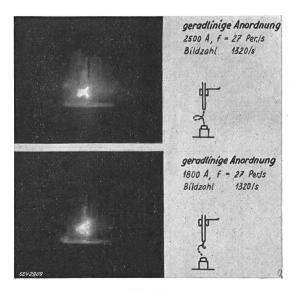
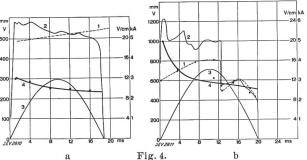




Fig. 3b. Zeitlupenaufnahmen vom Wechselstromlichtbogen in Luft. Bildfrequenz: 1320/s;  $I=2500/1800~\mathrm{A};~f=27~\mathrm{Per./s}.$  Elektroden: Klotzkontakte aus Kupfer; geradlinige Strombahn.

und mehr oder weniger hell erscheinen. Die Vorgänge an den Elektroden werden unter Umständen so heftig, dass der Lichtbogen in zwei scheinbar getrennte Stränge gerissen wird, zwischen welchen sich eine schräg zur Lichtbogenrichtung liegende Brücke bildet (Fig. 3b). Bei näherer Be-

trachtung der Zeitlupenaufnahmen kann man trotz der hohen Bildfrequenz in jedem Bild mehrere Bogenäste unterscheiden, was auf sehr rasche Bewegung oder Uebergreifen in die neuen Bahnen des Bogens hindeutet.

Dank der Synchronisierung von Zeitlupen- und oszillographischen Aufnahmen ist es möglich, zu jedem Bild die zugehörige Lichtbogenspannung



Verlauf der spezifischen Lichtbogenspannung (V/cm) während einer Halbwelle nach der Auswertung der Zeitlupenaufnahmen vom Wechselstromlichtbogen in Luft.

- a) Elektroden: Klotzkon-takte aus Kupfer. Anordnung entspre-chend Fig. 3b.
- b) Elektroden: Klotzkontakte entsprechend Fig. 3b:
  1 Lichtbogenlänge.
  2 Totale Lichtbogenspannung.

  - Stromwelle. Spezifische Lichtbogen-spannung pro cm.

und den Strom zu ermitteln, so dass auch der Spannungsabfall pro cm Bogenlänge berechnet werden kann. Diese Untersuchung erlaubt, den Einfluss des Elektrodenmaterials bzw. der Metalldämpfe auf die Leitfähigkeit des Bogens zu erfassen. In Fig. 4a und 4b sind solche Auswertungen wiedergegeben, wobei der erste Versuch bei 2900 A<sub>max</sub> mit Kupfer-, der zweite mit Wolframelektroden bei  $3550 \text{ A}_{\text{max}}$  gemacht wurde; in beiden Fällen beträgt die Lichtbogenspannung pro cm ca. 10 bis 11,5 V. Mangels Angaben über die Ionisierungsspannung der Wolframdämpfe kann leider darüber kein Ver-

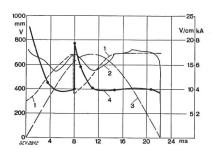



Fig. 5. Fig. 5.

Verlauf der spezifischen Lichtbogenspannung (V/cm) während der ersten Halbwelle nach der Zündung über 30 cm Luftentfernung mittels in Schwefelsäure getauchtem Faden.

Lichtbogenlänge.
Totale Lichtbogenspannung

spannung Stromwelle. Spezifische Lichtbogenspannung

gleich angeführt werden; die Siedetemperatur liegt aber bei Kupfer um 2300°C, bei Wolfram hingegen rund um 5100°C, so dass es fraglich scheint, ob Wolfram wesentlich verdampft oder nur geschmolzen wird 17). Trotz dieses Unterschiedes weisen die Spannungsabfälle zur Zeit des Strommaximums nur eine Differenz auf, welche im Bereiche der Messgenauigkeit liegt. Die in Fig. 5 dargestellten Messergebnisse beziehen sich auf die erste Halbwelle des Lichtbogens, welcher über eine Strecke von 30 cm mittels eines in Schwefelsäure getränkten Fadens gezündet wurde. Die Lichtbogenspannung pro cm erreicht bereits nach 4 ms den Wert von 10 V/cm, obwohl zu dieser Zeit der Metalldampf nur einen Bruchteil der Lichtbogenatmosphäre bilden kann.

Die Filmaufnahmen erklären eindeutig die Ursache der bekannten Zacken, welche die Oszillogramme der Lichtbogenspannung stets aufweisen: Die Lichtbogenbahn bleibt nach dem Nulldurchgang des Stromes und der darauffolgenden Rückzündung dieselbe wie kurz vorher, neue Bahnen werden fast ausschliesslich während einer Halbwelle, d. h. zur Zeit des Stromflusses durch Neuzündung innerhalb der Bogenschleife gebildet, so dass der Lichtbogen kürzer und der totale Spannungsabfall kleiner wird (vergl. Kurven 1 und 2 in Fig. 4a und 4b). Dieser Vorgang ist sehr gut in Fig. 2a und 2b zu sehen, wo eine Rückzündung die Bogenschleife abkürzt. Kleinere Zacken im Spannungsverlauf rühren zweifellos von der rasch wechselnden Lichtbogenbahn innerhalb des ionisierten und hell leuchtenden Büschels her.

Um einige Anhaltspunkte über die Stromdichte im Wechselstromlichtbogen in Luft zu erhalten, wurden mehrere vergrösserte Zeitlupenaufnahmen mit Mikroskop ausgewertet. Zu jedem Bild bestimmte man aus dem zugehörigen Oszillogramm den Momentanwert des Stromes; unter Annahme, dass der ganze Strom nur über einen einzigen Lichtbogenfaden mit kreisförmigem Querschnitt geführt wird, wurde aus dem Bild sein Durchmesser abgelesen und dadurch die Stromdichte ermittelt. Mit Rücksicht auf die rasche Bewegung des Bogens und Ueberlichtung der empfindlichen Photoschicht muss dieser Wert als untere Grenze betrachtet werden. Auf diese Weise erhielt man für den Kupferbogen in einer Entfernung von 15 bis 30 cm von den Elektroden Werte, die zwischen 2000 und 3000 A/cm<sup>2</sup> schwanken. Anderseits konnten an den verwendeten Elektroden Ansatzstellen des Lichtbogens (im Bereiche, wo der Lichtbogen nur kurze Zeit an den Elektroden verweilte) festgestellt werden, die auf eine Stromdichte von 13 500 A/cm² hindeuten. Diese Zahl stimmt sehr gut mit derjenigen überein, welche Tanberg und Berkey 18) für die Stromdichte des Kathodenfleckes im Kupferbogen in Vakuum (14 000 A/cm<sup>2</sup>) gefunden haben. Auch nach der Formel von Richardson erhält man für die Glühemission z.B. an Wolfram-Elektroden bei 4500 °K ca. 12 000 A/cm², so dass an den Elektroden mit einer bedeutend höheren Stromdichte als im Bogen selbst gerechnet werden muss.

#### 2. Lösch- und Zündvorgang beim Nulldurchgang des Stromes.

Neben der eigentlichen Bogenentladung hat man beim Wechselstrom-Lichtbogen bei jedem

<sup>&</sup>lt;sup>17</sup>) A. Hagenbach und K. Langbein, loc. cit.

<sup>&</sup>lt;sup>18</sup>) Phy. R. 1931, Vol. 38, S. 297.

Nullwert des Stromes noch mit einer andern Art der Entladung zu tun. Die Existenzbedingung eines Lichtbogens kann, rein physikalisch betrachtet, in Form einer Energiebilanz ausgedrückt werden, und es ist leicht einzusehen, dass der Lichtbogen bei gegebenen Verhältnissen unter einem bestimmten Stromwert auslöschen muss, und zwar dann, wenn der Energieverlust grösser als die Energiezufuhr wird, so dass eine Abkühlung des Lichtbogens einsetzt. Diese Abkühlung hat ein rasches Anwachsen der Bogenspannung (Löschspitze) zur Folge, was in der Hauptsache auf die Verkleinerung der freien Weglänge der Elektronen und die grössere zur Stossionisierung notwendige Feldstärke zurückgeführt werden muss. Der Wechselstromlichtbogen muss deshalb jeweils etwas vor dem natürlichen Stromnullwert abreissen, wobei eine mehr oder weniger ausgesprochene Löschspitze im Spannungsverlauf auftritt. Daraufhin findet während einer kurzen Zeitspanne eine andere Entladungsart statt, bis der Lichtbogen durch die wiederkehrende Spannung von neuem gezündet werden kann, wie es die Zeitlupenaufnahmen sowie die Oszillogramme zeigen. Die definitive Löschung wird erst erfolgen, wenn die wiederkehrende Spannung nicht mehr ausreicht, um die Gasstrecke zwischen den Kontakten durchzuschlagen. Der eigentlichen Bogenzündung geht manchmal eine heftige Glimmentladung voraus, welche die dielektrische Festigkeit der Strecke allmählich soweit herabsetzt, dass die Neuzündung des Bogens bei gegebener Spannung schliesslich doch erfolgen kann. Welches sind die Art der Verfestigung der Gasstrecke und die dabei mitwirkenden Faktoren? Die Zündspannung  $U_z$  ist abhängig:

- a) Von der Gasdichte:  $U_z = k \frac{p}{T}$ . Man kann nach dem Gesetz von Paschen annehmen, dass einerseits die Zündspannung mit wachsendem Druck p proportional zunimmt; anderseits, dass bei abnehmender, aber sehr hoher Temperatur  $U_z$ am Anfang nur langsam wächst;
- b) Die stationäre Zündspannung wächst unter sonst gleichen Bedingungen proportional oder etwas langsamer als der Abstand zwischen den Kontakten. Im Schalter nimmt sie jedoch unter der Einwirkung anderer variabler Faktoren mit einer Potenz von Kontaktabstand bzw. Lichtbogendauer zu:
- c) Allgemein wird angenommen, dass die Zündspannung durch die Elektronenemission an den Elektroden sowie durch die mehr oder weniger grosse Elektronendichte in der Gasstrecke herabgesetzt wird. Quantitativ lässt sich diese Beeinflussung vorläufig nicht erfassen;
- d) Die Messungen von Slepian 19) an kurzem Lichtbogen in Luft und neuerdings diejenigen von Attwood, Dow und Krausnick 20) an einem Lichtbogen von 19 mm Länge und 25 A zeigen, dass die Gasstrecke nach dem Nulldurchgang

<sup>19</sup>) JAIEE 1929, S. 93. <sup>20</sup>) Trans. AIEE 1931, S. 854. des Stromes sofort eine Spannung von ca. 250 bis 400 V hält. Weitere Zunahme der dielektrischen Festigkeit erfolgt im Bereiche bis zu 250 µs, etwa nach Fig. 6, d. h. praktisch proportional mit der Zeit.

Die Auswertung unserer Versuche mit Lichtbogen gegebener Länge unter Oel bei 100, 500 und 1000 A ergab, dass die Verfestigung pro cm Gasstrecke vom Kontaktabstand sowie von der Stromstärke unabhängig ist, wie dies aus Fig. 7 entnommen werden kann. Die Verfestigung der Licht-

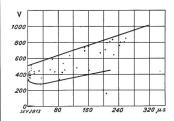



Fig. 6. Verfestigung der Lichtbo-genstrecke in Luft nach dem Abreissen des Wechsel-stromlichtbogens von 19 mm Länge, 25 A (nach Attwood, Daw und Krausnick.)

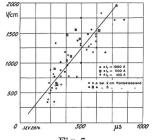
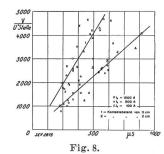




Fig. 7. Zündspannung pro cm Licht-bogenstrecke in Funktion bogenstrecke in Funktio der Verfestigungszeit in



Zündspannung pro Unter-brechungsstelle in Funktion der Verfestigungszeit 1 Kontaktabstand 3 cm. 2 Kontaktabstand 2 cm.

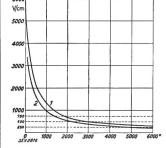



Fig. 9.

Durchschlagsspannung (pro 1 cm) von Wasserstoff bei p=1 kg/cm² in Funktion der Temperatur (Gesetz von Paschen).

- Bei 1 cm Abstand zwi-
- schen den Spitzen. Bei 4 cm Abstand zwischen den Spitzen.

bogenstrecke erfolgt dementsprechend um so rascher, je grösser der Abstand zwischen den Kontakten ist (Fig. 8).

Bemerkenswert erscheint die Tatsache, dass die Durchschlagsspannung pro cm Gasstrecke höhere Werte - 500 V/cm und darüber - erreicht, als aus dem Gesetz von Paschen für Wasserstoff bei 3000 bis  $6000^{\circ}$  und p =  $1 \text{ kg/cm}^2$ , d. h. 300 und 200 V/cm, zu erwarten wäre (Fig. 9). Man kann sich demnach fragen, ob die Vorionisierung der Gasatmosphäre bei der Neuzündung eine so grosse Rolle spielt, wie allgemein angenommen wird, oder ob es sich nicht um einen Durchschlag schlechthin eines wegen äusserst hoher Temperatur sehr verdünnten Gasgemisches handelt. Ändererseits, da die Abkühlung

des Gases im Kern des Lichtbogens sehr rasch erfolgt, kann die Regenerierung der Strecke durch Ablagerung der Elektronen an den Molekülen und Atomen bzw. Ionen der umgebenden Atmosphäre besonders am Anfang sehr wirksam sein, und zwar noch bevor die Spannung wieder erscheint. In dieser Beziehung zeigt sich eine Dampfatmosphäre als besonders günstig. Die Lichtbogenstrecke bleibt dagegen, je nach Vorgängen in der Umgebung, mehr oder weniger lange Zeit in angeregtem Zustand, was jedenfalls die Durchschlagsfestigkeit

Wegen relativ niedriger Ionisierungsspannung der Atome von Metalldämpfen (etwa 7,5 V gegenüber 13,6 V bei Wasserstoff und Sauerstoff, und 14,5 V bei Stickstoff) werden diese bei der Rückzündung im allgemeinen leichter durchschlagen. Wäre die ganze Gasstrecke mit solchen Dämpfen versehen, so müsste sich die Höhe der Verdampfungstemperatur und die Art des Elektrodenmaterials stark bemerkbar machen. Die Untersuchungen von T. E. Browne 21) haben auch gezeigt, dass für einen sehr kurzen Lichtbogen, bis 1 cm Länge, dieser Einfluss nachweisbar ist. So hat z. B. in einem Lichtbogen von 300 A bei 450 V Netzspannung die Zündspannung bei Zink- und Messingelektroden viel höhere Werte als bei Kontakten aus Kupfer, Eisen oder Wolfram. Bei grösseren Abständen zwischen den Kontakten, wie sie im Oel- oder Wasserschalter vorkommen, liegen die Verhältnisse anders. Nach unseren früheren Versuchen 22) scheint die Lichtbogenlänge im Oelschalter bei gegebenem Strom und Spannungsverhältnissen unabhängig vom Kontaktmaterial zu sein. Inwiefern die Metalldämpfe bei kürzeren Lichtbogen die Zündspannung beeinflussen und herabsetzen, lässt sich somit quantitativ vorläufig nicht beantworten. rasche Kondensation, besonders bei schwer schmelzbarem Metall, würde die Verfestigung der Lichtbogenstrecke beschleunigen und die Zündspannung heraufsetzen. In gleichem Sinne wirkt auch die relativ kleinere Dampfmenge bei Elektroden aus Wolfram, Molybdän usw. Erwähnenswert ist, dass das Glühen der Elektroden zur Zeit des Stromnullwertes in den Zeitlupenaufnahmen nicht mehr erkenntlich ist, dagegen die leuchtende Bogenbahn.

Diese Ausführungen zeigen, dass zur raschen Verfestigung der Gasstrecke zwischen den Kontakten vornehmlich eine möglichst energische Kühlung der Gase erforderlich ist. In einer überhitzten Wasserstoffatmosphäre spielt dabei die Rekombination des atomalen Wasserstoffes zum molekularen eine grosse Rolle. Bei anderen Gasen, wie Sauerstoff und Stickstoff, tritt dieser Vorgang ebenfalls auf, jedoch ist seine Wirkung weniger bedeutend.

Für weitere Betrachtungen genügt es zu behalten, dass in einem Schalter die Verfestigung der Gasstrecke etwa nach folgendem allgemeinen Gesetz stattfindet:

$$U_{z} = n \left[ \varepsilon_{1} \cdot vt \cdot \tau \cdot \mathbf{F} \left( vt, I_{k}, p, \tau \right) + \varepsilon_{0} \right]$$
 (5)

Es bedeuten darin:

n = die Anzahl der Unterbrechungsstellen inReihe;

 $\varepsilon_1 = \text{die Verfestigung der Gasstrecke pro cm und}$  $\mu s$ , in V;

h = vt, der Abstand zwischen den Kontakten zur Zeit t. Diese Zeit ist gerechnet in Sekunden vom Anfang der Unterbrechung;

v =Schaltgeschwindigkeit in m/s;

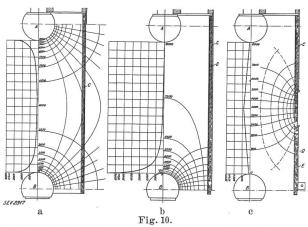
 $\tau = \text{die Zeit in } \mu \text{s, gerechnet vom jeweiligen Ab-}$ reissen des Lichtbogens;

p = Druck im Schalter;

 $\hat{F}(v, t, I_k, \tau, p) = \text{empirische Funktion, welche}$ der Veränderung von  $\varepsilon_1$  in Funktion von p,  $h,~I_{\rm k},~ au,~{
m sowie}~{
m der}~{
m Schalterart}~{
m Rechnung}$ trägt. Die Grösse  $arepsilon_{
m 1}$  ist ausserdem von der Natur der Gasatmosphäre abhängig;

 $\varepsilon_o = \text{die Festigkeit der Gasstrecke zur Zeit } \tau = 0$ ,

Damit ein Wiederzünden des Lichtbogens unterbleibt und die definitive Löschung erfolgt, muss die wiederkehrende Spannung U immer kleiner bleiben als die Bogenzündspannung  $U_z$ :


$$U < U_z$$
 (6)

Bevor nun der Verlauf der wiederkehrenden Spannung U aufgezeichnet wird, seien noch einige Bemerkungen über die Verteilung des Spannungsabfalles bzw. der Feldstärke längs der Lichtbogenstrecke vorausgeschickt. Die Auswertung zahlreicher Oszillogramme, welche bei Abschaltungen von Kurzschlußströmen zwischen 500 und 3000 A mit Oelschaltern aufgenommen wurden, ergab in Uebereinstimmung mit anderweitigen Messungen 23) für den Kathoden- + Anodenfall eine Spannung von rund 30 V. Für die Lichtbogenspannung pro cm Kontaktabstand kann man bei offener Unterbrechung unter Oel etwa mit 50 V rechnen, welcher Wert während der letzten Halbwelle auf das Dreibis Fünffache anwachsen kann. Wenn die geschilderte Spannungsverteilung im Lichtbogen auch sofort nach dem Abreissen des Bogens weiterbestehen würde, so wäre der grösste Spannungsgradient unmittelbar an den Kontakten. Aehnliche Verteilung bekommt man ebenfalls durch Aufzeichnung des elektrostatischen Feldbildes (Fig. 10a). könnte versuchen, die Neuzündung des Bogens durch eine um die Kontakte zweckmässig angebrachte, elektrostatische Abschirmung zu erschweren. Es würde dafür genügen, den grössten Spannungsgradienten längs der Gasstrecke und besonders an den Kontakten durch die Abschirmung zu verkleinern, wie dies z. B. in Fig. 10b und c gezeigt ist. Die aufgezeichneten Anordnungen haben jedoch in keiner Weise den Abschaltvorgang zu beeinflussen vermocht. Eine Erklärung dafür kann darin erblickt werden, dass unter der Einwirkung der zwischen den Kontakten wiedererscheinenden

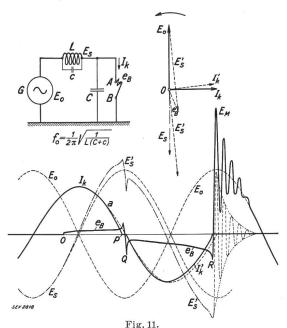
<sup>&</sup>lt;sup>21</sup>) Trans. AIEE 1931, S. 1461; El. Eng., 1931, S. 948. <sup>22</sup>) Bull. SEV 1928, S. 548.

<sup>&</sup>lt;sup>23</sup>) Vergl. z. B. Nottingham, Journal of the Franklin Institute 1929, S. 299.

Spannung an der Wand der Gasblase positive bzw. negative Ionen sich ansammeln, die das elektrostatische Feldbild der Abschirmungen vollkommen



Elektrostatische Feldverteilung zwischen zwei Kugelkontakten bei 8000 V im Augenblick des Austretens des beweglichen Kon-taktes (B) aus dem Bitubazylinder. Die Kurve links stellt die elektrische Beanspruchung in V/em dar.


- Oberer fester Kugelkontakt.
  Unterer beweglicher Kugelkontakt.
  Bitubazylinder, Annahme cod = celtuba.
  Bitubazylinder ohne Beleg.
  Bitubazylinder mit einteiligem Beleg, verbunden mit A.
  Bitubazylinder mit zweiteiligem Beleg, verbunden mit A und B.

stören, so dass die Spannungsverteilung im Lichtbogenstrang praktisch unbeeinflusst bleibt. Die Raumladung in der positiven Säule trägt ebenfalls dazu bei, die Entstehung des elektrostatischen Feldbildes zu verzögern und eine Erhöhung des Feldgradienten an der Kathode zu bewirken. Diese Vorgänge erklären auch die günstige Wirkung der Vielfachunterbrechung in Oelschaltern, welche unabhängig von der Kurzschlussart (mit oder ohne Erdschluss) immer zum Vorschein kommt.

#### 3. Verlauf der wiederkehrenden Spannung und die mathematische Formulierung der Löschbedingung.

Nach dem Abreissen des Lichtbogens erscheint die Spannung an den Klemmen des Schalters nicht plötzlich, sondern baut sich mehr oder weniger rasch, je nach der Beschaffenheit des Stromkreises, auf 24). In Fig. 11 ist oben das vereinfachte Schema eines einpoligen induktiven Kreises, bestehend aus einem Generator G und einer Induktivität L aufgezeichnet, wobei diese letztere auch die Streuinduktivität des Generators einschliesst. Ohmschen Widerstand R des metallischen Stromkreises wird man einfachheitshalber vernachlässigen. Um die Betrachtung der Ausgleichsvorgänge nach der Unterbrechung des Kurzschlusses mit dem Schalter AB zu vereinfachen, kann man zunächst annehmen, dass die Anlagekapazität C bedeutend grösser als die Kapazität c der Maschinen- und Transformatorenwicklungen ist. Das Zeitdiagramm für den Kurzschlußstrom und die im Generator induzierte EMK  $E_o$ , sowie für die Gegen-EMK  $E_s$ 

in der Induktivität L lässt sich bis zur Oeffnung der Kontakte, welche im Punkt 0 erfolgt, leicht aufzeichnen, indem in einem rein induktiven Kreis



Verlauf der wiederkehrenden Spannung nach dem Abschalten eines Kurzschlusses im induktiven Kreis.

 $E_{\rm s}$  ständig gleich und entgegengesetzt der EMK  $E_o$ ist:  $E_o + E_s = 0$ . Nach der Trennung der Kontakte gilt die Gleichung:

$$E_0 + E_s' = -e_B \tag{7}$$

wo e<sub>B</sub> den Spannungsabfall im Lichtbogen darstellt. Der Abfall e<sub>B</sub> bewirkt eine Phasenverschiebung und eine Verkleinerung des Stromes  $I_{k}^{25}$ ). Der Kurzschlußstrom reisst kurz vor seinem natürlichen Nullwert in Punkt P ab; gleichzeitig weist die Lichtbogenspannung im allgemeinen eine Löschspitze auf. Diese kann nur durch die Vergrösserung der Gegen-EMK auf den Wert E's in der Induktivität L, nach der Beziehung

$$E_{\rm s}' = L \frac{{\rm d}i}{{\rm d}t} \tag{8}$$

gedeckt werden. Nach dem Verschwinden des Stromes  $I_k$  ist der Kreis nur über die Kapazität Cgeschlossen und es spielt sich folgender Vorgang ab: Die Kapazität C ist entsprechend der Spannung e<sub>B</sub> aufgeladen, ausserdem wirkt im Kreise der Momentanwert  $\sqrt{2} \ E_0$  (bzw.  $\sqrt{2} \ E_0 \cdot \sin \varphi$ ) der EMK des Generators. Es setzt ein schwingender Lade-

vorgang ein mit der Eigenfrequenz  $f_0 =$ des Kreises bestehend aus L und C, und die Klemme A des Schalters schwingt mit der Ampli-

tude  $E'_{\rm s} = (\sqrt{2} E_{\rm o} \sin \varphi + e_{\rm B})$ , um den Momentanwert der im Generator induzierten Spannung. Bevor der maximale Ausschlag erreicht wird, kann

<sup>&</sup>lt;sup>24</sup>) Vergl. auch J. Kopeliowitsch, Bull. SEV 1928, S. 551, und A. Roth, Hochspannungstechnik, S. 385, Springer 1927.

<sup>&</sup>lt;sup>25</sup>) Das in Fig. 11 dargestellte Vektordiagramm ist insofern unrichtig, als der Spannungsabfall im Lichtbogen eB durch einen Vektor nicht wiedergegeben werden kann.

die Zündung des Lichtbogens in Punkt Q erfolgen und der Kurzschlußstrom  $I_k$  fliesst während der nächsten Halbwelle weiter.

Die Schwingung der Klemme A erfolgt, wie mathematisch leicht nachweisbar ist 26), mit der gleichen Amplitude  $E_{\rm s}'$  auch dann, wenn die Kapazität c vorhanden ist, es ändert sich nur ihre Frequenz, die im allgemeinen Falle durch die Gleichung

$$f_0 = \frac{1}{2\pi} \frac{1}{\sqrt{L(c+C)}}$$
 (9)

gegeben ist. Der geschilderte Vorgang wiederholt sich bei der nächsten Löschung des Lichtbogens und wenn die Zündspannung  $U_z$  ständig grösser bleibt als die wiederkehrende Spannung U, so wird die Zündung ausbleiben und der Kreis unterbrochen. Die Gleichung der wiederkehrenden Spannung an der Klemme A kann somit wie folgt geschrieben werden:

$$U = (e_{\rm B} + \sqrt{2} E_0 \sin \varphi) e^{-\alpha \tau} \cos (2 \pi f_0 \tau + \pi) + \sqrt{2} E_0 \sin \varphi \quad (10)$$

wobei  $\varphi$  die Phasenverschiebung zwischen der Generatorspannung  $E_0$  und dem Strom  $I_k$  im Punkte R und  $\alpha$  die Dämpfungskonstante des Ausgleichsvorganges ist.

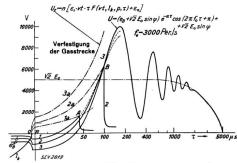



Fig. 12.

Graphische Darstellung des Zündvorganges im logarithmischen Zeitmaßstab.

1, 2, 3 Wiederkehrende Spannung nach dem 1., 2. und 3. Nullwert des Stromes (fo = 3000 Per./s).

1a, 2a, 3a Verfestigung der Lichtbogenstrecke nach dem 1., 2. und 3. Nullwert des Stromes.

A und B Rückzündungen nach dem 1. und 2. Nullwert des Stromes.

A und B Macania des Stromes.  $e_{\rm B}$  des Stromes.  $I_{\rm k}$  Kurzschlußstrom.

Die Vorgänge während der 2. Halbwelle sind um 180° umgeklappt.

In Fig. 12 ist der Vorgang in logarithmischem Zeitmaßstab für einen Kreis mit einer Eigenfrequenz  $f_0 = 3000$  Per./s aufgezeichnet, unter Annahme, dass die definitive Löschung beim dritten Nullwert des Stromes und dass die Verfestigung der Gasstrecke nach der vereinfachten Gleichung  $U_z = n(\varepsilon_1 \cdot vt \cdot \tau + \varepsilon_0)$  erfolgt. Nach dem ersten Nullwert des Stromes vollzieht sich die Verfestigung der Strecke entsprechend der strichpunktierten Kurve 1 a, während die wiederkehrende Spannung U sich nach Kurve 1 aufbaut. Der «Wettlauf» endet bereits nach 42 µs in Punkt A, wo die

Spannung U den zur Zündung erforderlichen Wert  $U_{z,A}$  erreicht und den Durchschlag herbeiführt. Nach der zweiten Löschung spielt sich der gleiche Vorgang noch einmal nach Kurven 2 a und 2 ab, welche zur besseren Anschaulichkeit um 180° um die Zeitachse umgeklappt worden sind. Die Neuzündung findet in Punkt B für  $\tau = 100 \ \mu s$  statt. Im Wettlauf nach dem dritten Nullwert des Stromes gelingt es der wiederkehrenden Spannung nicht, die Durchbruchsspannung binnen nötiger Zeit zu erreichen und die Neuzündung kann nicht erfolgen.

Als Löschbedingung gilt folglich

$$(e_{\rm B} + \sqrt{2} E_0 \sin \varphi) e^{-\alpha \tau} \cos (2 \pi f_0 \tau + \pi)$$

$$+\sqrt{2}E_0\sin\varphi < n\left[\varepsilon_1 \cdot vt \cdot \tau \cdot F(vt, I_k, p, \tau) + \varepsilon_0\right]$$
 (11)

Die Auflösung dieser Beziehung nach t ergibt die Lichtbogendauer. Man kann daraus ableiten, dass die Lichtbogendauer mit Erhöhung der Kontaktgeschwindigkeit, sowie umgekehrt proportional der Zahl n der Unterbrechungen in Reihe (Vielfachunterbrechung), abnimmt, was auch experimentell einwandfrei nachgewiesen worden ist.

Vollständigkeitshalber sei noch darauf hingewiesen, dass bei grösserer Kapazität C nach der Zündung des Lichtbogens eine schwingende Entladung mit bedeutend höherer Frequenz als  $f_0$  statt-

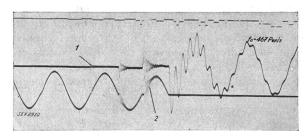
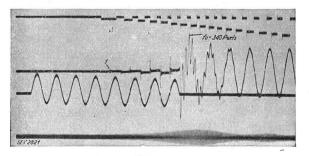



Fig. 13.

Oszillogramm einer Abschaltung von 3950 A  $_{\rm eff}$  bei 47,4 kV, f=50 Per./s, in einem Stromkreis, dessen Eigenfrequenz  $f_0=467$  Per./s ist. Nach jeder Neuzündung treten Stromsehwingungen mit  $f_0=4150$  Per./s zwischen der Anlagekapazität C und der Leitungsinduktivität l auf.

1 Beginn der Unterbrechung.
2 Stromschwingungen.


finden kann, und zwar zwischen der Kapazität C und der Induktivität l der Leitung bis zu den Klemmen des Schalters  $(l \le L)$ , wie dies im Oszillogramm Fig. 13 zu sehen ist. Diese Entladung spielt jedoch bei dem Rückzündungsvorgang keine Rolle, da sie erst nach der Neuzündung einsetzt und gleichzeitig mit dem Strom im Schalter verschwindet.

#### 4. Einfluss der Eigenfrequenz des Kurzschlusskreises auf den Abschaltvorgang.

Da die Verfestigung, d. h. die Zunahme der dielektrischen Festigkeit der Gasstrecke zwischen den Kontakten nach dem Abreissen des Bogens ein physikalischer Umwandlungsprozess ist, welcher naturgemäss von der Eigenfrequenz  $f_o$  des Kreises unabhängig ist, muss die Unterbrechung des Lichtbogens bei gleichem Strom I und Generatorspan-

<sup>&</sup>lt;sup>26</sup>) Vergl. Anhang, S. 585.

nung  $E_o$  um so leichter erfolgen, je kleiner der Gradient  $\frac{\mathrm{d}\,u}{\mathrm{d}\,t}$  der wiederkehrenden Spannung, d. h. die Eigenfrequenz  $f_o$  ist. Die wiederkehrende Spannung erreicht erst nach längerer Zeit den gleichen Wert, so dass die Verfestigung der Lichtbogenstrecke bereits weit fortgeschritten ist. Das Oszillogramm Fig. 14 zeigt die Abschaltung



Oszillogramm einer Abschaltung von 2700 A eff bei 84,6 kV, f=50 Per./s, in einem Stromkreis, dessen Eigenfreunenz  $f_0=340$  Per./s ist.

1 Beginn der Unterbrechung.

von rund 230 MVA einphasiger Leistung bei 84,6 kV und einer Eigenfrequenz des Kreises  $f_o = 340$  Per./s und erlaubt, die oben geschilderten Schwingungen, sowie das Anwachsen der Zündspannung in allen Einzelheiten zu verfolgen.

Die Rückwirkung der Eigenfrequenz des Netzes auf die Beanspruchung und auf das Abschaltvermögen von Oelschaltern ist aus Fig. 15 und 16 ersichtlich, die das Resultat der Abschaltversuche bei 400 MVA und 45 kV in Funktion der Eigenfrequenz wiedergeben. Die Lichtbogendauer sinkt von 0,058 s auf 0,04 s und der Druck p im Schalter von 5,5 kg/cm² auf 2,7 kg/cm², wenn die Eigenfrequenz von 2900 Per./s auf 490 Per./s herabgesetzt wird. Unter Annahme, dass die Grenzleistung des Schalters durch den Druck bestimmt ist,

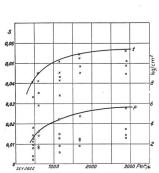



Fig. 15.
Abhängigkeit der Lichtbogendauer und der Druckbeanspruchung von der Eigenfrequenz des Kurzschlußkreises, bei konstanter Dreiphasen-Abschaltleistung von 400 MVA unter 45 kV.

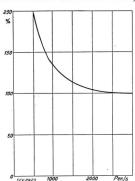
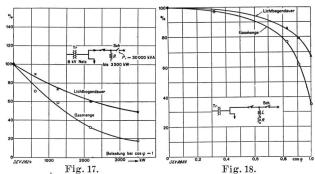



Fig. 16.


Aus Versuchsergebnissen der Fig. 15 abgeleitete Zunahme der Abschaltleistung mit abnehmender Eigenfrequenz des Netzes.

ergibt sich dabei eine Erhöhung des Abschaltvermögens um rund 200 %. Dieses Ergebnis deckt sich mit den früheren Messungen bei kleineren Abschaltleistungen <sup>27</sup>).

<sup>27)</sup> Kopeliowitch, Bull. SEV 1928, S. 552. Biermanns, ETZ 1929, S. 1077.

5. Einfluss der Netzbelastung auf den Abschaltvorgang.

Eine Erleichterung des Abschaltvorganges bewirkt auch ein Widerstand (Belastung), welcher parallel zu den Schalterklemmen angeschlossen wird. Dieser Widerstand vergrössert den Dämpfungsfaktor a und verkleinert die Amplitude der Ausgleichsschwingung. Bei sehr kleinem Wert des Parallelwiderstandes (sehr grosse Belastung) wird der Ausgleichsvorgang aperiodisch ablaufen und die wiederkehrende Spannung nur langsam ansteigen 28). Die Wirkung ist analog derjenigen des seit langem bekannten Stufenwiderstandes für Schalter. Dieser Einfluss lässt sich auch mathematisch erfassen; besserer Anschaulichkeit halber wird aber hier der direkten experimentellen Methode der Vorzug gegeben. Die Versuche, deren Messergebnisse in Fig. 17 aufgetragen sind, wurden an einem 8-kV-Netz mit einer Kurzschlussleistung von 30 000 kVA in der Weise durchgeführt, dass nach je 30 Abschaltungen die Ohmsche Parallellast stufenweise bis zu 3500 kW gesteigert wurde. Die Lichtbogendauer und die entwickelte Gasmenge



Einfluss der Netzbelastung auf die Beanspruchung der Oelschalter. Mittelwerte aus je 30 Versuchen in 8-kV-Netz von 30 000 kVA Abschaltleistung.

Die ohmsche Belastung des Netzes wurde stufenweise bis 3500 kW gesteigert. Der  $\cos \varphi$  der Belastung, welche konstant bleibt (P = 2240 kVA), wurde von 0 bis 1 reguliert.

nahmen dabei von 100 % auf 50 % bzw. auf 19 % ab. Es ist allerdings zu bemerken, dass die günstige Rückwirkung der Belastung nur dann merklich zum Vorschein treten kann, wenn der Abstand zwischen dem Schalter und der Belastung nicht über 30 bis 60 km beträgt. Ausserdem ist auch der cos φ der Belastung von Belang, da jede Induktivität in Reihe mit dem Widerstand die Impedanz des Belastungskreises bei höherer Frequenz beträchtlich erhöht und die günstige Wirkung verkleinert. Die in Fig. 18 wiedergegebenen Versuchsresultate bestätigen auch diese Betrachtung. Bei konstanter Kurzschlussleistung von 30 000 kVA und konstanter Belastung von 2240 kVA wurde der Leistungsfaktor dieser letzteren von  $\cos \varphi = 0$  bis  $\cos \varphi = 1$  verändert. Die Lichtbogendauer und die Gasmenge im Oelschalter, Mittelwerte von je 30 Versuchen, nahmen dabei erst für  $\cos \varphi > 0.7$ merklich ab, um bei  $\cos \varphi = 1$  das Minimum zu erreichen.

<sup>&</sup>lt;sup>28</sup>) Vergl. auch F. Kesselring: VDE Fachb., 1931, S. 51.

Andere Versuche zeigen, dass die Lichtbogendauer in Oelschaltern sich entsprechend sin  $\varphi$  verändert 29), weil auch die Höhe der beanspruchenden Spannung wie der Sinus des Phasenwinkel  $\varphi$ zwischen Kurzschlußstrom und EMK abnimmt.

#### 6. Einige Schlussfolgerungen.

Bevor die Schlussfolgerungen, welche für die Praxis sich aus den besprochenen Untersuchungen ergeben, zusammengefasst werden, muss die Frage beantwortet werden, ob sich der günstige Einfluss der kleineren Eigenfrequenz des Netzes und anderer Faktoren auch im Betriebe zeigen. Diesbezüglich findet man in der Fachliteratur bereits einige bestätigende Versuchsergebnisse. So berichten Park und Skeats 30) von Abschaltungen mit Oelschaltern in einem 13,2-kV-Netz nahe an den Sammelschienen eines Kraftwerkes und dann bei 15 kV etwa in 70 km Entfernung, in beiden Fällen bei ungefähr gleicher Abschaltleistung. Im zweiten Falle, d. h. bei Versuchen im Netz, wurde im Schalter ein 6mal kleinerer Druck und eine 3mal kürzere Lichtbogendauer als bei Versuchen im Werk festgestellt. Im 132-kV-Netz der Ohio Power Co. wurden vergleichende Versuche angestellt, indem die Kurzschlüsse in der Nähe von 132-kV-Sammelschienen des Werkes Philo mit einer Leistung von 271 000 kVA eingeleitet wurden, und bei einer ersten Versuchsreihe ohne Leitungen, bei einer zweiten mit 35 km Leitungen und einer dritten mit einem Netz von 359 km durchgeführt. In allen drei Fällen veränderte sich die Eigenfrequenz des Netzes von ca. 2400 Per./s auf ca. 1000 Per./s und schliesslich auf rund 330 Per./s. Dementsprechend wurde eine Verkleinerung der Lichtbogenlänge in Schaltern von 100 % auf ca. 60 % und im dritten Fall auf ca. 45 % festgestellt 31). Bei Versuchen im 132-kV-SBB-Netz am Ende einer 216 km langen Leitung haben Berger und Habich Schwingungen mit noch kleineren Frequenzen gemessen, und zwar von 120 bis 160 Per./s 32).

Bei gegebener Kurzschlussleistung hat man im allgemeinen die kleinsten Eigenfrequenzen in Höchstspannungsnetzen zu erwarten. Ob den seltenen Ausnahmefällen, wo eine einzige Leitung vom Werk abgeht, eine besondere Bedeutung zukommt, kann nur unter Berücksichtigung der gegebenen Netzverhältnisse beurteilt werden. Wichtig erscheint die Tatsache, dass in Hauptknotenpunkten, wo die Kurzschlussleistung am grössten ist, die Eigenfrequenz des Netzes fast ausnahmslos nur mässige Werte aufweist. So ergibt die Rechnung für Hauptknotenpunkte des 50-kV-Netzes der Nordostschweizerischen Kraftwerke eine Eigenfrequenz zwischen 400 und 600 Per./s. Für ein 150-kV-Netz gleicher Kurzschlussleistung und Ausdehnung liegen die berechneten Eigenfrequenzen noch tiefer.

In 10- bis 15-kV-Anlagen sind die Verhältnisse mannigfaltiger. Besonders günstige Betriebsbedingungen für Schalter bilden ausgedehnte Kabelnetze wegen ihrer grossen Kapazität. Ebenso bewirken die zur Begrenzung der Kurzschlussleistung eingeschalteten Reaktanzen eine Verkleinerung der Eigenfrequenzen des betreffenden Netzteiles. Bei Kurzschlüssen in der Nähe der Maschinen oder unmittelbar an den Drosselspulen könnten unter die Eigenschwingungen derselben Umständen massgebend sein. Diese Schwingungen lassen sich nach bekannten Formeln berechnen und erreichen sehr hohe Frequenzen. So beträgt z. B. nach Biermanns die Eigenfrequenz eines 6750-kVA-, 6,3-kV-Generators 18 000 Per./s und eines solchen von 65 000 kVA 23 000 Per./s <sup>33</sup>). Es genügt jedoch, verhältnismässig kurze Leitungen besonders an den Klemmen von Drosselspulen zu haben, um die Frequenz der Ausgleichsschwingungen ganz beträchtlich herabzusetzen, was praktisch meistens der Fall ist. Bei direkten Kurzschlüssen in der Nähe des Kraftwerkes tritt ausserdem eine Erleichterung des Abschaltvorganges zufolge kleinerer wiederkehrender Spannung ein.

In Verteilungsnetzen mit mässiger Hochspannung von 6 und 8 kV, welche kleinere Ausdehnung und grosse Konsumdichte aufweisen (Industriegebiete), können relativ hohe Eigenfrequenzen auftreten, die an 2000 bis 3000 Per./s heranreichen. In Ueberlandnetzen dagegen hat man kleinere Eigenfrequenzen und ausserdem, besonders bei Kurzschlüssen am Ende der Leitungen, kommt öfters die günstige Wirkung des hohen  $\cos \varphi$  der Leitungsimpedanz zur Geltung.

In Anbetracht der Rückwirkung der Ausgleichsschwingungen auf die Arbeitsweise eines Schalters kann die übliche Definition seines Abschaltvermögens, welche sich allein auf den Begriff des Abschaltstromes und der wiederkehrenden Spannung stützt, nicht mehr als vollauf genügend bezeichnet werden. Die Spannung wird an den Klemmen des Schalters sofort nach der Unterbrechung Kurzschlusses gemessen, wobei Ueberspannungen, d. h. Vorgänge anderer Frequenz als 50 Per./s nicht berücksichtigt werden dürfen. Aus den obigen Ausführungen geht deutlich hervor, dass die 50 periodige Spannung für die Beanspruchung der Schalter nicht allein massgebend ist und dass die Eigenfrequenz des Netzes, oder noch besser der

Gradient  $\frac{\mathrm{d}u}{\mathrm{d}t}$  des Spannungsanstieges in Betracht gezogen werden muss.

Diesbezügliche Aenderung der Definition der Abschaltleistung kann allerdings für die Betriebsingenieure praktisch nur eine beschränkte Bedeutung haben, solange man nicht entsprechende Unterlagen über Eigenfrequenzen der Hochspannungsnetze besitzt. Es ist immerhin möglich, die Verhältnisse anhand einer Rechnung ziemlich gut zu übersehen und es wäre zu begrüssen, wenn bei

<sup>&</sup>lt;sup>29</sup>) E. B. Wedmore, W. B. Whitney und C. E. Bruce, JIEE 1929, S. 566. R. L. Müller, E & M, 1930, S. 233.

 <sup>30)</sup> JAIEE, 1930, S. 1017.
 31) R. M. Spurck und H. E. Strang, Trans. AIEE 1931, S. 513. Vergl. auch J. Kopeliowitsch, Bull. SEV 1931, S. 312.

32) K. Berger und H. Habich, Bull. SEV 1929, S. 687.

<sup>&</sup>lt;sup>33</sup>) ETZ 1929, S. 1075.

Netzversuchen der Kontrolle solcher Berechnungen in Zukunft mehr Aufmerksamkeit geschenkt würde.

7. Hochleistungsprüfanlagen und experimentelle Kontrolle des Abschaltvermögens von Schaltern.

Will man die Frage beantworten, wo und wie man die Schalter auf ihre Leistungsfähigkeit prüfen kann, so muss man sich zunächst darüber klar sein, was von einer Schalterprüfung zu verlangen ist. Zweifelsohne wäre es am zweckmässigsten, den Schalter am Prüfstand gleichen Beanspruchungen auszusetzen, wie sie an seinem Aufstellungsort zu erwarten sind. Zum Beispiel wären bei Kurzschlussversuchen im Netz naturgemäss alle Faktoren berücksichtigt, auf die es zur Beurteilung des Abschaltvermögens ankommt. Mit Rücksicht auf die Kontinuität der Energielieferung und die nicht unerheblichen anderen Schwierigkeiten, sowie die Unkosten, die solche Versuche bedingen, waren Netzversuche immer selten, ganz besonders in Europa. Ausserdem war eine weitgehende Vertiefung der Forschungsarbeit ohne entsprechende und gut ausgerüstete Hochleistungsprüfanlagen, wo man systematisch und ohne Zeitverlust Versuche durchführen kann, nicht denkbar. Diese Erkenntnis hat zur Errichtung grossangelegter Prüfstätten geführt, deren gegenwärtig fünf in Europa und zwei in Amerika bestehen. In Deutschland besitzt die AEG ein Prüffeld mit einem Turbogenerator von 50 bis 55 MVA Typenleistung, 13 kV, 1500 U/m <sup>34</sup>). Die Anlage von SSW verfügt über eine Maschine von 40 MVA, 10,5 kV, 3000 U/m und dazu eine Stosserregung zur Erhöhung der Kurzschlussleistung 35). In Frankreich hat die Fabrik von Delle einen Generator von 50 MVA 9 kV, 1500 U/m, welcher eine Anfangskurzschlussleistung von 420 MVA und eine Abschaltleistung von rund 300 MVA entwickeln kann <sup>36</sup>). In England wurde bei Reyrolle ein Generator von 40 MVA, 22 kV, 2400 U/m mit 3,5 % Kurzschlussreaktanz aufgestellt 37). Die Anlage von Westinghouse enthält 2 Maschinen zu 20 MVA, 10 %, 514 U/m und eine zu 60 MVA, 7,5 %, 13,2 kV, 514 U/m 38), diejenige der GEC einen 100-MVA-Generator, 14 kV, 16 %, 514 U/m, dessen Anfangskurzschlussleistung von 625 MVA dank einer Stosserregung auch bei der Abschaltung eingehalten wird 39). Die BBC-Anlage besitzt eine Maschine von 80 MVA Nennleistung, bewickelt für 11 kV, bei 5,7 % Kurzschlussimpedanz und 500 U/m, die eine dreiphasige Abschaltleistung, entsprechend den neuen CEI-Regeln von über 500 MVA zu erreichen erlaubt 40).

In der Hauptsache besteht ein Hochleistungsprüffeld aus einem Generator, einem Draufschalter

<sup>34</sup>) J. Biermanns, ETZ 1929, S. 1118.

(manchmal hat man noch einen Sicherheitsschalter), mehreren Drosselspulen zur Regulierung der Kurzschlussleistung, einem Transformator zur Erhöhung oder Herabsetzung der Spannung, einigen Prüfständen und einem Mess- und Kommandoraum. Um die Beanspruchungsdauer der Anlage auf das Minimum zu verkleinern und anderseits eine möglichst hohe Kurzschlussleistung zu erreichen, wird der Versuchsschalter meistens mit einer kleinen Verzögerung nach der Einleitung des Kurzschlusses automatisch ausgelöst. Nach den CEI-Regeln darf allerdings die Auslösung erst dann erfolgen, wenn Gleichstromkomponente des Kurzschlussstromes auf 30 % des Effektivwertes des Wechselstromes abgeklungen ist.

Um die Kurzschlussleistung bei gegebener Spannung zu regulieren, schaltet man mehr oder weniger viel Drosselspulen in den Kreis ein, oder man verändert die Schaltung der Transformatorenund Generatorwicklungen, d. h. bei gleichbleibender elektrostatischer Kapazität der Anlage verändert man ihre Induktivität. Dementsprechend wird auch die Eigenfrequenz des Kurzschlusskreises von einer Schaltung zur andern verschiedene Werte aufweisen, was für die Beanspruchung

der Schalter von Bedeutung ist.

Dieser Frage haben wir eine eingehende Untersuchung gewidmet, wobei etwa hundert Kathodenstrahloszillogramme zur Kontrolle der aufgestellten Berechnungsmethode aufgenommen wurden 41). Es zeigte sich, dass ein Hochleistungsprüffeld bei allen Schaltungen viel höhere Eigenschwingungszahlen besitzt als Hochspannungsnetze oder grosse Kraftwerke. So hat man z. B. bei 12,5-kV-Schaltung bis 27 000 Per./s und bei 43,5 kV und 87 kV zwischen 4000 und 7000 Per./s gemessen. Um Schalterbeanspruchung bei verschiedenen Spannungen vergleichen zu können, ist es zweckmässig, den zeitlichen Spannungsanstieg in V/µs zu berechnen. Diese Umrechnung ergibt für die BBC-Anlage eine Kurvenschar nach Fig. 19. Die kleinsten Werte 550 und 900 V/ $\mu$ s — weist naturgemäss die 11-kV-Schaltung auf; bei der Schaltung für 21,5 kV bekommt man Spannungsradienten zwischen 1100 und 1700 V/ $\mu$ s. Um ein Bild darüber zu bekommen, welche Werte in Hochspannungsnetzen auftreten können, wurden noch die im mehrmals erwähnten 132-kV-Netz der Ohio Power Co. festgestellten Spannungsgradienten aufgezeichnet. Der Punkt A stellt  $270~{
m V}/\mu{
m s}$  dar und entspricht den Versuchen bei einer Netzausdehnung von 350 km; der Punkt B (520 V/ $\mu$ s) wurde mit 35 km Freileitungen gemessen. Diese Werte liegen bedeutend tiefer als die Spannungsgradienten der Hochleistungsversuchsanlage, sogar bei 11-kV-Schaltung. Der Punkt C (2400 V/µs) entspricht dem Messwert ohne abgehende Leitungen im Werk Philo und zeigt, dass auch in diesem Extremfall der Spannungsgradient höchstens an denjenigen des Prüffeldes bei 43,5 kV heranreicht. Dieses Bild

<sup>&</sup>lt;sup>35</sup>) F. Kesselring, VDE Fachb. 1928, S. 51; W. Kaufmann, F. Z. 1931, S. 349.

<sup>&</sup>lt;sup>36</sup>) E. Heusser, Bull. SEV 1929, Nr. 5, S. 125; A. Roth, RGE 1929, S. 45.

<sup>&</sup>lt;sup>40</sup>) Vergl. auch H. Thommen, Bull. SEV 1931, S. 613.

<sup>&</sup>lt;sup>41</sup>) H. Gubler, VDE Fachb. 1931, S. 48; J. Kopeliowitsch, Bull. SEV 1931, S. 312.

bringt klar zum Ausdruck, dass die Schalterbeanspruchung bezüglich Lichtbogenlöschung bei den Prüfungen in einer Hochleistungsversuchsanlage im allgemeinen viel schärfer als bei Abschaltungen im

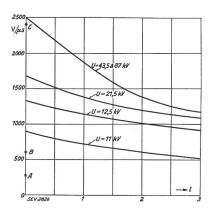



Fig. 19.
Spannungsgradient
der wiederkehrenden
Spannung in der
BBC-Hochleistungsversuchsanlage in Abhängigkeit der Anzahl von Drosselspulen l im Kurzschlusskreise.

- kreise.

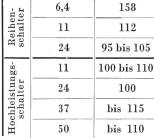
  U Nennspannung des
  Kreises. Kreises.
  Spannungsgradient
  an den 132-kV-Sammelschienen des
  Kraftwerkes Philo
  (271 MVA).
  A bei 350 km
  Leitungslänge.
- bei 35 km Leitungslänge. bei 0 km
- Leitungslänge.

Hochspannungsnetz ist. Man darf allerdings diese Schlussfolgerung nicht als eine starre Regel auffassen; auch hier sind Ausnahmen möglich. Es sind Fälle denkbar, besonders bei mittleren Hochspannungen bis 15 kV, bei welchen eine ähnlich hohe Schalterbeanspruchung wie im Prüffeld auftreten könnte. Immerhin hat eine zu weitgehende Prüfung der Schalter unvermeidlich eine Verteuerung zur Folge. In diesem Fragenkomplex sollte eine einheitliche internationale Regelung der Prüfbedingungen, angepasst an die Bedürfnisse der Praxis, Klarheit schaffen und den Vergleich der Prüfergebnisse von einem Land zum andern erleichtern.

#### II. Entwicklung der Hochleistungsschalter.

In diesem Abschnitt soll nun gezeigt werden, wie die experimentelle Erforschung der Abschaltvorgänge die Entwicklung der Schalterkonstruktionen bei uns gefördert hat.

#### 1. Oelschalter.


Die unrichtig gewählten bzw. gebauten Oelschalter bergen gewiss Gefahren in sich, die gebührende Berücksichtigung finden müssen. Es darf aber nicht vergessen werden, dass meistens Störungen an veralteten oder unzulänglichen Apparaten aufgetreten sind, und zwar oft deshalb, weil der Schalterkonstrukteur die Beherrschung der Betriebsspannung für die wichtigste Aufgabe hielt. Erst später wurde allgemein erkannt, dass ein betriebssicherer Schalter nur anhand zahlreicher Versuche durchgebildet werden kann. Und trotzdem müssen die mit den Oelschaltern gemachten Erfahrungen, grosso modo, als sehr günstig bezeichnet werden. So schätzt Dr. Menge, Direktor der Bayernwerke, die Zahl der Unfälle, die an den in Betrieb befindlichen Oelschaltern vorgekommen sind, seitdem man mit Oelschaltern arbeitet, bezogen auf die Gesamtzahl der Schalter, auf etwa 1 pro 10 000. «Würde man lediglich die Unfälle an denjenigen Oelschaltern berücksichtigen, die nach

den neuesten Erfahrungen gebaut sind, so würde sich ein noch viel günstigeres Bild ergeben» 42).

Den Grundstein für die Entwicklung neuzeitlicher Oelschalter bildet die im Jahre 1925 bekannt gewordene Oelkolbentheorie von Brühlmann, deren Richtigkeit für Schalter mit offener Unterbrechung sowie für Löschkammerschalter experimentell nachgewiesen wurde. Seit diesem Zeitpunkt ist die Form des Schalters der Kesselform immer ähnlicher geworden. Um die Löschung des Lichtbogens zu beschleunigen, werden von Konstrukteuren verschiedene Mittel angewendet, wie Druckkammern, Löschkammern, neuerdings noch Deiongridkammern, Oelströmungskammer, elastische Kammer sowie die Vielfachunterbrechung. Sämtliche Kammerkonstruktionen beschleunigen die Löschung unter Benützung der Energie des Bogens, welche durch geeignete konstruktive Massnahmen zur verstärkten Kühlung der Gasstrecke während der stromlosen Zeitspanne herbeigezogen wird. Die Lichtbogendauer ist deshalb von der Stromstärke abhängig, wobei günstigere Zeiten bei grösseren Strömen erzielt werden.

Bei Vielfachunterbrechung nimmt die Lichtbogendauer, wie bereits erwähnt wurde, mit der Zahl der Unterbrechungen in Reihe, und zwar ziemlich unabhängig von der Stromstärke, hyperbolisch ab. Die Vorgänge in Schaltern mit offener Unterbrechung können dank dem gesammelten Versuchsmaterial in allen Einzelheiten übersehen werden, so dass auch eine Berechnungsmethode für solche Schalter aufgestellt und praktisch verwertet werden konnte. In Tabelle I sind einige Werte zusammengestellt, die zeigen, wie weit man heute

Tabelle I. Gemessene Nenn-Abschalt-leistung in % der berechspannung des Schalters 6,4 158 11



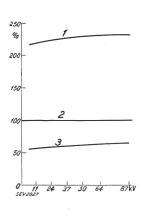
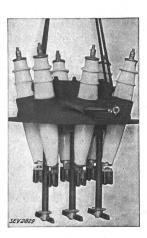



Fig. 20 (rechts).

Abschaltleistung und Schaltergewicht der neuen 3poligen Oel-schalter in % der Leistung und der Gewichte der Schalter vor der Umkonstruktion.

- Abschaltleistung neuer 3poliger Oelschalter. Abschaltleistung und Schaltergewicht vor der Umkonstruktion. Schaltergewicht neuer 3poliger Oelschalter.


einen Oelschalter mit offener Unterbrechung vorausrechnen kann: die vor der Konstruktion des Schalters berechnete Beanspruchung bzw. Abschaltleistung stimmt mit der nachträglichen, im Hoch-

<sup>&</sup>lt;sup>42</sup>) ZVDI 1931, S. 712.

leistungsprüffeld festgestellten durchwegs überein\*). Beim Schalter für kleinere Betriebsspannung hat die magnetische Blasung der Stromschleife die Abschaltleistung über den berechneten Wert zu steigern erlaubt.

Bemerkenswerte Fortschritte in der Durchbildung der Schalterkonstruktion wurden dadurch erzielt, dass auch einzelne Teile nach sorgfältigen Studien eingehenden Versuchen unterzogen wurden. Neue Schalter konnten auf diese Weise für etwa doppelte Leistung bei verkleinertem Schalter-





a Fig. 21. b 3poliger Hochleistungsschalter 37 kV Nennspannung; 640 A, 350 MVA. a: geschlossen. b: offen.



Fig. 22a. Gruppe von drei einpoligen 150-kV-Oelschaltern, 400 A, 1500 MVA, mit 6facher Unterbrechung (geschlossen).

gewicht gebaut werden, wie Fig. 20 veranschaulicht; sie haben bei Kontrollversuchen mit voller Leistung die Erwartung ganz erfüllt. Ihre runde Form erlaubt am besten die gewünschte Druckfestigkeit zu erzielen; der Oelkübel sowie der Schalterdeckel sind aus Eisenblech hergestellt

(Fig. 21). Der Oelauswurf wird nach unten über einen Rohransatz gerichtet, kann aber bei Verwendung eines Oelabscheiders gänzlich vermieden werden. Dieser letztere ist so entwickelt, dass die Auspufföffnung nur während der Abschaltung geschlossen bleibt und sofort nachher wieder frei-

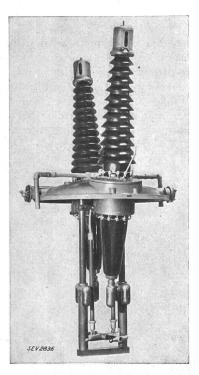



Fig. 22b. Einpoliger 150-kV-Oelschalter 400 A, 1500 MVA, mit 6facher Unterbrechung (offen).

gegeben wird, so dass die Ventilation des Luftkissens stets ungehindert stattfindet. Es findet nur vertikale Isolation Anwendung, wozu sämtliche spannungsführenden Teile mittels Isolierröhren aufgehängt sind. Der Kübel ist mit einem Isolierzylinder ausgekleidet und die einzelnenPhasen sind mittels durchgehender Trennwände vollkommen voneinander getrennt. Eine grosse Ausschaltgeschwindigkeit konnte dank einer weitgehenden Verein-

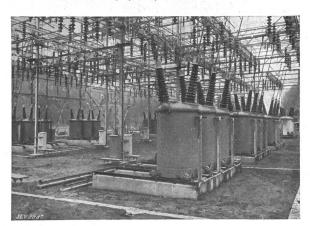



Fig. 23.
150-kV-Oelschalter der Unterstation Bickigen (BKW).

fachung und Verkleinerung der Masse der beweglichen Teile erhalten werden. Bis 40 000 A Scheitelwert werden lamellenartige Keilkontakte verwendet, darüber hinaus die von früher bekannten Solenoidkontakte.

Die neuen Höchstspannungsschalter für 150 kV, 1500 MVA (Fig. 22) haben sechsfache Unterbrechung bei erhöhter Ausschaltgeschwindigkeit und bewältigen leicht die gegenwärtig zur Verfügung

<sup>\*)</sup> Die gemessene Abschaltleistung bezieht sich auf den für die Schalterkonstruktion zugrunde gelegten Ueberdruck. Die Grenzleistung liegt erheblich höher.

stehende Abschaltleistung von 560 MVA. Gerade bei diesen und ähnlichen Schaltern, deren Abschaltvermögen weit über der Leistungsfähigkeit der bestehenden Prüfanlagen liegt, ist es wichtig, eine zuverlässige Berechnungsmethode zu besitzen. Mehrere Gruppen solcher Schalter, eingebaut in der Unterstation «Bickigen» der BKW, zeigt Fig. 23.

#### 2. Expansions schalter.

Im Laufe der Jahre hat das Interesse für öllose Schalter nie nachgelassen. Diese Tatsache muss zunächst auf den Widerspruch zurückgeführt werden, welcher der Natur des Oelschalters — in brennbarer Flüssigkeit den Lichtbogen zu löschen — eigen ist. Die Bestrebungen, das Oel aus dem Schalterbau für hochgespannten Wechselstrom zu verbannen, sind deshalb fast ebenso alt wie der Oel-

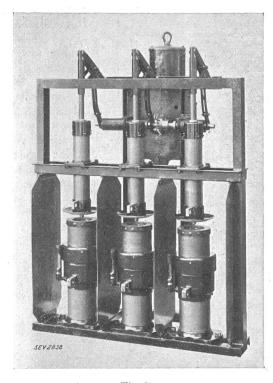



Fig. 24. Versuchsausführung eines 11-kV-Wasserschalters (Expansionsschalter) mit starren Dampfkammern.

schalter selbst. In diesem Sinne hat die Idee, das Wasser zur Löschung des Abschaltlichtbogens zu verwenden, viel Verlockendes in sich; es wurden auch frühzeitig in dieser Richtung Versuche angestellt. Bereits gegen Jahrhundertwende, d. h. noch vor der allgemeinen Einführung des Oelschalters, bildete z. B. Rawborth Wasserschalter durch, die gegen 1900 in England eine gewisse Verbreitung fanden. Dieser Schalter bestand aus einem Topf und darüber einem Luftdämpfer; der bewegliche Stiftkontakt wird aus dem Wasser herausgezogen, jedoch bleibt der Kontaktstift im Innern der Kammer (im Gegensatz zum Expansionsschalter). Der Wasserschalter setzte sich jedoch nicht durch, wohl deshalb, weil zur Entwicklung dieser Schal-

terart eine umfangreiche experimentelle Arbeit erforderlich war, welche bis vor kurzem nicht geleistet werden konnte. Der Gedanke, Wasser zu verwenden, schien ganz vergessen, bis ein neuer Anstoss vom amerikanischen Ingenieur Nicholson, der im Jahre 1924 einen Wasserschalter für 60 kV baute, gegeben wurde. 1929 entstand der Expansionsschalter der SSW 43) und damit erlangte das Wasser im Schalterbau wesentliche Anwendung.

Unsere Arbeiten auf diesem Gebiete führten uns zunächst zu einer Schalterkonstruktion, die in Fig. 24 dargestellt ist. Das Prinzip dieses Schalters besteht darin, dass der Lichtbogen z. B. unter Wasser in einer Druckkammer erzeugt wird, wobei der bewegliche Kontaktstift zunächst die Auspufföffnung und damit die Kammer abschliesst, wodurch in der Kammer sehr rasch Wasserdampf unter bedeutendem Ueberdruck gebildet wird. Beim Herausziehen des beweglichen Kontaktes aus der Dampfkammer erfolgt eine Dampfströmung und eine Dampfexpansion in die zweite, oberhalb der ersten angeordneten Kammer. Um den Lichtbogen energisch zu kühlen und rasch zu entionisieren, ist es wichtig, die Bemessung der Auspufföffnung richtig zu treffen. Es gelingt auf diese Weise, grosse Leistungen mit kurzen Löschzeiten zu unterbrechen und es ist auch möglich, durch zweckmässigen Auf-

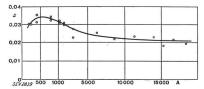
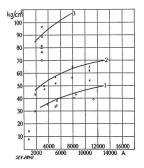



Fig. 25.


Lichtbogendauer in einem 10-kV-Wasserschalter (Expansionsschalter) in Abhängigkeit des Abschaltstromes bei 10 kV wiederkehrender Spannung. Mittelwerte aus je 3 Versuchen. Eigenfrequenz des Kreises:  $f_0 = 7000$  bis 15 000 Per./s,  $\cos \varphi = 0.05$ .

bau des Schalters das Knallgeräusch auf ein erträgliches Mass abzudämpfen. Der Wasserverlust kann soweit verkleinert werden, dass das Nachfüllen erst nach mehreren Schaltungen erforderlich wird.

Die Lichtbogendauer ist in dieser Schalterart, wie in allen Schaltern, die unter Benützung der Eigenenergie des Lichtbogens arbeiten, von der Stromstärke abhängig. Beim Abschalten von Belastungsströmen bis ca. Nennstromstärke und kleinerer Kurzschlußströme erfolgt die Unterbrechung praktisch ohne Funken. Die Lichtbogendauer weist bei Kurzschlüssen ein Maximum im Bereiche von 300 bis 600 A auf und nimmt mit dem wachsenden Strom ab, um bei grossen Abschaltströmen auf eine bis zwei Perioden zu sinken (Fig. 25). Der Löschung von kleinen Strömen muss durch sorgfältige Bemessung der Kammeröffnung besondere Aufmerksamkeit geschenkt werden. Die Kammeröffnung muss möglichst klein sein, damit auch bei kleinerer Lichtbogenenergie ein zur Löschung genügender Dampfdruck erzeugt wird. Diese Bedin-

<sup>&</sup>lt;sup>43</sup>) Dr. Kesselring, ETZ 1930, S. 499; Wiss. Veröff. Siem. Konz. 1930, S. 200; Bull. SEV 1931, S. 254.

gung steht jedoch im Widerspruch mit den Anforderungen, welche beim Abschalten grosser Ströme an den Schalter gestellt werden, weil sich dabei unter Umständen zu hohe Drücke und Beanspruchungen für alle Schalterteile ergeben würden. Um beiden Anforderungen gerecht zu werden, wurde die Dampfkammer mit Ventilen ausgerüstet, welche bei einem bestimmten Ueberdruck öffnen und eine



#### Fig. 26.

Druck in der Dampfkammer eines Wasserschalters in Ab-hängigkeit des Abschaltstromes.

- Ventilvorspannung 20 kg/cm². Ventilvorspannung 40 kg/cm². Starre Dampfkammer.

Verbindung zwischen der Druckkammer und einer sogenannten Vorratskammer herstellen.

Fig. 26 zeigt den Verlauf des Druckes in der Druckkammer in Funktion des abgeschalteten Stromes, bei verschieden eingestellten Ventilen. Kurve 3 bezieht sich auf eine Kammer ohne Ventile: Schon beim Schalten von ca. 3000 A erreicht man bis gegen 100 kg/cm². Bei der Aufnahme der Kurven 1 und 2 war die Kammer mit Ventilen ausgerüstet, welche bei 20 bzw. 40 kg/cm² öffneten, wodurch der beim Schalten entstehende Kammerdruck und die mechanische Schalterbeanspruchung erheblich verkleinert wurden. Wie man aus Fig. 27

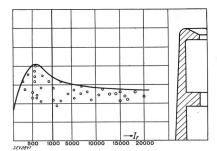



Fig. 27.

Lichtbogenlänge in einem 11-kV-Wasser-schalter in Abhän-gigkeit des Abschalt-stromes bei 10—11 kV wiederkehrender Spannung.

 $f_0 = 700 \text{ bis} \\ 15\,000 \text{ Per./s.}$ 

ersieht, büsst der Schalter durch die Druckbegrenzung seine Löschfähigkeit in keiner Weise ein. Die Kreise stellen die gemessene Lichtbogenlänge bei 20 kg/cm<sup>2</sup> Ventilvorspannung dar; als Maßstab dient die rechts schematisch eingezeichnete Dampfund Expansionskammer. Die Löschung des Lichtbogens erfolgt meistens in der Kammeröffnung, oder erst, nachdem der bewegliche Kontakt diese verlassen hat.

Die Vorgänge können noch besser auf dem in Fig. 28 dargestellten Oszillogramm verfolgt werden. Dieses Oszillogramm stellt eine Abschaltung von 330 000 kVA bei 11,9 kV wiederkehrender Spannung dar, welche mit einem dreipoligen Schalter für 11 kV Nennspannung durchgeführt wurde. Die Lichtbogendauer beträgt bloss 1,5 Perioden, der Druckverlauf in der Kammer ist oben durch die Umhüllungskurve einer 1000periodigen Hilfsspannung gegeben. Man ersieht daraus, dass der Druckanstieg besonders rasch während der letzten Halbwelle des Kurzschlußstromes erfolgt und bei der Lichtbogenlöschung noch rascher abfällt.

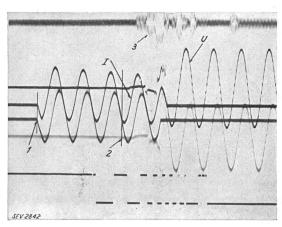



Fig. 28.

Oszillogramm einer Abschaltung von 330 000 kVA in einem 3poligen 11-kV-Wasserschalter.  $I=16\,000$  Aet;  $U^{\tau}=11.0$  kV;  $t_{\tau}=0.03$  s;  $f_{0}=15\,000$  Per./s.

1 Beginn des Kurzschlusses.
2 Beginn des Lichtbogens.
3 Druckverlauf in der Kammer.

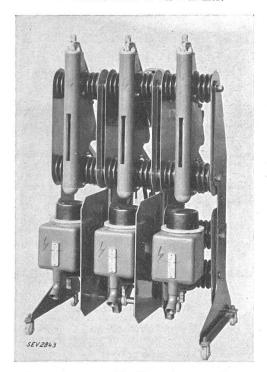



Fig. 29. Bpoliger Wasserschalter (Expansionsschalter) für 11 kV mit durch Ventile entlasteter Dampfkammer.

Fig. 29 zeigt einen auf dem geschilderten Prinzip aufgebauten Wasserschalter für 11 kV Nennspannung, dessen Dampfkammern über Ventile mit einem Vorratsgefäss in Verbindung stehen. Der Aufbau dieses Schalters erlaubt, bei entsprechender Anordnung der Anlage eine gradlinige Stromführung zu erzielen.

Die Untersuchungen gehen gegenwärtig dahin, auch Hochspannungsschalter zu entwickeln, die mit möglichst wenig Oel arbeiten. Fig. 30 zeigt die Versuchsausführung eines 110-kV-Schalters für Forschungsarbeiten, welcher mit einem Trenner zusam-

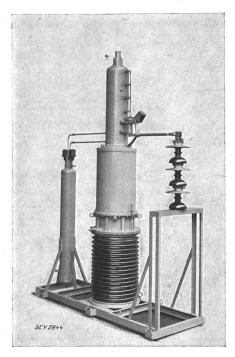



Fig. 30. Versuchsausführung eines 110-kV ölarmen Schalters.

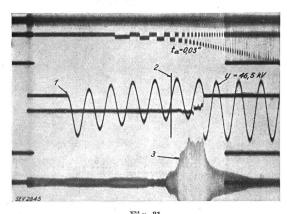



Fig. 31.  $\begin{array}{c} \text{Oszillogramm einer Abschaltung von 5300 A}_{\text{eff}} \text{ bei} \\ \text{46,5 kV wiederkehrender Spannung: } f = 50 \text{ Per./s,} \\ \text{mit dem Schalter nach Fig. 30.} \\ 1 \text{ Beginn des Kurzschlusses.} \\ 2 \text{ Beginn der Abschaltung.} \\ 3 \text{ Druckverlauf.} \end{array}$ 

mengebaut ist. Zur Betätigung wird Druckluft von 2 kg/cm² verwendet, und es ist möglich, den beweglichen Kontakt mit beliebiger Geschwindigkeit auf eine beliebige Unterbrechungsdistanz zu bringen. Erst nachdem die Endlage erreicht ist, wird der Trenner geöffnet. In Fig. 31 ist ein Oszillogramm einer Abschaltung von 5300 A bei 46,5 kV wiederkehrender Spannung, d. h. dreiphasiger Leistung von rund 500 MVA wiedergegeben; die Lichtbogendauer beträgt 0,03 s.

#### 3. Druckgasschalter.

Die ersten Angaben über Druckgasschalter stammen aus dem Jahre 1902; das Ausblasen des Schaltlichtbogens mit Druckluft wurde sogar vor der Einführung der Oelschalter, z. B. im Kraftwerk Oberspree der Berliner Elektrizitätswerke, im Jahre 1897, angewendet. Grosse Leistungen wurden jedoch auf diese Weise erst in neuerer Zeit abgeschaltet. Wesentlich war die Einführung eines durchbohrten, düsenförmigen Kontaktes - ein Prinzip, das das eigenartige Schicksal erlebte,

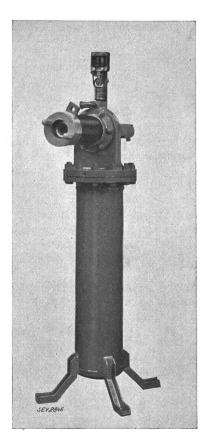
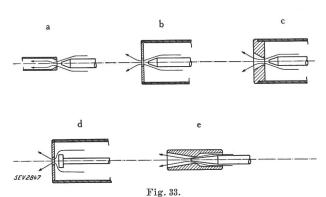



Fig. 32. Einpoliger Druckluftschalter mit offenem Auspuff zur Erfor-schung der Abschaltvorgänge.

viermal erfunden zu werden 44) durch dessen Öffnung das Löschmittel strömt und den Lichtbogen allseitig einhüllt. Schon 1922 wurden mit einem solchen Schalter ca. 2000 A bei 8000 V, d. h. die damals in Baden zur Verfügung stehende Leistung in einer Halbwelle abgeschaltet, und zwar unter Anwendung von  $0.5 \text{ kg/cm}^2$ Ueberdruck und einer Kontaktöffnung von höchstens 25 mm  $^{45}$ ).

Die erste praktischeAusführung wurde 1929 von der AEG auf den Markt gebracht, worüber J. Biermanns und O. Mayr interessante Mitteilungen veröffentlichten 46).

Die Durchbildung eines betriebssicheren Druckluftschalters kann nur auf Grund systematischer Abschaltversuche mit grossen Leistungen erfolgen, da eine theoretische Vorausberechnung der Abschaltleistung wegen der verwickelten Vorgänge, die beim Ausblasen des Lichtbogens sich abspielen, noch nicht möglich ist. Die Versuche mussten sich zunächst naturgemäss auf die Kontakte selbst beziehen, deren Form, Grösse, notwendiger Hub, sodann auf die pneumatischen Faktoren, wie Blasdruck und Geschwindigkeit, Drosselwirkungen im


45) BBC-Mitteilungen 1930, S. 59.

<sup>44)</sup> USA Pat. 716 848, 1902; Schw. Pat. 105 587, 1922; Brit. Pat. 278 764, 1926; 1927 in Deutschland durch Prof. Ruppel.

<sup>&</sup>lt;sup>46</sup>) J. Biermanns, ETZ 1929, SS. 1073, 1114, 1746; ETZ 1930, S. 299. O. Mayr, VDE Fachb. 1931, S. 45; ETZ 1932, S. 75, 121.

Gasstrom, Art des Gases, Schallerzeugung und seine Dämpfung usw., ferner auf die Einflüsse, die vom abzuschaltenden Netz herrühren, d. h. dessen Betriebs- und Eigenfrequenz, Abschaltstrom und wiederkehrende Spannung.

In Fig. 32 ist ein einpoliger Schalter mit einer Unterbrechungsstelle dargestellt, welcher für prinzipielle Untersuchungen verwendet wurde. Dieser Schalter kann leicht auch mit doppelter Unterbrechung versehen werden und erlaubt, die Grösse



Verschiedene Kontaktformen für Druckluftschalter.

des Kontakthubes sowie die Schaltgeschwindigkeit in weiten Grenzen zu verändern. Einige Beispiele von untersuchten Kontakten, die trotz starker Verschiedenheit der Formen bei unseren Versuchen alle praktisch die gleiche Grenzleistung bewältigt haben, sind in Fig. 33 zu sehen. Die Löschwirkung dieser und ähnlicher Anordnungen beruht eben im wesentlichen auf der schnellen Entfernung der Lichtbogengase aus der Kontaktzone im Strom-

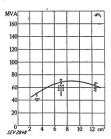



Fig. 34.

Einfluss des Düsenquerschnittes auf die Grenzleistung eines Ipoligen Druckluftschalters mit einer Unterbrechungsstelle, bei 6 kg pro cm², 16 kV wiederkehrender Spannung.

fo = ca. 19 000 Per./s.

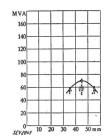



Fig. 35.
Einfluss des Kontakthubes auf die Grenzleistung eines Ipoligen Druckluftschalters mit einer Unterbrechungsstelle, bei 6 kg/cm², 16 kg/

Nullmoment und da die Strömung innerhalb dieser zentralen Zone bei allen Ausführungsformen fast genau gleich verläuft und gleich stark ist, d. h. immer mit der Schallgeschwindigkeit erfolgt, muss auch das Resultat gleich ausfallen.

Durch die Erhöhung des Düsendurchmessers und damit der Durchflussmenge bei gegebenem Druck kann die Schaltleistung nur bis zu einem gewissen Maximum gesteigert werden, wie die Kurve Fig. 34 erkennen lässt, jede Erhöhung darüber hinaus würde nur nutzlosen Gasverbrauch bewirken.

Die Grenzkurve Fig. 35 zeigt, wie der Kontakthub die abschaltbare Leistung beeinflusst und dass, im Gegensatz zu andern Schaltern, die Löschfähigkeit nicht mit der Vergrösserung des Hubes ständig wächst, sondern nach Erreichung eines Optimums wieder fällt. Wie soeben erwähnt, besteht die Löschwirkung an der Stelle der stärksten Strömung, d. h. im engsten Querschnitt der Oeffnung; davon entfernte Teile des Lichtbogens tragen nichts bei, erhöhen aber die erzeugte Schalterarbeit und Wärmemenge.

Von grosser Bedeutung für die Abschaltleistung ist der Luftdruck, mit welchem der Schalter arbeitet, da die schaltbare Leistung mit steigendem Blasdruck wächst. Die Versuche zeigen allerdings, dass das Schaltvermögen etwas weniger als proportional mit dem Druck zunimmt (Fig. 36).

Auch die Betriebsfrequenz hat einen ausgesprochenen Einfluss auf die Grenzleistung des Druckluftschalters, welcher in Netzen mit 25 oder 16% Per./s (Bahnnetze) bedeutend leichter schaltet als in solchen mit 50 oder 60 Per./s. In Fig. 37

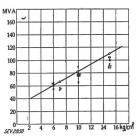



Fig. 36.

Einfluss des Druckes auf die Grenzleistung eines einpoligen Druckluftschalters mit einer Unterbrechungsstelle, bei 16 kV wiederkehrender Spannung, fo = ca. 19 000 Per./s.

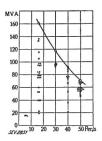



Fig. 37.

Einfluss der Betriebsfrequenz auf die Grenzleistung eines einpoligen Druckluftschalters mit einer Unterbrechungsstelle, 6 kg/cm², 16 kV wiederkehrender Spannung, fo = ca. 19 000 Per./s.

ist die Grenzleistung eines Druckluftschalters in Abhängigkeit der Betriebsfrequenz des Netzes dargestellt. Diese Erscheinung ist mit der bereits mehrmals erwähnten Rückwirkung der Eigenfrequenz des Netzes auf die Beanspruchung von Schaltern eng verknüpft. Bei einem Druckluftschalter hat ein mehr oder weniger steiler Anstieg der wiederkehrenden Spannung nach der Löschung eine stärkere Rückwirkung auf seine Grenzleistung als bei einem Oelschalter. So war es möglich, durch die Verkleinerung der Eigenfrequenz der Versuchsanlage von 19500 Per./s auf 8800 Per./s die Grenzleistung auf das Doppelte zu steigern. Da bei gegebener Spannung der Kurzschlußstrom und die Abschaltleistung wie  $\frac{1}{\omega L}$  anwachsen und da anderseits bei unveränderlicher Induktivität L des Kreises die Eigenfrequenz und demzufolge auch  $\frac{\mathrm{d}u}{\mathrm{d}t}$ konstant bleiben, ist es möglich, in der gleichen

Anlage viel grössere Leistungen bei verkleinerter Betriebsfrequenz zu unterbrechen.

Durch Verwendung von Stufenwiderständen kann der Spannungsanstieg ebenfalls verlangsamt und damit die Abschaltleistung erhöht werden, wie aus Erfahrungen mit Oel- und andern Schaltern bekannt ist und gegenwärtig von den Ateliers de Constructions électriques de Delle in dem neuen Pressgasschalter mit Querblasung angewendet wird 47).

Als Löschgas verwendet man der einfachen Beschaffung wegen im allgemeinen Druckluft, obwohl damit nicht die höchstmögliche Leistung erzielt wird. Es liegt nahe, die Druckluft auch zum Antrieb des Schalters zu verwenden und den pneumatischen Antrieb mit dem Schalter zusammenzu-

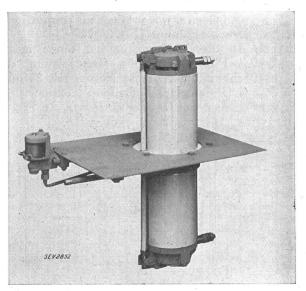



Fig. 38. Einpoliger Druckluftschalter mit doppelter Unterbrechung für 24 kV und 6 kg/cm² Ueberdruck. Der Schalter dient gleichzeitig als Durchführung.

bauen, so dass zur Betätigung desselben ein kleines elektrisch oder von Hand betätigtes Ventil genügt.

Eingehende Untersuchungen ergaben, dass mit einer Unterbrechungsstelle pro Phase und einem Ueberdruck von 6 kg/cm² eine dreiphasige Abschaltleistung erreicht werden kann, welche je nach der Eigenfrequenz des Netzes zwischen ca. 120 000 bis 300 000 kVA bei 50 Per./s liegt. Bei Anwendung von z. B. 15 kg/cm<sup>2</sup> oder bei doppelter Unterbrechung pro Phase können zweimal höhere Werte erzielt werden.

Fig. 38 zeigt einen auf Grund der zahlreichen Versuche entwickelten Schalter mit 2 Unterbrechungsstellen, der die Form einer Durchführung hat. Wird er beispielsweise in einer Lokomotive verwendet, so dient er gleichzeitig als Durchführung durch das Lokomotivdach, wobei der obere Teil im Betrieb durch einen Porzellanmantel gegen Regen geschützt wird. Zu seiner Betätigung ist nur ein normales elektropneumatisches Ventil, gleicher Ausführung wie für pneumatische Schützen erforderlich. Besonders muss betont werden, dass keine Funkenkammern im eigentlichen Sinn im Schalter vorhanden sind; eine allmähliche Metallisierung irgendwelcher Isolationsteile durch Metalldämpfe ist auf diese Weise vollständig verhindert worden. Die bei Druckgasschaltern übliche Knallbildung konnte durch zweckmässige Formgebung praktisch vermieden werden. Ein Oszillogramm einer Abschaltung von 110 000 kVA bei 16 kV mit dem beschriebenen Schalter ist in Fig. 39 wiedergegeben. Aus dem Verlauf des Druckes im Schalterinnern, dargestellt durch die Umhüllungskurve einer Hilfsschwingung von 1000 Per./s, erkennt man, dass vor der Betätigung des Schalters der Druck konstant bleibt und erst nach der Einleitung des Auspuffes

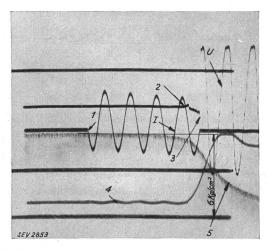



Fig. 39.

Oszillogramm einer Abschaltung von I = 6900 A
bei 16 kV wiederkehrender Spannung mit einpoligem Druckluftschalter nach Fig. 38.

1 Beginn des Kurzschlusses
2 Beginn der Unterbrechung.
3 Ende der Unterbrechung.
4 Kontaktbewegung.
5 Druckverlauf.

langsam abfällt, um sofort nachher wieder auf 6 kg/cm<sup>2</sup> anzuwachsen. Auf diese Weise erreicht man im Normalbetrieb eine zusätzliche dielektrische Sicherheit im Innern des Schalters.

Solange verhältnismässig geringe Leistungen zu bewältigen sind, kann der Pressgasschalter auch mit einem entsprechend kleineren Druck arbeiten; mit der Steigerung der Anforderungen ist es notwendig, zu höheren Druckwerten zu greifen. Es können aber auch andere, bereits oben angeführte konstruktive Hilfsmittel zur Erhöhung der Schalterleistung angewendet werden, wie z. B. die Vielfachunterbrechung oder die Reihenschaltung von Stufenwiderständen.

#### Schlussbemerkung.

Obwohl die beiden prinzipiellen Nachteile des Oelschalters — die Explosions- und die Brandgefahr - nicht aus der Welt geschafft werden können, so ist es doch möglich geworden, den Oelschalter mit offener Unterbrechung so weit vorauszuberechnen und seine Betriebssicherheit so zu steigern, dass er allen Anforderungen der Praxis

<sup>&</sup>lt;sup>47</sup>) A. Clerc, Bull. SFE 1932, S. 73; s. a. Bull. SEV 1932, Nr. 23.

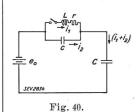
genügt. Jedoch bedurfte diese Entwicklung langjähriger Untersuchungen und während dieser Zeit, dem Rufe «los vom Oel» folgend, wurden auch ölfreie Schaltertypen weitgehend durchgebildet. Bei diesen Schaltern besteht die Brandgefahr nicht mehr; auch im Aufbau sind sie einfach. Aber ihre Arbeitsweise begegnet bei höheren Spannungen und sehr grossen Leistungen Schwierigkeiten, so dass eine weitere Type ölarmer Schalter — ein Schritt zurück zum Oel — auf dem Markt bereits Eingang gefunden hat.

Ueberschreitet das Abschaltvermögen eines Schalters die Leistungsfähigkeit der bestehenden Versuchsanlagen, so ist es erforderlich, Grundlagen zu seiner Berechnung zu schaffen. Es ist jedoch bis jetzt, allen Vorsätzen zum Trotz, nicht gelungen, eine Berechnungsmethode für solche Schalter aufzustellen, die zur Löschung die Eigenenergie des Lichtbogens benützen. Auch die Grenzleistung eines Druckluftschalters lässt sich rechnerisch noch nicht vorausbestimmen. Die Lösung dieser Probleme bleibt der Zukunft vorbehalten.

Will man einige Schlussfolgerungen aus den geschilderten Forschungsergebnissen ableiten, so muss zunächst betont werden, dass ein richtig gewählter Oel- oder ölloser Schalter, dessen Abschaltvermögen einer Kontrolle unterzogen wurde, auch im Betrieb einwandfrei arbeiten wird, vorausgesetzt, dass seiner Unterhaltung gebührende Aufmerksamkeit zugewandt wird.

Der neuzeitliche Schalter besitzt nun eine solche Sicherheit, dass bei der Bestimmung der erforderlichen Abschaltleistung für eine projektierte Anlage nicht mehr notwendig ist, wie vielerorts üblich, einen mit der voraussichtlichen Entwicklung der Netze in keinem Einklang stehenden Sicherheitsfaktor einzuführen. Wenn diese Vorsichtsmassnahme immer noch Anwendung findet, so ist es entweder gewohnheitshalber oder, vielleicht, weil die von verschiedenen Konstrukteuren angebotenen Garantien hinsichtlich Abschaltvermögen so stark voneinander abweichen, dass ein Betriebsingenieur nur schwer sein Urteil über die Güte der Apparate fällen kann. Eine weitergehende und allgemeinere Berücksichtigung der internationalen Regeln der CEI würde zur einheitlichen Gestaltung der Garantiefragen und der Berechnung der Abschaltleistungen viel beitragen.

Die Ausdehnung der Vorschriften auf die Prüfung des Abschaltvermögens der Schalter in ähnlicher Weise, wie sie für andere Prüfungen bestehen, ist eine unumgängliche Massnahme. Auch eine Ergänzung der Angaben betreffend der wiederkehrenden Spannung durch diejenige der Eigenfrequenz des Netzes oder des Spannungsgradienten  $\frac{\mathrm{d}u}{\mathrm{d}t}$  würde die Leistungsfähigkeit des Apparates genauer zu umschreiben erlauben. Erst


Apparates genauer zu umschreiben erlauben. Erst nachdem alle diese Fragen einheitlich geregelt und die Vorschriften allgemeine Anwendung gefunden haben werden, wird der Betriebsingenieur die Garantiezahlen miteinander vergleichen und sein Urteil leichter bilden können.

Es ist für mich eine angenehme Pflicht, der Firma Brown Boveri für die bereitwilligst zur Verfügung gestellten Unterlagen, sowie meinen Mitarbeitern, ganz besonders den Herren G. Brühlmann und H. Thommen für ihre wertvolle Hilfe bei den Entwicklungsarbeiten, und Herrn R. Risch bei der Bearbeitung der physikalischen Fragen, auch an dieser Stelle zu danken.

#### Anhang.

Die Frequenz der Ausgleichsschwingung der wiederkehrenden Spannung.

Unmittelbar nach dem Nullwert des Kurzschlussstromes weist der Kurzschlusskreis folgende Spannungen auf: der Momentanwert der im Generator induzierten EMK ist  $\sqrt{2} \cdot E_o \cdot \sin \varphi$ , die Spannung an den Klemmen der Kapazität C ist gleich dem Abfall im Lichtbogen  $-e_{\rm B}$  und die Wicklungskapazität c besitzt eine Spannung  $E_{\rm S}$ , die die Bedingung  $\sqrt{2} E_o \cdot \sin \varphi + E_{\rm S} = -e_{\rm B}$  erfüllt (vergl. Fig. 11). Mit dem Abreissen des Kurzschlussstromes  $I_{\rm K}$  beginnt die Wicklungskapazität c über



die Induktivität L sich zu entladen, so dass das Gleichgewicht gestört und die Kapazität C durch den Generator über die Induktivität L aufgeladen wird. Das Ersatzschema, in Fig. 40 vereinfacht dargestellt, ist so zu verstehen, dass der Ausgleichsvorgang durch das

Schliessen des Kreises über die Induktivität L eingeleitet wird. Die Widerstände, mit Ausnahme desjenigen der Wicklungen, werden vernachlässigt, da sie die Frequenz nur wenig beeinflussen, ihre Einführung in die Rechnung dagegen zu sehr unübersichtlichen Berechnungen führt. Es gelten nachstehende Gleichungen:

$$e_0 = rac{1}{C} \int (i_1 + i_2) d\tau + rac{1}{c} \int i_2 d\tau$$
 $e_0 = rac{1}{C} \int (i_1 + i_2) d\tau + L rac{di_1}{dt} + r_1 i_1$ 

Die Spannung  $e_o$  bleibt während der kurzen Zeit des Ausgleichsvorganges unverändert, so dass man schreiben kann:

$$\frac{i_1 + i_2}{C} + \frac{i_2}{c} = 0$$

$$\frac{i_1 + i_2}{C} + L \frac{d^2 i_1}{d \tau^2} + r_1 \frac{d i_1}{d \tau} = 0$$

oder noch:

$$L\frac{\mathrm{d}^2 i_1}{\mathrm{d}\tau^2} + r_1 \frac{\mathrm{d}i_1}{\mathrm{d}\tau} + \frac{i_1}{C+c} = 0$$

Mit dem Ansatz  $i_1 = A e^{-a\tau}$  erhält man die charakteristische Gleichung:

$$a^2 - \frac{r_1}{L} a + \frac{1}{L(C+c)} = 0$$

und daraus

$$a=rac{r}{2\,L}\pm j\,\sqrt{rac{1}{L\,(C+c)}-rac{r}{4\,L^2}}=lpha\pm j\,\omega_0$$

sowie für die Ströme:

$$egin{aligned} i_1 &= A\,e^{-lpha au}\sin\omega_0\, au\ i_2 &= -rac{c}{C+c}\,A\,e^{-lpha au}\sin\omega_0 au\ i_1 + i_2 &= rac{C}{C+c}\,A\,e^{-lpha au}\sin\omega_0\, au \end{aligned}$$

Die Spannung an den Klemmen des Kondensators C ist gegeben durch das Integral

$$U = \frac{1}{C} \int (i_1 + i_2) d\tau = \frac{A}{C + c} \int e^{-\alpha \tau} \sin \omega_0 \tau d\tau$$

dessen Lösung ergibt:

$$U = -\frac{A}{C + c} e^{-\alpha \tau} \cdot \frac{\alpha \sin \omega_0 \tau + \omega_0 \cos \omega_0 \tau}{\alpha^2 + \omega_0^2} + K$$

Die Grenzbedingungen erlauben die Konstanten A und K zu bestimmen:

$$au=\infty \quad U_{\infty}=\sqrt{2}\,E_0\sinarphi=K$$
  $au=0 \quad U_0=-e_{
m B}=-rac{A}{C+c}\cdotrac{\omega_0}{lpha^2+\omega_0^2}\sqrt{2}\,E_0\sinarphi$ 

es wird darnach:

$$A = \frac{\sqrt{2} E_{\mathrm{0}} \sin \varphi + e_{\mathrm{B}}}{\omega_{\mathrm{0}} L}$$

Der Verlauf der wiederkehrenden Spannung ist somit durch die Gleichung

$$U = -(\sqrt{2} E_0 \sin \varphi + e_{\mathrm{B}}) e^{-\alpha \tau} \left( \frac{\alpha}{\omega_0} \sin \omega_0 \tau + \cos \omega_0 \tau \right) + \sqrt{2} E_0 \sin \varphi$$

dargestellt.

Die einfache Umrechnung zeigt, dass für stark induktive Kreise der Spannungsverlauf durch folgende Gleichung sehr angenähert wiedergegeben werden kann:

 $U = (\sqrt{2} E_0 \sin \varphi + e_B) e^{-\alpha \tau} \cos(\omega_0 \tau + \pi) + \sqrt{2} E_0 \sin \varphi$  wobei der Dämpfungsfaktor  $\alpha$  und die Frequenz der Ausgleichsschwingung durch die Beziehungen

$$lpha = rac{r}{2 L}; \ \omega_0 = 2 \pi f_0 = \sqrt{rac{1}{L(C+c)} - rac{r^2}{4 L^2}}$$

ausgedrückt sind. Die wiederkehrende Spannung erreicht für  $\tau=\frac{1}{2f_0}$  den maximalen Wert

$$U_{\text{max}} = (\sqrt{2}E_0 \sin \varphi + e_{\text{B}}) e^{-\frac{\alpha}{2f_0}} + \sqrt{2}E_0 \sin \varphi$$

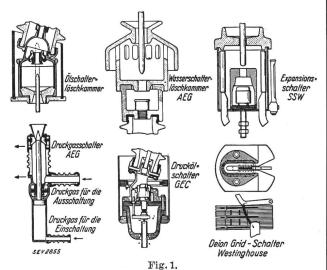
$$\approx 1.8 \sqrt{2}E_0 \sin \varphi + 0.8 e_{\text{B}}.$$

Ist die Zusammensetzung des Schwingungskreises komplizierter oder treten Rückzündungen auf, so kann die wiederkehrende Spannung einen etwas anderen Verlauf haben und unter Umständen höhere Maximalwerte erreichen. Dieses Problem soll hier nicht weiter behandelt werden.

#### II. Referat

gehalten von Prof. Dr. J. Biermanns, Direktor der Transformatorenfabrik der

#### Allgemeinen Elektrizitätsgesellschaft, Berlin (AEG).


Es wird gezeigt, dass die Arbeitsweise aller heutigen Hochleistungsschalter: der Oelschalter mit und ohne Löschkammer, der Druckölschalter, der Oelschalter mit Gitterkontakt, der Druckgasschalter und der Wasserschalter auf ein gemeinsames, übergeordnetes Prinzip zurückgeführt werden kann, nämlich auf das Strömen des unionisierten Löschmediums. Je besser man die Strömung steuert, um so sicherer beherrscht man den Unterbrechungsvorgang. Die modernen Schalter, die nach diesem Prinzip arbeiten, weisen alle eine sehr kurze Lichtbogendauer auf, ein Verhalten, das der Pressgasschalter am ausgeprägtesten zeigt.

L'auteur montre que le fonctionnement de tous les disjoncteurs modernes à grande puissance: disjoncteurs à huile avec et sans chambre d'extinction, disjoncteurs à huile comprimés, disjoncteurs à huile avec contacts à grille, disjoncteurs à gaz comprimé, disjoncteur à eau, repose sur un principe général, celui des courants dans le milieu d'extinction non ionisé. Mieux on dirige ces courants, d'autant plus sûrement on est maître du phénomène de rupture. Les disjoncteurs modernes qui reposent sur ce principe présentent tous une très faible durée de l'arc, caractéristique la plus marquée pour les disjoncteurs à gaz comprimé.

Im folgenden seien zunächst die verschiedenen Ausführungsformen der heutigen Hochleistungsschalter und ihre Arbeitsweise dargestellt und dabei der Oelschalter mit und ohne Löschkammer, der neue Druckölschalter (Oil blast breaker), der Oelschalter mit Gitterkontakt (Deion grid), der Druckgasschalter und der Wasserschalter betrachtet.

Die in Fig. 1 gegebene vereinfachte Darstellung der Unterbrechungsstelle der eben aufgezählten Schalterhauptformen zeigt deutlich ein übergeordnetes Prinzip: Kein Schalter ohne Strömung des löschenden Mediums. Sie sehen in der oberen Reihe links die Löschkammer, in der der Lichtbogen hohen Druck erzeugt, der dem Stift im Augenblick des Austrittes aus der Kammer einen Oelstrom nachjagt. Betrachten Sie sodann den in der Mitte der unteren Reihe dargestellten Druckölschalter, bei dem ein eigener Druckgenerator, in Form eines Hilfslichtbogens, bei einer anderen Ausführungsart in Form eines Druckkolbens, die Erzeugung der Oelströmung übernimmt. Der Unterschied gegenüber der Löschkammer kann etwa als Einführung einer fremderregten Strömung gegenüber der selbsterregten gekennzeichnet werden. Der Oelschal-

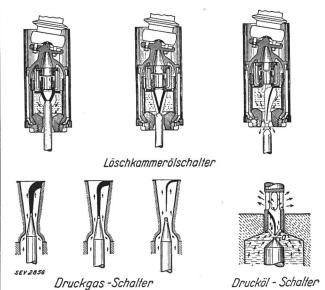
terlöschkammer sind rechts oben zwei Ausführungsformen der Wasserschalter-Löschkammer (AEG und SSW) gegenüber gestellt. Man sieht, es handelt sich um eine einfache räumliche Umkehrung, bei der dem Stift ein nach oben gehender Dampfstrahl nachfolgt, dessen Rückkondensation Wasser in einer anschliessenden Kondensationskammer begünstigt werden soll. Die untere Reihe zeigt links die von Ruppel angegebene Düse des Druckgasschalters, eine Ausführungsform, die zur dampfbeblasenen Unterbrechungsstelle des Wasserschalters gleichfalls im Verhältnis der Fremderregung zur Selbsterregung, deutlicher gesagt, der äusseren Beblasung zur Selbsterzeugung des strömenden Löschmittels steht. Der Vergleich ist kein rein äusserlicher. Genau so wie die selbsterregte Gleichstrommaschine im Bereiche kleiner Spannungen die Stabilität vermissen lässt, muss man auch von Schaltern mit selbsterzeugter Löschmittelströmung, also vom Löschkammerölschalter und vom Wasserschalter feststellen, dass ihre Schwierigkeiten auf dem Gebiet kleiner Ströme zu suchen sind, wo der erzeugte Druck keine ausreichende



Schaltstellen moderner Hochleistungsschalter.

Strömung hervorzurufen vermag. Nun zum letzten Bild der unteren Reihe, dem Oelschalter mit Gitterkontakt: Der Lichtbogen wird hier zur Erzeugung magnetischer Wirkungen in den schwarz angelegten Eisenschichten ausgenützt, wird durch die magnetische Blasung in die Schlitze der Kammer getrieben, dort zur forcierten Gaserzeugung an den Wänden der vielfach unterteilten Kammer gezwungen und durch die Gasströmung zerrissen. Dass es sich auch hier um ein Ueberwiegen von Wirkungen handelt, die an ein Strömen des Löschmediums gebunden sind, sei mit den Worten eines Mitarbeiters des Erfinders belegt, der sich in der Zeitschrift Power (4. August 1931, S. 163) wie folgt äussert:

«Die Unterbrechung im Deion-Grid-Oelschalter vollzieht sich kurz gesagt folgendermassen:


1. Entstehung eines Lichtbogens unter Oel.

2. Entstehung eines magnetischen Eigenfeldes des Lichtbogens, das ihn auf eine vorgeschriebene Bahn zwingt

- Die Lichtbogenbahn ist eine tiefe, schmale Tasche, die von U-förmigen ölgetränkten Wänden aus Pressmaterial eingeschlossen ist.
- Der heisse Lichtbogen bringt das eingeschlossene Oel zur Verdampfung.
- Der Oeldampf durchbricht bei seinem Austreten den Lichtbogen.
- Die turbulente Gasströmung bläst den Lichtbogen aus, indem sie ihm soviel Ionen entzieht, dass er beim Nulldurchgang erloschen bleibt.»

Der Autor fährt fort: «Bevor man grundsätzliche Untersuchungen über die Lichtbogenunterbrechung in Oel anstellte, sah man die Entstehung von Gas in Oelschaltern als notwendiges Uebel an, das mit der Löschung nichts zu tun hat. Slepian hat jedoch zeigen können, dass Oelschalter nur dadurch arbeiten, dass das vergaste Oel einen Strom nicht ionisierter Teilchen entwickelt, welche die Ionen aus dem hochionisierten Lichtbogen entfernen. Demgemäss ist der Deion-Grid-Schalter mit Recht ein gasbeblasener Oelschalter genannt worden.»

Diese oben zitierte Stelle zeigt, dass in der Tat die Strömung eines unionisierten Löschmediums das verbindende Glied aller bestehenden Arten der Hochleistungsunterbrechung vorstellt.



 ${\bf Fig.~2.}$  Lichtbogenunterbrechung im Hochleistungsschalter.

Innige Zusammenhänge zeigt Fig. 2, welche die Vorstellungen über den Verlauf des Unterbrechungsvorganges klarer herausarbeiten soll. Am Beispiel des Löschkammerölschalters und der Druckgasschalterdüse sieht man hier in je drei Phasen, wie sich der Lichtbogenkörper in der Nähe des Nulldurchganges zunächst zusammenzieht und dann durch die Strömung von der Elektrode abgeschnürt wird. Rechts unten sehen Sie denselben Vorgang am Beispiel des Druckölschalters. Es ist mit Nachdruck darauf hinzuweisen, wie hier an der Elektrode durch die Oelströmung eine durchschlagsfeste Oelschicht entsteht, welche offenbar um so stärker und daher wirksamer sein wird, je höher die Geschwindigkeit der Oelströmung ist. Wir werden auf dieses Beispiel noch zurückkommen, weil das Experiment hier eine überzeugende Bestätigung für die Richtigkeit der Vorstellung geliefert hat.

Vorher soll in Fig. 3 anhand von Zeitlupenaufnahmen (5000 Bilder/Sekunde) der Beweis geführt werden, dass der Lichtbogen im Druckgasschalter tatsächlich gegen Ende der Halbperiode durch Verringerung seines Querschnittes zusammenschrumpft und von der Elektrode fortgeblasen wird, wobei

gen und Spannungen in der Lichtbogensäule, so dass die in dem Bilde dargestellte Kurve je einen stärkeren Spannungsabfall an den Elektroden (Kathodenfall bzw. Anodenfall) und einen mässigen Spannungsabfall in der dazwischenliegenden Lichtbogensäule zeigt. Man hat es also im Lichtbogen mit

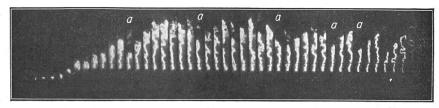
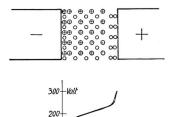




Fig. 3. Zeitlupenaufnahme des Abschaltvorganges beim Druckgasschalter.

der Gasstrom die Schaltstrecke reinigt und mit durchschlagsfestem Gas anfüllt. Zum besseren Verständnis sei hier zunächst durch Fig. 4 der Aufbau des Lichtbogens verdeutlicht; sie soll An-



100

Fig. 4.

Unterbrechungsvorgang. Zustand der Schaltstrecke während des Stromflusses.

haltspunkte über die Verteilung der Ladungsträger im Lichtbogen vermitteln. Die verschiedene Beweglichkeit der positiven und negativen Ladungsträger (Ionen bzw. Elektronen) führt zu einer ungleichmässigen Verteilung der Ladun-

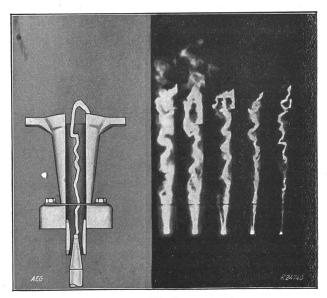



Fig. 5.

Zeitlupenaufnahme der letzten Phasen vor endgültiger Unterbrechung im Druckgasschalter.

einem hochionisierten Gaskörper zu tun, in welchem durch die von den Elektroden ausgehenden Ladungsträger eine ständige Erneuerung abwandernder oder unwirksam gemachter Ionen stattfindet. Die nächste Zeitlupenaufnahme (Fig. 5) zeigt nun die letzten Phasen des sterbenden Lichtbogens. Sie erkennen den Lichtbogenansatzpunkt an der Stiftspitze, den Schatten der nicht durchgeschnittenen Zwischenscheibe zwischen dem oberen Trichter und dem unteren Düsentragkörper. Sie sehen im letzten Teilbild das definitive Erlöschen des auf einen dünnen Faden zusammengeschrumpften Lichtbogens, der offenbar auf seiner ganzen Länge und am ganzen Umfang der entionisierenden Wirkung der strömenden Druckluft ausgesetzt ist. In Fig. 6 können Sie wahrnehmen,

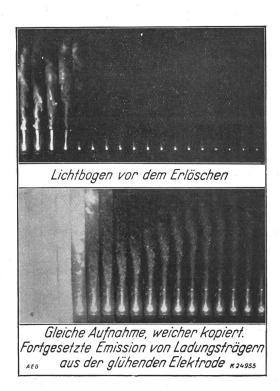
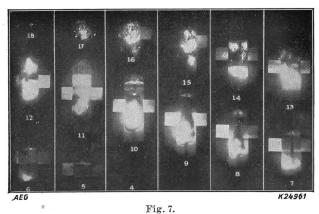
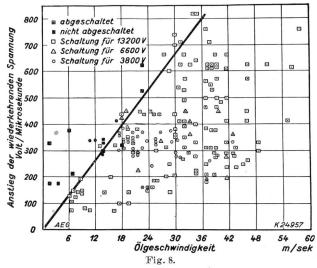




Fig. 6.
Unterbrechungsvorgang im Druckgasschalter.

wie sich der Lichtbogenkörper bei der endgültigen Unterbrechung an der Elektrode abschnürt und von ihr als Wolke abgehoben wird. Dass die Elektrode dann den Kampf noch nicht aufgibt, sehen Sie an der unteren Bildreihe, die mit der oberen völlig identisch und nur vom selben Negativ weicher kopiert ist. Sie sehen links die hellen Bildstreifen des brennenden Lichtbogens, in denen jetzt alle Einzelheiten durch Blendung verschwinden, rechts die nach der Unterbrechung aus dem Kontakt austretenden Wolken von Ladungsträgern, die von der Druckluft dauernd fortgeblasen werden. Beim Druckgasschalter ist der eben geschilderte Unterbrechungsvorgang in idealer Weise verwirklicht. Er ist darum der einzige Schalter, der in seinem ganzen Arbeitsbereich gleichmässig in einer Halbperiode zu unterbrechen vermag.

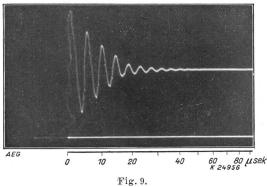

Dass wir aber berechtigt sind, auch bei anderen Schalterformen die hier behandelten Grundvorstellungen als zutreffend zu erachten, sei in Fig. 7



Lichtbogenunterbrechung im Oelschalter mit offenen Kontakten. 6 kV, 50 A,  $\cos \varphi = 0.45$ .

anhand des Modelles eines normalen Oelschalters mit offenen Kontakten bewiesen, bei dem es nicht unmittelbar einleuchtend ist, wieso die Bespülung mit einem unionisierten Löschmedium zustande kommt. Die drei übereinander befindlichen Bildreihen sind fortlaufend von rechts unten nach links oben zu verfolgen. Man erkennt zunächst das Entstehen des Lichtbogens nur an dem streifenförmigen Reflex am Oelspiegel (Teilbild 5), sieht dann, wie sich die Gasblase entwickelt (Teilbild 8) und gleichzeitig der Oelspiegel hebt (Teilbild 9), bis die Gasblase den Oelspiegel durchbricht (Teilbild 11). Nun stürzen die Oelwände der Gasblase ein, der Lichtbogen sinkt zusammen und wird erstickt (Teilbild 13 bis 18). Beim gewöhnlichen Oelschalter hat man es also offenbar mit einer ungeregelt verlaufenden Oelströmung zu tun.

Je besser man die Strömung steuert, um so sicherer beherrscht man den Unterbrechungsvorgang, um so schneller unterdrückt man den Lichtbogen. Es sei an das Bild von der durchschlagsfesten Oelschicht erinnert, die sich im Druckölschalter durch die Oelströmung ausbildet. Fig. 8 bringt eine schöne Bestätigung dieser Vorstellung. Zum besseren Verständnis sei aus dem Folgenden ein Punkt vorweg genommen. Aufgabe der durchschlagsfesten Schicht ist es, die nach dem natürlichen Nulldurchgang des Stromes auftretende Spannungsbeanspruchung mit Sicherheit aufzunehmen. Würde die volle treibende Spannung ohne jede Verzögerung an der Unterbrechungsstelle erscheinen, so wäre noch keine isolierende Zwischenschicht geschaffen; es müsste zu einer Rückzündung kommen. Glücklicherweise kann Wiederkehr der Spannung an der Unterbrechungsstelle nicht sprunghaft erfolgen. Es kommt ein in der Regel hochfrequenter Anstieg zustande, der aber immerhin eine gewisse Zeit braucht, so dass man von einer in V/µs auszudrückenden, mit der Zeit wachsenden Beanspruchung der Schaltstrecke




Zulässige Anstieggeschwindigkeit der wiederkehrenden Spannung, abhängig von der Oelgeschwindigkeit für verschiedene Spannungen.

sprechen muss. Wenn sich nun in der gleichen kurzen, aber doch endlichen Zeit die Durchschlagsfestigkeit der Schaltstrecke ausreichend zu regenerieren vermag, so ist die Rückzündung unterbunden, der Unterbrechungsvorgang vollzogen. Offenbar ist zur Herstellung einer ausreichenden Löschwirkung ein um so schnelleres Anwachsen der Dicke der Oelschicht und damit eine um so grössere Geschwindigkeit des in die Schaltstrecke gepressten Oeles erforderlich, je schneller die Spannung wiederkehrt. Es muss sogar strenge Proportionalität bestehen, d. h. es ergibt sich ein linearer Zusammenhang zwischen Geschwindigkeit des Spannungsanstieges und Geschwindigkeit der Oelströmung, welcher das Gebiet erfolgreicher Unterbrechung von dem Gebiet der Fehlschaltungen trennt. In der Tat sehen Sie aus der Eintragung der mit den verschiedensten Absolutwerten der Spannung angestellten Versuche, dass die voll markierten Fehlschaltungen mit einer Ausnahme oberhalb der eingetragenen Grenzgeraden liegen, welche die für eine bestimmte Geschwindigkeit des Spannungsanstieges erforderliche Mindestöl-

geschwindigkeit angibt. Die Lage der Grenzgeraden ergibt zurückgerechnet eine Oelfestigkeit von 200 kV/cm, ein Wert, der für kurzzeitige Beanspruchungen dünner Oelschichten durchaus in der richtigen Grössenordnung liegt. Damit erscheint aber die Vorstellung von einer die Schaltstrecke reinigenden Durchströmung des Lichtbogenraumes mit einem dielektrisch festen Löschmittel bei allen bekannten Schaltertypen zumindest als vollauf gerechtfertigte, zurzeit am besten bestätigte Arbeitshypothese. Es kann als bewiesen gelten, dass die Löschwirkung an eine Strömung des Löschmittels gebunden ist, wobei ich mich jedoch nicht unbedingt an die Vorstellung von dem Zwischenschieben einer durchschlagsfesten Schicht in die Lichtbogenbahn klammern möchte, sondern eine allgemeine Erklärung der regenerierenden Wirkung der Strömung offen lasse. Hier bleibt noch eine grosse Anzahl von Einzelheiten aufzuklären, auf die Herr Mayr im nächsten Referat näher eingehen wird.

Vorher möchte ich jedoch noch einiges über die Rückkehrzeit der wiederkehrenden Spannung und über ihren Einfluss auf den Unterbrechungsvorgang sagen. Wenn die Rückkehrzeit auch unter dem Einfluss der Netzkapazität und bis zu einem gewissen Grade unter dem Einfluss Ohmscher Belastungen grosse, den Unterbrechungsvorgang begünstigende Werte annehmen kann, so ist doch bei Betriebsspannungen bis 30 kV und mehr ein Umstand nicht ausser acht zu lassen: Man riegelt die Schaltstelle häufig gegen die übrige Anlage durch Strombegrenzungsreaktanzen ab, in denen bei Kurzschluss ein wesentlicher Teil der Spannung abgedrosselt wird. Es kommt also darauf an, wie schnell die vor der Reaktanz in nahezu voller Höhe wartende, dort in verschiedenen Kapazitäten aufgespeicherte Spannung durch die Reaktanz durchkommt und am Schalter selbst erscheint. Wie das Kathodenstrahloszillogramm Fig. 9 zeigt, geschieht



Eigenschwingung einer Strombegrenzungs-Drosselspule,  $f = 220\ 000\ \text{Per./s.}$ 

dies in sehr kurzer Zeit, da die Eigenfrequenz der Reaktanzen ausserordentlich hoch, je nach ihrer Bauart in der Grössenordnung von 50 000 bis 500 000 Per./s liegt. Die Eigenschwingungen von Transformatoren und Generatoren erfolgen zehnmal langsamer. Fig. 10 zeigt eine in der Kurzschlussversuchsanlage der AEG eingebaute Strombegrenzungsreaktanz, welche zur Einstellung vorbestimmter Abschaltleistungen dient. Man erkennt die Bedeutung einer Prüfung der Schalter unter möglichst scharfen Verhältnissen, erkennt auch das stark wechselnde Schicksal, das dem Schalter durch

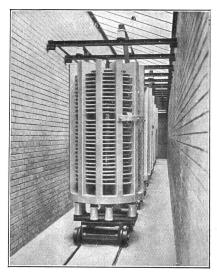



Fig. 10. Reaktanzen zur Strombegrenzung im Kurzschlussversuchsfeld der AEG-Transformatorenfabrik.

die Einbauverhältnisse bereitet werden kann. Liegt mit dem Schalter eine Reaktanz unmittelbar in Reihe und zweigt die betreffende Leitung von einem Punkt mit erheblicher Kapazität der angeschlossenen Netzteile ab, so verschwindet gegenüber dem Einfluss der Reaktanz derjenige der Netzlast und der Transformatoren durchaus. Eben deshalb ist gerade bei Kurzschlussversuchsanlagen auf enge räumliche Nachbarschaft der Reaktanzen und der Prüfobjekte zu achten, damit letztere nicht durch die Kapazität langer Verbindungsleitungen zwischen Reaktanz und Schalter oder gar durch Anwendung von Verbindungskabeln eine in diesem Falle unerwünschte Begünstigung erfahren. Eine so durchgebildete Kurzschlussversuchsanlage gestattet dann tatsächlich, schärfere Beanspruchungen herzustellen, als sie die Praxis jemals bieten kann.

Auch die Empfehlung, älteren, unzureichenden Schaltern an entfernten Punkten des Netzes einen ruhigeren Lebensabend zu verschaffen, ist mit grosser Vorsicht aufzunehmen. Erstens gibt es kritische Kurzschlussentfernungen, in denen die Abschaltleistung ein Maximum erreicht; zweitens sind bei Stichleitungen grösserer Netze die Voraussetzungen für schnellen Wiederanstieg der Spannung häufig genug erfüllt. Von ausschlaggebender Bedeutung ist die Netzkapazität, welche, wenn sie durch den vorangegangenen Kurzschluss entladen wurde, die Wiederkehr der Spannung so wirksam verzögert, dass auch schwache, in der Prüfanlage versagende Schalter dem praktischen Betrieb ohne weiteres standhalten und dort ihre sogenannte Nennausschaltleistung tatsächlich beherrschen.

In diesem Zusammenhange sei noch auf die Frage eingegangen, ob es mit Rücksicht auf die grosse Erleichterung der Ausschaltbedingungen, die der Schalter durch die Netzkapazität im praktischen Betrieb häufig vorfindet, zweckmässig ist, bei Auswahl eines Schalters die im Kurzschlussversuchsfeld ermittelte Grenzausschaltleistung zu Grunde zu legen. Ganz abgesehen davon, dass diese im Prüffeld ermittelte sogenannte Nennabschaltleistung eines Schalters einen bequemen Maßstab darstellt, der einen mühelosen Vergleich verschiedener Schaltertypen unter gleichen Verhältnissen ermöglicht, so konnte ich im vorhergehenden zeigen, dass im praktischen Betrieb sehr kurze Rückkehrzeiten vorkommen können, die selbst die in Hochleistungsprüffeldern vorhandenen kleinen Rückkehrzeiten erreichen können. Es ist aber allgemein üblich, bei der Bemessung und Auswahl eines Apparates die ungünstigste Beanspruchung zugrunde zu legen, die im praktischen Betrieb auftreten kann.

Die Stromunterbrechung ist ein Entionisierungsvorgang. Es erhebt sich die Frage, ob die kurzen für die Entionisierung verfügbaren Zeiten  $\tau$ , welche

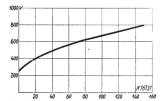
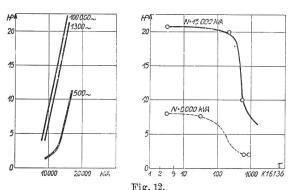




Fig. 11.
Unterbrechungsvorgang.
Wiederkehr der dielektrischen Festigkeit einer kurzen Schaltstrecke mit kalten Elektroden
(nach J. Slepian).

im praktischen Betrieb zwischen eintausendstel und einmillionstel Sekunde schwanken, für den Ablauf dieses Vorganges ausreichen. Es ist nun sehr interessant, dass diese Zeiten sich zufällig gerade mit den für die Entionisierung benötigten überschneiden. Stellen Sie sich vor, ein kurzer, zwischen zwei Elektroden brennender Lichtbogen sei sich selbst



Einfluss der Netzkapazität auf die Lichtbogendauer bei einem Oelschalter.

überlassen. Dann wird nach der Kurve Fig. 11 ein Teil der Spannung sofort, also etwa in einer Mikrosekunde wiederkehren dürfen, ohne dass die Schaltstrecke durchbrochen wird. In einem Teil derselben wird offenbar die Entionisierung durch Rekombination positiver und negativer Ladungsträger sofort beendet sein. Wir gehen nicht fehl, wenn wir diesen Vorgang an die Elektroden selbst verlegen. In der eigentlichen Lichtbogensäule macht der Prozess hingegen viel langsamere Fortschritte. Man erkennt, dass der Vorgang dann Zeiten beansprucht, welche in die Grössenordnung der langsamen Eigenschwingungen des unterbrochenen Kreises fallen. Dies spiegelt sich deutlich in der in Fig. 12 gezeigten Abhängigkeit der Lichtbogenbrenndauer eines Oelschalters mit normalen offenen Kontakten bei veränderlicher Wiederkehrzeit. Erst bei erheblicher Vergrösserung von  $\tau$  geht die Lichtbogendauer energisch herunter. Das wäre sozusagen der natürliche Entionisierungsvorgang. Steuert man hingegen die Durchströmung des Lichtbogens mit dem Löschmedium, so ist eine viel kräftigere Entionisierung zu erwarten. Es muss sich schon für viel kleinere Werte von  $\tau$  ein erheblicher Rückgang der Lichtbogendauer zeigen. In der Tat zeigt Fig. 13, dass der Druckgasschalter schon bei ganz kurzen Wiederkehrzeiten entsprechend sehr kleinen Netzkapazitäten seine Licht-

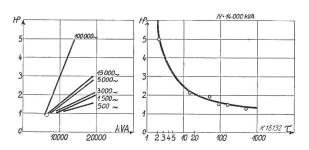
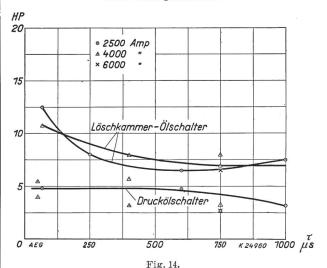




Fig. 13.
Einfluss der Netzkapazität auf die Lichtbogendauer beim Druckgasschalter.



Einfluss der Netzkapazität auf die Lichtbogendauer beim Löschkammer- und Druckölschalter.

bogendauer auf eine einzige Halbperiode beschränkt. Sie sehen in Fig. 14, dass, wie nicht anders zu erwarten, auch der Löschkammerölschalter und in noch ausgeprägterem Masse der Druckölschalter jenes Verhalten aufweisen, das der Druckgasschalter gewissermassen in Reinkultur

repräsentiert. Sie alle haben auch bei schnellem Wiederanstieg der Spannung, also auch bei geringer Netzkapazität, eine kurze Lichtbogendauer.

Die eben angestellten Betrachtungen konnten klarstellen, welche Bedeutung den Vorgängen unmittelbar nach dem Nulldurchgang des Stromes für den Unterbrechungsvorgang zukommt. Es liegt nahe, auch den Vorgängen vor Erreichung des Nullwertes eine gewisse Bedeutung beizulegen. Sie

sehen dies schon daraus, dass der Lichtbogen des Druckgasschalters nach der Aussage der Zeitlupenaufnahmen vor dem Nulldurchgang seine Form weitgehend verändert und insbesondere seinen Querschnitt nahezu vollständig einbüsst. Sicher wird also die Ionenbilanz schon in diesem Zeitpunkt gestört. Auf die verschiedenen Faktoren, die hier von Einfluss sind, wird Herr Mayr im nächsten Referat näher eingehen.

(Fortsetzung folgt.)

### Die Nutzbarmachung der Hinterrhein-Wasserkräfte.

Von A. Härry, Ingenieur, Zürich.

621.311.21(494)

Es wird ein Ueberblick über den projektierten Ausbau der Hinterrheinwasserkräfte gegeben. Als erster Ausbau dieser Wasserkräfte ist ein Kraftwerk Splügen-Andeer mit 330·10<sup>6</sup> kWh reiner Winterenergie vorgesehen. Als zweite Etappe würde ein Werk Andeer-Sils mit 235·10<sup>6</sup> kWh Winterund 210·10<sup>6</sup> kWh Sommerenergie, und im dritten Ausbau die Zuleitung des Averserrheins in den Stausee Splügen des ersten Werkes folgen, während weitere Ausbaumöglichkeiten einer späteren Zukunft vorbehalten bleiben. Die beiden Werke, inklusive Averserrhein, können 633·10<sup>6</sup> kWh Winterund 465·10<sup>6</sup> kWh Sommerenergie erzeugen; der vorgesehene Ausbau beträgt 340 000 kW. Die Kosten werden (Basis 1930) auf 226·10<sup>6</sup> Fr. veranschlagt.

L'auteur donne un aperçu de l'aménagement projeté des forces hydrauliques du Rhin postérieur. Comme première étape, il est prévu une centrale Splugen-Andeer, produisant 330·10<sup>6</sup> kWh uniquement en hiver. La seconde étape prévoit une centrale Andeer-Sils, disposant de 235·10<sup>6</sup> kWh en hiver et de 210·10<sup>6</sup> kWh en été. Pour la 3<sup>me</sup> étape, on dériverait le Rhin d'Avers dans le lac artificiel du Splugen, tandis que d'autres possibilités d'aménagement resteraient réservées à l'avenir. Les deux centrales, y-compris la dérivation du Rhin d'Avers sont susceptibles de produire ensemble 633·10<sup>6</sup> kWh en hiver et 465·10<sup>6</sup> kWh en été; la puissance installée totale prévue est de 340 000 kW. Pour les frais d'aménagement (base 1930) le devis prévoit une somme de fr. 226·10<sup>6</sup>.

Das Hinterrheingebiet, speziell der Teil oberhalb Thusis mit dem Averserrhein als wichtigstem Zufluss, hat längst die Aufmerksamkeit der wasserwirtschaftlichen Kreise auf sich gezogen. In den Jahren 1898 bis 1899 wurde durch die schweizerische Gesellschaft für elektrochemische Industrie in Bern die kurze Gefällstrecke des Hinterrheins von Rongellen bis zum Ausgang der Viamalaschlucht bei Thusis in einer Wasserkraftanlage ausgenützt. Bevor sich die Stadt Zürich definitiv für den Bau des Albulawerkes entschloss, wurden Studien über die Ausnützung der Wasserkräfte im Hinterrheingebiet durchgeführt, wobei man die Stufe Sufers-Andeer besonders in Erwägung zog. Die Studien wurden später von der Lonza A.-G., Nachfolgerin der oben genannten Gesellschaft, wieder aufgenommen und es wurde gleichzeitig mit den ersten Verleihungsverträgen in den Jahren 1917/18 die Abklärung der hydrologischen Verhältnisse durch die Errichtung von Limnigraphenstationen im Einzugsgebiet in die Wege geleitet.

Alle Studien und Beobachtungen ergaben, dass eine rationelle Ausnützung der Wasserkräfte des Hinterrheins nur in Verbindung mit grossen Akkumulieranlagen möglich sei. Zu diesem Resultat kamen auch die im Auftrage der Talsperrenkommission des schweizerischen Wasserwirtschaftsverbandes durch Ing. Froté in Zürich in den Jahren 1911 bis 1919 durchgeführten Erhebungen.

Mit dem Uebergang des Elektrizitätswerkes Thusis an die Rhätischen Werke für Elektrizität im Jahre 1920 wurde das Studienmaterial Eigentum dieser Gesellschaft, die sich unter der Leitung ihres

Direktors, G. Lorenz, Thusis, in Verbindung mit der A.-G. Motor-Columbus, Baden, mit Umsicht und Energie der Weiterverfolgung der Projekte annahm. Umfassende topographische und geologische Erhebungen und Kostenberechnungen führten dazu, die Erstellung einer sehr grossen Stauanlage ins Auge zu fassen, die im ersten Ausbauprogramm der Werke grosse Mengen reiner Winterenergie für den schweizerischen Energiemarkt zur Deckung des Wintermankos der Flusskraftwerke liefert und die bei Vollausbau immer noch einen beträchtlichen Ueberschuss an Winterenergie ergibt. Es folgten dann umfangreiche Untersuchungen über die Entschädigungs- und Umsiedelungsfragen durch die schweizerische Vereinigung für Innenkolonisation und industrielle Landwirtschaft. So wurden in zäher, aufopfernder Arbeit die Bausteine zu dem heute vorliegenden Projekt der Ausnützung der Wasserkräfte des Hinterrheins zusammengetragen. In einer Serie von Publikationen unter dem Titel «Beiträge zur Nutzbarmachung der Hinterrhein-Wasserkräfte» hat Direktor Lorenz den ganzen Fragenkomplex gedrängt und übersichtlich dargestellt. Die Publikation umfasst folgende Abschnitte:

I. Teil: Allgemeines,

II. Teil: Die wirtschaftliche Bedeutung,

III. Teil: Die Staubeckenanlagen,

IV. Teil: Wirtschaft und Siedelung im Rheinwald, ihre Schädigung durch die projektierten Stauseen und die Wiederherstellung durch Realersatz,

V. Teil: Das Projekt von 1930/31,