Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 14 (1923)

Heft: 8

Artikel: Festigkeitsversuche an Holzgestängen [Fortsetzung und Schluss]

Autor: Häusler, W.

DOI: https://doi.org/10.5169/seals-1057591

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Uebersicht über die zu verwendenden Schutzmittel für Gleichstromanlagen.

Art der Ueberspannung	Allgemeine Netze unter 1000 Volt	Bahnanlagen von ca. 500 ÷ 5000 Volt	Serieübertragungen von ca. 5 000 ÷ 20 000 Volt
Langsame atmo- sphärische Aufla- dung von Freilei- tungen.	Hochohmige Widerstandsableiter von ca. 500 Volt an.	Ableiter meist unnötig.	Hochohmige Widerstandsableiter.
Indirekte Blitzschläge an Freileitungen.	An jeder Hauptleitung beidseitig je einen Fun- kenableiter mit sicherer Löschung, oder dann Vorschaltwiderstände in der Erdleitung, wie bei Wechselstromanlagen.	An jedem Fahrdraht etwa alle 20 km, an jedem Feeder je beim Werkaustritt je einen Funkenableiter. Im übrigen einheitliche Isolation, bei Eisenmasten der Feeder: Erdseile, Schutzringe bezw. Bügel neben besonders exponierten Isolatoren.	Wie für die Feeder der Bahnanlagen, ausserdem Schutzinduktivitäten oder Schutzkabel vor und hinter der seriegeschal- teten Maschinengruppe jedes Werkes.
Schaltüberspan- nungen.	Für Spannungen von 40 Lichtbogenschalter, event. Vermeidung der Schmelzsi für Leistungen ül	Bei betriebsmässigem Kurzschliessen der Ma- schinen und sonst strom- loser Unterbrechung überspannungsfrei.	
Direkter Span- nungsübertritt.	Rundfeuersichere Konstrund Motoren, sorgfältige leitungskreuzungen. Nullp schlagssicherungen in Dre	Rundfeuersichere, gut von Erde isolierte Ma- schinen, sorgfältige Aus- führung v. Freileitungs- kreuzungen.	

ohne weiteres auch völlig unverändert für Gleichstromanlagen brauchbar, wobei natürlich für die "Nutzanwendungen" eine besondere Uebersicht über die zu verwendenden Schutzmittel für Gleichstromanlagen erforderlich wird. In der obstehenden Tabelle lassen wir einen bezüglichen Entwurf folgen, dem wir nichts weiteres beizufügen haben.

Festigkeitsversuche an Holzgestängen.

Bericht an die Obertelegraphendirektion, Bern erstattet von W. Häusler, Bern.

(Fortsetzung und Schluss.)

Der Autor gibt in Fortsetzung des in den Bulletinausgaben No. 6 und 7 erschienenen Teils der Arbeit die Resultate einer weitern Reihe von Versuchen an Kuppelstangen und Doppelstangen an, welche zeigen, dass Kuppelstangen im Vergleich zu dickern einfachen Stangen wirtschaftlich unterlegen sind und dass bei Doppelstangen die Kreuzverstrebung in ca. $^{2}/_{3}$ Stangenhöhe vorzusehen ist, wobei die horizontalen Verbindungsstreben des Kreuzes weggelassen werden können.

Comme suite à l'article paru dans les bulletins nos, 6 et 7 l'auteur donne les résultats d'essai entrepris sur des poteaux doubles.

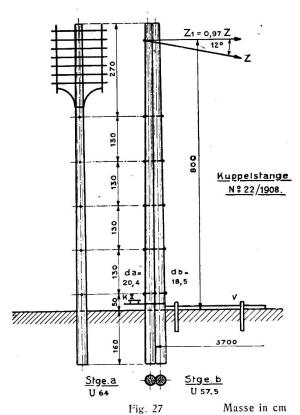
Il conclue qu'il est préférable d'employer des poteaux simples plus fort plutôt que des poteaux doubles et que les entretoises de ces derniers devront en tous les cas être disposées à deux tiers de la hauteur et seulement en diagonale.

B. Versuchsserie in Arlesheim.

Nachdem die in Ostermundigen mit möglichst vollkommener Stangeneinspannung ausgeführten Versuche über die Wirkung der gekuppelten und der mit Kreuzen versteiften Stangen nähere Aufklärung gebracht haben, soll im folgenden über die

in Arlesheim ausgeführten Festigkeitsversuche nur ganz allgemein berichtet werden. Die Versuchsanordnungen und die beobachteten Instrumentangaben sind aus nachstehenden Skizzen und Tabellen ersichtlich.

Versuch No. 1a (Fig. 27). Tabelle XIII


Zug am Dynamo- meter kg	Ausbiegung im Angriffspunkt von Z	Verschiebung an Erdober- fläche mm	Klinometer II Teilstrecke der Einstellung
2 · 250	53	28	2500
2 · 325	87	41	+1500
2 · 375	111	55	+ 1100
0	64,5	49	_
2 · 375	125	67	Neues 0
2 · 425	144,5	95	+ 900
2 · 475 1)	164	85	,
2 · 500	182	95	
2 · 525	201	100	
2 · 550 2)	222	_	
	I .	1	<u>I</u>

Wegen Bruchgefahr Beobachtung eingestellt.
 Bruch an der Einspannstelle. Holz nicht mehr ganz

Versuch No. 2 a (Fig. 28). Tabelle XIV

	Zug am Dynamo- meter kg	Ausbiegung im Angriffspunkt von Z	Verschiebung an Erdober- fläche mm	Klinometer II Trommel- teilung
ł	Ng	CIII	1 11101	<u> </u>
I	300	33	2	27
I	350	57	14	645
	400	78	32	645
1	475	89	42	390
ı	525	118	66	893
ı	575	132	80	-
	625	148	92	
	650	161	102	
	675	170	111	****
	700	178	120	_
33	725	185	125	-
	750	191	130	
	775	196	135	_
	800	201	140	
	825	210	145	-
	850	239	170	_
	875	254	185	
	900	270	200	-
	925	278	215	_
	950	290	235	-
	9751)	320	_	-
- 1		4		

¹⁾ Bruch an der Einspannstelle.

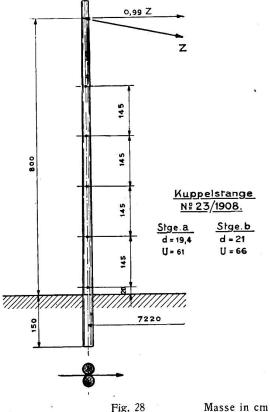


Fig. 28

Eine Trommelteilung bei Klinometer No. 1 = 3,148''Eine Trommelteilung bei Klinometer No. 2 = 0,417''.

Eine rechnungsmässige Untersuchung lohnt sich nicht, da die Ausbiegungen trotz der vorzunehmenden Korrekturen vermittels der Klinometerangaben zu ungenau werden. Die Querschnittsverjüngung kann auch nur angenähert berücksichtigt werden,

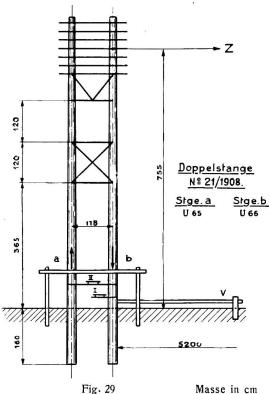

Versuch No. 3a (Fig. 29).

Tabelle XV

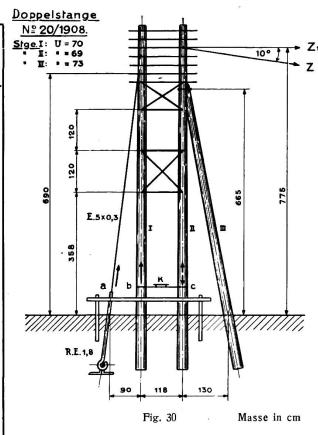
Zug am Dynamometer	Ausbiegung im Angriffspunkt von Z	Verschiebung an Erdoberfläche	Klinometer Trommelteilung		Stan	1 1	Bemerkungen
kg	cm	mm>	No. I	No. II	a ↑ mm	b↓ mm	
2 · 250 2 · 300	20 45	21 46	910 + 1250	875 + 1335	25 50	3 5	
2 · 350	65	67	+ 1000	+ 1070	75	7,5	
2 · 400	95	105	+ 1815	+ 2000	110	17	
2 · 450	131	148	+2050	+ 1900	150	23	Stange a gibt nach.
2 · 450	300	_ *	_	_	_	-	Bruch der Stange b.

weil die Stangendurchmesser am Kopfende nicht gemessen wurden. Die zuverlässigsten Resultate werden sich durch direkten Vergleich der Bruchbelastungen ergeben, da die Stangendimensionen am Erdboden nicht allzugrosse Unterschiede aufweisen.

Aus Versuch No. 2a ergibt sich die Bruchbelastung pro Stange zu $\frac{975}{2}$ = 487 kg;

somit wird der Verstärkungsfaktor für Kuppelstange No. 22 gleich $\frac{2.535}{487} = 2,2$ und der-

jenige für Tragwerk No. 18 gleich $\frac{1100}{487} = 2,04$.

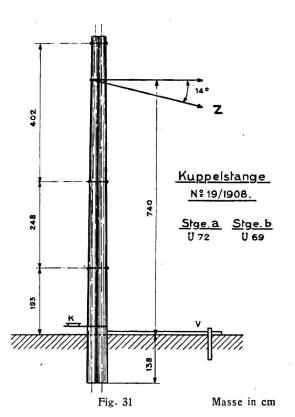

Stützpunkt No. 19 kann nicht berücksichtigt werden, weil er ohne zu brechen aus der Erde herausgedreht wurde. Auch diese Proben haben zu ähnlichen Ergebnissen geführt wie diejenigen in Ostermundigen. Daraus kann geschlossen werden, dass eine Kuppelstange mit der üblichen Verschraubung über alle Achsen nur den zweifachen Widerstand einer einzelnen Stange besitzt. Aus Versuch No. 5 a geht hervor, dass die Eingrabtiefe mit der Gestängsfestigkeit im Einklang sein muss, wenn der volle Widerstand der Tragwerke ausgenützt werden soll.

Aus einem Vergleich der Versuche 3 a und 7a ergibt sich die Notwendigkeit, der Bodenbefestigung bei versteiften Doppelstangen erhöhte Aufmerksamkeit zu schenken. Bei Doppelstange No. 21 wird die Zugstange, infolge ungenügenden Bodenwiderstandes, durch die Wirkungsweise der Kreuzverstrebung direkt aus der Erde herausgehoben. Je mehr

die Zugstange nachgibt, desto grösser wird die Inanspruchnahme der Druckstange, welche schliesslich die ganze Belastung allein aufzunehmen hat. Es ist nun ganz klar, dass im Boden nicht einfach die gleiche Befestigung genügt, die für einfache Stangen als notwendig erachtet wird, wenn über dem Boden Gestängsverstärkungen angebracht werden müssen, um eine bestimmte Drahtvermehrung gegenüber zwei

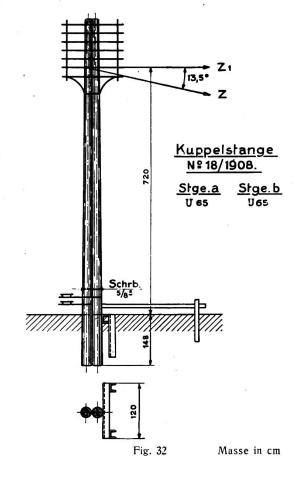
einfachen Stangen zu erhalten. Als einfachstes Mittel zur Erhöhung des Einspannwiderstandes käme eine grössere Eingrabtiefe in Frage an Stelle von Querriegeln usw.

	Versuch N	o. 4a	(Fig. 3	30). ·	Tabelle XVI
Zug am Dynamo-	Ausbiegung im Angriffs-	Vers	chiebuı	ıgen	Klinometer-
meter	punkt von Z	a	b	С	Trommel- teilung [
kg	cm	mm	mm	mm	
2 · 250	0	0	0	0	0
2 · 300	0	0	0	0	- 8
2 · 350	1	0	2	3	-15
2 • 400	1,2	0	2	3	- 8
2 · 450	1,5	0	2,5	4,5	<u>+</u> 0
2 . 500	2,0	0	4	4,5	+ 5
2 · 600	5	4	6,5	6	+ 100
2 · 700	6,5	5	6,5	6	+ 31
2 · 800	10,5	5	10	6	+ 120
2 · 900	16	8	13	6,5	+ 185
2 · 1000	17	9	13,5	6,5	+ 25
2 · 1100	21	9	14	6,5	+ 138
2 · 1200	23,5	9	18	6,5	+ 40
2 · 1300	27	9	_	_	_
2 · 1400	41	9	-	_	
2 · 1500	59	9	50	6,5	-
2 · 1600	75	9	62	6,5	
2 · 17001)		_			
2 · 1450	_	_		-	_
2 · 15002)	_	_	_		_



Flaschenzug beschädigt, Strebenschrauben abgeschert.
 Strebe in 1/8 Höhe geknickt.

Versuch No. 5 a (Fig. 31) Tabelle XVII


		u (1 19. 01)	Tauchentri
Zug am Dynamo- meter kg	Ausbiegung im Angriffs- punkt von Z	Verschiebung an Erdoberfläche mm	Klinometer II Trommel- teilung
275	8,5	6	136
300	9	7	16
350	9	7	5
400	9,5	7	15
450	10,5	7,5	53
500	15	10,5	220
550	17	12	35
600	78,5	67	3200
6501)	162	145	4000
700	190,5	172	1293
750	232	205	1700
800	285	255	2860
850	329	289	2070
9002)	403	341	4000
		I .	

Stangenausbiegung gering: Erde gibt nach.
 Stange ohne Bruch ausgerissen.

Versuch No. 6 a (Fig. 32) Tabelle XVIII

Zug am Dynamo- meter .	Ausbiegung im Angriffs- punkt von Z	Verschie- bung an Erdoberläche 	Klinometer Il Trommel- teilung	Klinometer l Trommel- teilung
250	16	5	320	725
300	19,5	7	90	250
350	23,5	9	145	310
400	31,0	13	260	610
0	16	10	- 305	- 590
400	33	15,5	+435	+815
450	40,5	18,5	225	505
500	49	23,5	320	640
550	59	30	465	860
600	68	35	380	810
650	80	43	475	980
700	89,5	49	385	830
750	102	57	480	1090
800	118	67,5	600	1288
0	67	59		8
800	124	74	7	
850	130	78		
900	141	85		
950	155	94		
1000	175	107	i	
1050	195	121		
11001)	_	- ;		

Versuch No. 7 a (Fig. 33) Tabelle XIX

		u (1.19.00)	Tabelle MIX
Zug am Dynamo- meter	Ausbiegung im Angriffs- punkt von Z	Verschiebung an Erdoberfläche	Hebung von Stange a
kg	cm	mm	mm
250	8	2	5
300	12	3	9
350	16	4	11
400	19	5	12
450	22	5,5	13
500	25	6	14
550	28	7	15
600	31	8,5	16
650	35	10	17
700	40	12	19
750	45	14	20
800	53	17	21
8501)	102	43	17¹)
900	112	48	10
950	128	55	10
1000	140	62	· —
1050	_	_	_ `
10502)	-	_	_

¹⁾ Abscherung der Bolzen bei C.
2) Bruch.

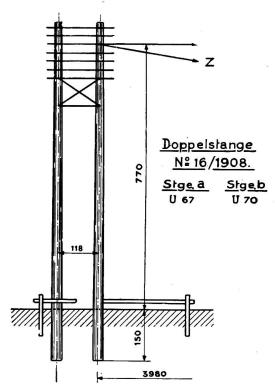


Fig. 33

Masse in cm

¹⁾ Bruch.

C. Zweite Versuchsserie in Ostermundigen.

Diese Versuche wurden durchgeführt, um zu prüfen, ob es möglich sei, den Verstärkungsfaktor bei Kuppelstangen zu vergrössern. Zur Verstärkung sollen nur einfache Mittel verwendet werden. Ein Verbinden der beiden Stangen mit Schrauben

1500

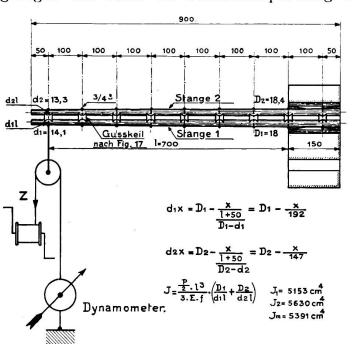
1400

1300

1200

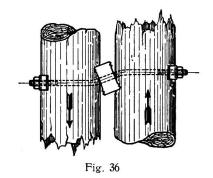
1100

1000


800

und eingepassten Dübeln kann nicht in Frage kommen weil diese Arbeit genau und fachmännisch ausgeführt werden muss, und daher teuer zu stehen kommt. Ein weiterer Nachteil ist die Lockerung der Dübelverbindungen infolge Schwinden des Stangenholzes. Um die grossen Vorräte der Telegraphenverwaltung an Kuppelstangentraversen aufbrauchen zu können, muss ein Verstärkungsmittel angewendet werden, das die Stangendistanz nicht vergrössert. Am einfachsten und billigsten wird dies erreicht durch Vermehrung der Kuppelschrauben. Prüfung des Einflusses von Kuppelverbindungen mit vergrössertem Stangenabstand dienten gusseiserne Keile mit scharfkantigen Rippen nach Fig. 172), welche zwischen die beiden zu kuppelnden Stangen gelegt wurden.

welche die Stangen zusammenhalten,


600 500 400 300 200 100 Gewicht Fig. 34 Beim Anziehen der Schrauben, Eichkurve des Dynamometers.

schneiden diese scharfen Kanten der Rippen in das Holz ein. Dadurch wird eine breitere Holzfaserschicht zur Aufnahme der Schubkräfte in Stangenrichtung herangezogen und somit die Schubbeanspruchung bedeutend herabgesetzt. Auch eine

Bearbeitung der Stangen wird dadurch vermieden. Dieses Vorgehen wurde von Herrn Kontrollingenieur G. Sulzberger angeregt.

Die Versuchsanordnung war gleich wie bei den schon durchgeführten Versuchen. Die Dynamometerangaben sind nach der Lichtkurve in Fig. 34 zu korrigieren.

In folgenden Tabellen sind die gemessenen und beobachteten Grössen eingetragen, sowie die betreffenden Tragwerkskizzen beigefügt.

Masse in cm

Fig. 35

²⁾ Siehe Bulletin No. 7, 1923, Seite 393.

Tabelle XX

Versuch No. 10 (Fig. 35)

2	Bemerkungen					Polgrenze		8		Diese Spannungen kor- rigieren sich nach dem	am Schlusse ermittelt. mittleren Verstärkurgs-	faktor			Die äussersten Fasern brechen	Vollständig, Bruch von Stange No.2 an Ein- spannstelle
	Span- nung	kg/cm ²	I	122	187	239	1	248	302	356	421	465	495	t _s	1	1
	Biegungs- moment	cm kg	70 000	140 000	216 500	286 000	I	286 000	356 000	411 000	466 000	520 000	260 000	565 000	565 000	540 000
Werte	Verg Takto stan eine	Stange	ı	1,93	1,96	2,03	ı	1,95	2	1,96	1,87	1,90	1,92	1	1	I
	> N E	cm3	1	1142	1159	1196	1	1150	1180	1158	1108	1120	1130	1	1	ı
Berechnete	Abstand der äussersten Faser- schicht	сш	ı	10,86	11,07	11,46	1	11,02	11,36	11,07	10,74	10,44	9,65	[1	1
	Abstand der Abstand der neutralen Achse Achse schicht	cm	imag.	1,76	1,97	2,36	ł	1,92	2,26	1,97	1,64	1,34	0,55	imag.	1	1
		Stange	1,68	2,3	2,38	2,55	I	2,36	2,49	2,38	2,2	2,18	2,02	1,86	1	Î
	Träg- heits- moment	cm4	9 050	12 400	12 800	13 700	[12 700	13 400	12 800	11 900	11 700	10 900	10 000	1	1
	Korrigierter Krafthebel- arm	CIII	200	200	669	698,5	200	869	869	269	695	694	691	689	689	681
	Stangen- zug	kg	100	200	310	410	0	410	510	290	029	750	810	820	820	190
te	Korrigierter Zug am Dynamo- meter	ke	50	100	155	205	0	205	255	295	335	375	405	410	410	395
ne Werte	Verschie- bung am Pussende	шш	1	1	1	ı	4	ı	9	9	9	9	9	9	I	[
Gemessene	Verschie- bung am Kopiende	шш	0	0	0	0	0	0	2	3	4	9	9	9	J	l
Ge	Aus- biegung	СШ	16,4	24,1	36	44,5	8,5	48	56,5	68,5	83,5	95,3	110,5	122	ı	162
	. Zug am Dynamo- meter	kg	150	200	250	300	110	300	350	400	450	500	540	550	550	530
1	No.	\forall	-	7	3	4	30	9	7	×	6	10	11	12	13	14

Versuch No. 10. (Tabelle XX und Fig. 35)

Dieser Versuch wurde ausgeführt an einer Kuppelstange, aus zwei Weisstannen bestehend, mit 9 Gusskeilen und 9 Schrauben.

Die bleibenden Deformationen sind aus Fig. 36 ersichtlich.

Versuch No. 11. (Fig. 37.)

Kuppelstange mit 18 gleichmässig verteilten Schrauben (2 Rottannen).

Versuch No. 12.

Kuppelstange mit 9 Gusskeilen und 9 Schrauben.

Diese Versuche ergeben keine bessern Resultate als die früheren. Nach den berechneten

Verstärkungsfaktoren ist eine grössere Verstärkung nicht nachzuweisen. Vergleicht man die Zugkraft, die den Bruch herbeiführt, in den Versuchen 10-12 mit derjenigen einer einfachen Stange, so ergibt sich für Kuppelstange No. 10 eine $\frac{790}{590}$ = 1,4 fache

Verstärkung. Für Kuppelstange 11 und 12 erhöht sich dieser Faktor auf 1,65. Unter Voraussetzung der Richtigkeit der Dynamo-

	Berechnete Werte										Gemessene Werte						
Bemerkungen	Span- nung	Biegungs- moment	Vergrösserungs- faktor des Wider- standsmomentes einer einzelnen Stange	moment	Abstand der äussersten Faser- schicht	Abstand der neutralen Achse	Vergrösserungs- taktor des Träg- heitsmomentes einer einzelnen Stange	Träg- heits- moment	Korri- gierter Krafthebel- arm	Stangen- zug	Korrigierter Zug am Dynamo- meter	Verschie- bung am Fussende	Verschie- bung am Kopiende	Aus- biegung	Zug am Dynamo- meter	No.	
	kg/cm²	cm kg	Julia	cm ⁸	cm	cm	otango	cm ⁴	ст	kg	kg	mm	mm	cm	kg	_	
	59	70 000	2,24	1185	11,9	3,14	3,3	14 100	700	100	50	0	0	10,2	150	1	
	107	140 000	2,46	1305	12,63	3,86	3,55	16 500	700	200	100	5	o	17,5	200	2	
	164	217 000	2,49	1320	12,67	3,90	3,58	16 700	700	310	155	6	0	26,7	250	3	
Polgrenze	216	286 500	2,50	1330	12,77	3,98	3,66	17 000	699	410	205	6	0	34,5	300	4	
8	_		_	_	_		_	_	700	0	0	2	0	7	110	5	
	228	286 500	2,37	1255	12,34	3,57	3,34	15 500	699	410	205	6	. 0	38	300	6	
	282	356 000	2,38	1262	12,37	3,60	3,36	15 600	698	510	255	9	0	46,5	350	7	
	340	412 000	2,28	1210	12,02	3,30	3,14	14 600	698	590	295	12	2	57,5	400	8	
Diese Spannungen korrigieren sieh nach dem am Schlusse ermittelten	400	488 000	2,30	1220	12,13	3,36	3,18	14 800	697	700	350	16	2	67	470	9	
mittleren Verstärkungsfaktor	488	520 000	2,01	1065	10,99	2,22	2,52	11 700	694	750	375	17	2	90	500	10	
*	600	569 000	1,80	950	10,68	1,91	2,39	11 100	693	820	410	19	2	103,5	550	11	
Einspannung aus-	_	_	_	-	-	5791	_	_	. —	840	420			-	570	12	
gerissen	-	70 000	_	_	Description (imag.	1,6	7 400	700	100	50	1	0	19,5	150	13	
		140 000	_	-	-	imag.	1,96	9 150	700	200	100	2	0	31,5	200	14	
	202	217 000	2,03	1075	11,08	2,31	2,56	11 900	699	310	155		0	37,4	250	15	
Einspannung aus-	270	286 500	2,00	1060	10,95	2,18	2,5	11 600	698	410	205	4	0	50,5	300	16	
gerissen	_	70 000	-	-	_	imag.	1,6	7 400	700	100	50	_	0	19,5	150	17	
*		140 000	_	_	-	imag.	1,9	9 100	700	200	100	_	0	30,2	200	18	
	213	217 000	1,93	1020	10,40	1,63	2,28	10 600	698	310	155	9	0	41,6	250	19	
<i>p</i>	270	286 500	2,00	1062	10,99	2,22	2,5	11 700	698	410	205		0	50	300	20	
	328	356 000	2,05	1085	11,17	2,40	2,6	12 100	698	510	255	12	0	60	350	21	
	389 440	412 000 466 000	2,00	1060 1060	10,95	2,18	2,5	11 600 11 600	696 695	590 670	295 335	- 14	2	72	400 450	22	
	440 495	520 000	2,00	1050	10,95	2,18	2,5	11 400	694	750	375	16	2 2	81,5 92	500	23 24	
	495 550	569 000	1,98	1030	10,83 10.57	2,06 1,8	2,45 2,34	10 900	693	820	410		3	105	550	- 1	
	595	600 000	1,94 1,90	1008	10.57	1,6	2,34	10 250	690	870	435	20	. 3	117	580	25 26	
	650	626 000	1,90	965	9,89	1,12	2,2	9 550	688	910	455 455	20	4	130	610	27	
	000	664 000	1,02 	905	3,09	imag.	1,95	9 200	685	910	485	24	4	142	650	28	
Bruch	_	663 000			-	imag.	1,95	8 400	683	970	485	24		154,5	650	29	
Bruch d. Stangen a. d. Einspannstelle						mag.	1,0	0 400	680	900	450	_		166	600	30	

441

XIVº Année 1923

			Gemesse	ne Wert	е		Berechnete Werte									
No.			Verschie- bung am Kopfende	bung am Fussende	Korrigiert. Zug am Dynamo- meter	Stan- genzug	Korrigier- ter Kraft- hebelarm	heits-	Vergrösserungs- faktor des Träg- heitsmomentes einer einzelnen Stange	neutralen Achse	Abstand der äusser- sten Faser- schicht	Wider- stands- moment	Vergrösserungs- faktor des Wider- standsmomentes einer einzelnen Stange	Biegungs- moment cmkg	Span- nung kg/cm²	Bemerkungen
	kg	cm	mm	mm	kg	kg	cm	cm*		cm	cm	Cino		стку.	Kg/cm²	
1	150	8	0	0	50	100	700	20 700	2,96	3,64	13,19	1570	2,2	70 000	45	±
2	200	20,5	0	6	100	200	700	16 100	3,3	2,28	11,83	1360	1,92	140 000	103	*
3	250	30	2	9	155	310	700	17 100	2,44	2,64	12,19	1405	1,98	217 000	154	
4	300	39,5	2	-	205	410	699	17 100	2,44	2,64	12,19	1405	1,98	286 000	204	* a a
5	100	6	0	_	0	0	700		-	-	_	-		_	_	entlastet
6	300	41,5	2	13	205	410	698	16 300	2,32	2,36	11,91	1370	1,94	286 000	208	Polgrenze
7	350	51,5	2	-	255	510	698	16 300	2,32	2,36	11,91	1370	1,94	356 000	260	p.
8	400	_	_		295	590	700		_		_	_		_	-	Einspannung
9	150	16,5	2	-	50	100	700	10 000	1,43	imag.	_	_	_	70 000	_	ausgerissen
10	210	23,2	2	4	105	200	700	15 000	2,14	1,81	11,36	1320	1,86	147 000	111	
11	250	31	2	_	155	310	700	16 600	2,37	2,45	12	1380	1,95	217 000	157	
12	310	36,5	2	7	215	430	699	19 400	2,77	3,32	12,87	1510	2,14	300 000	198	
13	350	41,5	3	-	255	510	698	20 200	2,90	3,52	13,07	1545	2,18	356 000	230	,
14	400	48,5	4	10	295	590	698	20 000	2,86	3,46	13,01	1540	2,17	411 000	267	
15	450	59,7	4,5	_	335	670	698	18 400	2,63	3,02	12,57	1465	2,07	468 000	320	Diese Spannungen korrigieren sich nach
16	475	62,8	5	12	355	710	697	18 500	2,64	3,06	12,61	1467	2,07	495 000	338	dem am Schlusse er- mittelten mittleren
17	500	68,5	5	_	375	750	696	17 800	. 2,54	2,86	12,41	1430	2,02	522 000	365	Verstärkungsfaktor
18	525	77	5,5	16	395	790	696	16 700	2,38	2,51	12,06	1385	1,96	550 000	398	
19	550	83,5	6	_	410	820	695	15 900	2,27	2,21	11,76	1350	1,90	570 000	422	
20	575	93	7	-	430	860	694	14 900	2,13	1,78	11,33	1315	1,86	596 000	454	
21	610	104	9	21	455	910	693	14 100	2,02	1,34	10,89	1300	1,83	630 000	485	
22	640	112	10	-	480	960	690	13 600	1,95	imag.	-	_	-	663 000	- '	
23	650	128,5	11	28	485	970	688	11 800	1,69			-	_	667 000		
24	650	140		_	485	970	685	10,700	1,53		-		_	664 000	-,	Bruch an Ein- spannstelle

meterangaben kann geschlossen werden, dass mit gewöhnlicher Verschraubung der beiden zu kuppelnden Stangen eine Verstärkung des Widerstandes nicht zu erreichen ist. Versuch No. 13. Doppelstange mit Traversengerüst (Fig. 39).

Der Verstärkungsfaktor hat hier den Wert $\frac{1010}{590} = 1,7$, wobei zu berücksichtigen ist, dass die zum Vergleich dienende einfache Stange einen grössern Durchmesser an der Einspannstelle hat als jede der beiden Stangen des Doppelgestänges.

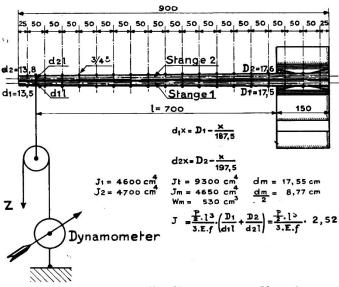
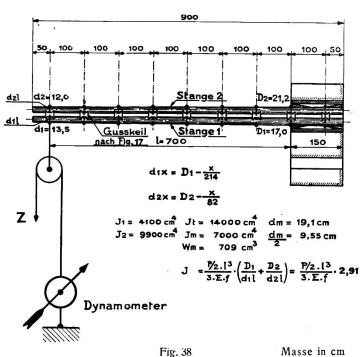


Fig. 37 Masse in cm


Um den Einfluss der ungleichen Stangendurchmesser an der Einspannstelle auf die Verstärkungsfaktoren, welche sich durch direkten Vergleich der den Bruch herbeiführenden Zugkräfte ergeben, möglichst auszuschalten, wurden auf Grund der Bruchbeanspruchung in Versuch No. 2 die Bruchbelastungen einfacher Stangen verschiedener Stangendimensionen berechnet und in nachfolgende Tabelle eingetragen. Da die Stangen vor Durchführung der Versuche etliche Wochen an der Sonne gelegen und sich vier Jahre dem Stangenlager befunden hatten, können die Stangen als lufttrocken bezeichnet werden. Biegungsfestigkeit, welche in hohem

Masse vom Wassergehalt des verwendeten Fichtenholzes abhängig ist, darf daher zu 584 kg/cm² angenommen werden. (Troschel, Holzkonservierung; Winnig, Die Grundlagen der Bautechnik für oberirdische Telegraphenlinien). Dieser Wert stimmt mit dem in Probe No. 2 ermittelten

Werte annähernd überein, so dass dieser letztere zu Vergleichsberechnungen benützt werden darf. (Bruchversuche, in der eidg. Materialprüfanstalt Zürich ausgeführt, ergaben $K_b = 555 \text{ kg/cm}^2$ und $K_b = 500 \text{ kg/cm}^2$. Angaben über Feuchtigkeitszustand fehlen.)

Mit diesen Werten lassen sich die in Tabelle XXI angegebenen genauen Verstärkungsfaktoren berechnen.

Zu den Proben 10-13 ist zu bemerken, dass dieselben nach einer längern Regenperiode (September 1922) ausgeführt wurden. Die Stangen waren dem Regen ausgesetzt, enthielten somit auch einen grössern Wassergehalt. Am Tag der Durchführung herrschte kühles, bedecktes Wetter, der Boden war nur oberflächlich trocken, so dass der Feuchtig-

keitszustand des Holzes mit luftfeucht bezeichnet werden muss. Dadurch verringert sich der Bruchmodul für Biegungsfestigkeit um zirka 20 Prozent und erreicht etwa

Versuch No. 13 (Fig. 39)

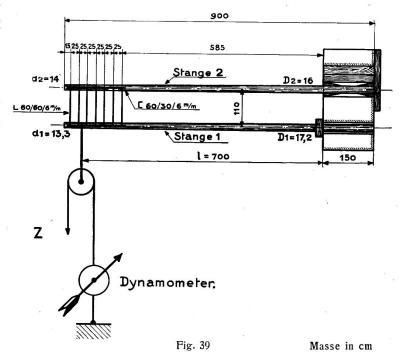
			Tabje	lle XXIII
No.	Zug am Dynamo- meter	Aus- biegung	Korrigierter Zug am Dynamo- meter	Stangen- zug
	kg	cm	kg	kg
1	150	12	50	100
2	200	24,5	100	200
3	250	35,5	155	310
4	300	41	205	410
5.	100	10,5	0	0
6	300	42,5	205	410
7	350	49	255	510
8	400	58	295	590
9	450	66	335	670
10	500	77	375	750
11	560	90	410	820
12	600	105	450	900
13	650	126	485	970
14	675	152	505	1010
15¹)	675	-	505	1010

¹⁾ Bruch der Zugstange an der Einspannstelle.

480 kg/cm². Das Verhältnis der beiden Festigkeiten beträgt $\frac{618}{480} = 1,285$; die Verstärkungsfaktoren erhöhen sich nach Tabelle XXVI und stimmen nun besser mit denjenigen der zuerst durchgeführten Versuche überein.

Die Gegenüberstellung der Verstärkungsfaktoren der Kuppelstangen, die auf zwei ganz verschiedenen Wegen berechnet wurden, ist aus Tabelle XXVII ersichtlich und zeigt gute Uebereinstimmung.

Im Vorangehenden beziehen sich alle Verstärkungsfaktoren auf einfache Stangen, weil diese sich im Telegraphenlinienbau als Masseinheit für kombinierte Gestänge herausgebildet haben. Richtiger ist es, die gefundenen Verhältniszahlen durch 2 zu dividieren, um so den wirklichen Verstärkungsgrad zu erhalten.


Mit diesen Koeffizienten ergeben sich folgende Bruchbeanspruchungen (Tabelle XXVIII):

Zusammenfassend kann aus den bis jetzt durchgeführten Versuchen und unter

Voraussetzung der Richtigkeit der Dynamometerangaben folgendes geschlossen werden: 1. Kuppelstangen sind gegenüber stärker dimensionierten einfachen Stangen mit gleichem Widerstandsmoment unwirtschaftlich. Die Verschraubung der beiden zu

kuppelnden Stangen mit einer grössern Anzahl Bolzen erhöht die Festigkeit nicht wesentlich, und es kann für das Widerstandsmoment einer Kuppelstange bezogen auf die Achse a - a nur der doppelte oder höchstens der 2,5 fache Wert desjenigen einer einfachen Stange in Rechnung gezogen werden, anders gesagt, die Summe der einzelnen Stangenwiderstandsmomente ist mit dem Faktor $1 \div 1,25$ zu multiplizieren. Der entsprechende Faktor für das Trägheits-moment ist aus Fig. 12 zu bestimmen.

2. Bei Doppelstangenlinien ist die Kreuzverstrebung in zirka ²/₃ Stangenhöhe einzubauen unter Weglassung der

beiden horizontalen Verbindungstraversen des Kreuzes. Eine solche Linie kann annähernd mit der drei- bis vierfachen Anzahl der für eine einfache Stange zulässigen

Drähte belastet werden, wenn die Stangen im Boden genügend verankert sind. Sämtliche Verstärkungstraversen können weggelassen werden.

Tabelle XXIV

Aus Versuch No. 2 sich ergebende Bruchbeanspruchung des Holzes = 618 kg/cm ²											
Stangen- durch- messer an der Ein- spannstelle	Wider- stands- moment	Biegungs- moment	Bruch- bela- stung	Stangen- durch- messer an der Ein- spannstelle	Wider- stands- moment	Biegungs- moment	Bruch- bela- stung	Stangen- durch- messer an der Ein- spannstelle	moment	Biegungs- moment	Bruch- bela- stung
cm	cm ³	cmkg	kg	cm	cm ³	cmkg	kg	cm	cm8	cmkg `	kg
										10	
16	402	$249\cdot 10^3$	370	18	572	$354\cdot 10^3$	524	20	785	485 • 103	718
16,5	442	273 · 103	405	18,5	622	$385\cdot 10^3$	570	20,5	847	524 · 10 ³	775
17	482	298 · 10 ³	440	19	673	415 · 103	615	21	909	561 · 108	830
17,5	527	325 · 10 ⁸	492	19,5	729	450 · 10 ⁸	665	_	_	_	_

Tabelle XXV

		D C4			
Versuch No.	Stangen- durchmesser an der Ein- spannstelle	Dem Stangen- durchmesser entspr. Bruch- belastung einer einfach. Stange	Gemessene Bruch- belastung	Ver- stärkungs- faktor	Bemerkungen
3	17,3; 16,8 2 × 17	440	1150	2,6	Kuppelstange mit fünf Bolzen am Kopfende
4	19,4; 18,4 2 × 18,9	605	1180	1,95	Kuppelstange mit fünf Eisendübeln
5	19,4; 18,4 2 × 18,9	605	1420	2,35	Normale Kuppelstange
6	18,75; 17,75 $2 \times 18,25$	550	1630.	2,96	Doppelstange mit niedrig einge- bautem Kreuz
7	18,5; 16,8 2 × 17,6	498	< 1840	< 3,7	Doppelstange mit Kreuz ohne Hori- zontaltraverse
8	19,7; 17,5 $2 \times 18,6$	570	1800	3,16	Doppelstange mit normalem Kreuz
9	17,5; 18,5 2 × 18	524	1180	2,25	Doppelstange mit einer Horizontal- traverse
10	18; 18,4 2 × 18,2	542	820	1,52	Kuppelstange mit Gussdübeln
11	17,5; 17,6 $2 \times 17,35$	492	970	1,97	Kuppelstange mit 19 Schrauben
12	17; 21,2 2 × 19	615	970	1,58	Kuppelstange mit Gussdübeln
13	16; 17,2 2 × 16,6	412	1010	2,4	Doppelstange mit Traversengerüst

Tabelle XXVI

Tabelle XXVII

Versuch No.	Verstärkungsfaktor ohne Berücksichtigung des Feuchtigkeits- zustandes	Verstärkungsfaktor mit Berücksichtigung des Feuchtigkeits- zustandes		Ver- such No.	Verstärkungsfaktor er- halten durch direkten Vergleich der Zugkräfte die den Stangenbruch herbeiführten	Verstärkungsfaktor aus der Durchbiegungsformel erhalten (Gültigkeit nur innerhalb der Propor- tionalitätsgrenze)	Mittlerer Verstär- kungsfaktor C m	Wirklicher Verstär- kungsgrad C m 2
10	1,52	1,96		3	2,6	2,75	2,57	1,33
N	,		9	4	1,95	1,93	1,94	0,97
11	1,97	2,54		5	2,35	1,94	2,15	1,07
12	1,58	2,04		10	1,96	1,97	1,96	0,98
13	2,4	3,09		11	2,54	2,42	2,48	1,24
10	۵,٦	0,09		12	2,04	2,02	2,03	1,01

Tabelle XXVIII

Versuch No.	Bruch- biegungs- moment cmkg	Mittleres Wider- standsmoment einer einzelnen Stange	Totales . Widerstands- moment Wm · Cm	Bruchmodul $K_b = \frac{M_b}{M_m \cdot C_m}$ kg/cm^2	Bemerkungen
3	784 000	535	1430	550	
4	802 400	663	1285	624	Lufttrockenes Holz
5	958 000	663	1555	. 615	
10	540 000	592	1160	465	Y
11	663 000	530	1315	504	Luftfeuchtes Holz
12	664 000	709	1440	460	

Vergleichende Betrachtungen über die Dimensionen elektrischer Grössen.

Von A. Forster, Zürich.

Der Autor leitet in leichtfasslicher Weise und ausgehend vom Prinzip der Aequivalenz aller Energieformen die Dimension der gebräuchlichen elektrischen und magnetischen Grössen ab und macht Vergleiche mit den Dimensionen mechanischer Grössen. Partant du principe de l'équivalence de l'énergie sous différentes formes l'auteur détermine d'une manière simple les dimensions des grandeurs électriques et magnétiques les plus usitées et les compare aux dimensions des grandeurs mécaniques.

Es ist durchaus nicht immer leicht, sich die Dimensionen elektrischer und magnetischer Grössen dem Gedächtnis so einzuprägen, dass sie jederzeit prompt und ohne ein Nachschlagen der Tabellen zur Verfügung stehen. Für den reinen Mechaniker besteht diese Schwierigkeit nicht, weil er sich anhand von beinahe greifbaren Vorstellungen über die Dimension einer Grösse wie z. B. der Kraft klar werden kann. Diese Klarheit ist zwar auch nur eine scheinbare, denn über das wirkliche Wesen einer mechanischen Kraft wissen wir ebenso wenig wie über dasjenige der elektrischen, aber durch den Vergleich mit unserer physischen Muskelkraft machen wir uns ein plausibles Bild von der "Kraft", welches uns zu einer überaus geläufigen Gewohnheit geworden ist. Dieser Vergleich wäre ja schliesslich auch im Gebiete der elektrischen Erscheinungen möglich und wird sogar in der Tat oft benützt: Man leitet z. B. die Dimension und Einheitsquantität einer Elektrizitätsmenge ab aus der Anziehungskraft, welche diese Menge auf eine zweite gleicher Grösse im Abstand von 1 cm ausübt. Diese Anziehungskraft ist ein Dyn, d.h. eine rein mechanische Kraft, welche wir also unbedenklich in Verbindung mit elektrischen Mengen bringen, wie wenn dieselben körperliche Massen wären. Die Newtonsche Definition der Kraft basiert aber auf körperlichen Massen und es frägt sich, ob nicht die Vermischung von mechanischer Kraft und elektrischen Mengen der Ursprung manches begrifflichen Missverständnisses ist. Um dies zu verdeutlichen, wollen wir unsere oben angeführte Messung der Elektrizitätsmenge nicht an der Luft, sondern innerhalb eines beliebigen Dielektrikums, beispielsweise Oel, vornehmen. Dann ist aber die Anziehungskraft im Abstand 1 cm für dieselbe Elektrizitätsmenge, wie oben, sehr verschieden von 1 Dyn. Das ist die bekannte, zuerst von Faraday festgestellte Tatsache, dass die Anziehungskraft von der Umgebung der anziehenden Mengen ebensowohl abhängt wie von diesen Mengen selbst. Wir haben nun in der Folge auch auf den mechanischen Gebieten den Glauben verloren an die Existenz solcher Kräfte, welche von einer Menge unvermittelt über eine gewisse Distanz hinweg auf eine andere Menge einwirken sollen und suchen uns ohne Fernkräfte zu behelfen.