Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 14 (1923)

Heft: 10

Artikel: Der einphasige Spartransformator

Autor: Andronescu, P.

DOI: https://doi.org/10.5169/seals-1057601

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

In Norwegen wurden schon durch Gesetz vom 15. Mai 1896 die elektrischen Anlagen bestimmten Sicherheitsvorschriften unterstellt und für Anlagen mit höherer Spannung Genehmigungen vorgeschrieben. Die technische Ausgestaltung der Vorschriften ist einer Elektrizitätskommission aus drei Mitgliedern, die vom König ernannt wird, übertragen. Ein Enteignungsrecht wurde den elektrischen Anlagen in gewissem Umfang durch § 12 des Gesetzes vom 9. Juni 1913 verliehen. Einschneidender für die Elektrizitätswirtschaft als diese Bestimmungen ist das Wasserkraftgesetz vom 4. August 1911 geworden. Unter den Bedingungen für den Ausbau von Konzessionen ist besonders die Verpflichtung zu nennen, dass der Unternehmer an die interessierten Gemeinden bis zu einem gewissen Umfang Strom nach den Vorschriften der Regierung abgeben muss. Weiterhin kann sich der Staat einen Teil der Kraft reservieren. Für die Abgabe der Kraft werden Maximalpreise vorgesehen; nach einer bestimmten Reihe von Jahren ist Heimfall an den Staat möglich. Grössere Unternehmungen haben ihre Hauptlinien so zu bauen, dass andere Anlagen ihren Strom auf Verlangen des Staates durch dieselben Leitungen führen können. - Auch in Norwegen hat sich der Staat in umfangreicher Weise selbst auf dem Gebiet der Erbauung und des Betriebes von Wasserkraftanlagen und zugehöriger Fernleitungen betätigt. Im letzten Jahre ist ein Gesetzesentwurf seitens der Regierung ausgearbeitet worden, der die Energieverteilung der kommunalen Kraftwerke der Oberleitung des Staates unterstellen soll. Die Elektrizitätskommission hat hierfür einen Plan ausgearbeitet, demzufolge das Land in Kraftversorgungsbezirke geteilt werden soll. Wo grössere Anlagen erforderlich werden, soll der Staat den Bau der Kraftwerke und Hauptübertragungslinien übernehmen. Ferner soll auch bei der Verteilung seine Unterstützung in dringenden Fällen in Aussicht genommen werden.

In Dänemark bildet das Gesetz vom 19. April 1907 die Grundlage der Elektrizitätswirtschaft. Es enthält zwar in der Hauptsache Sicherheitsvorschriften, ist aber auch in anderer Hinsicht von besonderer Bedeutung, da in ihm die Haftung des Starkstromunternehmers eingehend geregelt, ferner ein Leitungs- und Enteignungsrecht vorgesehen ist. Die Ausübung der dazugehörigen Befugnisse ist einer Elektrizitätskommission übertragen, die dem Minister für öffentliche Arbeiten untersteht. Wie in den beiden anderen skandinavischen Staaten, beschäftigt sich auch in Dänemark der Staat in neuerer Zeit lebhaft mit der Ausgestaltung der Energiequellen. Er hat einen technischen Ausschuss eingesetzt, der die Nutzbarmachung der Kraftquellen des Landes studieren soll. Es handelt sich hierbei nicht nur um Wasserkräfte, sondern auch um Torf- und Braunkohlenfelder. (Fortsetzung folgt.)

Der einphasige Spartransformator.

Von Privatdozent Dr. ing. P. Andronescu, Zürich.

Der Autor entwickelt für den Spar- oder Auto-Transformator ein Kreisdiagramm, aus welchem das Verhalten desselben bei allen Belastungszuständen ersichtlich ist. L'auteur établit un diagramme polaire représentant le fonctionnement de l'auto-transformation à différentes charges.

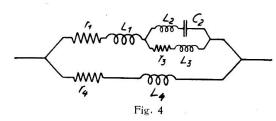
I. Schaltungsmöglichkeiten im Einphasen-Wechselstromkreis.

Der Spartransformator bildet einen Einphasen-Wechselstromkreis, welcher durch eine bestimmte Schaltung von ohmschen Widerständen, selbstseitigen und gegenseitigen Induktivitäten und Kapazitäten gekennzeichnet ist. Zur Untersuchung desselben, wird es vor allem zweckmässig sein, über die Schaltungsmöglichkeiten, die in einem Wechselstromkreis vorkommen können, einen kurzen Ueberblick zu geben.

Wir können einen Wechselstromkreis durch folgende vier Schaltungsmöglichkeiten von ohmschen Widerständen, Induktivitäten und Kapazitäten charakterisieren. 1. Fall. Es werden in Serieschaltung ohmsche Widerstände, Induktivitäten und Kapazitäten angeordnet, so dass in allen diesen Teilen derselbe Strom fliesst (Fig. 1).

2. Fall. Es werden zwei parallele Kreise gebildet, deren jeder aus einer reinen Serieschaltung der im 1. Fall genannten Widerstände besteht (Fig. 2).

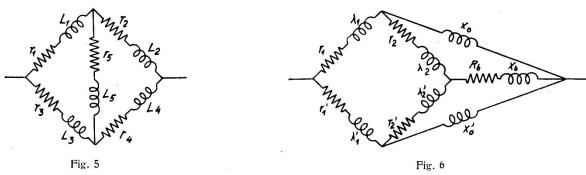
3. Fall. Serie-Parallelschaltung nach Fig. 3 oder Fig. 4. Die Bezeichnung "Serie-Parallel" bezieht sich dabei auf die einzelnen Gruppen, die aus einer reinen Serieschaltung, oder aus einer reinen Parallelschaltung gebildet sind, und das Wort



"reine" soll die Hintereinander- oder die Parallelschaltung der einzelnen Gruppen charakterisieren.

4. Fall. Die komplexe Serie-Parallelschaltung ist diejenige, die weder aus reiner Serienoch aus reiner Parallelschaltung gebildet ist. Die einzelnen Zweige bilden jedoch Serie-Parallelschaltungen. Als Beispiel sei die Brücken-

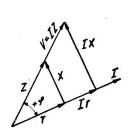
schaltung oder das Steinmetzsche Ersatzschema zweier parallel geschalteter Transformatoren angeführt (Fig. 5 und 6).



Aus Fig. 5 ersieht man z. B., dass die Zweige 1 und 3 mit dem Zweig 5 keine reine Parallelschaltung bilden, weil durch die Zweige 1 und 3 nicht derselbe Strom fliesst.

II. Beziehungen zwischen Spannungen und Strömen im Einphasen-Wechselstromkreis.

Es sei angenommen, dass die Spannungen und die Ströme in Funktion durch Sinuskurven darstellbar seien. Das ist möglich, wenn die Widerstände, Induktivitäten



und die Kapazitäten zeitlich konstante Grössen sind. In diesem Falle lässt sich die Beziehung zwischen Absolutwert einer effektiven Spannungsdifferenz V und Absolutwert des dazu gehörigen effektiven Stromes I durch die Impedanz z bezw. durch den

inversen Wert der Impedanz, die Admitanz $y = \frac{1}{z}$ ausdrücken.

$$V = I z$$
, $V y = I$.

Fig. 7

Die Impedanz z bezw. die Admitanz y werden als gerichtete Grössen betrachtet, weil sie in zwei zueinander senkrecht stehende Komponenten zerlegt werden können. Die absoluten

Werte der Komponenten von z sind: der ohmsche Widerstand r und die resultierende Reaktanz x. Dabei ist $x = x_s - x_c$, wobei x_s den induktiven, x_c kapazitiven Anteil

der Reaktanz bedeuten. Die absoluten Werte der Komponenten von y sind g und b, wobei g die Konduktanz und b die Susceptanz ist.

Aus den Fig. 7 und 8 ersieht man, in welcher Beziehung die Spannungsdifferenz V, der Strom I, die Impedanz z und die Admitanz y zueinander stehen.

Zwischen den absoluten Werten von z, y, r, x, g und b bestehen folgende

Beziehungen:

$$zy = 1 (1) \frac{x}{r} = \frac{b}{g} (2)$$

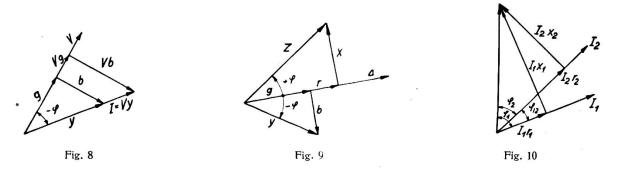
und daraus lassen sich ableiten:

$$zy = \sqrt{(r^2 + x^2)(g^2 + b^2)} = \sqrt{(rg + xb)^2} = rg + xb = 1$$

$$r = \frac{g}{y^2} \qquad x = \frac{b}{y^2} \qquad g = \frac{r}{z^2} \qquad b = \frac{x}{z^2}$$
(3)

Aus Fig. 9 ersieht man die Lage des Impedanzvektors z und des Admitanzvektors y gegenüber einer festgelegten Axe Δ .

In der Richtung der Axe 4 kann man entweder den Strom I oder die Spannungsdifferenz V annehmen. Aus der gleichen Figur geht auch hervor, dass die



Regeln der Addition und Subtraktion der Vektoren, auch auf Impedanz- und Admitanzvektoren anwendbar sind. Hingegen ist die Multiplikation weder skalar noch vektoriell auszuführen.

Aus der Gleichung (1) folgt, dass unter dem Produkt $z = \frac{1}{z}$ ein Vektor zu verstehen ist, dessen absolute Grösse gleich dem Produkt der absoluten Grössen der einzelnen Vektoren z und $\frac{1}{z}$ ist und dessen Richtung gegenüber der Axe Δ um $(+\varphi-\varphi)$ gedreht wird. Damit werden die Regeln der Multiplikation und Division für die Impedanz- und Admitanzvektoren eindeutig bestimmt. Die Division der Impedanz- und Admitanzvektoren ist mit der Festlegung der Multiplikation ebenfalls eindeutig bestimmt, denn $\frac{z_1}{z_2}$ bedeutet einen Vektor, dessen absoluter Wert gleich ist dem Quotient der absoluten Werte der beiden Vektoren $z_1 z_2$ und der gegenüber der Axe Δ um $\varphi_1 - \varphi_2$ gedreht wird.

Die Bestimmung der absoluten Grössen der Impedanz bezw. Admitanzvektoren, sowie deren Komponenten, kann auch durch Einführung der symbolischen Methode erfolgen. Man denke sich alle Vektoren senkrecht zur Δ -Axe mit j multipliziert, wobei $j^2 = -1$ ist. Dann nennt man die Δ -Axe die reelle, die dazu senkrechte Axe die imaginäre Axe.

Für den Impedanz- bezw. Admitanzvektor kann man somit schreiben: 3 = r + jx $\mathfrak{y} = g - jb$. Man operiert nun mit den imaginären Grössen genau so wie mit algebraischen Grössen. Die Beziehungen zwischen algebraischen Grössen, die durch die Gleichungen (1) und (2), sowie durch die Gleichungen (3) festgelegt waren, lassen sich nun in folgender Weise bestimmen:

$$3\mathfrak{y} = (r+jx)(g-jb) = 1 \qquad \text{somit:} \qquad rg+xb=1.$$

$$xg=rb.$$
anderseits
$$\mathfrak{y} = \frac{1}{3} = \frac{1}{r+jx} = \frac{r-jx}{r^2+x^2} = g-jb$$
so dass:
$$g = \frac{r}{r^2+x^2} \qquad b = \frac{x}{r^2+x^2} \text{ wird.}$$

Liegt irgend eine Schaltung vor, so wird meistens verlangt, diese Schaltung durch eine reine Serieschaltung zu ersetzen. Solange es sich um eine reine Serie-, reine Parallel- oder reine Serie-Parallelschaltung handelt, lässt sich der Ersatz dieser Schaltungen durch eine reine Serieschaltung auch ohne Anwendung der symbolischen Methode leicht durchführen.

Liegt hingegen eine komplexe Serie-Parallelschaltung vor, so erweist sich die Anwendung der symbolischen Methode als vorteilhafter.

Es ist zu beachten, dass in einem Wechselstromkreis, in welchem die ohmschen Widerstände und die Reaktanzen bekannt sind, zwei Fälle auftreten. Im ersten Fall ist das Verhältnis zweier Ströme I_1 und I_2 , sowie deren Phasenverschiebung φ_{12} eindeutig bestimmt. Mit zwei Strömen I_1 und I_2 kann man immer folgende graphische Addition vornehmen:

$$I_1 r_1 + I_1 x_1 = I_2 r_2 + I_2 x_2$$
. Siehe Fig. 10.

Daraus ergibt sich:

für das Stromverhältnis
$$\left(\frac{I_1}{I_2}\right)^2 = \frac{r_2^2 + x_2^2}{r_1^2 + x_1^2} = \left(\frac{z_2}{z_1}\right)^2$$
,

für die Phasenverschiebung φ_{12} der Ströme

$$I_1$$
, I_2 $tg \varphi_{12} = tg (\varphi_1 - \varphi_2) = \frac{tg \varphi_1 - tg \varphi_2}{1 + tg \varphi_1 tg \varphi_2} = \frac{x_1 r_2 - r_1 x_2}{x_1 x_2 + r_1 r_2}$,

wobei

$$tg \ \varphi_1 = \frac{x_1}{r_1} \qquad tg \ \varphi_2 = \frac{x_2}{r_2} \ \cdot$$

Im zweiten Fall will man z. B. die Spannungsgleichung:

 $V_k = I_1 x_1' + I_1 r_1' + I_2 x_2' + I_2 r_2'$ auf die Gleichung:

 $V_k = I_1 x + I_1 r$ reduzieren; man muss dann, gestützt auf die obigen Beziehungen zwischen I_1 und I_2 , den Ausdruck: $I_2 x_2' + I_2 r_2'$ in den Ausdruck $I_1 x_1'' + I_1 r_1''$ umwandeln, wobei x_1'' und r_1'' die Unbekannten darstellen. $\sin \varphi_{12}$ und $\cos \varphi_{12}$ lassen sich als Funktion von $r_1 r_2 x_1$ und x_2 sowie von $r_1'' r_2' x_1'' x_2'$ darstellen. Man erhält somit zwei Gleichungen mit zwei Unbekannten: x_1'' und r_1'' .

Aus dem ersten Fall (siehe Fig. 10) ergibt sich:

$$\cos^2 \varphi_{12} = \frac{1}{1 + tq^2 \varphi_{12}} = \frac{(x_1 x_2 + r_1 r_2)^2}{(r_1^2 + x_1^2) (r_2^2 + x_2^2)} = \frac{(x_1 x_2 + r_1 r_2)^2}{z_1^2 z_2^2}$$

$$\sin^2 \varphi_{12} = \cos^2 \varphi_{12} \, tg^2 \, \varphi_{12} = \frac{(x_1 \, r_2 - r_1 \, x_2)^2}{(r_1^2 + x_1^2) \, (r_2^2 + x_2^2)} = \frac{(x_1 \, r_2 - r_1 \, x_2)^2}{z_1^2 \, z_2^2} \, .$$

Der zweite Fall ergibt:

$$\cos^2 \varphi_{12} = \frac{(x_1'' x_2' + r_1'' r_2')^2}{z_1''^2 z_2'^2} \qquad \qquad \sin^2 \varphi_{12} = \frac{(x_1'' r_2' - r_1'' x_2')^2}{z_1''^2 z_2'^2}.$$

Nun lassen sich für x_1'' und r_1'' folgende Gleichungen anschreiben:

$$x_1'' x_2' + r_1'' r_2' = \frac{z_1'' z_2'}{z_1 z_2} (x_1 x_2 + r_1 r_2)$$

$$x_1'' r_2' - r_1'' x_2' = \frac{z_1'' z_2'}{z_1 z_2} (x_1 r_2 - r_1 x_2).$$

Anderseits hat man: $\frac{I_1}{I_2} = \frac{z_2}{z_1} = \frac{z_2'}{z_1''}$ so dass: $\frac{z_1'' z_2'}{z_1 z_2} = \left(\frac{z_2'}{z_2}\right)^2$.

folglich wird:

$$x_{1}'' = \frac{1}{z_{2}^{2}} [x_{1} (x_{2} x_{2}' + r_{2} r_{2}') + r_{1} (r_{2} x_{2}' - r_{2}' x_{2})]$$

$$r_{1}'' = \frac{1}{z_{2}^{2}} [x_{1} (r_{2}' x_{2} - r_{2} x_{2}') + r_{1} (x_{2} x_{2}' + r_{2} r_{2}')]$$

x und r sind nun bekannt.

$$x = x_1' + x_1''$$
 $r = r_1' + r_1''$.

Solange der Fall einer reinen Serie-Parallelschaltung vorliegt, lässt sich in der oben angegebenen Weise diese Schaltung zu einer reinen Serieschaltung reduzieren. Hat man es hingegen mit einer komplexen Serie-Parallelschaltung zu tun, so wird die Reduktion zu einer reinen Serieschaltung mittels Anwendung der symbolischen Methode einfacher.

Als Beispiel untersuchen wir das Verhältnis zweier Ströme einer Brückenschaltung: z.B. $\frac{I_1}{I_4}$ (siehe Fig. 5). Durch die Anwendung der beiden Kirchoffschen Regeln erhält man:

$$V_{k} = I_{4} (3_{3} + 3_{4}) + I_{5} 3_{3} \tag{4}$$

$$V_{k} = I_{1}(3_{1} + 3_{2}) + I_{5} 3_{2} \tag{5}$$

$$V_{k} = I_{1} (3_{1} + 3_{2}) + I_{5} 3_{2}$$

$$I_{4} 3_{4} = I_{1} 3_{2} + I_{5} (3_{2} + 3_{5})$$
(5)
(6)

Für $I_5=0$ bleiben nur zwei Unbekannte übrig, I_1 und I_4 . Zur Bestimmung derselben genügen die Gleichungen (4) und (5).

Wenn die Gleichung (6) auch für $I_5=0$ besteht, so ist die Beziehung I_4 $3_4=I_1$ 3_2 als eine spezielle Bedingung zu betrachten, und in diesem Falle ist $I_5=0$ auch wenn 3_5 nicht unendlich ist. Aus den Gleichungen (4) und (6) bezw. (5) und (6) wird $I_5=0$ auch versieht eich versieh I_5 eliminiert, und es ergibt sich:

$$I_4 (3_3 + 3_4) + (I_4 3_4 - I_1 3_2) \frac{3_3}{3_2 + 3_5} = V_k$$

$$I_1 (3_1 + 3_2) + (I_4 3_4 - I_1 3_2) \frac{3_2}{3_2 + 3_5} = V_k,$$

oder:

$$-I_{1}\frac{3_{2}3_{3}}{3_{2}+3_{5}}+I_{4}\left(3_{3}+3_{4}+\frac{3_{3}3_{4}}{3_{2}+3_{5}}\right)=V_{k}$$
 (7)

$$I_{\rm I}\left(3_{\rm I}+3_{\rm 2}-\frac{3_{\rm 2}^{2}}{3_{\rm 2}+3_{\rm 5}}\right)+I_{\rm 4}\frac{3_{\rm 2}\,3_{\rm 4}}{3_{\rm 2}+3_{\rm 5}}=V_{\rm k}\,.\tag{8}$$

Aus den Gleichungen (7) und (8) erhält man:

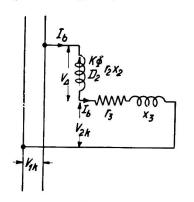
$$I_{1}\left(\underbrace{3_{1}+3_{2}+\frac{3_{2}(3_{3}-3_{2})}{3_{2}+3_{5}}}\right)=I_{4}\left(\underbrace{3_{3}+3_{4}+3_{4}\frac{3_{3}-3_{2}}{3_{2}+3_{5}}}\right),$$

Wie früher gezeigt wurde, lässt sich nun der ohmsche Widerstand und die Reaktanz von 3a bezw. 3b bestimmen, und daraus ersieht man, dass es immer möglich ist, das Verhältnis zweier Ströme und deren Phasenverschiebung eindeutig zu bestimmen.

Nachdem wir gezeigt haben, welches die Schaltungen sind, die in einem Wechselstromkreise vorkommen können und wie sich mittels Einführung der Impedanzen und Admitanzen solche Kreise behandeln lassen, wollen wir nun in gleicher Weise den Spartransformator behandeln.

III. Der Spartransformator.

Wir können die Aufgabe folgenderweise formulieren: Es soll in einem Belastungskreise ein Teil der Klemmenspannung V_{1k} abgedrosselt werden. Beim Wechselstrom geschieht die Abdrosselung am besten mit einer Drosselspule D_2 (siehe Fig. 11). Soll aber die gewünschte Spannung V2k am Belastungsort für alle



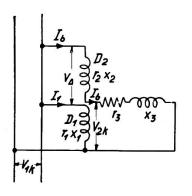


Fig. 11

Fig. 12

Belastungsströme I_b konstant bleiben, so ist die Induktivität der Drosselspule zu verändern. Diese Lösung ist jedoch nicht praktisch, denn im Leerlauf $(I_b = 0)$ wird $V_{2k} = V_{1k}$ und da in der Belastung V_{2k} konstant bleiben muss, wird die Regulierung kompliziert. Die Drosselspule muss die Bedingung erfüllen, dass die abgedrosselte Spannung V_A für konstante Klemmenspannung $V_{1\,\mathbf{k}}$

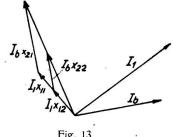
allen Belastungsströmen I_b

konstant bleibt. Es lässt sichdas leicht erreichen, wenn man den Fluss $(k \Phi)$ der Drosselspule konstant hält. Demzufolge schaltet man an die konstante Klemmenspannung V_{1k} eine andere Drosselspule D_1 die mit der Drosselspule D_2 eine gegenseitige Induktivität L_{12} besitzt (siehe Fig. 12). Damit ist die Lösung gefunden. Je nachdem die gegenseitige Induktivität L_{12} positiv oder negativ ist, wird die Spannung V_{1k} abgedrosselt oder erhöht.

Aus Fig. 12 ergibt sich:

$$V_{1k} = I_1 z_1 + I_b x_{21}$$
(9)

$$V_{1k} = I_b (z_2 + z_3) + I_1 x_{12} = V_A + I_b z_3 ,$$
(10)
wobei
$$z_1 = r_1 + (x_{11} + x_{s1}) x_1 = x_{11} + x_{s1}$$
$$z_2 = r_2 + (x_{22} + x_{s2}) x_2 = x_{22} + x_{s2}$$
$$z_3 = r_3 + x_3 .$$



 x_{s1} und x_{s2} sind die totalen Streureaktanzen.¹) $x_{s1} = x_{s11} + x_{s12}$ $x_{s2} = x_{s22} + x_{s21}$. Die Reaktanzen x_{s11} , x_{s22} entsprechen einer Streuung erster Ordnung, diejenigen x_{s12} , x_{s21} einer solchen zweiter Ordnung. x_{11} ist eine Reaktanz der ersten Spule, die dem mittleren Fluss der sekundären Spule entspricht. Dabei wird nur die erste Spule gespiesen. x22 ist eine Reaktanz der zweiten Spule, die dem mittleren Fluss der ersten Spule entspricht, und dabei wird die zweite Spule gespiesen.

Daraus folgt:
$$x_{11} = x_{12} \frac{W_1}{W_2}$$
 $x_{22} = x_{21} \frac{W_2}{W_1}$,

wobei W_1 und W_2 die Windungszahlen in der ersten bezw. zweiten Drosselspule bedeuten.

Weil x_{11} resp. x_{22} immer positive Grössen sind, werden von x_{12} und x_{21} in den obigen Ausdrücken nur die absoluten Werte berücksichtigt. Mit Rücksicht auf die Flussverteilung lässt sich für den Fall, in welchem beide Spulen vom Strom durchflossen sind, das Verhältnis der EMK, die dem gemeinsamen Fluss ($k\Phi$) entsprechen in folgender Weise schreiben:

$$\frac{I_1 x_{11} + I_b x_{21}}{I_b x_{22} + I_1 x_{12}} = \frac{I_1 x_{11}}{I_1 x_{12}} = \frac{I_b x_{21}}{I_b x_{22}} \quad \text{(Siehe Fig. 13)}$$

¹⁾ Andronescu, Archiv für Elektrotechnik, Heft 1, 1923.

Nun um zu sehen, inwieweit die Spannung V_{Δ} bei allen Belastungsströmen I_b konstant bleibt, bildet man den Ausdruck für V_{Δ}

$$V_{d} = (I_{1} x_{12} + I_{b} x_{22}) + I_{b} x_{s2} + I_{b} r_{2}.$$
 (12)

Anderseits hat man:

$$V_{1k} = (I_1 x_{11} + I_b x_{21}) + I_1 x_{s1} + I_1 r_1.$$
(13)

Aus den Beziehungen (11) und (13) lässt sich für $V_{\mathcal{A}}$ schreiben:

$$V_{\Delta} = (V_{k} - I_{1} x_{st} - I_{1} r_{1}) \left(\frac{x_{12}}{x_{11}}\right) + I_{b} x_{s2} + I_{b} r_{2}.$$
 (14)

Daraus ersieht man, dass: erstens $V_{2k} = V_{1k} - V_{\Delta}$ kleiner oder grösser als V_{1k} wird, je nachdem x_{12} positiv oder negativ ist, und zweitens: wenn $x_{s1} r_1$ resp. $x_{s2} r_2$ klein sind, man bei konstanter Kleinspannung V_{1k} , $V_{\Delta} \cong V_{1k} \frac{x_{12}}{x_{11}}$ angenähert als konstant betrachten kann.

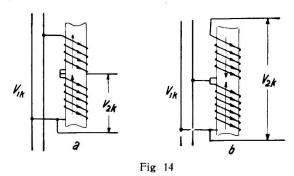
Nun entsteht die Frage:

Kann man V_{Δ} variabel machen, derart, dass bei einem festgelegten V_{Δ_1} seine Grösse bei verschiedenen Belastungen konstant bleibt?

Aus der Gleichung (14) ersieht man, dass in allen Fällen die Streureaktanzen und die ohmschen Widerstände x_{sl} x_{sz} r_{1} r_{2} klein sein müssen. Da der absolute Wert von $\frac{x_{12}}{x_{11}}$ gleich $\frac{W_{2}}{W_{1}}$ ist, kann man bei konstanter Streu-

reaktanz V_{Δ} variabel machen indem man x_{12} mittels Aenderung des Windungszahlverhältnisses varieren lässt. Will man jedoch die Windungszahl konstant halten, und x_{12} variieren, indem man den Flux in der Sekundärspule mittels Aenderung des magnetischen Widerstandes oder bei konstantem magnetischem Widerstande, durch die Lage der Sekundärspule variieren lässt, so muss man darauf achten, dass durch eine Verkleinerung des maximalen absoluten Wertes der gegenseitigen Induktivität x_{12} die doppelverkettete Streuung zunimmt, so dass stets eine Erhöhung der Streureaktanzen x_{s1} und x_{s2} entsteht, und somit V_{Δ} bei Aenderung des Belastungsstromes I_{b} ,

Wir behandeln nun den Fall wo die gegenseitige Induktivität beider Drosselspulen D_1 und D_2 maximal ist. Weil der Spannungsabfall infolge des Streufluxes und des ohmschen Widerstandes klein ist, kann man die Drosselspule D_1 auch in



nicht mehr konstant bleiben kann.

folgender Art eingeschaltet denken (siehe Fig. 14): Im Falle a ist $V_{2k} < V_{1k}$, im Falle b $V_{2k} > V_{1k}$. Die beiden Drosselspulen bilden in diesem Falle den sogenannten Spartransformator. Durch diese Anordnung wird eine Ersparnis an Kupfermaterial erreicht, weil die Windungszahl der Drosselspule D_1 kleiner geworden ist und gegenüber dem gewöhnlichen Transformator für dieselbe Spannungsübersetzung, ist die Ersparnis noch grösser, weil durch den Spartransformator nur ein Teil der Leistung hindurch

geht, nämlich nur $V_{\Delta}I_{b}$. Aus diesem Grunde wurde ihm auch der Name Spartransformator gegeben.

Ein Spartransformator mit variablem Windungszahlverhältnis kann somit als Induktionsregler verwendet werden. Zu dem Vorteil des Konstanthaltens der Streuungsverhältnisse, kommt der Nachteil, dass eine stetige Aenderung der Spannung V_{Δ} mit konstruktiven Nachteilen verbunden ist, was eine Verteuerung des Apparates

mit sich bringt. Aus diesem Grunde wird der Induktionsregler auf dem Prinzip der variablen gegenseitigen Induktivität x_{12} bei konstanter Windungszahl gebaut, indem man durch eine dritte Spule, die kurzgeschlossen ist, die Wirkung des Streufluxes $x_{\rm s2}$ möglichst heruntersetzt. Wir bleiben nun beim Spartransformator. Um einen genauen

Ueberblick über den Zusammenhang der Ströme bei verschiedenen Belastungen gewinnen zu können, wollen wir durch Anwendung der Beziehungen, die wir auf Seiten 485 u. 486 abgeleitet haben, den Spartransformator behandeln. Wir haben zwei Fälle zu unterscheiden. Im ersten Fall handelt es sich um die Heruntertransformierung, im zweiten Fall um die Herauftransformierung der Sekundärspannung V_{2k} .

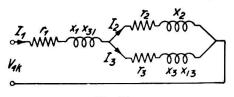


Fig. 15

Für die Heruntertransformierung der Spannung lässt sich schematisch der Spartransformator durch ein Schema nach Fig. 15 darstellen.

Es handelt sich dabei um eine reine Serie-Parallelschaltung, so dass man mit oder ohne Anwendung der symbolischen Methode gleich schnell zum Ziele kommt. Der Spartransformator wird aus r_1 x_1 x_3 r_3 x_3 x_{13} und der Belastungskreis aus r_2 und r_3 gebildet.

Durch die Anwendung des ersten und zweiten Kirchhoffschen Gesetzes lassen sich folgende Gleichungen aufstellen:

$$V_{1k} = I_1 r_1 + I_1 x_1 + I_3 x_{13} + I_3 r_3 + I_3 x_3 + I_1 x_{13}$$
(15)

$$V_{1k} = I_1 r_1 + I_1 x_1 + I_3 x_{13} + I_2 r_2 + I_2 x_2 \tag{16}$$

$$I_1 = I_2 + I_2. (17)$$

Aus den Gleichungen (15) und (17) erhält man:

$$V_{1k} = I_1(r_1 + r_3) + I_1(x_1 + 2x_{13} + x_3) - I_2(r_3 - I_2(x_3 + x_{13})).$$
 (18)

Aus den Gleichungen (16) und (17) erhält man:

$$V_{1k} = I_1 r_1 + I_1 (x_1 + x_{13}) + I_2 (x_2 - x_{13}) + I_2 r_2$$
 (19)

und aus den Gleichungen (18) und (19) ergibt sich:

$$I_1 r_3 + I_1 (x_3 + x_{13}) - I_2 (r_2 + r_3) - I_2 (x_2 + x_3) = 0.$$
 (20)

Aus dieser Gleichung (20) lässt sich gemäss früher erwähntem Fall, das Verhältnis $\left(\frac{I_2}{I_1}\right)$ sowie die Phasenverschiebung φ_{12} bestimmen (siehe Fig. 16).

Aus den rechtwinkligen Dreiecken OAC und OBC erfolgt:

$$\left(\frac{I_2}{I_1}\right)^2 = \frac{r_3^2 + (x_3 + x_{13})^2}{(r_2 + r_3)^2 + (x_2 + x_3)^2} \tag{21}$$

$$tg \varphi_{12} = tg (\varphi_1 - \varphi_2) = \frac{(x_3 + x_{13}) (r_2 + r_3) - r_3 (x_2 + x_3)}{(x_3 + x_{13}) (x_2 + x_3) + r_3 (r_2 + r_3)}.$$
 (22)

Das Verhältnis der Ströme I_1 und I_2 sowie die Phasenverschiebung φ_{12} sind somit bekannt.

Aus der Gleichung (18) lässt sich die Beziehung zwischen V_{1k} und I_1 festlegen, wenn man I_2 $r_3 + I_2$ $(x_3 + x_{13})$ eliminiert. Wir ersetzen I_2 $r_3 + I_2$ $(x_3 + x_{13})$ durch I_1 r_1 " + I_1 x_1 " und können somit schreiben:

$$x_1''(x_3 + x_{13}) + r_1''r_3 =$$

$$\sqrt{\frac{(r_1^{"2}+x_1^{"2})(r_3^2+(x_3+x_{13})^2)}{(r_3^2+(x_3+x_{13})^2)((r_2+r_2)^2+(x_2+x_3)^2)}}[(x_3+x_{13})(x_2+x_3)^2+(r_2+r_3)r_3].$$

Andererseits hat man:

$$\frac{r_1^{"2} + x_1^{"2}}{r_3^2 + (x_3 + x_{13})^2} = \frac{r_3^2 + (x_3 + x_{13})^2}{r_2 + r_3)^2 + (x_2 + x_3)^2},$$

somit:

$$x_1''(x_3+x_{13})+r_1''r_3=\frac{r_3^2+(x_3+x_{13})^2}{(r_2+r_3)^2+(x_2+x_3)^2}[(x_3+x_{13})(x_2+x_3)+(r_2+r_3)r_3]$$
(23)

Die zweite Beziehung zwischen x_1'' und r_1'' ist:

$$x_1'''r_3 - r_1''(x_3 + x_{13}) = \frac{r_3^2 + (x_3 + x_{13})^2}{(r_3 + r_3)^2 + x_2 + x_3)^2} [(x_3 + x_{13})(r_2 + r_3) - r_3(x_2 + x_3). (24)$$

Aus den Gleichungen (23) und (24) lassen sich x_i und r_i bestimmen: Man erhält:

$$x_{1}^{"} = \frac{1}{(r_{2} + r_{3})^{2} + (x_{2} + x_{3})^{2}} [((x_{3} + x_{13})^{2} - r_{3}^{2})(x_{2} + x_{3}) + 2 r_{3}(x_{3} + x_{13})(r_{2} + r_{3})]$$

$$r_{1}^{"} = \frac{1}{(r_{2} + r_{3})^{2} + (x_{2} + x_{3})^{2}} [2 r_{3}(x_{3} + x_{3})(x_{3} + x_{13}) - (r_{2} + r_{3})((x_{3} + x_{13})^{2} - r_{3}^{2})].$$

Zwischen V_{1k} und I_1 erhält man somit folgende Beziehungen:

$$V_{1k} = I_1(r_1 + r_3 - r_1^{"}) + I_1(x_1 + 2x_{13} + x_3 - x_1^{"}),$$

Es sei: $\varrho = r_1 + r_3 - r_1''$

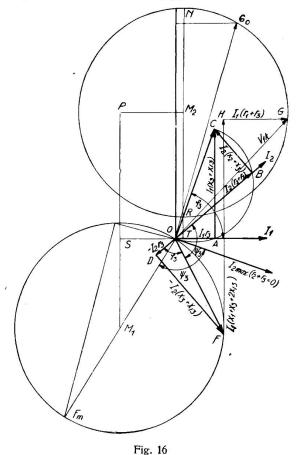
$$x = x_1 + 2x_{13} + x_3 - x_1''$$

und somit die Impedanz

$$z = \sqrt{\varrho^2 + x^2} \ x \, tg \, \varphi = \frac{x}{\varrho} \cdot$$

Die Beziehung zwischen V_{1k} und I_1 für r_2 und x_2 variabel ist nun eindeutig bestimmt. Aus der Fig. 16 ersieht man, dass bei konstantem Strom I_1 , I_1 $r_3 + I_1$ $(x_3 + x_{13})$ konstant bleibt, so dass, wenn x_2 und r_2 im Belastungskreis geändert werden, B sich auf einem Kreis mit \overline{OC} als Durchmesser bewegt.

Anderseits sieht man, dass die Strecke \overline{OF} dem Strome I_2 proportional ist. Der geometrische Ort von F ist allerdings nur dann ein Kreis, wenn x_2 oder r_2 konstant bleiben, denn nur in diesem Falle sind die Strecken BC oder OB dem Belastungsstrom I_2 proportional, und da B sich auf einem Kreis bewegt, ist der geometrische Ort von F ebenfalls ein Kreis. Betrachten wir den Fall x_2 = konstant r_2 variabel. Den geometrischen Ort der Impedanz z kann



man entweder rechnerisch durch Eliminierung von r_2 aus den Gleichungen für ϱ und x oder graphisch ermitteln. Da die graphische Methode übersichtlicher und einfacher ist, suchen wir auf diesem Wege den geometrischen Ort der Impedanz z. Für $(r_2 + r_3) = 0$ kommt der Punkt B nach O zu liegen, I_2 wird ein Maximum, und somit ist der Durchmesser $\overline{OF_m}$ des Kreises mit M_1 als Mittelpunkt bekannt.

Man hat für

$$(r_2 + r_3) = 0$$

$$I_{2\max}^2 = \frac{I_1^2 \left(r_3^2 + (x_3 + x_{13})^2\right)}{(x_2 + x_3)^2} = \frac{\overline{OF_m}^2}{r_3^2 + (x_3 + x_{13})^2}.$$

Daraus ergibt sich: $OF_m = \frac{I_1(r_3^2 + (x_3 + x_{13})^2)}{(x_2 + x_2)} = 2 \overline{OM_1}$.

Wir suchen nun die Lage des Mittelpunktes M_1 . Der Winkel $< COA = < DOF = \varphi_3$, ist konstant. Folglich ist der Winkel $< BOF = \psi_3 = \pi - \varphi_3$ ebenfalls konstant. $\psi_3 + \varphi_3 = \pi$. Weil φ_3 höchstens gleich $\frac{\pi}{2}$ sein kann, so ist $\psi_3 \ge \frac{\pi}{2}$. $tg \varphi_3 = \frac{x_3 + x_{13}}{r_3}$.

Folglich bildet \overline{OF}_m mit $I_{2 \max}$ den Winkel ψ_3 und \overline{OF}_m mit \overline{OC} den Winkel $\left(\psi_3 + \frac{\pi}{2}\right)$.

Dabei ist
$$tg\left(\psi_3 + \frac{\pi}{2}\right) = \frac{1}{tg \varphi_3} = \frac{r_3}{x_3 + x_{13}}$$

Die Lage des Kreises mit M_1 als Mittelpunkt ist somit bekannt. Um den geometrischen Ort der Klemmenspannung $V_{1k} = \overline{OG}$ bei konstantem Strom I_1 finden zu können, addiert man zu der Strecke \overline{OF} die konstanten Strecken $\overline{FH} + \overline{HG}$. wobei $\overline{FH} = I_1(x_1 + 2x_{13} + x_3)$ und $\overline{HG} = I_1(r_1 + r_3)$ ist. Der Punkt G bewegt sich ebenfalls auf einem Kreise mit einem Durchmesser gleich \overline{OF}_m . Die Lage des Mittelpunktes M_2 dieses Kreises lässt sich in folgender Weise bestimmen: Man addiert zu der Strecke \overline{OM}_1 die Strecken \overline{M}_1P und \overline{PM}_2 . Dabei sind $\overline{M}_1P = \overline{FH}$ und $\overline{PM}_2 = \overline{HG}$. Aus der Fig. 16 ersieht man, dass die Koordinaten des Mittelpunktes M_2 sind:

$$\overline{OT} = \overline{PM_2} - \overline{SO}$$
, $\overline{TM_2} = \overline{M_1P} - \overline{M_1S}$.

Wir müssen \overline{SO} und $\overline{M_1S}$ bestimmen:

Der Winkel

$$<\!\!< M_1 OS = 2 \varphi_3 - \frac{\pi}{2}$$
 ,

somit:

$$\overline{SO} = \overline{OM_1} \cos \left(2 \varphi_3 - \frac{\pi}{2} \right) = \overline{OM_1} \sin 2 \varphi_3$$

$$\overline{M_1S} = \overline{OM_1} \sin \left(2 \varphi_3 - \frac{\pi}{2} \right) = -\overline{OM_1} \cos 2 \varphi_3.$$

Für die Koordinaten des Kreismittelpunktes M2 lässt sich schreiben:

$$\overline{OT} = I_1 (r_1 + r_3) - \overline{OM_1} \sin 2 \varphi_3$$

$$\overline{TM_2} = I_1 (x_1 + 2 x_{13} + x_3) + \overline{OM_1} \cos 2 \varphi_3.$$

Dabei ist:

$$\cos 2 \varphi_3 = \frac{2}{1 + tq^2 \varphi_3} - 1$$
, $\sin 2 \varphi_3 = \frac{2 tg \varphi_3}{1 + tq^2 \varphi_3}$.

Durch Einsetzen der Werte für $\sin 2\varphi_3$, $\cos 2\varphi_3$ und $\overline{OM_1}$ in die obigen Gleichungen ergibt sich:

$$\overline{OT} = I_1 \left[(r_1 + r_3) - \frac{r_3 (x_3 + x_{13})}{(x_2 + x_3)} \right]$$

$$\overline{TM}_2 = I_1 \left[(x_1 + 2 x_{13} + x_3) + \frac{r_3^2 - (x_3 + x_{13})^2}{2 (x_2 + x_3)} \right].$$

Die Lage des Kreismittelpunktes M_2 ist damit bestimmt. Macht man $I_1=1^{\rm Ampere}$, dann stellt der Kreis mit M_2 als Mittelpunkt den Impedanzkreis dar.

Der inverse Kreis ist der Admitanzkreis oder Stromkreis bei konstanter Klemmenspannung. Der Admitanzkreis bezw. Impedanzkreis bei konstanter Spannung lässt sich experimentell nachweisen, da bei konstanter Klemmenspannung die Induktivitäten praktisch konstant bleiben.

Bei solchen Aufgaben kommt es vor, dass sich zur Lösung derselben, dieser oder jener Weg vorteilhafter zeigt. In unserem Falle haben wir auf Seite 589 die zwei Spannungsgleichungen aufgestellt, und ohne irgend eine Bemerkung, wurde zuerst die Beziehung zwischen I_1 und I_2 festgelegt, und dann in der Gleichung (18), die durch Eliminierung von I_3 aus der Gleichung (15) entstand, die Summe $I_2 r_3 + I_2 (x_3 + x_{13})$ eliminiert. Man hätte ebensogut eine Beziehung zwischen I_1 und I_3 finden und nachher in der Gleichung (15) die Summe $I_3 r_3 + I_3 (x_3 + x_{13})$ eliminieren können. Der bereits festgelegte Weg ist aber aus folgenden Gründen vorteilhafter. In dem gegebenen Wechselstromkreis sind nur x_2 und r_2 variable Grössen. Für $r_2 = \infty$ ($I_2 = 0$) hat man: $V_{1k} = I_1 (r_1 + r_3) + I_1 (x_1 + 2x_{13} + x_3)$. Wenn man nun eine Beziehung zwischen V_{1k} und I_1 finden will, auch für den Fall, wo $r_2 \neq \infty$ ist, dann wird es zweckmässig sein x_1 " und x_1 " derart zu bestimmen, dass für $x_2 = \infty$, x_1 " und x_1 " gleich Null wird. Das ist eben nur dann möglich, wenn man den bereits angenommenen Weg einschlägt.

Nachdem wir den Mittelpunkt M_2 des Impedanzkreises bestimmt haben, wollen wir nun eine Diskussion anschliessen über die verschiedenen Grössen, die sich anhand dieses Impedanzkreises festlegen lassen. Zuerst fällt uns das negative Vorzeichen in dem Ausdruck für \overline{OT} auf. Wenn man durch passende Werte von Widerständen und Reaktanzen \overline{OT} negativ bekommen könnte, so wäre es möglich, den Fall herzustellen, wo die Phasenverschiebung zwischen V_{1k} und I_1 gleich $\frac{\pi}{2}$ wird. Weil der Impedanzkreis bei Konstante x_2 abgeleitet wurde, so betrachten wir die Fälle

$$x_2 = 0 \\ x_2 > 0$$
 (25) $x_2 < 0$ (26)

Für den Fall $x_2 = 0$ wird \overline{OT} negativ, wenn

$$\frac{x_3+x_{13}}{x_3} > \frac{r_1+r_3}{r_3}$$
 ist;

dabei ist aber:

$$x_3$$
 + konst. W_3^2 r_1 = konst. W_1

 $x_{13} = \text{konst. } W_1 W_3 \qquad r_3 = \text{konst. } W_3$,

213 - Rollst. 11 113 13 - Rolls

so dass:
$$\frac{x_3 + x_{13}}{x_3} = \frac{W_3 + W_1}{W_3}; \quad \frac{r_1 + r_3}{r_3} = \frac{W_1 + W_3}{W_3}$$

Daraus ersieht man, dass für x_2 gleich oder grösser als Null es nicht möglich ist, \overline{OT} negativ zu erhalten. Befindet sich hingegen im Belastungskreis auch eine Kapazität C_2 , so ist $x_2 < 0$ und es kann:

$$\frac{x_3 + x_{13}}{x_2 + x_3} > \frac{x_3 + x_{13}}{x_3}$$

und somit \overline{OT} negativ werden. Durch passende Wahl von C_2 kann man somit den Fall erreichen, wo der Strom I_1 der Klemmenspannung V_{1k} um 90^0 nacheilt. Die Hauptpunkte im Impedanzkreis sind der Leerlaufs- und Kurzschlusspunkt.

Im Leerlauf
$$(r_2=\infty)$$
 ist: $x_1''=r_1''=0$, somit $arrho=r_1+r_3$ $x=x_1+2\,x_{13}+x_3$,

Der Punkt F kommt in O und die Leerlaufimpedanz ist OG_0 .

Im Kurzschluss
$$(r_2 = 0)$$

$$\begin{cases} \varrho_k = r_1 + r_3 - r_{1k}" \\ x_k = x_1 + 2x_{13} + x_3 - x_{1k}" \end{cases}$$

Dabei erhält man für r_{1k} " folgenden Ausdruck:

$$r_{1k}'' = \frac{1}{r_3^2 + x_3^2} \left[2 r_3 x_3 (x_3 + x_{13}) - r_3 (x_3 + x_{13})^2 + r_3^3 \right].$$

Man unterscheidet zwei Grenzfälle:

I. Fall
$$x_1 = 0$$
 $x_{13} = 0$
II. Fall $x_3 = 0$ $x_{13} = 0$

Im ersten Fall wird $r_{1k}'' = r_3$. Im zweiten Fall ist $r_{1k}'' = 0$. Der zweite Fall ist mit dem Leerlauf identisch, denn für $x_3 = 0$ wird V_{2k} ebenfalls Null, so dass $I_2 = 0$ ist. Daraus ersieht man, dass für $x_2 \ge 0$ ϱ_k positiv ist und der Kurzschluss Punkt G_k sich mehr und mehr dem Punkt R nähert, je kleiner r_1

und r_3 werden.

Wenn x_2 von Null verschieden ist und z. B. durch die kapazitive Wirkung negativ ausfällt, dann kann der Fall eintreten, dass für $r_2 = 0$ ϱ_{k} negativ wird.

Für den Fall der Herauftransformierung der Spannung hat man folgendes Schaltungs-schema (Fig. 17). In diesem Falle handelt es sich

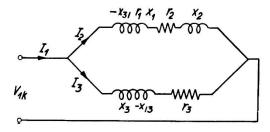


Fig. 17

um eine reine Parallelschaltung und folglich die Ersetzung dieser Schaltung durch eine reine Serieschaltung, die ebensogut mit oder ohne Anwendung der symbolischen Methode ausführbar ist.

Aus der Fig. 17 erhält man:

$$V_{1k} = I_3 r_3 + I_3 x_3 - I_2 x_{13} (27)$$

$$V_{1k} = I_2 (r_2 + r_1) + I_2 (x_2 + x_1) - I_3 x_{31}$$
 (28)

$$I_1 = I_2 + I_3 \,. \tag{29}$$

Ersetzen wir den Strom I_3 in Gleichung (27) und (28) durch $(I_1 - I_2)$, so erhält man:

$$I_1 r_3 + I_1 (x_3 + x_{31}) = I_2 (r_1 + r_2 + r_3) + I_2 (x_1 + x_2 + x_3 + 2x_{13}).$$
 (30)

Die Gleichung (27) in Abhängigkeit von I_1 und I_2 wird:

$$V_{1k} = I_1 r_3 + I_1 x_3 - I_2 r_3 - I_2 (x_3 + x_{13}).$$
(31)

Wir müssen nun in der Gleichung (31) $I_2 r_3 + I_2 (x_3 + x_{13})$ durch $I_1 r_1'' + I_1 x_1''$ ersetzen.

Wir wollen diesmal die Lösung mittels der symbolischen Methode r_1'' und x_1'' versuchen. Aus den Gleichungen (30) und (31) ergibt sich:

$$V_{1k} = I_1 \left[r_3 + j x_3 - \frac{r_3 + j (x_3 + x_{13})}{(r_1 + r_2 + r_3) + j (x_1 + x_2 + x_3 + 2 x_{13})} (r_3 + j (x_3 + x_{13})) \right]$$
(32)

Der Ausdruck:
$$a = \frac{r_3 + j(x_3 + x_{13})}{(r_1 + r_2 + r_3) + j(x_1 + x_2 + x_3 + 2x_{13})} (r_3 + j(x_3 + x_{13}))$$

lässt sich in folgender Art schreiben:

$$a = \frac{\left[r_3^2 - (x_3 + x_{13})^2 + j \, 2 \, r_3 (x_3 + x_{13})\right] \left[(r_1 + r_2 + r_3) - j (x_1 + x_2 + x_3 + 2 \, x_{13})\right]}{(r_1 + r_2 + r_3)^2 + (x_1 + x_2 + x_3 + 2 \, x_{13})^2}.$$

Daraus erhält man:

$$r_{1}^{"} = \frac{2 r_{3} (x_{1} + x_{2} + x_{3} + 2 x_{13}) (x_{3} + x_{13}) - (r_{1} + r_{2} + r_{3}) ((x_{3} + x_{13})^{2} - r_{3}^{2})}{(r_{1} + r_{2} + r_{3})^{2} + (x_{1} + x_{2} + x_{3} + 2 x_{13})^{2}}$$

$$x_{1}^{"} = \frac{((x_{3} + x_{13})^{2} - r_{3}^{2})(x_{1} + x_{2} + x_{3} + 2x_{13}) + 2r_{3}(x_{3} + x_{13})(r_{1} + r_{2} + r_{3})}{(r_{1} + r_{2} + r_{3})^{2} + (x_{1} + x_{2} + x_{3} + 2x_{13})^{2}},$$

somit:

$$\varrho = r_3 - r_1''
x = x_3 - x_1''$$

$$z = \sqrt{\varrho^2 + x^2} \quad \text{und} \quad tg \ \varphi = \frac{x}{\varrho}.$$

Genau so wie im vorigen Fall bewegt sich die Impedanz z auf einem Kreis, wenn x_2 oder r_2 konstant bleiben.

Wir betrachten den Fall $x_2 = \text{konstant}$.

In Fig. 16 hat man für \overline{OD} und \overline{DF} dieselben Werte wie vorher; hingegen werden $\overline{FH} = I_1 x_3$ und $\overline{HG} + I_1 r_3$.

$$tg \varphi_3$$
 hat sich nicht geändert:

$$tg \varphi_3 = \frac{x_3 + x_{13}}{r_3} \cdot$$

Der Strom $I_{2 \text{ max}}$ hat sich geändert und beträgt:

$$I_{2\,\text{max}}^2 = \frac{I_1^2 (r_3^2 + (x_3 + x_{13}^2))}{(x_1 + x_2 + x_3 + 2 x_{13})^2} = \frac{\overline{OF_m^2}}{r_3^2 + (x_3 + x_{13})^2}.$$

Daraus erhält man:

$$\overline{OF_{m}} = \frac{I_{1}(r_{3}^{2} + (x_{3} + x_{13})^{2})}{(x_{1} + x_{2} + x_{3} + 2x_{13})} = 2 \overline{OM_{1}}.$$

Die Lage des Kreises mit M_1 als Mittelpunkt ist somit festgelegt, weil der Radius OM_1 und der Winkel $\angle COF_m = \psi_3 + \frac{\pi}{2}$ bekannt sind. Anderseits kann man für die Koordinaten des Mittelpunktes M_2 schreiben:

$$\overline{OT} = I_1 \left(r_3 - \frac{r_3 (x_3 + x_{13})}{x_1 + x_2 + x_3 + 2 x_{13}} \right) \qquad \overline{TM}_2 = I_1 \left[x_3 + \frac{r_3^2 - (x_3 + x_{13})^2}{2 (x_1 + x_2 + x_3 + 2 x_{13})} \right]$$

Nicht weniger interessant ist bei Aenderung des Windungszahlverhältnisses die Variation der Phasenverschiebung des Stromes I_3 mit der Spannung V_{2k} zu verfolgen. Aus den drei Gleichungen auf Seite 589 kann man

Aus den drei Gleichungen auf Seite 589 kann man leicht die Beziehung zwischen I_3 und V_{2k} festlegen, und dann daraus bei Aenderung der gegenseitigen Induktivität x_{12} , den Verlauf der Phasenverschiebung zwischen dem Strome I_3 und der Spannung V_{2k} untersuchen.

Im folgenden soll jedoch in einfacher Weise gezeigt werden, wie diese Variation ermittelt werden kann. Unter der Annahme, dass der ohmsche und der induktive Streuungsabfall im Spartransformator klein sind, ergibt sich, dass V_{1k} und V_{2k} fast in Phase sind.

Anderseits kann man annäherungsweise die zugeführte Leistung gleich der abgegebenen setzen:

$$V_{\rm lk} I_1 \cos \varphi_1 \cong V_{\rm 2k} I_2 \cos \varphi_2$$
 (Siehe Fig. 18).

V₁k W₁ V₂ X₂ X₂ V₂h V₂h I₂ I₂

Fig. 18

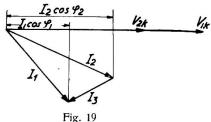
Nun setzt man voraus: der gemeinsame Fluss $(k \Phi)$ soll bei Variation des Windungszahlverhältnisses konstant bleiben. Es sei W_2 konstant und W_1 variabel. Aendert man den Belastungskreis nicht, so bleibt, da V_{2k} konstant ist, I_2 ebenfalls konstant. Die Klemmenspannung V_{1k} wird mit der Variation der Windungszahl W_1 derart

geändert, dass, $(k\Phi)$ konstant bleibt. Nun kann man leicht sehen, dass, wenn $V_{1\mathbf{k}}$ grösser als V_{2k} ist, $I_1 \cos \varphi_1 < I_2 \cos \varphi_2$ wird, so dass I_3 die Spannung V_{2k} dem Strom um mehr als 90° nacheilt.

Der Strom I_3 kann somit gegenüber der Spannung V_{2k} , je nachdem V_{1k} grösser oder kleiner als V_{2k} ist um mehr oder weniger als 90° nacheilen (siehe Fig. 19). Zum Schluss wollen wir noch die Frage stellen, ob der Streuungskoeffizient σ ,

gegeben durch den Ausdruck:

 $\sigma = 1 - \frac{x_{13}^2}{x_1 x_3}$ beim Spartransformator eine Bedeutung hat. Beim gewöhnlichen Transformator gibt uns σ an, wieviel Spannung von der vom Primärstrom im Primärkreis induzierten EMK für den sekundären Kreis unwirksam bleibt, wenn die vom Primärstrom im Primärkreis induzierte EMK gleich



In dem Impedanzkreis des gewöhnlichen Transformators lässt sich σ durch das Verhältnis $\frac{TR}{TN}$ ausdrücken.²)

Beim Spartransformator für Heruntertransformierung lassen sich leicht aus Fig. 16 die Strecken TR und TN in folgender Weise ausdrücken:

$$\overline{TR} = \overline{TM_2} - \overline{RM_2} = I_1(x_1 + 2x_{13} + x_3) \left[1 - \frac{(x_3 + x_{13})^2}{(x_1 + 2x_{13} + x_3)(x_2 + x_3)} \right]$$

$$\overline{TN} = \overline{TR} + \overline{RN} = I_1(x_1 + 2x_{13} + x_3) \left[1 + \frac{r_3^2}{(x_1 + x_3 + 2x_{13})(x_2 + x_3)} \right],$$
so dass:
$$\frac{\overline{TR}}{\overline{TN}} = \frac{1 - \frac{(x_3 + x_{13})^2}{(x_1 + 2x_{13} + x_3)(x_2 + x_3)}}{1 + \frac{r_3^2}{(x_1 + 2x_{13} + x_3)(x_2 + x_3)}}.$$
Wir können
$$1 - \frac{(x_3 + x_{13})^2}{(x_1 + 2x_{13} + x_2)(x_2 + x_2)} = \sigma_1 \text{ setzen.}$$

In diesem Falle hat dieses σ_1 keine physikalische Bedeutung mehr, es ist bloss als eine Verhältniszahl zu betrachten, die über das Verhältnis $\frac{TR}{TN}$ Aufschluss geben kann.

Wir haben
$$\frac{\overline{TR}}{\overline{TN}} = \frac{\sigma_1}{1 + \frac{r_3^2}{x_T(x_2 + x_3)}},$$

wobei $x_T = (x_1 + 2x_{13} + x_3)$ die induktive Reaktanz der reinen Serieschaltung der Spulen $(W_1$ und $W_3)$ angibt.

Analog erhält man für den Spartransformator bei Heruntertransformierung:

$$\overline{TR} = \overline{TM_2} - \overline{RM_2} = I_1 x_3 \left[1 - \frac{(x_3 + x_{13})^2}{x_3 (x_1 + x_2 + 2 x_{13} + x_3)} \right]$$

$$\overline{TN} = \overline{TR} + \overline{RN} = I_1 x_3 \left[1 + \frac{r_3^2}{x_3 (x_1 + x_2 + 2 x_{13} + x_3)} \right],$$

²⁾ Andronescu, Archiv für Elektrotechnik, Heft 1, 1923.

$$\frac{\overline{TR}}{\overline{TN}} = \frac{1 - \frac{(x_3 + x_{13})^2}{x_3 (x_1 + x_2 + 2 x_{13} + x_3)}}{1 + \frac{r_3^2}{x_3 (x_1 + x_2 + 2 x_{13} + x_3)}},$$

wobei angenommen sei:

$$1 - \frac{(x_3 + x_{13})^2}{x_3(x_1 + x_2 + 2x_{13} + x_3)} = \sigma_2,$$

somit:

$$\frac{\overline{TR}}{\overline{TN}} = \frac{\sigma_2}{1 + \frac{r_3^2}{x_3(x_1 + x_2 + x_3 + 2x_{13})}}.$$

Wollen wir noch sehen, wie sich die Spannung V_{2k} infolge der Spannungsabfälle, erzeugt durch die ohmschen Widerstände und Streuungsreaktanzen ändert, so bilden wir z.B. für den Fall der Heruntertransformierung, genau wie früher auf Seite 588 folgende Beziehungen:

$$V_{1k} - V_{2k} = V_{A} = (I_{1} x_{11} + I_{3} x_{31}) + I_{1} r_{1} + I_{1} x_{s1}.$$
(33)

Dabei hat man:

$$\frac{I_{1} x_{13} + I_{3} x_{33}}{I_{1} x_{11} + I_{3} x_{31}} = \frac{I_{1} x_{13}}{I_{1} x_{11}} = \frac{I_{3} x_{33}}{I_{3} x_{31}},$$
(34)

somit:

$$V_{\Delta} = (I_1 x_{13} + I_3 x_{33}) \frac{x_{31}}{x_{33}} + I_1 r_1 + I_1 x_{s1}.$$

Anderseits kann man noch schreiben (siehe Fig. 15):

$$V_{2k} = I_1 x_{13} + I_3 x_{33} + I_3 x_{s3} + I_3 r_3$$
 (35)

$$V_{1k} = V_4 + I_1 x_{13} + I_3 x_{33} + I_3 x_{s3} + I_3 r_3$$
 (36)

$$I_1 x_{13} + I_3 x_{33} = V_{1k} - V_{1} - I_3 x_{33} - I_3 r_3$$
 (37)

somit

$$V_{\Delta}\left(1+\frac{X_{31}}{X_{33}}\right) = (V_{1k}-I_3 X_{s3}-I_3 r_3)\frac{X_{31}}{X_{33}}+I_1 r_1+I_1 X_{s1}$$
 (38)

und im Falle der Herauftransformierung (siehe Fig. 17) erhält man:

$$V_{1k} = I_2 x_{11} - I_3 x_{31} + I_2 r_1 + I_2 x_{s1} + V_{2k}$$
(39)

$$V_{1k} - V_{2k} = V_{\Delta} = I_2 x_{11} - I_3 x_{31} + I_2 r_1 + I_2 x_{s1}.$$
 (40)

Anderseits:
$$\frac{I_2 x_{11} - I_3 x_{31}}{I_3 x_{33} - I_2 x_{13}} = -\frac{I_2 x_{11}}{I_2 x_{13}} = -\frac{I_3 x_{31}}{I_3 x_{33}}, \tag{41}$$

somit:
$$V_{\Delta} = (I_3 x_{33} - I_2 x_{13}) \left(-\frac{x_{31}}{x_{33}} \right) + I_2 r_1 + I_2 x_{s1}. \tag{42}$$

Dabei ist aber:
$$V_{1k} = I_3 x_{33} - I_2 x_{13} + I_3 r_3 + I_3 x_{s3}$$
, (43)

so dass:
$$V_{\mathcal{A}} = (V_{1k} - I_3 r_3 - I_3 x_{s3}) \left(-\frac{X_{31}}{X_{33}} \right) + I_2 r_1 + I_2 x_{s1} . \tag{44}$$

Aus den Gleichungen (38) und (44) kann man die Wirkung der ohmschen Widerstände r_1 , r_3 , sowie der Streuungsreaktanzen $x_{\rm s1}$, $x_{\rm s3}$ ersehen. Für konstante Klemmenspannung $V_{\rm 1k}$ wird $V_{\it d}$ um so weniger variieren, je kleiner die Widerstände und Streuungsinduktivitäten sind. Somit bleibt auch $V_{\rm 2k}$ angenähert konstant.