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Die Berechnung fester Warmespeicher?).
Von Dipl.-Ing. K. Griitter, Winterthur.

Der zeitliche Verlauf der Temperaturen inner-
halb eines plattenférmigen, homogenen Speichers
aus festem Material wird berechnet unter der An-
nahme, dass die an der Innenwand zugefiihrte
Widrmemenge und die Umgebungstemperatur
periodisch verdnderlich seien. Die Wdrmeabgabe
an der Oberfliche wird fiir verschiedene Strom-
bezugsdiagramme berechnet, ebenso die Tempe-
ratur der Innenwand. Schliesslich werden die
gefundenen Beziehungen beniitzt zur Entwurfs-
berechnung von plattenférmigen Wirmespeichern
aus homogenem festem Material.

Die Berechnung elektrisch beheizter

L’auteur calcule les valeurs que prend, en
fonction du temps, la température a lintérieur
d’une plaque homogéne susceptible d’accumuler
de la chalear, en supposant une variation pério-
dique de ['énergie calorifique transmise a la paroi
intérieure, et de la température extérieure. La
chaleur rayonnée par la surface extérieure et la
température de la paroi intérieare sont calculées
pour différents régimes dans ['énergie électrique
consommée. Enfin I'auteur applique les relations
déduites au calcul d’accumulateurs de chaleur
formés de plaques homogénes.

Speicherdfen soll Aufschluss geben iiber

die Warmeabgabe des Ofens in Funktion der Zeit, wenn die Stromzufuhr ebenfalls
in Funktion der Zeit gegeben ist und tiber die zu erwartenden Temperaturen an
der Oberflache, sowie an der Stelle, an welcher die Heizkorper liegen.

Die Berechnung der Temperaturverteilung und des Warmeflusses innerhalb fester
Korper stiitzt sich auf die von dem franzosischen Mathematiker Fourier stammenden
Untersuchungen und wurde in dieser Zeitschrift von Herrn ten Bosch und Herrn
Zangger?) behandelt. Diese Arbeiten untersuchten den Temperaturverlauf im Warme-
speicher, wenn er vom stationdren Zustand aus, in dem die Temperatur im ganzen
Speicher konstant ist, wahrend einer bestimmten Zeit geheizt wird und sich hierauf
abkiihlt. Dieser Vorgang entspricht dem erstmaligen Anheizen und der nachfolgenden
Abkiihlung.

Im praktischen Betrieb wird jedoch ein Ofen taglich geheizt, d. h. Anheizen und
Abkiihlen folgen sich periodisch. Dabei tritt der von ten Bosch und Zangger ange-

'h—f)'ﬁé_s -Manuskript ist am 4. Februar 1924 bei der Redaktion eingegangen.
2y Siehe Bulletin S.E.V. 1923, No. 4, Seite 193 und Seite 202.
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nommene Anfangszustand gleichméssiger Temperaturverteilung niemals ein. Die
vorliegende Untersuchung will daher die eingangs erwahnten Fragen beantworten
unter der Annahme, dass der zeitliche Warmeverlauf im Speicher ein periodischer
sei, d. h. dass sich die an der Innenwand zugefiilhrte Warmemenge und die Umge-
bungstemperatur des Speichers periodisch andern.

Berechnung der Temperaturverteilung.

Die von Fourier aufgestellte Differentialgleichung des Wirmeflusses in einem
festen Korper lasst sich auf Grund einer einfachen vektoranalytischen Ueberlegung
leicht ableiten. Der Warmefluss in einem beliebigen Punkt innerhalb eines festen
Korpers ist ein raumlicher Vektor [¢]®), der in die Richtung des Temperaturgefalles
an- dieser Stelle fallt und diesem proportional ist, wobei der Proportionalitatsfaktor
gleich der Wirmeleitfahigkeit 4 des Stoffes ist. Die als Funktion des Ortes gegeben
gedachte Temperatur ¢ stellt also das Potential dar, dessen Gradient, das Tempe-
raturgefille, mit der Warmeleitzahl 4 multipliziert den Warmeflussvektor [q] gibt,
in vektoranalytischer Schreibweise:

[q] = 4 grad /. (1)

Der Wiarmefluss erfahrt nun in jedem Punkt wihrend dem Zeitelement 4t eine
Aenderung, die gleich ist der Energieanderung pro Volumeneinheit des betreffenden
Raumpunktes. Diese Energiednderung ist die Verédnderung des Warmeinhaltes der
Volumeneinheit, somit proportional der Temperaturanderung multipliziert mit dem
spezifischen Gewicht ;> und der spezifischen Warme ¢ des Stoffes und ergibt sich
aus der skalar ausgefiihrten Differentiation des Vektors [g]; vektoranalytisch als
Divergenz bezeichnet und geschrieben:

otdivigl=cyad. 2)
A

Schreibt man zur Abkiirzung: =1, (3)
cy

so erhalt man durch Einsetzen von Gleichung (1) in Gleichung (3):

Y div grad 7.

Wird die doppelte Differentiation div grad in Raumkoordinaten x, y, z ausgefiihrt
(siehe z. B. ,Hiitte“, 23. Aufl.,, pag. 123), so lautet diese Gleichung:

c i 02 1) 029 829 .
o (ax‘z+a?‘+ ‘522) ' (4)

Das ist die allgemeine Differentialgleichung fiir den Warmefluss in einem festen,
homogenen Korper unter der Voraussetzung, dass das spez. Gewidht, die spez. Warme
und die Warmeleitzahl von der Temperatur unabhingig sind. Die Materialkonstanten
erscheinen hier zu einer einzigen Grosse a zusammengefasst, fiir die sich die Bezeich-
nung , Temperaturleitfahigkeit“ eingebiirgert hat. Wie Gleichung (3) zeigt, hat sie
die Dimension Lange? Zeit.

Elektrische Speicherdfen sind in der Regel aus Platten zusammengesetzt, d. h.
aus Korpern, die von parallelen Ebenen begrenzt sind. In solchen Platten verlauft,
wenigstens in gentigender Entfernung von den Réandern, die Warme senkrecht zu
den Begrenzungsebenen und die Flachen gleicher Temperatur sind parallele Ebenen.
Legt man die x-Axe senkrecht zu diesen Ebenen, so andert sich die Temperatur

3) Im folgenden sollen raumliche Vektoren durch eine [] Klammer bezeichnet werden.
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nur in der Richtung der x- Axe, wahrend die Derivierten der Temperatur nach y
und z Null sind. Gleichung (4) vereinfacht sich daher zu:

29 29 |
Bf = R (5)

In der Nahe der Rander weicht allerdings der Temperaturverlauf von dem hier
vorausgesetzten ab. Diese Partien bilden jedoch einen verhéltnisméssig geringen
Teil des Ofens. Wir beschranken daher unsere Untersuchung auf die eindimensionale
Form der Warmestromung, d. h. auf Losungen der Gleichung (5).

Diese Differentialgleichung ist linear und homogen. lhre allgemeine Losung
besteht aus einer Summe partikularer Losungen und zwar miissen deren soviele
gesucht werden, dass die vorgeschriebenen Randbedingungen erfiillt werden konnen.
Ein erstes partikulares Integral erhilt man, wenn man in Gleichung (5) beide Seiten
fiir sich Null setzt:

o 62 9
52 == ) und @x2=0,

deren Integration liefert:
=49 und % =C,x+C, ,

d. h. die Temperatur bleibt in jedem Punkt zeitlich konstant und andert sich ortlich
innerhalb der Platte linear. Diese Losung entspricht dem stationaren Zustand, der
sich einstellt, wenn eine konstante Warmemenge g, die Platte von der Dicke s durch-
fliesst. Dann nimmt die Aussenwand die konstante Temperatur J,:

O = T 0, _ (6)
oL
und die Innenwand die konstante Temperatur ¥ :

D = qu ( 1 -+ j) + s (7

a

an. Hierin bedeutet « die Warmeiibergangszahl der Aussenwand an die Luft und
ta die konstante Umgebungstemperatur.

Ueber diesen Zustand lagert sich die zeitlich veranderliche Temperaturverteilung,
die von den veranderlichen Anteilen der an der Innenwand zugefiihrten Warme-
menge ¢ und der Umgebungstemperatur v, herriihrt.

Da wir diese Anteile als periodisch veranderlich voraussetzen, konnen wir sie
als Fouriersche Reihen, d. h. als Summen von Sinusgliedern darstellen in der Form:

q=ZQnsin(2ﬂTnt+¢q")

(8)
/'911 = E @un Sin (2_‘71;—"1_1 + (Pﬂ un) ‘

7

Hierin bedeutet T die Dauer einer Periode, d. h. im allgemeinen 24 Std. n sind
ganze positive Zahlen. ¢, und ¢y sind Phasenverschiebungswinkel, iiber die noch
verfiigt werden kann.

Die Losung der Differentialgleichung (5) wird gliedweise den Randbedingungen
angepasst, d. h. fiir jedes Glied der Randbedingungen wird ein partikulares Integral
berechnet. Die Form der Losungen ist natiirlich fiir alle Glieder identisch. Wir haben
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deshalb allgemein die L&sung zu suchen, die an der Innenwand der Bedingung:

g = Qsin 2 :'rTn £ (9a)

und fiir die Umgebungstemperatur der Bedingung:

2ant
T

J, = 6, sin (9Db)

geniigt. Wir werden sehen, dass der Anfangspunkt f = 0 bei der Aﬁsrechnung fiir
jedes Glied besonders festgesetzt werden kann, so dass die Phasenverschiebungs-
winkel ¢ fiir die allgemeine Losung nicht in Betracht fallen.

Die allgemeine Losung muss sich sowohl innen (x = 0) wie aussen (x = s)
nach Grosse und Phase den Randbedingungen anpassen. Wir miissen deshalb iiber
vier Integrationskonstanten verfiigen koénnen, d. h. die allgemeine Losung muss sich
aus vier partikularen Integralen zusammensetzen.

Diese Bedingungen werden erfiillt durch die Gleichung?):
2nt

i = (Aes's sin%S + Bos® COS%S - Ce%ssin%S —— Der?s cos—gr S) sin
: . ] (10)
—!—(Be s S siniS — Aes S cos x—S — DeTSsinis +Ce s ° cos£8)cos Bt

s S S S T
wobei e die Basis der natiirlichen Logarithmen ist.

Durch Differentiation und Einsetzen in die vorgelegte Differentialgleichung (5)
findet man, dass diese erfiillt ist, wenn:

st]/anT : (11)

Zur Berechnung der Integrationskonstanten A, B, C, D ist zu beriicksichtigen, dass:

1. die der Innenwand (x = 0) zugefiihrte Warmemenge g dem dort herrschen-
den Temperaturgefalle proportional sein muss:

d
Jx

2wt ,

q = Qsin 7 =4

(12)

x=0

2. die durch die Aussenwand (x = s) tretende Warme proportional ist einer-
seits dem dort herrschenden Temperaturgefélle, andererseits der Temperaturdifferenz
zwischen Aussenwand und Umgebung:

99 | ! ’
_,1|,§£!X=S_(1(19X:S—l9u),
. 2wt A 09
woraus: = 0, sm—~T—:ll9—+—?W L (13)

‘Schreiben wir zur Abkiirzung % = h und:

) Eine Ableitung dieser Losung in etwas anderer Form findet man in dem Buche von Dr. Hein-
rich Grober: ,Die Grundgesetze der Warmeleitung und des Warmeiiberganges“, Seite 78 u. ff.
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Fa = e5 (sin S + 3871 (sin S + cos S)) = esslh- VS?—I— _(S+sh)2

sin (S —~+arctg S—Esh)
Fli= es(cos S+ Ts% (cos S — sin S)) = esslh]/s2 + (S +sh)?

cos (S -+ arctg ﬁsbhm)
Fc=eS (sin \) +§§h (cos § — sin S)) = — eSSIT]/S‘Z% (S - shj;

sin (S — arctg S—Ssh)
Fd = e"s(cos S - -—Sh-(cos S —+ sin S)) = - eSL]/SL{— (S — sh)?

s sh
S
cos (S — arctg S SF)

(14)

. o . E . )
und setzen ¢ und T aus Gleichung (10) in (12) und (13) ein, so erhalten wir:

—JSOA+B+C—DHmZE?+(—A+B—C—ka?£i}=Q$n%y~
s T T T
(AFa -+ BFb-+ CFe+ DFd)sin 27 +(~ AFb -+ BFa-+ CFd — DFe) cos 2
= 0, sin Zy;t .
.Diese Gleichungen sind nur dann fiir alle Werte von ¢ erfiillt, wenn:
__0s
A+B—+C—-D= 7S

AFa+ BFb+ CFc+ DFd= 6,
— AFb+BFa+ CFd—DFe=0.

Aus diesen vier Gleichungen kénnen die vier Integrationskonstanten berechnet werden,
am besten durch Auflésen der aus den Koeffizienten von A, B, C und D in Ver-
bindung mit den konstanten Gliedern gebildeten Determinanten. Wir erhalten damit
die Konstanten in der Form:

Az Bz Cz Dz
A=y B=7y N N
Fiir den gemeinsamen Nenner N erhalten wir:

N={S?2+(S+sh)? e?5+ (S2+ (S —sh)? e 25— 2(28%2— (sh)%) cos2 S 16)
—4Sshsin2S. (
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Zur Berechnung der Zahler werden die betreffenden Determinanten in je zwei Unter-
determinanten zerlegt, von denen die eine den Faktor (, die andere den Faktor o,
enthalt. Es ist also:

Az=A9+As; Bz=Bq+Bs; Cz=Cq+Cs ; | Dz = Dg—+ Dy

und die Auflosung der Determinanten unter Beriicksichtigung der Gleichungen (14)
ergibt:

Ag= Z%SS {—e~25(82+ (S—sh)?) +(2S2— 2Ssh —sh?)cos 2 S
-+ (2824 28 sh — (sh)?) sin 2 S}

Bg = {—e 25(82-+ (S —sh)?)+ (252 +2Ssh - sh?)cos2 S

228 — (252 — 2Ssh — (sh)?) sin 2 S)

Cq= %SS {— e25(S2+ (S+sh)?) -+ (2S2+ 2Ssh — sh?)cos2 S
— (2852 — 2Ssh — (sh)?)sin 2 S)

Dq = Os [e25 (S24 (S +sh)?) — (252 — 28 sh — sh?) cos 2 S
— (282+2Ssh — (sh)?) sin2 S} (17)

_ _ | s 2 2 oi ( S _)
Ag = —Clg——@ushle ]/S —+ (S + sh)? sin| S + arctg ST sh

. S
- g8 2 — sh)2 _ B
+-e VS + (S — sh)? sin (S arctg S_sh )}

By = Dy = O, sh {eSVS2+(S }—9h)2 cos(S—l—arctg S—ish)

—e‘S]/S —+ (S — sh)? cos( — arctg S_S h”

Man kann nun auch die Gleichung (10) in zwei Teile zerlegen:

9 =9, + 9,

wobei ¥, nur von der an der Innenwand zugefithrten Warmemenge und Jy nur
von der Umgebungstemperatur ¥, abhangig ist. Der Einfluss dieser beiden Grdssen auf
die Temperaturverteilung kann alsoc ganz unabhangig von einander untersucht
werden.

Es interessieren uns im weiteren nur noch die an der Aussenwand und an der
Innenwand auftretenden Temperaturen. Man findet sie, indem man in Gleichung (10)
x = s resp. x =0, sowie die Konstanten gemass Gleldlung (16) und (17) einsetzt
und erhalt nach emlgen Umformungen den von der Innenwandheizung abhangigen
Teil der Aussenwandtemperatur:

. 205 ¢ .(Znt_ § )
Vg = {e VSZ+(S+sh)2 sin| (S+arctgs+sh) ]

Q
qa jN
. (2t s J
— p—S 2 _ 2 — y
e ]/s ~+ (S — sh) Sm( T +(S arétg S__Sh))}

(18)
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den von der Umgebungstemperatur abhangigen Teil der Aussenwandtemperatur 9,,:

1919a=(.)—“1\]sh{]/3‘—’+(5+sh)2 [e'zs sin(zgt - arctg ﬁ)

~+sin (z—;fi — (ZS—Farctgﬁ))] - ]/524— (S — sh)? [sin( ZIT” (19)

) . [(2nt S |
28 —arctg_ 2> —28 E = et SN e B )
e gS—Sh)+e sm( T arcth_Sh)]J

den von der Innenwandheizung abhangigen Teil der Innenwandtemperatur 9, :

o= S [or5 (52 (539 = 025 (35 = sy sin (27— )

_2V4S4+(sh)*sin((23 arcthS?SSh ) (zm )

und endlich den von der Umgebungstemperatur abhangigen Teil der Innenwand-
temperatur ty,:

(20)

’ _&S{l,[ S/ 9 2 Qf 27772_ 787
B = N ]e ‘I S-+(S+sh)-sm< T (S+arctgs+sh))

_ _ . (2nt S |
=y S DA 9 p— S I —
e ]/S~+(S — sh)? sm( T —}—(S arctg S o ))I

Diese Ausdriicke haben wie die Randbedingung Gleichung (9) die allgemeine Form:

(21)

sie konnen also ahnlich wie Wedhselstromgrossen als zeitliche Vektoren?®) dargestellt
werden, von der absoluten Grosse © und einer Phasenverschiebung ¢ gegeniiber

dem Vektor g fiir 9,, und ¥, resp. gegeniiber dem Vektor 9, fir ¥y, und ;. Der
resultierende Vektor 9, resp. ¥ ist aus den Vektoren 9,, und ¥y, resp. 19q. und g,

geometrisch zusammenzusetzen. Die Vektoren der Randbedingungen g und ¥, kénnen
daher einen beliebigen Winkel miteinander einschliessen.

Temperatur und Wéarmeabgabe an der Aussenwand.

Fig. 1 zeigt das Vektordiagramm der Temperaturen an der Aussenwand fiir eine
Platte, deren Material und Abmessungen unten (1. Zahlenbeispiel) angegeben sind.
Der nur von der zugefithrten Warmemenge abhangige Vektor 9, setzt sich gemiss
Gleichung (18) aus zwei Vektoren V, und V. zusammen. Der Vektor V, hat die

absolute Grosse V, —igi 8 VS“'—+— (S -+ sh)? und lauft dem Vektor ¢ um den

Winkel ¢, nach. ¢, = S+ arctgﬁ- Der Vektor V. hat die absolute Grosse

5) Zeitliche Vektoren werden im folgenden im Gegensatz zu den auf Seite 494 eingeliihrten
raumlichen Vektoren mit einem horizontalen Strich — bezeichnet, z. B. .
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V. = Z.QS e*Sl/Sz—i— (S — sh)? und lauft dem Vektor ¢ um den Winkel

Pe=7T " (S - arctg T—E—) nach.

Gleichung (19) zeigt, dass der nur von der Umgebungstemperatur abhingige
Vektor Jg. sich aus vier Teilvektoren I, II, IIl, IV zusammensetzt®), deren absolute
Betrage sowie die Winkel, um die sie gegen
den Vektor &, verschoben sind, aus Glei-
chung (19) abgelesen werden konnen. Die

Vektoren ¥, und Jy. sind in Fig. 1 zum resul-
tierenden Vektor ¢, zusammengesetzt, der den

variablen Teil der Aussenwandtemperatur dar-
stellt. Die abgegebene Warmemenge

Ea =da (ﬁa - —511)
ist ebenfalls periodisch veranderlich und ge-
geben durch den Vektor —qai der dritten Seite

in dem von J, und Uy, gebildeten Dreieck.

Obschon Fig. 1 masstabiich fiir extreme
Verhiltnisse, namlich QO = 10 Watt/dm? und
6, =59 C gezeichnet ist, zeigt sich, dass der
Einfluss der Umgebungstemperatur auf die
Aussenwandtemperatur Kklein ist gegeniiber
demjenigen der Heizung. Die folgenden Un-
tersuchungen beschranken sich daher auf den
Fall 9, =0, d. h. konstante Umgebungstem-
peratur. Dann ist die an der Aussenwand
Fig. 1. abgegebene Warmemenge proportional der
Aussenwandtemperatur s

Der Vektor V, ist stets grosser als der Vektor V.. Er 1st daher der Haupt-

vektor und V. der Korrektionsvektor. Dieser kann bei grossem S vernachlassigt
werden und man erhalt dann die Aussenwandtemperatur angenahert:

20s . [(2mt S
v, = e { B e )
ZeSY ST+ (St sh)? Sm( r— (StarcE g gy)
Um den Einfluss der Materialkonstanten, der Wandstarke und der Periodendauer

auf Grosse und Phase der Aussenwandtemperatur zu untersuchen, dividieren wir
Ziahler und Nenner von Gleichung (18) durch S? und schreiben zur Abkiirzung:

sh _ T

S = a ?}/QTL’ :k, (22)
dann wird:
e = QA {eS]/l—i—(l—.Lk)ﬂ sin (ﬂ — (S—l—arctg ))
a N, T 1+ (23)
— g—S I/ _ 2nt _ 1 ); — _Q l
e 1+ (1 — k)2 sm( T —0—(8 arctgl—:?) = =D,

6) Da ¥4, und dyg. zufalligerweise fast genau in dieselbe Richtung fallen, tritt der Vektor ¥, in
Fig. 1 nicht deutlich hervor.
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worin :

N, = é\' — (1 (14R)2) 25+ (14 (1 — B)2) e—25 — 2 (2 — k) cos 2S — 4k sin 2.
(24)

G ~

- hat die Dimension einer Temperatur. 9, ist ein dimensionsloser Vektor, der
nur von den zwei Grossen k und S abhéngig ist.

Bei der Zusammensetzung der beiden Vektoren V; und V. zu ., ist das Vor-
zeichen von V. zu beriicksichtigen. Die Wurzel im zweiten Glied von Gleichung (23)

kann namlich positiv oder negativ sein, je nachdem k= 1. Beziiglich der um den
Winkel S dem Heizvektor ¢ vorlaufenden Axe liegt der Vektor V. im zweiten Qua-

dranten, wenn k<1, d. h.

positiv ist. Ist k=1, so ist = oo und

| 1
1 -k 1 —k
arctg li;k:_fzr , der Korrektionsvektor steht senkrecht auf der dem Heizvektor g

um den Winkel S vorlaufenden Axe. Wird schliesslich & > 1, d. h. —1%? negativ,

so liegt der Korrektionsvektor gegeniiber der um S gegen den Heizvektor g ge-
drehten Axe im ersten Quadranten. Die Richtigkeit dieser Ueberlegung ergibt sich,

wenn man V, in die Vektoren V. sin (—2 JLt'%-S) und V. cos (Zj;t —1—3) zerlegt.

T

Von den zwei Grossen, die in Gleichung (23) auftreten, ist # nur von den
Materialkonstanten und der Periodendauer abhangig. S ist der Wandstarke s pro-
portional. Fiir ein bestimmtes Material und
gegebene Periodendauer ist k& konstant und ©
Gleichung (23) ergibt ¥,,, in Abhangigkeit von  *° | T
der Wandstarke. ‘ ;

08
Fig. 2 zeigt den Vektor ¥, als Funktion ‘ "'ffo'% ‘f !
von S fiir verschiedene k als Parameter und %67 : 035 I 2t
zwar iiber der Abszissenaxe den absoluten D L]
Wert ©, unter der Abszissenaxe die Phasen- %%\ \ =T r—ﬁ
verschiebung ¢ gegeniiber dem Heizvektor g.  g2| \ - 1
©® nimmt mit steigendem S ab. Bei einer ' Y ‘
bestimmten Heizleistung ist daher die Diife- 0 v — e
renz zwischen hochster und tiefster Temperatur \ H 4]0 5175 & Zis w S
um so geringer, je dicker die Platte ist. Da § 0N\ Q) 1 |
ferner der Wurzel aus der Periodendauer T 80°\ \‘ } |
umgekehrt proportional ist, so wird © um so w ~ ” |
kleiner, je kiirzer die Periodendauer. Ist die 45 . OSNRSCKross_ |
periodisch veranderliche Heizleistung durch eine ‘ | T
Fouriersc{he Reihe gegeben, so wird das Ver- 40 i j T 1204
haltnis 0 fir die Glieder hoherer Ordnung 20 | | | N
| |
| |

stets kleiner, d. h. die Fouriersche Reihe, welche 545
die Aussenwandtemperatur darstellt, konver-
giert besser als diejenige der Heizleistung. Fig. 2.

Endlich wachst auch die Phasenverschiebung

zwischen Aussenwandtemperaturvektor und Heizvektor, d. h. mit zunehmendem S
verschiebt sich die Warmeabgabe gegeniiber der Stromzufuhr um so mehr, je
grosser S ist.
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Da S ausser von der Wandstarke auch von den Materialkonstanten abhangt
und die Wirkungsweise des Speichers im wesentlichen bestimmt, kann § als die
charakteristische Grosse der plattenformigen Warmespeicher angesprochen werden.
Auswahl des Materials und Konstruktion des Speichers miissen ein moglichst
grosses S anstreben.

Die Aussenwandtemperatur fiir eine gegebene Strombezugszeit.

Wird der Speicher taglich (7 = 24 Std.) wahrend 7, Stunden mit der konstanten
Leistung Q. Watt/dm? geheizt, so ist zur Berechnung der Aussenwandtemperatur
vorerst das Strombezugsdiagramm Fig. 3

q harmonisch zu analysieren, d. h. in Form
f einer Fourierschen Reihe darzustellen.
Dabei ergibt sich zunachst ein konstantes
Glied:
QA _ QS 7-S .
qk - T
5 T T - t Den Koeffizienten a, des nten Sinus-

gliedes erhalt man in bekannter Weise

i (siche z. B. ,Hiitte*, 23. Aufl., pag. 125):
T s
— 2( 0. gin 270t 4y 20 (o 27nt _ 9 2anT,
i, = Sstm T dt = T Ssm T dt+0—?n—(1—cos T )
0 0
und analog den Koeffizienten b, des nten Cosinusgliedes:
T T
_ 2 2xnt . 20 2mnt _ & 4, 2#nl
b= TSQSCOS T dt = T Scos T dt—}—O—nn sin T i
0 0

Sinus- und Cosinusglied kénnen zu einem resultierenden Sinusglied mit dem
Koeffizienten ¢, und der Phasenverschiebung ¢,. zusammengesetzt werden und es ist:

6= @ /(1 ocos2anliN: (o 2aaly 200 o wnTs
Tn T T Tn 1
sin 2 Bl
und: t = i N S 1. ]
' 8 e l—cospzx?Ti _t anle ° ro
T T
. 7 anT,
somit: Pgn = 2 T

Das Strombezugsdiagramm Fig. 3 fiir eine konstante Heizleistung O, wahrend
T, Stunden innerhalb der Periodendauer von T Stunden kann also analytisch dar-
gestellt werden durch die Fouriersche Reihe:

_ 0T, | 20, }NLsin—-n-];,TS Sin(annt 7T nnTs)_

q T T,

_+_
1 N

T 2 T (25)

Um nun den aus diesen Strombezugsbedingungen resultierenden zeitlichen Verlauf
der Oberflachentemperatur zu berechnen, bestimmt man zu jedem Glied der Glei-
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chung (25) den zugehdGrigen Vektor Jyar. Hierfiir benutzt man die Kurvenschar der
Fig. 2. Zunachst berechnet man k nach Gleichung (22) und S nach Gleichung (11).
Fiir das nte Glied ist dann:

_ k.

Vn
Nun kann man in Fig. 2 auf den zu den Abszissen S, gehdrenden Ordinaten den
absoluten Betrag ©, und die Phasenverschiebung ¢, auf den zu den Parametern k,
(eventuell interpoliert) gehdrenden Kurven abgreifen. Damit sind die Glieder der
Fourierschen Reihe, die den variablen Teil der Aussenwandtemperatur darstellt,
bestimmt. Die einzelnen Glieder sind jedoch noch auf den gleichen Anfangspunkt
zu beziehen. Zu diesem Zweck ist das Argument um den Phasenverschiebungs-

winkel ¢, des betrefienden Gliedes der Reihe fiir ¢ zu vermehren. Man erhalt
somit unter Beriicksichtigung von Gleichung (25):

By, = 20 5 L e 0 (_2;7,‘, e % _Brl )

k., und S, =SVn.

- ——- 0, sin (26)

ma ;=1 N T

Theoretisch sind zur Berechnung der Aussenwandtemperatur unendlich viele Glieder
notig. Da jedoch, wie erwihnt, die Konvergenz von Gleichung (26) besser ist als
von Gleichung (25), so geniigen bei den tiblichen Strombezugszeiten schon einige
wenige Glieder. In dem nachfolgenden Zahlenbeispiel mussten allerdings fiir ein-
stiindige Strombezugszeit (7. =1 Std.) 15 Glieder beriicksichtigt werden, um eine
geniigend genaue ¥,-Kurve zu erhalten.

Dem variablen Teil ¥, iiberlagert sich nun noch die konstante Mitteltempe-
ratur J.., die wir nach Gleichung (6) finden zu:

K ( s 75
ﬂam - 9111( + 7((]17 — l)nk + Qa T - (27)

1. Zahlenbeispiel. Zur Erlauterung dieser Untersuchung haben wir fiir die gleiche
Platte, deren Anheizvorgang Herr Zangger im eingangs erwahnten Aufsatz unter-
sucht hat, den periodischen Verlauf der Aussenwandtemperatur fiir verschiedene
Strombezugszeiten berechnet. Um die Leistung in Watt einfiihren zu kdnnen, sind
auch die Materialkonstanten so festgesetzt, dass die Warmemengen in Wattstunden
(Wh) erscheinen. Die Platte ist s = 1 dm dick und besteht aus Speckstein mit einem
spez. Gewicht y = 2,9 kg/dm?, einer spez. Warme ¢ = 0,29 Wh/kg °C und einer
Warmeleitfahigkeit 4 = 0,29 W/dm ° C. Damit ergibt sich eine Temperaturleitfahigkeit:

029 )

Der Warmeiibergangskoeffizient der Oberfliche betrigt « = 0,134 W/dm?? C, Die
Innenwand der Platte wird mit einer spezifischen Leistung Q. = 17,4 W/dm? geheizt.
Fiir eine Periodendauer von einem Tag, d. h. T =24 Std. ist:

/ T ' . o 24 _
S§=1 (7,54*57221* = 0,618 und k= 0,134 l/ 2,9 . 0’29 ; 0,29 = 0,75 .

Der in der angegebenen Weise mit diesen Zahlen berechnete Temperaturverlauf
ist in den Fig. 4--6 fiir verschiedene Strombezugszeiten aufgetragen. Diese Kurven
geben die Differenz zwischen Wand- und Umgebungstemperatur in ¢ C (Masstab
links) und gleichzeitig, da die Umgebungstemperatur als konstant vorausgesetzt ist,
die pro dm?® Oberflache abgegebene Wiarmemenge in W/dm*> (Masstab rechts).
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Fig. 4 gilt fiir 12stiindige Strombezugszeit 7, = 12 Std. pro Tag. Da hierfiir
das Strombezugsdiagramm aus zwei spiegelbildlich symmetrischen Halften besteht,
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Ordnung, d. h. auch diese Kurve besteht aus zwei spiegelbildlich symmeftrischen
Halften. Fig. 5 gibt den Temperaturverlauf fiir 8stiindige Strombezugszeit 7, = 8 Std.
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(ausgezogene Kurve) und Fig. 6 fiir 1stiindige Strombezugszeit 7, = 1 Std. Endlich
sind in Fig. 5 (strichpunktierte Kurve) die Kurven fiir 7, = 8 Std. und 75 = 1 Std.
zusammengelegt, jedoch so, dass der Beginn der beiden Strombezugszeiten 210 Win-
kelgrad = 14 Std. auseinanderliegt. Dieser Fall entspricht also dem praktisch wich-
tigen, dass der Strom fiir die Heizung wahrend 8 Nachtstunden, z. B. von 22 bis
6 Uhr und einer Mittagsstunde, z. B. von 12 bis 13 Uhr zur Verfiigung steht. Diese
Kurve zeigt, wie wertvoll gerade dieser Mittagsstrom fiir den Betrieb von Speicher-
Ofen ist, weil die von ihm erzeugte Warme die Heizung am Nachmittag sehr wesentlich
verbessert. Spezialtarife fiir Heizzwecke sollten, wenn immer moglich, den Bezug
von Mittagsstrom erlauben.

Endlich zeigen die berechneten Kurven deutlich, dass die Aussenwandtemperatur
und damit die Warmeabgabe noch eine Zeitlang zunimmt, wenn der Strom bereits
ausgeschaltet ist, eine Erscheinung, die bei jedem guten Speicherofen beobachtet
werden kann.

Die Innenwandtemperatur.

Der von der Heizleistung herriihrende variable Teil der Innenwandtemperatur
gemass Gleichung (20) kann durch einen Vektor J, dargestellt werden, der sich aus
zwei Vektoren zusammensetzt, von denen der eine U, dem Vektor der Heizleistung

der andere ¥y, um e nachlauft. Setzen wir den Vektor ¥,, mit dem

um
4

kil
4!
absoluten Wert @,

6, = e (S2 4+ (S+sh)?) — e 25(S2+ (S —sh)?)

und den Vektor J,, mit dem absoluten Wert O,:

s 2Ssh
v o 35
o=V 48—+ (sh)* sin\2S — arctg 2357 — (sh)?
graphisch durch das rechtwinklige Dreieck Fig. 7 oder analytisch zusammen, so
erhalten wir den Vektor J,; dessen absoluter Wert 6, betragt:
o= 925 yeorier
V2 iSN ¥ B

und dessen Phase gegeniiber dem Vektor g der Heizleistung
um den Winkel ¢; verschoben ist:

4

P = 4 —+ arctgt

2

0,

Setzt man S nach Gleichung (10) ein, so geht Gleichung (20)

iiber in:
T O, 2mt i 6
9. = o ~ifa &l f A —2 ). 28
. Q|/2ny/lc N(sm T (4—+—arctg @1)) (28)

Fiir grosse Werte von S kann sowohl ¢ *S wie O, gegeniiber ¢*S vernach-
lassigt werden und man erhalt angenahert:

9y~ O 27t _ i). (28a)

2miyec (sm T 4
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.
1

Der Wert N hat also den Charakter eines Korrektionsfaktors und der Winkel
B, ] . . . .
arctg 9. der sich mit zunehmendem S Null nahert, eines Korrektionswinkels der
1

Naherungsgleichung (28a).

Der Einfluss der Umgebungstemperatur auf die Innenwandtemperatur nach
Gleichung (21) ist so gering, dass er nicht weiter untersucht werden soll.

Der zeitliche Verlauf der Innenwandtemperatur fiir ein bestimmtes periodisches
Strombezugsdiagramm kann nun wieder ahnlich wie fiir die Aussenwandtemperatur
gefunden werden, indem man das Strombezugsdiagramm als Fouriersche Reihe
darstellt und zu jedem Glied mit Gleichung (28) Koeffizient und Phase des zuge-

horigen Gliedes der Innenwandtem-

° peratur bestimmt und schliesslich die
200 ——— S : Glieder zusammensetzt.
el 1 VYT T Zu dem variablen kommt noch
| ! ! s der konstante Teil der Innenwand-
60| w temperatur, fiir den wir mit Glei-
chung (7) erhalten:
140 A | — T S 1
LN ekl e
100 /J § 12X ‘ Fig. 8 zeigt den Verlauf der Innen-
/ | \\ 1 wandtemperatur in der in obigem
80 [ \ T Zahlenbeispiel beschriebenen Platte
el 2| | \ N fiir eine Strombezugszeit 7. = 12 Std.
N Wiirde die Platte dauernd mit
R I M N . \\ der Leistung Q. geheizt, so wiirde
sich an der Innenwand die Tempe-
20 T ] ratur nach langer Zeit der Endtem-
Ladung Enpetiog peratur ¥ néhern.
0 2 4 6 8 10 42 44 16 18 20 22 24 Sk o 1
Fig. 8. 0y = Qs(/.—%—;)- (30)

Ui ist in Fig. 8 ebenfalls eingetragen. Beim periodischen Betrieb erreicht die Hochst-
temperatur etwa 85 °, davon.

Entwurf von Wéarmespeichern.

Die bisherigen Berechnungen zeigen, wie man den zeitlichen Verlauf der
Wiarmeabgabe und der Innenwandtemperatur angeben kann, wenn die Abmessungen
der Speicherplatte gegeben sind. Soll jedoch ein Warmespeicher fiir bestimmte
Verhaltnisse entworfen werden, so ist durch Rechnung festzustellen, wie dick die
Platte gewahlt werden soll und wie stark sie pro Flacheneinheit geheizt werden darf.

Da die Fouriersche Reihe fiir die iiblichen Strombezugszeiten von 8 — 12 Stunden
pro Tag konvergent ist, und das Verhiltnis zwischen den Amplituden der Heiz-
leistung und der Aussenwandtemperatur fiir hohere Glieder stets kleiner wird,
iiberwiegt in der Fourierschen Reihe fiir die Aussenwandtemperatur die erste
Harmonische die iibrigen bedeutend. So betragt z. B. der Unterschied zwischen
hochster und tiefster Aussentemperatur fiir die im 1. Zahlenbeispiel berechnete
Platte bei 12-stiindiger Strombezugszeit nur 9 %, und bei 8-stiindiger Strombezugs-
zeit 19 % mehr als die doppelte Amplitude der ersten Harmonischen.

Es geniigt daher fiir den ersten Entwurf nur die erste Harmonische zu beriick-
sichtigen. Man kann mit den gefundenen Plattendimensionen eine genaue Berechnung
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des Temperaturverlaufes durchfithren, um dann auf Grund des Ergebnisses die
gefundenen Daten, soweit nétig, zu andern.

Als Voraussetzung der Berechnung wird festgesetzt, dass:

1. die hochste Aussenwandtemperatur ¥,... den durch hygienische Anforderungen
gegebenen Hochstwert von ca. 100—120° C nicht iiberschreite;

2. die Innenwandtemperatur ¢, selbst bei dauernder Belastung nicht héher
werde, als fiir die Haltbarkeit der Heizwiderstande zulassig ist.

Die zulassige Hochsttemperatur #,... hangt wesentlich vom Material und der
Konstruktion der Heizwiderstande ab, die hier nicht erdrtert werden sollen. Das
Generalsekretariat des S.E.V. hat hiefiir in dieser Zeitschrift (Bulletin 1918, Seite 125)
400—600° C angegeben.

Die hochste Aussenwandtemperatur ist die Summe aus der Mitteltemperatur
J,m» und der halben Differenz 4 ¢ aus der hochsten und tiefsten Temperatur. Nach
obigem darf die Amplitude der ersten Harmonischen betragen:

worin 7 =0,8—0,9 betragt, je nach der Strombezugszeit. Ist Ts<% so stellt

allerdings die Mitteltemperatur 9,,, wie die Fig. 5 und 6 zeigen, nicht das arith-
metische Mittel zwischen hdchster und tiefster Temperatur dar. Bei der Entwurfs-
berechnung, die nur die erste Harmonische beriicksichtigt, braucht jedoch hierauf
nicht Ridcksicht genommen zu werden.

Ist Q. die gesuchte Belastung pro Flacheneinheit fiir die gegebene Strombezugs-
zeit T, innerhalb der Periode T, so erhalt man mit den Gleichungen (26) und (27)
die hochste Aussenwandtemperatur ¥, p..:

A9
Suowe = Db = Bt 2 (4 0sin T, (31)

In dieser Gleichung ist @ eine durch die Gleichung (23) resp. die Kurvenschar Fig. 2
gegebene Funktion von kB und S. k ist eine durch die Konstanten des Materials
gemass Gleichung (22) gegebene Grosse. S ist ausserdem von der gesuchten
Plattenstarke abhéangig.

Die maximale Innenwandtemperatur 9., bei Dauerbelastung erhalt man, indem
man in Gleichung (30) s aus Gleichung (11) substituiert unter Beriicksichtigung von
Gleichung (22) ebenfalls als Funktion von & und S.

S 1 =0uk+—%i(ks+l)- (32)

V]

Aus den Gleichungen (31) und (32) kann man durch Division % eliminieren und
erhalt:

91 max ﬁuk + Q

T 19.élma.x - uk T
0= iT - [ﬁ.mﬂ g (kS 1) - ] (33)
2sin ——

Aus dieser Gleichung sind die unbekannten Grossen © und S mit Hilfe von Fig. 2
zu bestimmen. Die linke Seite wird als Funktion von § durch die zu dem bekannten &
gehorende Kurve ausgedriickt. Die rechte Seite dagegen® kann durch eine Gerade
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als Funktion von S dargestellt werden. Der Schnittpunkt dieser Geraden mit der
zu k gehorenden Kurve hat die Ordinate S aus der sich die Plattenstarke s:

s= S| EL (34)

T

und die Ordinate ©, aus der sich die Amplitude 9,, der ersten Harmonischen®be-
rechnen lassen.

20, 5. T,
s = ———Osin 7o (35)
Mit S erhalten wir ferner die Heizflichenbelastung Q, durch Gleichung (32):
_ a (ﬁimax - ﬁuk)
Q.= (kR S—+1) {56}

Auf der gleichen Ordinate unterhalb der Abszissenaxe finden wir in Fig. 2 auf der
zum Parameter B gehorenden ¢-Kurve den Winkel ¢, um den der Vektor der
Aussenwandtemperatur dem Heizvektor nacheilt. Die Funktion des festen Warme-
speichers besteht im Gegensatz zu andern Warmespeichersystemen (Dampf- oder
Fliissigkeitsspeicher) nicht darin, eine bestimmte Warmemenge aufzunehmen und
zu beliebiger Zeit wieder abzugeben. Vielmehr erfolgt die Warmeabgabe um eine
bestimmte, durch die Konstruktion des Speichers gegebene Zeit T, spiater als der
Strombezug. Die Verzogerungszeit 7, ist im Wesentlichen gegeben durch den
Winkel ¢ um den die erste Harmonische der Aussenwandtemperatur dem Heiz-
vektor nacheilt.

T.=Tss - (37)

Der Winkel ¢ ist daher diejenige Grosse, welche die Wirkungsweise des Speicher-
ofens im Wesentlichen charakterisiert. Er ist von der Belastung der Heizflache
unabhangig und durch die Wandstarke sowie die Materialkonstanten bestimmt und
betragt nach Gleichung (23) im Winkelmass angenahert:

_ S o
QD——ﬂ*36O +arctg

1
. (38)

2. Zahlenbeispiel. Zur Erlauterung soll fiir eine Strombezugszeit von 7, = 9 Std.
taglich ein Wirmespeicher berechnet werden, dessen Material (z. B. Basalt) folgende
Materialkonstanten habe:

spez. Gewicht y = 3 kg/dm®; Warmeleitfahigkeit 4 = 0,25 W/dm °C ;
spez. Warme ¢ = 0,23 Wh/kg ° C,

womit sich eine Temperaturleitfahigkeit a ergibt.

0,25

. 2/
a=3 0.23 0,362 dm?/h .

Die Warmeiibergangszahl der Oberilache a sei:
« = 0,134 W/dm2©° C.

24
= 0,134]/ 5053035 — %

Damit erhalten wir:
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Bei einer konstanten Raumtemperatur von 159 C soll die hoéchste Aussenwand-
temperatur 105° C nicht iiberschreiten. Fiir die Innenwandtemperatur werde bei
Dauerbelastung 4159 C zugelassen. Mit:

ae By a0 (EG N
sin — ——sm(24 = 67930 )—— 0,924
wird Gleichung (33):
7+0,9 90 9
Y =209m (400 0885 +1) 2—4)'

Die Gerade © = 0,306 S — 0,229 ist in Fig. 2 eingetragen. [hr Schnittpunkt mit
der ®-Kurve fiir # = 0,89, zwischen den Kurven fiir k= 0,75 und k= 1,0 inter-
poliert, hat die Abszisse S = 1,41 und die Ordinate @ = 0,20.

Damit erhialt man die Wandstiarke s:
s=1,41 VW = 2,34 dm

und die Heizflachenbelastung Q;:

0, — 0,134 400
*= 0,89 - 1,41 + 1

= 23,8 W/dm?.

Die Differenz zwischen hochster und tiefster Aussenwandtemperatur ergibt sich ange-
nahert zu:

4.238:0,924 0,2
A9 = 2 2 B i SR 0
V= 013409 40 G

wahrend die mittlere Temperaturdifferenz zwischen Aussenwand- und Raumtempe-
ratur v,, betrigt:

. 238 ¥ ey
0,134 0,134 =" L

Die Aussenwandtemperatur variiert also zwischen:
15467 i}zi: 1059 und 59° C.

Die Phasenverschiebung kann der Fig. 2 entnommen werden zu ¢ = 116°. Die
Warmeabgabe ist somit gegeniiber dem Strombezug um 7T, Std. verzdgert:
116

Ta = 24% — 7,7 Std

Mit Qs und s sind die Abmessungen des Ofens bestimmt. Soll er einen Raum heizen,
dessen Warmeverluste W (Watt) betragen, so ist die erforderliche Heizflache Hi:
WT

0.7 dm? ] (39)

Hf! S

und das Speichervolumen Vol:
WsT

oT (40)

Yol =8 H, =
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Ein Teil des Speichervolumens wird allerdings als ,,Plattenrand“ anzusprechen
sein, d. h. der Warmefluss wird daselbst nicht senkrecht zu der Oberflache verlaufen
und daher die gegebene Berechnung dafiir nur teilweise zutreffen. Es ist jedoch
Aufgabe des Konstrukteurs, tote Winkel nach Moglichkeit zu vermeiden. Zu diesem
Zwecke ist der Ofen so auszubilden, dass der Warmestrom fiberall moglichst
senkrecht zur Heizflache austritt; dann wird das nach Gleichung (40) berechnete
Speichervolumen geniigen.

Schliesslich soll noch einmal darauf hingewiesen werden, dass alle Berechnungen
auf der Annahme beruhen, die Materialkonstanten seien von der Temperatur
unabhangig. Das ftrifft jedoch nicht zu; namentlich die Leitfahigkeit ist fiir viele
Speichermaterialien von der Temperatur ziemlich stark abhangig. Man muss daher
mit Mittelwerten rechnen. Die Abhiangigkeit der Materialkonstanten von der
Temperatur in der Rechnung zu beriicksichtigen, wiirde wohl sehr weit fithren und
kaum befriedigend gelingen, weil nur einfache Ansatze in Betracht kommen koénnen,
die der Wirklichkeit doch nur teilweise entsprechen. Wenn das Bediirfnis nach
weiterer Erkenntnis besteht, so wird wohl nur der Laboratoriumsversuch geniigend
Aufschluss geben, wobei festzustellen ware, wie weit die tatsachlich erreichten
Temperaturen von den mit Mittelwerten fiir die Materialkonstanten berechneten
abweichen. Bei diesen Versuchen miissten die unserer Berechnung zugrunde liegende
Annahme periodischen Warmeflusses verwirklicht werden, d. h. der Ofen mehrere
Tage nacheinander geheizt und der Wiarmeabgabe iiberlassen werden, um jede
Unsicherheit iiber den Anfangszustand der Temperaturverteilung auszuschliessen.

Eigenschaften und Anwendung des Quarzilit-
Widerstandsmaterials.
Von der A.-G. Kummler & Matter, Aarau.

In diesem Aufsatz werden die physikalischen Dans cet article on indique les proprietes
Eigenschaften der aus Quarz und Kohle herge-  physiques des résistances en quartz-silit, fabri-
stellten Quarzilitwiderstdnde besprochen und quées au moyen de quartz ef de charbon, puis
daraus Schliisse auf die Anwendungsmdglickkeit — on en tire des conclusions relatives aux appli-
desselben gezogen. | cations possibles de ces résistances.

Im folgenden werden die physikalischen Eigenschaften desjenigen Quarzilit-
materials einer kurzen Betrachtung unterzogen, welches im Bulletin des S.E. V.,
Jahrgang 1922, Heft 7, als zur zweiten Gruppe gehdrend bezeichnet wurde, ndmlich
zur Gruppe der Widerstandsmaterialien aus Metalloiden, Metallkarbiden und Kohlen-
stoff fiir niedrige Temperaturen.

Der Apparatebau stellt das hauptsachlichste Anwendungsgebiet desselben dar.
Es hat sich namentlich dadurch Eingang in denselben verschafit, weil es einen Wider-
stand von fast beliebigem Ohmwert auf einen moglichst kleinen Raum zu konzen-
trieren vermag. Quarzilitwiderstande konnen bei denselben Abmessungen nur Bruch-
teile eines Ohm bis zu mehreren Millionen Ohm aufweisen. Der Widerstand ist
bei den gebrauchlichen Stromfrequenzen induktionslos. Diesen Umstanden ist es
zuzuschreiben, dass Quarzilit-Widerstande immer weitere Verbreitung finden, nament-
lich auf dem Gebiete des Ueberspannungsschutzes: als Dampfungswiderstande, als
Schutzwiderstande fiir Stromwandler und Relais gegen Sprungwellen mit steiler
Front, als Antennenwiderstinde bei Radioempfangsanlagen, in der (gewohnlichen)
Telegraphie usw.

Es erscheint uns deshalb angebracht, die wichtigsten Eigenschaften des Materials
kurz zu beschreiben. Es soll dies in folgender Reihenfolge geschehen:

1. das spezifische Gewicht des Materials;
2. die spezifische Wirme;
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