Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 12 (1921)

Heft: 12

Artikel: Vergleichende Untersuchungen an häuslichen Heiz- und

Kocheinrichtungen. II, Vergleichende An- und Fortkochversuche an

verschiedenen Kocheinrichtungen

Autor: Schläpfer, P. / Rutishauser, J.

DOI: https://doi.org/10.5169/seals-1057125

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Vergleichende Untersuchungen an häuslichen Heizund Kocheinrichtungen.

Ausgeführt von *J. Rutishauser*, Heizungstechniker der Gemeinde Davos. Bericht erstattet von Dr. *P. Schläpfer*, Dir. der Eidg. Prüfungsanstalt für Brennstoffe und *J. Rutishauser*.

II. Vergleichende An- und Fortkochversuche an verschiedenen Kocheinrichtungen.

A. Allgemeine Angaben.

Im Laufe der letzten Jahre wurde die Elektrizität auch in Davos immer mehr zu Kochzwecken benutzt. Die fortschreitende Vervollkommnung der Apparate, die Gasrationierung und der allgemeine Brennstoffmangel förderten diese Entwicklung. Trotz zahlreicher Veröffentlichungen gehen die Ansichten über die Wirtschaftlichkeit der verschiedenen Kochverfahren noch heute sehr auseinander. Es wurden z. B. die widersprechendsten Angaben über die Betriebskosten der Gas- und elektrischen Küche gemacht. Dass nicht nur spezielle Interessen oder besondere Vorliebe für das eine oder andere Kochverfahren bei der verschiedenen Bewertung bestimmend waren, wird verständlich, sobald man sich vergegenwärtigt, wie viele Umstände die Wirtschaftlichkeit eines bestimmten Kochverfahrens mit beeinflussen können. Es ist auch schwerer, in der Küche vergleichende Versuche durchzuführen, als z.B. an Heizungsanlagen. Da zudem eine Reihe weiterer Fragen noch nicht abgeklärt war, führte man auch in Davos Versuche an verschiedenen Kocheinrichtungen durch, wobei bereits vorliegende Erfahrungen teils bestätigt werden konnten, teils aber auch konstatiert wurde, dass nicht alle, in der Literatur veröffentlichten, Angaben zutreffen. Der Wert dieser Versuche liegt nun besonders darin, dass wiederum verschiedene Energiequellen miteinander verglichen wurden und man die in Davos gebräuchlichsten Kochapparate benutzte. Zunächst handelte es sich darum, ihren Wirkungsgrad zu bestimmen, weshalb An- und Fortkochversuche mit Wasser durchgeführt wurden. An den Versuchen nahmen jeweils Vertreter des Gas- und Elektrizitätswerkes Davos teil. Nach Abschluss dieser Versuchsreihen ergänzte man sie durch praktische Kochversuche, über die im Abschnitt III berichtet werden soll.

Die Ergebnisse der Wirkungsgradbestimmungen deckten sich annähernd mit den praktischen Versuchen; die gefundenen Aequivalenzpreise zwischen Gas und elektrischer Energie kamen sich bei den beiden Versuchsgruppen sehr nahe, wie weiter unten gezeigt wird.

In einer grossen Zahl von Veröffentlichungen werden Wirkungsgrade der verschiedensten Kocheinrichtungen, insbesondere aber von Koch- und Heizplatten angeführt. Meistens wurde die Bestimmung des Wirkungsgrades so vorgenommen, dass man eine bestimmte Wassermenge in einem Topf von Zimmertemperatur auf die Siedetemperatur erhizte und eventuell weiterkochte. Die vom Wasser aufgenommene Wärme liess sich leicht ermitteln und daraus konnte der Wirkungsgrad errechnet werden. Da aber die Wirkungsgrade am gleichen Apparat je nach den gewählten Versuchsbedingungen sehr stark wechseln können, muss man sich für vergleichende Versuche an ein bestimmtes Arbeitsverfahren halten. Der schweizerische und der deutsche Verein von Gas- und Wasserfachmännern haben sich deshalb schon im Jahre 1913, nachdem zahlreiche, sorgfältige Versuche durchgeführt worden waren (s. u. a. das Protokoll der 34. Jahresversammlung des Schweiz. Vereins von Gasund Wasserfachmännern 1912), auf bestimmte Normen für die Bestimmung des Wirkungsgrades von Gaskochern geeinigt. Diese Normen haben sich als sehr zweckentsprechend erwiesen und sind heute noch im Gebrauche. Sie verlangen, dass zur Bestimmung des Wirkungsgrades eines Gaskochers das Wasser von 20 auf 95 °C erwärmt werden soll und dass die Topfgrösse und die Topffüllung in einem bestimmten Verhältnis zur Energiezufuhr (stündlicher Gaskonsum des Brenners) stehen müssen. Natürlich können zur Beurteilung eines Apparates noch weitere Versuche vorgenommen werden. Man wird z. B. den Gasverbrauch für das Fortkochen mit Kleinstellbrennern bestimmen und schliesslich muss man einen Apparat auch auf seine Brauchbarkeit im praktischen Küchenbetriebe hin prüfen. Besitzt ein Gaskochapparat eine sehr zusammengedrängte Flamme, oder wird eine elektrische Kochplatte nur in der Mitte stark erwärmt, so können beide Apparate wohl gute Wirkungsgrade ergeben, für das Kochen gewisser Speisen werden sie sich aber nur wenig eignen, weil diese leicht anbrennen.

Das Generalsekretariat des Schweiz. Elektrotechnischen Vereins hat in seinem Berichte "Der gegenwärtige Stand der Technik der elektrischen Kochapparate" (Bulletin 1917, No. 1) eine Betrachtung des Wärmevorganges bei einem Kochapparate angestellt, die ein klares Bild über die verschiedenen, sich nebeneinander abspielenden Erscheinungen gibt. Es sei darum auf diese sehr wertvollen Erläuterungen verwiesen. In dieser Abhandlung wurden auch Angaben über die Wirkungsgrade verschiedener elektrischer Kochapparate gemacht und zwar wird zwischen dem Totalwirkungsgrad eines Erwärmungsprozesses und dem Wirkungsgrad des Fortkochens unterschieden.

Wenn man die Ankoch- und Fortkochperiode für die Berechnung des Wirkungsgrades zusammenzieht, so erhält man wohl meistens höhere Werte; sie können aber ein falsches Bild über die Zweckmässigkeit eines Kochapparates geben. Besitzen Gasapparate z. B. grosse Kleinstellflammen, elektrische Apparate zu grosse Anschlusstufen für das Fortkochen, so verdampft man während dieser Periode viel Wasser und man erhält gute Nutzeffekte, trotzdem sind aber solche Konstruktionen unwirtschaftlich, weil es beim Fortkochen in den wenigsten Fällen darauf ankommt, viel Wasser zu verdampfen, sondern vielmehr nur, das Kochgut unter kleinster Energiezufuhr bei Siedetemperatur zu halten. Die Apparate sollten also, wenn man für das Fortkochen nicht besondere Einrichtungen, wie z. B. Kochkisten benutzen kann, möglichst weitgehend regulierbar sein. Aus konstruktiven und auch aus praktischen Gründen sind der Regulierbarkeit allerdings gewisse Grenzen gesetzt. Ausser bei einigen Vorversuchen wurde bei den Versuchen die Ankoch- und Fortkochperiode getrennt behandelt.

Wir geben auch bei diesen Versuchsreihen die sogenannten Aequivalenzpreise

zwischen elektrischer Energie und Gas an.

Endlich erwähnen wir noch, dass bei den Ankochversuchen das Wasser im allgemeinen von 15 auf 90° C erhitzt wurde, anstatt auf 95° C, wie die Normen vorschreiben, weil in Davos der Siedepunkt des Wassers im Mittel schon bei 95° C liegt. Alle verwendeten Messinstrumente sind kontrolliert worden.

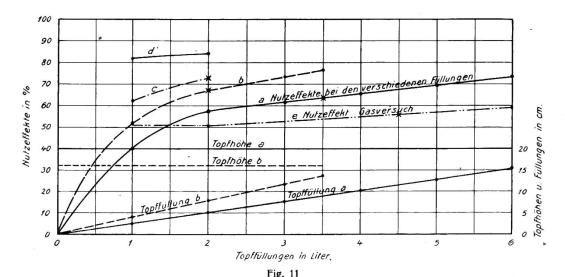
Die vorgenommenen Versuche teilen wir ein in:

a) Ankoch- und Fortkochversuche mit elektrischen Kochplatten und Gasapparaten;

b) Ankochversuche mit elektrischen Hilfsapparaten;

c) Ankoch- und Fortkochversuche mit elektrischen- und Gas-Kippkesseln.

B. Angaben über die verschiedenen Versuchsreihen.


Ankoch- und Fortkochversuche mit elektrischen Kochplatten und Gasapparaten.

a) Versuche mit elektrisch geheizten Kochplatten. Für diese Versuche dienten 2 Kochherde mit je 2 Kochplatten von 22 und 18 cm Durchmesser. Der Anschlusswert der Apparate betrug nach Katalog 1460 Watt und war in 3 Stufen unterteilt. Bei den Versuchen wurde, wo nichts anderes vermerkt ist, die Stromzufuhr je nach der Topfgrösse zwischen 82 und 84° C Wassertemperatur abgestellt, da diese dann auf ca. 90–95° C anstieg. Nur ausnahmsweise wurden dünnwandige, meistens aber dickwandige Aluminiumtöpfe mit 9 mm starkem Boden benutzt.

Da für die Durchführung von Ankochversuchen mit elektrisch geheizten Kochplatten noch keine Normen bestehen, wurden zunächst einige Versuchsreihen mit verschiedenen Kochplatten und wechselnder Topffüllung und Topfgrösse durchgeführt, um zu zeigen, in welchem Zusammenhang der Wirkungsgrad mit der Topffüllung stehe. Zur Versuchsreihe 1 wurde eine Kochplatte von 22 cm Durchmesser und ein Topf vom gleichen Durchmesser und 20 cm Höhe, für die Versuchsreihe 2 eine Kochplatte von 18 cm Durchmesser und ein Topf vom gleichen Durchmesser und 16,4 cm Höhe benutzt.

Die vorgenommenen Messungen und die erhaltenen Resultate sind in den Tabellen III (Versuche No. 1-15) und IV (Versuche No. 16-27) zusammengestellt. Der Versuch No. 25 wurde mit einem dickwandigen und die Versuche No. 26 und 27 mit einem dünnwandigen Aluminiumtopf von 9 cm Höhe ausgeführt.

Aus den Kurven a, b und c, der Figur 11, sind die bei diesen Versuchen gefundenen Beziehungen zwischen Topfgrösse, Topffüllung und Wirkungsgrad erkennbar. Der Wirkungsgrad hängt, wie ja zu erwarten ist, stark von der Füllung des Topfes ab. Aus den Kurven geht hervor, dass bei der Erwärmung kleiner Wassermengen der Wirkungsgrad sehr zurückgeht. Die Verhältnisse liegen in dieser Beziehung bei

Nutzeffekte bei elektrischem Kochen und beim Kochen mit Gas in Funktion der Topffüllung.

- a) Elektrische Kochplatte 22 cm Durchmesser; dickwandiger Aluminiumtopf, 22 cm Durchmesser, 20 cm Höhe.
 b) Elektrische Kochplatte 18 cm Durchmesser; dickwandiger Aluminiumtopt, 18 cm Durchmesser, 16,4 cm Höhe.
 c) Elektrische Kochplatte 18 cm Durchmesser; dünnwandiger Aluminiumtopf, 18 cm Durchmesser, 20 cm Höhe.
 d) Elektrischer Schnellkocher 13 cm Durchmesser; 20 cm Höhe.
 e) Gaskocher; dünnwandiger Aluminiumtopf 24 cm Durchmesser, 18 cm Höhe.
- - * Füllungen nach den Normen für die Prüfung von Gaskochern.

elektrisch geheizten Kochplatten ungünstiger als bei Gasbrennern. Die Versuche haben auch dargetan, dass für die Durchführung vergleichender Prüfungen an elektrischen Kochplatten Normen geschaffen werden sollten, wenn man für solche Versuche nicht zu viel Zeit aufwenden will.

In der Tabelle V sind die Ergebnisse weiterer Versuche zusammengestellt, bei denen die Bedingungen wechselten. So wurde z.B. die Stromzufuhr geändert. Da auch diese Tabelle ohne weiteres verständlich sein wird, erübrigt es sich, derselben weitere Erklärungen beizufügen. Es sei nur darauf aufmerksam gemacht, dass der Nutzeffekt wesentlich zurückgeht, wenn man die Stromzufuhr erst beim Beginn des Siedens abstellt, wie dies in der Regel geschieht (s. Versuch No. 36 und 37). Werden Töpfe mit dem siedenden Wasser auf die Seite gestellt, sollte man die in den Kochplatten aufgespeicherte Wärme weiter ausnützen. Bei den beiden eben erwähnten Versuchen konnten 3,5 l Wasser noch von 15 auf 33 °C erwärmt werden, wodurch sich der Gesamtwirkungsgrad von 62,2 auf 77,3 % bei Versuch No. 36, von 67 auf 77,5 % bei Versuch No. 37 erhöhte.

Die Kosten für die Erwärmung von 1 Liter Wasser von 15 auf 90° C betrugen bei den Versuchen mit 2000 g Wasserfüllung 1,44 bis 1,77 Rappen, entsprechend einem Stromverbrauch von 0.246-0.291 kWh. Am billigsten kommt das Ankochen,

Ankochversuche mit einer elektrischen Kochplatte von 22 cm Durchmesser.

Kochgefäss: dickwandiger Aluminiumtopf, 22 cm Durchmesser, 20 cm Höhe, 1836 g schwer (Zimmertemperatur 18 ° C).

Preis der kWh = 12 Rp.

Tabelle III

No. des Vers	suchs	1	. 2	3	4	5	6	. 7	8	9	10	11	12	13	14	15
Füllung des Topfes	g	1000	1000	2000	2000	3000	3000	3500	3500	3500	4000	4000	5000	5000	6000	6000
Füllhöhe	cm	2,6	2,6	5,2	5,2	7,9	7,9	9,3	9,3	9,3	10,6	10,6	13,6	13,3	16	16
Anfangstemperatur des Wassers	.0 C	16,2	14,6	15,5	16,2	15,1	15,3	14,9	14,7	15,2	15,6	15,4	15,4	15,2	15	15,5
Höchsttemperatur des Wassers .	0 C	89,0	83,0	89,5	89,5	90,1	90,3	91,8	92,5	92,8	89,0	90,5	90,0	92,6	91,7	91,5
Temperaturerhöhung des Wassers	0 C	72,8	78,4	74,0	73,3	75,0	75,0	76,9	77,8	77,6	73,4	75,1	74,6	77,4	76,7	76,0
Stromzufuhr	Min.	8	9	12	12	17	17	20	20	20	20	21	26	26	29	28
Versuchsdauer von Versuchsanfang bis Höchsttemperatur	Min.	8	8	12	11	14	13	13	14	14	15	15	15	16	16	16
Zugeführte elektrische Energie .	kWh	0,203	0,239	0,299	0,283	0,431	0,429	0,49	0,49	0,50	0,515	0,517	0,63	0,639	0,734	0,703
Total zugeführte Wärmemenge .	WE	174,6	205,5	257,1	243,4	370,7	368,9	421,4	421,4	430	442,9	444,6	541,8	349,5	631,2	604,6
Vom Wasser aufgenommene Wärmemenge	WE	72,8	78,4	148	146,6	228	228	269,1	272,3	271,6	293,6	300,4	373,0	387,0	460,2	456,0
Wirkungsgrad	0/0	41,7	38,3	57,6	60,3	61,6	62,0	63,9	64,7	63,2	66,3	67,7	69,0	70,6	73,0	75,6
Mittlerer Wirkungsgrad	0/0	40	0,0	59	9,0	61	1,8	-	63,9		67	7,0	69	9,8	74	1,3
Preis von 1000 nutzbaren WE .	Rp.	38	5,0	23	3,7	22	2,6		21,9		20),8	20	0,0	18	3,8
Preis für die Erwärmung von 11 Wasser von 15° auf 90° C.	Rp.	2,	62	1,	77	1,	69		1,64		1,	56	1,	50	1,	41
8																

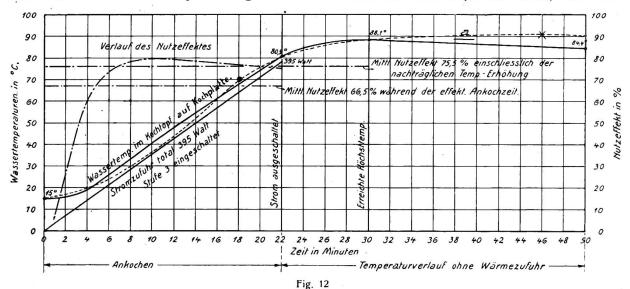
Ankochversuche mit einer elektrischen Kochplatte von 18 cm Durchmesser.

Kochgefäss: dickwandiger Aluminiumtopf, 18 cm Durchmesser, 16,4 cm hoch, 1317 g schwer (Zimmertemperatur 18 °C).

Preis der kWh = 12 Rp.

Tabelle IV.

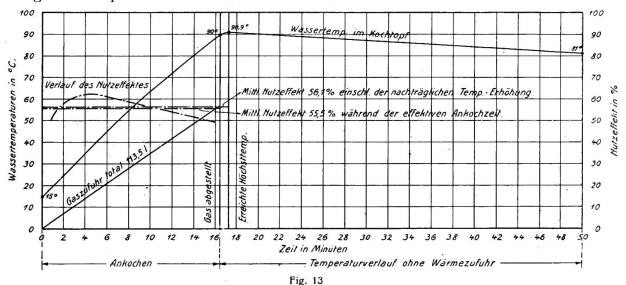
No. des Ve	rsuchs	16	17	18 N	19 N	20 N	21	22	23	24	251)	26 2)	27 2)
Füllung des Topfes	g ·	1000	1000	2000	2000	2000	3000	3000	3500	3500	2000	2000	1000
Füllhöhe	cm	4	4	8	8	8	12	12	14	14	8	8	4
Anfangstemperatur des Wassers	° C	15,5	15,5	15,1	15,5	15,5	16,0	15,6	14,9	15,0	14,9	15,0	15,2
Höchsttemperatur des Wassers	٥C	93,2	90,0	92,8	93,0	95,0	90,2	90,0	88,6	88,1	90,1	92,0	91,5
Temperaturerhöhung des Wassers	0 C	77,7	74,5	77,7	77,5	79,5	74,2	74,4	73,7	73,1	75,2	77,0	76,3
Stromzufuhr	Min.	9	9	14	15	15	18	19	22	22	13	13	8
Versuchsdauer vom Versuchsanfang bis Höchsttemperatur	Min.	6	7	6	7	8	9	9	9	8	8	8	8
Zugeführte elektrische Energie	kWh	0,169	0,160	0,267	0,275	0,280	0,348	0,354	0,389	0,395	0,243	0,246	0,144
Total zugeführte Wärmemenge	WE	145,3	137,6	229,6	236,5	240,8	299,3	304,4	334,5	339,7	209,0	211,6	123,8
Vom Wasser aufgenommene Wärmemenge	WE	77,7	74,5	155,4	155,0	159,0	222,6	223,2	258	255,8	150,4	154	76,3
Wirkungsgrad	o/o	53,4	54,1	67,9	65,7	66,1	74,4	73,4	77,1	75,5	72,0	73,0	62,0
Mittlerer Wirkungsgrad	0/0	53	3,8		66,6	<u> </u>	73	3,9	76	5,3	72,0	73,0	62,0
Preis von 1000 nutzbaren WE	Rp.	26	5,0		- 21,0		19	9,0	18	3,3	19,4	19,2	22,6
Preis für die Erwärmung von 1 1 Wasser von 15 0 auf 90 0 C	Rp.	1,	95		1,57		. 1,	43	1,	37	1,45	1,44	1,69
1) dickwandiger Topf von 9 cm Höhe 2) dünnwandiger Topf von 9 cm Höhe											- ,		


Verschiedene Ankochversuche mit elektrischen Kochplatten.

Preis der kWh = 12 Rp.									
rieis dei kwii = 12 kp.	2								
		1					i i		1
1	22 2	 	20.11	22.11	04.33	 		~~	

No. des Ve	rsuchs	28 N	29 N	30 N	-31 N	32	- 33	34	35	36	37
Topfdurchmesser	cm	22	22	18	18	18	22	22	18	18	22
Topfhöhe	cm	11,4	11,4	9,5	9,5	9,5	11,4	11,4	9,5	9,5	11,4
Füllung des Topfes	g	3500	3500	2000	2000	2000	3500	3500	2000	2000	3500
Füllhöhe	cm	9,2	9,2	8	8	8	9,2	9,2	8	8	9,2
Anfangstemperatur des Wassers	0 С	14,9	15	14,7	15,2	15,3	15,4	15,2	15,6	15,1	16,0
Höchsttemperatur des Wassers	0°C	90,5	90,9	92,2	92	90	90,8	93,4	85	90,1	90
Temperaturerhöhung des Wassers	0 C	75,6	75,9	77,5	76,8	74,7	75,4	78,2	69,4	75	74
Stromzufuhr	Min.	17	17	13	12	51	71	35	17	17	23
Versuchsdauer vom Versuchsanfang bis Höchst- temperatur	Min.	Stufe 3	Stufe 3	Stufe 3	Stufe 3	Stufe 1	Stufe 1	Stufe 2	Deckel entfernt • —	Strom 6 90 ab	erst bei gestellt —
Zugeführte elektrische Energie	kWh	0,434	0,439	0,262	0,257	0,255	0,479	0,474	0,263	0,281	0,480
Total zugeführte Wärmemenge	WE	373,2	377,5	225,3	221,0	227,9	411,9	407,6	226,2	241,6	412,8
Vom Wasser aufgenommene Wärmemenge	WE	264,6	265,7	155,0	153,6	149,4	263,9	273,7	138,8	150,0	259,0
Wirkungsgrad	º/o	71,0	70,4	68,8	69,5	65,6	64,1	67,1	61,3	62,2	62,7
Mittlerer Wirkungsgrad	0/0	70	0,7	69	9,1	65,6	64,1	67,1	61,3	62,2	62,7
Preis pro 1000 nutzbaren WE	Rp.	19	9,8	20),2	21,3	21,8	20,8	22,9	22,5	22,4
Preis für die Erwärmung von 11 Wasser von 150 auf 900 C	Rp.	1,	48	1,	51	1,60	1,63	1,56	1,71	1,69	1,68

wenn man einen Topf mittlerer Grösse wählt und das Wasser bei aufgesetztem Deckel mit voller Stromzufuhr nicht ganz zur Siedetemperatur erhitzt.


Um die Vorgänge beim Ankochen mit elektrischen Kochplatten mit denjenigen bei der Verwendung von Gasbrennern vergleichen zu können, wurde in Fig. 12 der genaue Verlauf eines Ankochversuches mit einer Kochplatte von 18 cm Durchmesser und einem Aluminiumtopf von gleichem Durchmesser und 16,4 cm Höhe, der mit

Verhältnisse beim Ankochen auf einer elektrischen Kochplatte. Aluminiumtopf mit 3500 g Wasserfüllung.

a Verlauf der Wassertemperatur im Kochtopf mit 3500 g Wasserfüllung auf einem Glührost mit 911 Watt Leistungsaufnahme.

3,5 kg Wasser gefüllt war, graphisch dargestellt. Die Temperatur des Wassers beginnt erst einige Minuten nach Beginn der Stromzufuhr rasch auzusteigen, da zunächst die kalte Platte und das Gefäss angewärmt werden müssen. Nach dem Ausschalten des Stromes wird noch ein Teil der aufgespeicherten Wärme an das heisse Wasser abgegeben, die Wassertemperatur steigt also weiter, oder eine entsprechende Wassermenge verdampft.

Verhältnisse beim Ankochen auf einer Gas-Kochstelle.

Aluminiumtopf mit 3500 g Wasserfüllung. — Topflüllung nach den Normen.

Vergleicht man damit den in Fig. 13 graphisch aufgetragenen Gegenversuch an einem Gasapparat, so erkennt man, dass bei diesem sowohl beim Beginn, als auch am

Ende der Erhitzung kleinere Nachwirkungen stattfinden, da bei den, im Haushalt üblichen Gaskochern eben nur ganz geringe Massen angewärmt werden müssen. Die Wassertemperatur nimmt nach dem Anzünden der Flamme rasch zu und nach dem Ablöschen findet nur noch eine geringe Wärmeabgabe an das Wasser statt. Der Gaskocher ist also hinsichtlich Regulierbarkeit der gewöhnlichen elektrischen Kochplatte überlegen. Deshalb liegen die beiden Geraden für den Nutzeffekt während der effektiven Ankochzeit und der Gesamtnutzeffekt bei Gaskochern sehr nahe beieinander.

In Tabelle VI sind die Resultate einiger mit den gleichen Kochplatten vorgenommenen, je eine Stunde dauernden Fortkochversuche zusammengestellt. Bei den Versuchen No. 38-44 wurde die Temperatur des Wassers dauernd auf 90-91° C

Fortkochversuche mit elektrischen Kochplatten während je einer Stunde.

Preis der kWh = 12 Rp.

Tabelle VI

ıs-No.	38	39	40	41	42	43	44	45	46		
cm	18	18	` 18	18	22	22	22.	18	22		
cm	16,4	16,4	9,5	9,5	11,4	11,4	20	16,4	20		
g	2000	2000	2000	2000	3500	3500	3500	2000	3500		
0 C	90,0	90,7	91,0	91,0	90,7	90,2	90,1	94,5	94,5		
g	_	68	68	58	140	90	150	365	486		
0/0		3,4	3,4	2,9	4,0	2,6	4,3	18,2	14,0		
Watt	98	100	92	90	107	102	110	295	408		
WE	84,3	86	79,1	77,4	92,0	87,7	94,6	253,7	350,9		
WE	42,2	43	39,5	38,7	26,3	25,1	27,0	126	100		
WE	42	2,6	39	,1	25	,7	27,0	1	13		
Rp.	0,0	60	0,5	55	0,3	36	0,38	1,	58		
	cm g oC g o/o Watt WE WE	cm 18 cm 16,4 g 2000 o C 90,0 g - Watt 98 WE 84,3 WE 42,2 WE 42	cm 18 18 cm 16,4 16,4 g 2000 2000 o C 90,0 90,7 g - 68 o/o - 3,4 Watt 98 100 WE 84,3 86 WE 42,2 43 WE 42,6	cm 18 18 18 18 cm 16,4 16,4 9,5 g 2000 2000 2000 0 C 90,0 90,7 91,0 g — 68 68 0/0 — 3,4 3,4 Watt 98 100 92 WE 84,3 86 79,1 WE 42,2 43 39,5 WE 42,6 39	cm 18 18 18 18 18 cm 16,4 16,4 9,5 9,5 g 2000 2000 2000 2000 2000 g C 90,0 90,7 91,0 91,0 g — 68 68 58 0/0 — 3,4 3,4 2,9 Watt 98 100 92 90 WE 84,3 86 79,1 77,4 WE 42,2 43 39,5 38,7 WE 42,6 39,1	cm 18 18 18 18 22 cm 16,4 16,4 9,5 9,5 11,4 g 2000 2000 2000 2000 3500 o C 90,0 90,7 91,0 91,0 90,7 g - 68 68 58 140 o/ ₀ - 3,4 3,4 2,9 4,0 Watt 98 100 92 90 107 WE 84,3 86 79,1 77,4 92,0 WE 42,2 43 39,5 38,7 26,3 WE 42,6 39,1 25	cm 18 18 18 18 22 22 cm 16,4 16,4 9,5 9,5 11,4 11,4 g 2000 2000 2000 2000 3500 3500 o C 90,0 90,7 91,0 91,0 90,7 90,2 g - 68 68 58 140 90 o/o - 3,4 3,4 2,9 4,0 2,6 Watt 98 100 92 90 107 102 WE 84,3 86 79,1 77,4 92,0 87,7 WE 42,2 43 39,5 38,7 26,3 25,1 WE 42,6 39,1 25,7	cm 18 18 18 18 22 22 22 cm 16,4 16,4 9,5 9,5 11,4 11,4 20 g 2000 2000 2000 3500 3500 3500 o C 90,0 90,7 91,0 91,0 90,7 90,2 90,1 g - 68 68 58 140 90 150 o/o - 3,4 3,4 2,9 4,0 2,6 4,3 Watt 98 100 92 90 107 102 110 WE 84,3 86 79,1 77,4 92,0 87,7 94,6 WE 42,2 43 39,5 38,7 26,3 25,1 27,0 WE 42,6 39,1 25,7 27,0	cm 18 18 18 18 22 22 22 18 cm 16,4 16,4 9,5 9,5 11,4 11,4 20 16,4 g 2000 2000 2000 2000 3500 3500 3500 2000 o C 90,0 90,7 91,0 91,0 90,7 90,2 90,1 94,5 g - 68 68 58 140 90 150 365 o/o - 3,4 3,4 2,9 4,0 2,6 4,3 18,2 Watt 98 100 92 90 107 102 110 295 WE 84,3 86 79,1 77,4 92,0 87,7 94,6 253,7 WE 42,2 43 39,5 38,7 26,3 25,1 27,0 126 WE 42,6 39,1 25,7 27,0 1		

gehalten, was aber nur durch zeitweises Ausschalten der kleinsten Schaltstufe erreicht werden konnte. Bei den Versuchen No. 45 und 46 war der kleinste Anschlusswert während der ganzen Stunde eingeschaltet. Das Wasser erreichte darum bald die Siedetemperatur und verdampfte stark, was auch die Betriebskosten beim Fortkochversuch erheblich erhöhte. Der kleinste Anschlusswert war also bei den untersuchten Kochplatten noch etwas zu gross.

b) Versuche mit Gaskochern. Zu diesen Versuchen wurde ein bei uns vielfach gebrauchter Junkers'scher Gasherd mit Brennerplatten von 48 mm Durchmesser und einem stündlichen Gaskonsum von rund zirka 500 resp. zirka 300 l gebraucht. Der Abstand des Topfbodens von der Brennerplatte betrug 21 mm.

Abstand des Topfbodens von der Brennerplatte betrug 21 mm.

Die Anfangstemperatur des Wassers wurde zu 15°C gewählt. Bei 90°C wurde der Brenner abgedreht, die Temperatur stieg nachher jeweils nur noch wenig an.

In der Tabelle VII sind die Messungen und die erhaltenen Wirkungsgrade zusammengestellt. Die Beziehungen zwischen verschiedenen Topffüllungen und dem Wirkungsgrad eines Gasapparates sind aus den Linien a und e der Figur 11 ersicht-

· Tabelle VII

Ankochversuche mit einem Gaskocher.

Gasprei	s pro	$m^3 =$	6)	Rn.

Versuch	s-No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Gasdruck vor dem Brenner	mm W.S.	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Stündlicher Gasverbrauch	1	490	490	515	470	530	490	290	275	290	270	300	275	290	420	420
Topfdurchmesser	cm	24	24	24	24	24	24	18	18	18	18	18	18	18	22	22
Topfhöhe	cm	18	18	18	18	18	18	13,4	13,4	13,4	13,4	13,4	13,4	13,4	16	16
Füllung des Topfes	g	2000	2000	4500	4500	6000	6000	1000	1000	2000	2000	2000	3000	3000	3500	350
Füllhöhe zirka	cm	4,4	4,4	10	10	13,2	13,2	4	4	8	8	8	12	12	9,2	. 9,
Anfangstemperatur des Wassers	0 C	15	15	15,8	15	15,2	15	15	15	15	15	15	15	15	15	14
Endtemperatur des Wassers	0 C	90,0	89,8	90,3	92,5	90,5	90,7	91,5	91,0	90,9	90,7	90,3	91,5	90,0	90,5	91
Temperaturerhöhung	0 C	75,0	74,8	74,5	77,5	75,3	75,7	76,5	76,0	75,9	75,7	75,3	76,5	75,0	75,7	76
Ankochzeit	Min.	9	9	17	19	21	23	8	8	13,5	15	13	22	20	16	10
Temperatur des Gases	0 C	10,5	10,5	9	10	12	12	10,5	10,5	12	12	10	10,5	11,5	10	1
Gesamtdruck des Gases	mm Hg.	621	621	637	642	615	615	621	621	615	615	642	621	626	640	64
Gasverbrauch, abgelesen	1	74	73	149,5	148	185,5	188	36,5	36	67,4	67	64	101	98,5	113,5	113
Gasverbr., reduziert auf 0º 760 mm	1	57,4	56,6	119,6	118,8	141,3	143,25	28,3	27,9	51,4	51	51,2	78,3	76,6		_
Unt. Heizwert des Gases in Davos	WE	4026	4026	3958	4196	4085	4085	4026	4026	4085	4085	4196	4026	4020	4112	41
Unt. Heizwert bei 00 760 mm .	WE	5195	5195	4944	5224	5360	5360	5195	5195	5360	5360	5224	5195	5169		_
Zugeführte Wärmemenge	WE	297,9	293,9	591,7	621	757,8	768,0	146,9	144,9	275,3	273,7	268,5	406,6	396,0	466,7	472
Aufgenommene Wärmemenge .	WE	150	149,6	335,2	348,7	451,8	454,2	76,5	76	151,8	151,4	150,6	229,5	225	265	267
Wirkungsgrad	0/0	50,4	51,0	56,7	56,2	59,7	59,2	52	52,5	56,1	55,5	56,1	56,4	56,9	56,8	56
Mittlerer Wirkungsgrad	o/o	5(),7	56	5,5	59	9,5	52	2,3		55,9		56	5,6	56	5 ,7
Preis pro 1000 nutzbaren WE .	Rp.	29	9,5	26	5,1	24	4,8	28	3,5	-	26,3		26	5,2	25	5,8
Preis für die Erwärmung von 11 Wasser von 150 auf 900 C .	Rp.	2,	21	1,	96	1,	86	2,	14		1,97	-		96		93
										M			,			

lich. In Fig. 13 sind die Verhältnisse beim Ankochen auf einem Gaskocher bei einem Versuche mit 3,5 kg Wasserfüllung und einem stündlichen Gaskonsum von 420 l graphisch dargestellt.

Die Tabelle VIII enthält die Ergebnisse verschiedener, eine Stunde dauernder Fortkochversuche, bei welcher die Temperatur wiederum zwischen $90-91^{\circ}$ C gehalten wurde. War der Sparbrenner vollständig geöffnet, so kam das Wasser selbst bei

Fortkochversuche mit einem Gaskocher während einer Stunde.

Gaspreis pro $m^3 = 60 \text{ Rp.}$ Tabelle VIII

Versuch	is-No.	16	17	18	19	20	21
Topfdurchmesser	cm	18	18	22	22	24	24
Topfhöhe	cm	13,4	13,4	16	16	18	18
Füllung des Topfes	g	2000	2000	3500	3500	4500	4500
Mittlere Wassertemperatur	0 C	90,6	90,7	90,8	90,5	90,0	94,5
Wasser verdampft	g	30	_	45	39	_	850
Wasser verdampft in $^{0}/_{0}$	0/0	1,5	_	1,3	1,1	_	19
Gasverbrauch abgelesen	1	34	38	42,5	43	50	61
Zugeführte Wärmemenge	WE	145,4	150,8	174,8	176,8	198,5	241,4
Desgleichen pro 1 Liter Inhalt	WE	72,7	75,4	50	50,5	44,2	53,5
Desgleichen bezogen auf versch. Topfgrössen	WE	74	1,0	50),2	44,2	53,5
Preis um 1 Liter Wasser während 1 Stunde konstant auf zirka 90° C zu halten	Rp.	1,	08	0,	73	0,67	0,81
					V V		

Vergleichende An- und Fortkochversuche an Gaskochern und elektrischen Kochplatten.

Gaspreis pro m³ = 60 Rp. Elektrizitätspreis per kWh = 12 Rp. Tabelle IX.

			rsuche askoche		Versuche mit elektrischen Kochplatten				
Füllung des Topfes	g	2000	3500	4500	2000	2000	3500	3500	
Topfdurchmesser	cm	18	22	24	18	18	22	22	
Topfhöhe	cm	13,4	16	18	16,4	9,5	20	11,4	
Preis um 1 Liter Wasser von 15° auf 90° C also um 75° zu erwärmen .	Rp.	1,97	1,93	1,96	1,57	1,51	1,64	1,48	
Preis um 1 Liter Wasser während 1 Stunde auf zirka 90°C zu halten	Rp.	1,08	0,73	0,67	0,60	0,55	0,38	0,36	
Total	Rp.	3,05	2,66	2,63	2,17	2,06	2,02	1,84	
Aequivalenzpreise für das An- und Fort-		a a		-	2,	11	1,9	93	
kochen eines Liters Wasser auf elek- trischen Kochplatten u. Gasapparaten	Rp.	2,78			2,02				

einer Füllung von 4500 g zum Sieden, so dass ziemlich viel Wasser verdampfte. Bei kleinen Füllungen stiegen auch bei den Gasapparaten die Kosten beim Fortkochen; auch die Sparbrenner waren also auf zu grosse Leistung einreguliert.

Alle bisher besprochenen, den Normen angepassten Versuche sind in den besprochenen Tabellen mit dem Buchstaben N bezeichnet. Zieht man die Kosten bei vergleichbaren Versuchen für die Erwärmung eines Liters Wasser von 15 auf 90°C und die sich daran anschliessende einstündige Fortkochperiode, zu Vergleichszwecken heran, so kommt man auf Gesamtkosten von 2,02 Rappen für elektrische und 2,78 Rappen für Gasheizung bei den erwähnten Energiepreisen, wie aus der vorstehenden kleinen Tabelle IX ersichtlich ist. Das Aequivalenzverhältnis zwischen 1 m³Gas und 1 kWh berechnet sich zu 1:3,64. Dieser Wert kommt den bei den praktischen Versuchen gefundenen Zahlen sehr nahe, er wird aber, je nach den Versuchsbedingungen und den gewählten Apparaten, etwas wechseln.

Versuche mit Schnellkochern, Zentaringen und einem Glühherde.

Die nachstehend angeführten Versuche wurden in ganz ähnlicher Weise, wie sie im vorhergehenden Abschnitt beschrieben wurden, durchgeführt.

a) Versuche mit Schnellkochern. Diese Versuche wurden mit drei Apparaten von 1, 2 und 4 Liter Inhalt vorgenommen. Die Mittelwerte je zweier Versuche sind nachstehend angegeben:

Topfinhalt	1 Liter	2 Liter	4 Liter
Anschlusswert	600 Watt	800 Watt	900 Watt
Ankochzeit eff.	10 Min.	15 Min.	26 Min.
Wirkungsgrad	85,4%	84,0%	83,5%
	Mittel 84	,3%	

Wurde der Zweiliter-Topf nur halb gefüllt, so betrug der Nutzeffekt 82%, er fällt also bei diesen Apparaten mit abnehmender Füllung nicht so stark, wie bei den gewöhnlichen Kochplatten, wie aus Linie d, der Fig. 11, ersichtlich ist. Bei einem mittleren Wirkungsgrad von 84,3% kostet das Erwärmen von 1 Liter Wasser von 15 auf 90° C 1,24 Rappen. Die Schnellkocher arbeiten also wirtschaftlich; dagegen ist die Ankochzeit eher grösser als bei Platten. Im Betrieb sind die Einzelkocher auch insofern angenehm, als die Temperatur des Wassers nach Ausschaltung des Stromes, ähnlich wie beim Gas, nur noch um $1-2^{\circ}$ C steigt. Es kann also weniger Wärme verschwendet werden als bei Kochplatten. Praktische Faktoren sprechen aber wieder mehr für die Anwendung der letzteren.

- b) Versuche mit Zentaringen. Mit Zentaringen bezweckt man jeden beliebigen zylindrischen Kochtopf elektrisch zu heizen. Ein etwa 5 cm breiter Blechring, in welchem die Heizwiderstände eingebaut sind, wird meist um den untern Teil des Kochgefässes gelegt und mit einer einfachen Vorrichtung an die Gefässwandung angepresst (siehe Fig. 14 und 15). Es wurden Versuche mit Kochtöpfen von 22, resp. 18 cm Durchmesser und 11,4, resp. 9,5 cm Höhe ausgeführt. Bei den ersten Versuchen berührte der Zentaring die Gefässwandungen nicht ganz gleichmässig. Der erzielte Nutzeffekt bei einem Ankochversuch mit 3000 g Wasserfüllung betrug 65 0 / $_0$. Nach Behebung des kleinen Fehlers stieg derselbe beim grössern Topf auf 72 und beim kleinern auf 71 0 / $_0$. Er war also etwas höher, als bei den entsprechenden, mit Kochplatten durchgeführten Ankochversuchen, wo er 71, bezw. 69 0 / $_0$ betrug.
- c) Versuche mit einem elektrischen Glühherd. Neuerdings kommen elektrische Glühroste für Kochzwecke in den Handel, die als Ersatz für Kohlen- und Gasherde dienen sollen. Der Rost kommt unmittelbar nach dem Einschalten des Stromes zum Glühen. Der Herd ist also sofort betriebsbereit, was in vielen Fällen erwünscht ist. Ferner können bei diesem Herd auch Töpfe mit nicht vollkommen ebenen Bodenflächen ohne Nachteil verwendet werden. Eine Anzahl dem Herde beigegebener konischer Aufsatzringe ermöglichen die Benützung von kleinern Kochgefässen.

Bei praktischen Kochversuchen, die von einem Küchenchef durchgeführt wurden, befriedigte der Herd. Besonders das sichtbare Glühen wurde gerühmt. Für die Ankochversuche stand ein Apparat von 45 cm Länge, 25 cm Breite und 14 cm Höhe mit einer Kochstelle für einen Topf von 22 cm Durchmesser zur Verfügung.

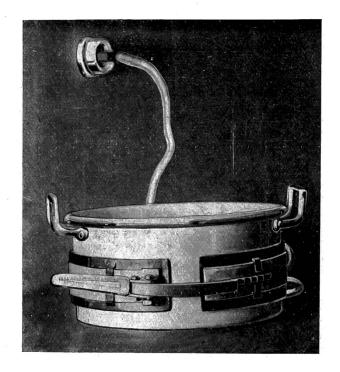


Fig. 15 Zentaring.

Der Anschlusswert dieses Glühherdes beträgt 3000 Watt. Er besitzt Regulierstufen von 3000, 1500 und 750 Watt. Die Versuche erstreckten sich auf die Bestimmung der Ankochzeiten und der Wirkungsgrade bei Verwendung des kalten Herdes und verschiedener Töpfe. Die Stromzufuhr wurde jeweils bei ca. 70^{0} Wassertemperatur abgestellt. Die Töpfe blieben aber auf dem Roste stehen, bis die höchste Wassertemperatur erreicht war. Für die Bestimmung des Wirkungsgrades wurde die gesamte Temperaturerhöhung in Rechnung gesetzt. Nachstehend sind jeweils die Mittelwerte aus 2-3 Ankochversuchen mit verschiedenen Töpfen aufgeführt.

F	\n	koch	iversuc	he	mit	einem	elel	Ktri	schen	Glühh	ierd	

Tabelle X.

Versuchs-No.		1	2	3	4	5 .
Topfdurchmesser	cm	14/17	17/22	22	22	28
Topfhöhe	cm	9,0	10,0	11,6	16,4	17,5
Füllung des Topfes	gr	1000	2000	3500	5000	8000
Volle Stromzufuhr	Min.	8	15	18	23	27
Temperaturausgleichszeit ohne Stromzufuhr.	Min.	22	25	28	28	22
Wirkungsgrad	o/o	22,5	20,5	33,2	35,2	48,6

Erwärmte man also Wasser auf dem kalten Glühherd, so erhielt man geringere Wirkungsgrade als bei guten Kochplatten, selbst wenn man die Stromzufuhr unter-

brochen hatte, bevor das Wasser zum Sieden gelangt war. Bei einem weitern, in gleicher Weise wie No. 3 durchgeführten Versuch, wurde der Strom erst unterbrochen als das Wasser 90° C erreicht hatte und dann das Kochgefäss vom Herd entfernt. Der erzielte Nutzeffekt betrug $27^{\circ}/_{0}$. Nützte man jedoch die im Herd aufgespeicherte Wärme durch Aufsetzen eines zweiten Gefässes mit gleicher Füllung noch aus, so stieg die Wassertemperatur im Verlaufe von 80 Minuten von 13 auf 52° C, was einem Gesamtwirkungsgrad von $41^{\circ}/_{0}$ entspricht.

Bei der Verwendung von dickwandigen Aluminiumgefässen war der Nutzeffekt im allgemeinen $1-2\,^0/_0$ niedriger als bei dünnwandigen Gefässen. Es wurden auch keine grossen Unterschiede im Wirkungsgrad festgestellt, wenn die Stufe 3 oder

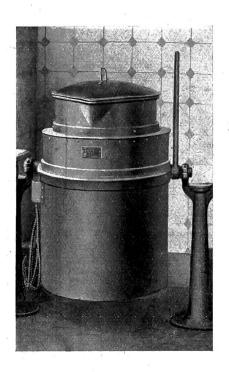


Fig. 16 Kippkesselsystem B.

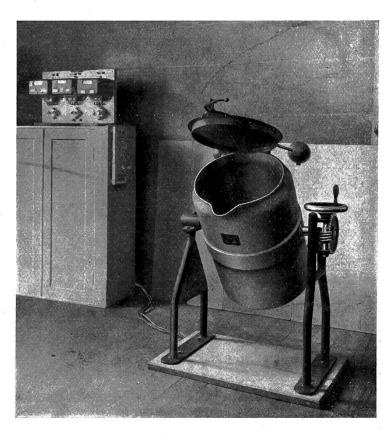


Fig. 17 Kippkesselsystem "Davos".

die Stufe 2 eingeschaltet war. Im letzteren Falle dauerte die Ankochzeit entsprechend länger. In Figur 12 ist der Temperaturverlauf während der Ankochzeit als Kurve a punktiert eingetragen. Benützt wurde dabei ein dünnwandiges Kochgefäss von 3,5 l Inhalt. Diese Kurve verläuft ähnlich, wie die mit einer gewöhnlichen Kochplatte unter gleichen Versuchsbedingungen erhaltene Temperaturkurve. Bei Versuchsbeginn ist die Wärmeübertragung an das Wasser etwas besser. Nachher wird sie eine Zeitlang ungünstiger und steigt dann wiederum. Wurde der Strom bei diesem Versuche ausgeschaltet, so stieg die Temperatur langsam noch an, um nach 28 Minuten das Maximum von 90° C zu erreichen. Die Herdplatte wies eine halbe Stunde nachdem der Strom ausgeschaltet war immer noch eine Temperatur von 73° C auf.

Es liegt in der Konstruktion und Natur dieses Apparates begründet, dass relativ grosse Wärmeverluste durch Leitung und Strahlung entstehen. Ist der Apparat einmal angewärmt, so steigen die Wirkungsgrade erheblich an. Für das Ankochen von Wasser ist er aber in wirtschaftlicher Hinsicht guten Kochplatten unterlegen. Er eignet sich seinem ganzen Wesen nach in der Küche für die Zubereitung von

solchen Speisen, bei denen rasch eine hohe Temperatur erreicht werden muss. Aus diesem Grunde baut man wohl kombinierte elektrische Herde, die mit Kochplatten und Glührosten versehen sind. Vielleicht lässt sich die Wirtschaftlichkeit des Glührostsystemes erhöhen, wenn man für möglichst guten Wärmeschutz sorgt.

An- und Fortkochversuche an elektrischen und Gas-Kippkesseln.

Die Kippkessel haben in Grossküchenanlagen weite Verbreitung gefunden, so dass auch hier vergleichende Versuche mit elektrischer- bezw. Gas-Heizung von grossem Interesse sind. Sie wurden nach denselben Grundsätzen, wie die Ankochversuche an gewöhnlichen Kochapparaten ausgeführt.

Kombinierte An- und Fortkochversuche an elektr. Kippkesseln, System A, unisoliert.

Preis 1 kWh = 12 Rp.

Tabelle XI

11013 1 KWII — 12 Kp.			Tubene At
	Versuchs-No.	1	2
Innerer Durchmesser des Kochgefässes	cm	44	35
Innere Höhe des Kochgefässes	cm	46	35
Füllung des Kochgefässes	1	45	22
Ankochzeit bis zum Siedebeginn	Min.	97	72
Fortkochzeit	Min.	90	. 85
Dauer des Versuchs	Min.	. 187	157
Zugeführte elektrische Energie	kWh	10	5
Zugeführte Wärmemenge	WE	8600	4300
Anfangstemperatur des Wassers	0 C	7	7,5
Wasser verdampft	kg	5,2	3,5
Wasser verdampft in $^0/_0$ der Füllung	• 0/0	12	16
Wirkungsgrad bezogen auf An- u. Fortkochperiode	0/0	78,3	88,3
Preis um einen 1 Wasser auf den Siedepunkt zu erwärmen und 1 Stunde lang weiterzukochen .	Rp.	2,35	2,38
Preis von 1000 nutzbaren WE	Rp.	17,8	15,8
	1		

Verschiedene Küchenchefs behaupten, bei der Zubereitung von Suppen könnten die Kippkessel höchstens während der Ankochperiode geschlossen gehalten werden, beim Fortkochen wenigstens müsse der Deckel geöffnet werden, da sonst die Suppe unansehnlich würde. Aus diesem Grunde wurden einige Vorversuche mit offenen Kippkesseln ausgeführt. Andere Küchenchefs dagegen sprechen sich dahin aus, dass besonders die Fleischbrühe bei offenem Deckel gekocht werden müsse, währenddem die meisten andern Speisen sich bei geschlossenen Gefässen zubereiten liessen. Diese Kochweise ist viel wirtschaftlicher und wir führten die Mehrzahl der Versuche auch mit geschlossenen Deckeln durch.

a) Versuche mit elektrisch geheizten Kippkesseln. Es standen für diese Versuche drei verschiedene Kesselkonstruktionen zur Verfügung. Die zwei Vorversuche und neun Hauptversuche wurden mit dem System A, vier weitere Versuche mit dem System B und die beiden letztern Versuche mit einer besondern, in Davos ausgebildeten Kippkesselkonstruktion (System Davos) durchgeführt.

An- und Fortkochversuche mit elektrischen Kippkesseln von 50 bis 180 Liter Inhalt. Ankochversuche:

Preis der kWh = 12 Rp.

Tabelle XII

		Α									В				"Davos"	
Konstruktionstyp			Gewöh	nliche	Kippkes	ssel, un	isoliert		Kippkessel, teilweise isoliert	Kippkessel, ganz isoliert	Selbstkocher elektrifiziert. Gaskocher			ganz isoliert		
No. des Vers	uches	. 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Füllung des Kessels	kg	180	100	100	80	80	50	50	100	100	100	100	70	70	80	80
Oberer Durchmesser	cm	65	56 .	56	50	50	45	45	56	56	52	52	45	45	42	42
Lichte Höhe	cm	75	56	56	53	53	45	45	56	56	54	54	53	53	64	64
Anfangstemperatur des Wassers	٥C	5	5,5	15	5,5	15	6	13	4,5	4,0	8,0	4,0	9,0	5,0	5,0	5,3
Höchsttemperatur des Wassers .	٥C	92	92	91,5	92	92	92,5	91,5	92	93	91	91	92	91	93,5	91,8
Temperaturerhöhung	0 C	87	86,5	76,5	86,5	80	86,5	78,5	87,5	- 89	83	87	83	86	88,5	86,5
Stromzufuhr	Min.	132	107	87	105	91	80	69	108	100	² /søingeseh. 112	90	97	80	70	68
Temperaturausgleichszeit ohne Stromzufuhr	Min.	43	28	23	30	29	30	31	41	50	30	34	33	27	40	40
Gesamtdauer des Versuches	Min.	175	135	110	135	120	110	100	149	150.	142	124	130	107	110	108
Zugeführte elektrische Energie .	kWh	22	12,2	10,8	9,7	8,9	6,11	5,53	12,2	12	12,8	13,3	9	9,2	9,77	9,50
Total zugeführte Wärmemenge .	WE	18920	10492	9288	8342	7654	5255	4756	10492	10320	11008	11438	7740	7912	8402	8170
Vom Wasser aufgenommene Wärmemenge	WE	15660	8650	7650	6920	6400	4325	3925	8750	8900	8300	8700	5810	6020	7080	6920
Wirkungsgrad	0/0	82,8	82,4	82,5	83	83,6	82,3	82,5	83,4	86,2	75,4	76	75,1	76,1	84,3	84,7
Mittlere Wirkungsgrade für die einzelnen Ausführungsformen	o/o	82,8	82,	82,3 83,3		82	,4	83,4	86,2	75,7		75	5,6	84,5		
Mittlerer Wirkungsgrad des Kon- struktionstyp	0/0	_		82,7			-	83,4	86,2		75	,65		84	4,5	
Preis pro 1000 nutzbare WE .	Rp.				16	,8				16,2	18,5			16,5		
Preis für die Erwärmung von 11 Wasser von 150 C auf 900 C	Rp.	_		1,26			_	1,22		1,6	38		1,	24		

Einstündige Fortkochversuche

7,06 258 32 80 30 30 90,4 l 6a 0,26 224 28 80 8,68 5a 0,7 602 70 86 98 6,06 14a 0,7 70 602 86 1,05 75 90,2 13a 8,0 889 100 69 65 12a 0,7 90,1 100 09 90,06 0,45 0,55 9 387 39 39 39 90,2 10a 0,7 602 09 9 1 8 91,0 9,0 516 9a50 97 91,5 0,53 50 456 8a 91 7,06 889 80 86 ,22 80 87 8,06 0,7 75 ₆a 8 90,3 100 1, 946 5a 90 91,1 4a 860 100 86 1462 3a 180 91 81 81 1 kWh WE WE WE WE ၀ Rp. des Versuches Preis, um 101 Wasser 1 Stunde lang konstant auf einer Temperatur von ca. 900 zu halten Mittlere Temperatur des Wassers Desgleichen bezogen auf verschiedene Ausführungsformen Desgleichen bezogen auf verschiedene Konstruktionstypen Zugeführte elektrische Energie Total zugeführte Wärmemenge No. Füllung des Kessels. Dito pro 10 1 Inhalt .

Das Kesselsystem A ist, nachdem es isoliert wurde, in der photograpischen Aufnahme der Küche des Sanatoriums Clavadel, Fig. 27, bildlich dargestellt. Die Kippkessel besitzen meistens drei Stufenschaltungen, nämlich zwei Stufen für die Seitenheizung und eine Stufe für die Bodenheizung. Die seitlich angebrachte Stromzuführung muss gut abgedichtet sein, da sonst überkochende Flüssigkeiten zu Störungen Anlass geben können.

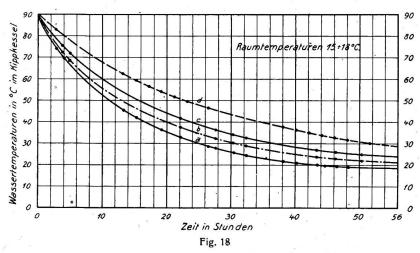
Das Kippkesselsystem B (sogen. Selbstkocher) ist in seinem untern Teil sehr schwer gebaut und besitzt daher eine grosse Wärmekapazität, währenddem der obere, aus Kupfer bestehende Kesselteil nicht isoliert ist. Unter dieses System sind auch die ähnlich gebauten, elektrifizierten Gaskippkessel (Fig. 16) eingereiht worden, da die elektrische Ausrüstung durch dieselbe Firma geliefert wurde. Jede der drei Anschlusstufen ist bei diesen Kesseln dreifach unterteilt.

Der Kesseltyp "Davos", (Fig.17) welcher auf Grund der bei den Versuchen gemachten Erfahrungen konstruiert wurde, ist vollständig isoliert. Die Stromzuleitung ist in die Drehachse verlegt, die Kabel sind also unsichtbar und gut geschützt.

Für die Vorversuche diente der unisolierte Kesseltyp A. Das Wasser wurde bei geschlossenem Kessel auf den Siedepunkt erhitzt und nachher mit kleinster Schaltstufe zirka 1½ Stunden weitergekocht. Die erhaltenen Versuchsergebnisse sind der Tabelle XI (siehe Seite 389) zu entnehmen.

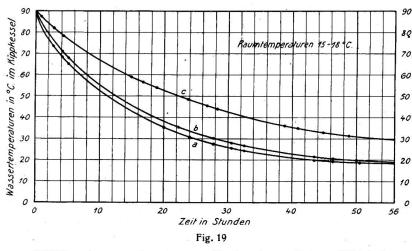
Werden die Versuche in der in Tabelle XI geschilderten Weise ausgeführt, so erhält man kein richtiges Bild über die Wirtschaftlichkeit des Kochens, denn das während der Kochzeit verdampfte Wasser wird in die Nutzleistung miteinbezogen, was nicht richtig ist. Ein Kippkessel, bei dem in der Fortkochperiode ²/₃ des gesamten Anschlusswertes eingeschaltet waren, ergab einen Total-

wirkungsgrad von $95^{\circ}/_{0}$, gerade weil viel Wasser verdampft wurde. Beurteilt man den Kessel also nach diesem, durch Versuche ermittelten Wirkungsgrad, so zieht man einen groben Trugschluss, denn es kommt beim Fortkochen gar nicht darauf an,


viel Wasser zu verdampfen, sondern nur darauf, die Siedetemperatur einzuhalten. Bei den Hauptversuchen wurde der Strom ausgeschaltet, sobald die Wassertemperatur 90° C betrug. In den folgenden 10–15 Minuten stieg die Temperatur jeweils noch um 2–3° C an und sank dann langsam wieder auf 90° C zurück. In diesem Momente wurde mit den, eine Stunde dauernden Fortkochversuchen begonnen und die Stromzufuhr so geregelt, dass das Wasser stets 90-91 °C aufwies. Beim Ankochen war der Strom voll, beim Fortkochen nur die kleinste Stufe zeitweise eingeschaltet. In der Tabelle XII sind die Versuchsdaten zusammengestellt. Die Versuche No. 3-11, 3a-11a und No. 3b-6b (Tabelle XIII) sind mit Kippkesseln System A ausgeführt worden. Da bei den Versuchen äussere Manteltemperaturen von über 90°C beobachtet wurden, was verhältnismässig grosse Wärmeverluste mit sich brachte, wurden der Mantel und der Boden eines 100 Liter Kessels mit Schichten von je 4 mm Asbest und 2-3 mm Wollhaaren, die in eine Blechhülle gelegt waren, besser isoliert. Der Nutzeffekt stieg beim Ankochen, wie der Versuch 10 zeigt, dadurch nicht wesentlich an. Beim Fortkochen aber brauchte man schon weniger Strom. Als man auch noch den Deckel vollständig isolierte, erhielt man noch bessere Resultate, wie die Versuche 11 und 11a zeigen. Der Hauptvorteil einer sorgfältigen Isolation liegt also hauptsächlich darin, dass man beim Fortkochen ziemlich grosse Stromersparnisse machen kann. Damit das Wasser nicht zum Sieden kam, musste bei den Fortkochversuchen No. 3a-11a der Strom zeitweise abgestellt werden. Darum wurden mit den gleichen Kesseln die Fortkochversuche No. 3b-6b in der Weise ausgeführt, dass die kleinste Schaltstufe während der ganzen Stunde eingeschaltet blieb. Die Siedetemperatur wurde bald erreicht und ziemlich viel Wasser verdampft, wie aus Tabelle XIII hervorgeht, da pro 10 Liter Wasserfüllung und Stunde im Mittel 198 WE zugeführt wurden, währenddem aus den Fortkochversuchen 3a-9a ersichtlich ist, dass tatsächlich nur zirka 90 WE notwendig sind, um das Wasser auf 90 $^{\circ}$ C zu halten, selbst wenn die Kessel nicht genügend isoliert waren. Wenn es praktische Gründe irgendwie zulassen, sollte also die kleinste Anschlusstufe noch weiter unterteilt werden, damit die Stromzufuhr für das Fortkochen besser eingeregelt werden kann. Die ausgeführten Versuche geben in dieser Hinsicht gute Unterlagen für Neukonstruktionen. Bei vollkommener Isolation eines 100 Liter Selbstkochers waren für den Fortkochversuch nur 0,45 kW notwendig, währenddem der Anschlusswert 2,8 kW betrug. Die in der Tabelle XII und XIII angeführten Zahlenwerte zeigen, welche Ersparnisse beim Fortkochen durch sorgfältige Isolation und zweckmässige Unterteilung der kleinsten Stufe erreicht werden können.

Bei der Konstruktion B (s. Versuche No. 12-15 und No. 12a-15a) waren die Nutzeffekte der Ankochperiode bedeutend kleiner, weil die grossen Mantelmassen ziemlich viel Wärme aufnehmen und der obere Teil des Kessels gar nicht isoliert war. Die Fortkochversuche dagegenfielen bei diesem System durchwegs günstiger aus, als beim unisolierten System A, weil sowohl die Seiten, als auch die Bodenheizungsstufen nochmals in je drei Stufen unterteilt waren und daher eine kleinere Stromzufuhr während des Fortkochens ohne weiteres ermöglichten. Die kleinste Stufe der Bodenheizung reichte gerade aus, um das Wasser während der Fortkochperiode dauernd auf zirka 90°C zu halten und es scheint deshalb nicht notwendig zu sein, auch noch die Schaltstufen der Seitenheizung zu unterteilen.

Auf Grund der bei den beschriebenen Versuchen gemachten Erfahrungen wurde ein neuer Kippkessel von 80 1 Inhalt konstruiert, dessen äusserer Mantel, Boden und Deckel sehr gut isoliert sind. Er besitzt drei Stufenschaltungen, aber nur die Bodenheizung ist nochmals in drei Unterstufen geteilt worden, da man beim Fortkochen nur diese benützte. Der Kessel ist in Fig. 17 abgebildet.


Die mit diesem Kesseltyp erhaltenen Resultate sind unter den Nummern 16, 17 und 16a/17a der Tabelle XII aufgezeichnet. Man ersieht daraus, dass auch dieser

Kessel beim Ankochen einen befriedigenden Wirkungsgrad ergibt, dass aber namentlich das Fortkochen mit demselben sehr sparsam durchgeführt werden kann.

Abkühlungskurven, aufgenommen an Kippkesseln von je 100 1 Inhalt.

- a) Kippkessel, Konstruktion B;
 b) Kippkessel, Konstruktion A;
 c) Kippkessel, Konstruktion A, jedoch teilweise isoliert;
 d) Kippkessel, Konstruktion A, ganz isoliert.

Abkühlungskurven, aufgenommen an Kippkesseln von 70 bezw. 801 Inhalt,

- a) Kippkessel, Konstruktion B, 70 1 haltend, (auf elektrischen Betrieb umgebauter Gaskippkessel);
 b) Kippkessel, Konstruktion A, 80 I haltend;
 c) Kippkessel, Konstruktion "Davos", 80 I haltend.

Die Versuche an elektrischen Kippkesseln haben zweifellos ergeben, dass man bei deren Herstellung der Isolation grosse Aufmerksamkeit schenken muss, besonders, wenn es sich um Kessel handelt, die vorwiegend zum Fortkochen der Speisen verwendet werden. Braucht man die Kessel nur zur Erwärmung von Flüssigkeiten, wie z. B. zum Milchsieden oder Kaffeekochen, so spielt die sorgfältige Isolierung eine kleinere Rolle.

In den Figuren 18 und 19 sind die an isolierten und nicht isolierten elektrischen Kippkesseln verschiedener Grösse aufgenommenen Abkühlungskurven eingetragen. Aus denselben ist der gute Einfluss einer sorgfältigen Isolierung deutlich kennbar.

b) Versuche mit Gaskippkesseln. Da nur zwei verschiedene Gaskippkesselkonstruktionen zur Verfügung standen, schränkte man sich in Davos auf die Durchführung weniger Versuche. Für die Vorversuche No. 1 und 2 diente ein alter Gaskippkessel, welcher

mehrere Jahre im Betriebe stand. Für den Vorversuch No. 3 und die Hauptversuche No. 4 und 5 wurden neuere Modelle von etwas grösserem Durchmesser, aber geringerer Höhe verwendet. Bei allen Kesseln waren der obere Teil (ca. 1/3) des Kesselmantels und der Deckel nicht isoliert. Zwei Gaskippkesselmodelle sind in den Fig. 20 und 21 abgebildet.

Die Versuche wurden im Prinzip analog wie diejenigen an den elektrischen Kippkesseln durchgeführt. In Tabelle XIV sind die drei Vorversuche und in Tabelle XV die beiden Hauptversuche 4 und 5 zusammengestellt. Bei einem vorgängig ausgeführten Versuch zeigte es sich, dass der gleiche Kessel bei einem Gasdruck von 40 mm und einem Kaminzug von 2-4 mm WS, am Kesselausgang gemessen, nur einen Nutzeffekt von 36% ergab. Die Abgase wurden dabei vom Kessel durch ein 2 m langes Blechrohr in ein gemauertes, über das Dach gehendes Kamin

Fortkochversuche an elektrischen Kippkesseln, System A.

Preis pro kWh = 12 Rp.

Tabelle XIII

Ver	suchs-No.	3 b	4 b	5 b	6 b	
Wesser singestill	1	100	100	100	90	
Wasser eingefüllt	kg	180	100	100	80	
Wasser verdampft einschl. der bei dem Versuche a verdampften kleinen Mengen .	kg	9,45	5,25	4,8	4,0	
Dito in $0/0$ der Füllung	º/o	5,25	5,25	4,8	5,0	
Theoret. Anschlusswert der Bodenheizung	kWh	4,0	2,8	2,8	2,2	
Verbrauch an elektrischer Energie	kWh	3,62	2,3	2,4	2,0	
Zugeführte Wärme, total	WE	3113	1978	2064	1720	
Zugeführte Wärme pro 10 1 Füllung	· WE	173	198	206	215	
Zugeführte Wärme v. 10 l Füllung im Mittel	WE		19	8		
Preis um 10 1 Wasser 1 Stunde lang auf Kochtemperatur zu halten	Rp.	2,76				

geleitet. Die Abgastemperaturen betrugen bei diesem Versuche 230° C; bei einer Wiederholung des Versuches ergab sich ein Nutzeffekt von $35^{0}/_{0}$ und nach dem Einbau einer durchlochten Klappe in das Abzugsrohr ein solcher von $44^{0}/_{0}$. Da diese Wirkungsgrade als sehr ungünstig angesehen werden mussten, wurde der

Fig. 20
Gaskippkessel mit Blechhaube versehen.

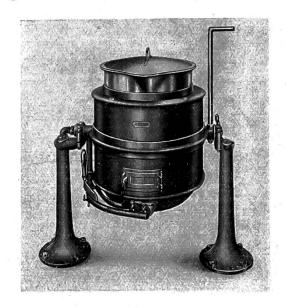


Fig. 21
Gaskippkessel.

Kessel gründlich revidiert, wobei sich herausstellte, dass der spiralförmige Ring zwischen dem Wasserkessel und dem äusseren Kesselmantel, der die heissen Gase um den Kessel herumleiten sollte, über 1 cm Spielraum hatte. Die Gase umspühlten daher den Kessel nur unvollkommen und gelangten mit hoher Temperatur ins Kamin. Durch diese Ausführung erklärte sich der niedrige Nutzeffekt, der nach Behebung des Konstruktionsfehlers beim Ankochen auf ca $64\,^0/_0$ anstieg.

Kombinierte An- und Fortkochversuche an Gaskippkesseln.

Gaspreis pro $m^3 = 60 \text{ Rp.}$ Tabelle XIV

Vers	uchs-No.	1	2	3	
Durchmesser des Gefässes	cm	35,5	35,5	40	
Innere Höhe	cm	53	53	49	
Füllung des Gefässes	kg	45	45	50	
Ankochzeit	Min.	66	58	90	
Fortkochzeit	Min.	90	, 90	90	
Gasverbrauch	m³	2,15	1,98	2,75	
Unterer Heizwert des Gases	WE	4002	4022	4190	
Zugeführte Wärme total	WE	8604	7957	11522	
Anfangstemperatur des Wassers	٥C	7,5	14	8	
Verdampftes Wasser	kg	3,95	3,85	5,57	
Desgleichen in $0/0$ der Füllung zirka	º/o	9	9	. 11	
Aufgenommene Wärme total	WE	6109	5772	7406	
Nutzeffekt der Wassererwärmung zirka	0/o	64	67	57	
Nutzeffekt total	o/o	71	72,5	64,3	
Kosten um 1 Liter Wasser auf den Siedepunkt zu erwärmen und 1 Stunde lang weiterzukochen .	Rp.	2,62	2,36	2,94	
Kosten von 1000 nutzbaren WE	Rp.	21,1	20,6	22,3	
Kosten von 1000 nutzbaren WE im Mittel	Rp.		21,33		

In Zürich wurden im Anschluss an die eben besprochenen Versuche mit einem Gaskippkessel gleicher Konstruktion, bei dem der spiralförmige Ring für die Rauchgasführung dem Kessel ziemlich genau angepasst worden war, noch einige ergänzende Versuche ausgeführt.

Bei dem in Tabelle XV angeführten Versuch No. 5 wurden die Rauchgase durch ein Rohr mit relaliv starkem Zug ins Kamin abgeführt. Letzterer bewirkte einen grossen Luftüberschuss (Kohlensäuregehalt der Rauchgase nur ca. $2-3^{\,0}/_0$) und hohe Abgastemperaturen, so dass der Wirkungsgrad nur $38,5^{\,0}/_0$ betrug. Beim Versuch No. 6 traten die Rauchgase mit geringem Zug frei in den Versuchsraum aus. So ergaben sich auch niedrigere Abgastemperaturen und ein geringerer Luftüberschuss; der Nutzeffekt stieg auf $59^{\,0}/_0$ an.

Bei einem weitern Versuch No. 7 wurde bei einem Gasdruck von 38 mm und einem stündlichen Verbrauche von 1800-1900 1 Gas eine lange, eben entleuchtete Flamme erzeugt, die Ankochzeit betrug in diesem Falle 56 Minuten und man erreichte einen Wirkungsgrad von $54^{0}/_{0}$.

Bei einem 8. Versuche brannte nur der kleine Brenner des Kippkessels mit 135 mm Gasdruck und einem stündlichen Gasverbrauche von 1700 l. Die Ankochzeit stieg auf 68 Minuten an und es wurde ein Nutzeffekt von rund $60^{\,0}/_{0}$ erreicht.

Die verschiedenen, an Gaskippkesseln ausgeführten Versuche haben gezeigt, dass der Wirkungsgrad bei den untersuchten Konstruktionen beim Ankochen sehr stark von der Zugstärke abhängig ist. Es ist deshalb bei der Aufstellung solcher

Ankoch- und Fortkochversuche an Gas-Kippkesseln von 50 Liter Inhalt.

Gaspreis pro m ³ 60 Rp. Ankoch	T.	abelle XV			
Versu	ıchs-No.	3	4	51)	61)
Gasdruck vor dem Brenner	mm WS	40	40	40	38
Stündlicher Gasverbrauch	. 1	1300	1150	1800	1800
Füllung des Kessels	kg	50	50	50	50
Durchmesser des Kessels	cm	40	. 40	42,5	42,5
Innere Höhe		_	_	47,0	47,0
Anfangstemperatur des Wassers	٥C	4,5	4,5	11,7	12,8
Endtemperatur des Wassers	٥C	92,5	91,0	95,1	98,1
Temperaturerhöhung	0 C	88,0	86,5	83,4	85,3
Ankochzeit	Min.	80	90	87	59
Zugstärke	mm WS	- '	1_	ca. 4	sehr gering
Temperatur der Abgase	ca. ºC	138	139	200	170
Temperatur des Gases	ca. ºC	10,5	11,5	16,3	16,3
Gesamtdruck des Gases	mm Hg	621	626	732	732,5
Gasverbrauch abgelesen	1	1704	1706	2799	1914
Gasverbrauch reduziert auf 0°, 760 mm	1	1320,6	1326,6	2495	1707
Unterer Heizwert des Gases in Davos	WE	4026	4020	4030	3943
Unterer Heizwert des Gases bei 00, 760 mm .	WE	5195	5170	4100	4245
Zugeführte Wärmemenge	WE	6860	6858	10820	7245
Aufgenommene Wärmemenge	WE	4400	4325	4170	4265
Nutzeffekte der einzelnen Versuche	º/o	64,1	63,1	38,5	59,0
Nutzeffekt im Mittel	0/0	66	3,6	38,52)	59,0
Kosten von 1000 nutzbaren WE	Rp.	23	3,5	_	_
Kosten, um 10 Liter Wasser von 15 auf 90° zu erwärmen	Rp.	17	7,6		-
Einstündige Fo	rtkochvers	suche:			
Ver	suchs-No.	31a	32a		
Mittlere Temperatur des Wassers	0 C	90,6	90,5	93,4	
Gasverbrauch abgelesen	1 .	146	144	213	_
7	WE	588	579	858	# # E
					- /
Zugeführte Wärmemenge pro 10 Liter Inhalt . Zugeführte Wärmemenge pro 10 Liter Inhalt		118	116	171	_
Mittel	WE WE	1	17	_ *	-
konstant auf ca. 90° zu halten		1	7,5	-	-

¹⁾ Versuche in Zürich durchgeführt.
2) Grosser Luftüberschuss und hohe Abgastemperatur.

Kessel ganz besonders auf richtige Einstellung desselben zu achten. Ferner zeigen die Versuche, wie notwendig es ist, die Apparate vor ihrer Ablieferung und Aufstellung gründlich zu kontrollieren, um dauernd auftretende grosse Wärmeverluste beim Ankochen zu vermeiden. Es dürfte auch möglich sein, durch andere Konstruktionen den Wirkungsgrad dieser Kessel weiter zu heben.

Abkühlungskurven, die in Davos an Kippkesseln aufgenommen wurden, deckten sich praktisch mit der in Fig. 18 und 19 aufgezeichneten Kurve a für Konstruktion B der elektrischen Kippkessel. Die Wärmeverluste sind also gross. Es ist dies auch sehr begreiflich, wenn man bedenkt, dass ca. $\frac{1}{3}$ der Kesselfläche nicht isoliert ist.

Eine weitere, in Zürich an einem mit einer einfachen Blechhaube (Fig. 21) versehenen Kippkessel aufgenommene Abkühlungskurve ergab nicht viel bessere Resultate. Es zeigte sich, dass man auch bei den Gaskippkesseln zweckmässigerweise zu einer besseren Wärmeisolierung übergehen würde, wenn man das Fortkochen noch wirtschaftlicher gestalten will. Wird die vollständige Isolierung der Kippkessel in der Weise ausgeführt, dass der Kessel an Handlichkeit im praktischen Gebrauch nichts einbüsst, so wird sie einer Wärmeschutzhaube, die beim Oeffnen des Kessels zuerst abgehoben werden muss, in jedem Falle vorzuziehen sein.

c) Vergleich zwischen elektrischen- und Gas-Kippkesseln. Bei den durchgeführten Versuchen erhielt man mit den Gaskippkesseln kleinere Wirkungsgrade, als mit den elektrischen Kippkesseln. Auch das Fortkochen war mit den Gaskippkesseln teurer. In der kleinen Tabelle XVI sind die in Davos gefundenen Preisunterschiede zwischen elektrischem- und Gas-Kippkesselbetrieb zusammengestellt. Das Aequivalenzverhältnis

Fortkochversuche an Kippkesseln mit Gasheizung bezw. elektrischer Heizung.

Energiepreise 1 m³ Gas = 60 Rp. 1 kWh = 12 Rp.

Tabelle XVI

		Gaskipp-	Elektrische Kippkessel				
Konstru	iktion	kessel	A nicht isoliert	B nicht isoliert	A isoliert	Davos isoliert	
Kosten um 10 l Wasser von 15° auf 90° C zu erwärmen	Rp.	17,60	12,60	13,80	12,20	12,40	
Kosten um 10 1 Wasser 1 Stunde lang auf 90 °C zu halten	Rp.	1,75	1,22	1,05	0,55	0,42	
Total	Rp.	19,35	13,82	14,85	12,75	12,82	
Mittelwerte	Rp.	19,35	14	,34	12	,78	

berechnet sich zu 1 m³ Gas = 3,7 kWh. Kämen nur ganz sorgfältig isolierte Kippkessel, deren Heizstufen für das Fortkochen richtig bemessen sind, zur Verwendung, so würde sich das Verhältnis noch mehr zugunsten der elektrischen Kippkessel verschieben. Zieht man beispielsweise nur die Versuche mit isolierten elektrischen Kippkesseln zum Vergleich heran, so ergibt sich ein Verhältnis zu 1 m³ Gas = 3,3 kWh. Nun ist aber anzunehmen, dass man darnach trachten wird, auch die Gaskippkessel konstruktiv zu verbessern. Es steht z. B. nichts im Wege, sie ebenfalls sorgfältig zu isolieren.

III. Vergleichende praktische Kochversuche.

A. Vergleichende Kochversuche in kleinern Haushaltungsküchen mit Gas- und elektrischen Herden.

Als Ergänzung zu den beschriebenen An- und Fortkochversuchen wurden in Davos noch vergleichende praktische Kochversuche in zwei Haushaltungen durch-

geführt, indem je 14 Tage nach einem bestimmten Speizezettel mit einem Gasherd einerseits und mit einem elektrischen Herd andererseits gekocht wurde. Solche vergleichende Untersuchungen müssen zuverlässig durchgeführt werden, und sowohl die Gas- als auch die elektrische Einrichtung mit der nötigen Sorgfalt und mit Interesse für die Sache benützt werden.

Die eine Versuchsserie wurde im Hause des Herrn Rutishauser durchgeführt und soll hier etwas näher besprochen werden. Die Familie bestand aus vier Personen, nämlich aus zwei Erwachsenen und zwei Kindern von 12 und 13 Jahren. Es wurde genau nach folgendem Wochenspeisezettel, je zwei Wochen mit Gas und zwei Wochen mit dem elektrischen Herd gekocht.

Frühstück während der ganzen Woche: Milchkaffee.

	Mittagessen:	Nachtessen:
Montag	Suppe, Bratwürste, Rösti, gehackter Kohl.	Pudding mit Weinsauce, Rösti mit Kaffee.
Dienstag	Suppe, Kotelette, Kartoffel, Rot- kraut.	Aufschnitt mit Rösti.
Mittwoch	Suppe, Omeletten, Apfelbrei.	Warme Würste mit Rösti.
Donnerstag	Suppe, Gulasch und Knöpfli.	Kaffee komplett.
Freitag	Suppe, Spaghetti, Zwetschgen.	Gulasch mit Kartoffelsalat.
Samstag	Suppe, Rindfleisch, Kartoffeln und Salat.	Kuchen mit Kaffee.
Sonntag	Suppe, Schweinebraten, Spaghetti, Dessert.	Braten, Spaghetti (gewärmt), Kaffee.

Die beiden in der Küche aufgestellten Herde mit den Zubehörteilen sind in Fig. 22 wiedergegeben.

Der elektrische Kochherd war an die Leitung von 220 Volt Spannung angeschlossen und besass vier Kochstellen, wovon die beiden vordern 22, die beiden hintern 18 cm Durchmesser aufwiesen. Der in den Herd eingebaute Back- und Bratofen

Fig. 22 Küche Rutishauser.

war 33 cm breit, 30 cm hoch und 46 cm tief. Mit der Schaltstellung 3, also bei voller Stromzufuhr wurden die grossen Kochplatten nach Katalog der Fabrik mit 1200, die kleinen mit 850 Watt gespeist. Mit Stufe 2 war die Hälfte und mit Stufe 1 der vierte Teil eingeschaltet. Der Backofen besass nach Katalog einen Anschlusswert von 1400 W. Als Kochgefässe wurden neue, dickwandige Aluminiumtöpfe von 22, bezw. 18 cm Durchmesser und bis 20 cm Höhe benützt.

Der aus der Schweiz stammende Gasherd besass vorn einen Ringbrenner von 100 mm äusserm Durchmesser und einem Rundbrenner von 45 mm Durchmesser. Hinten waren die beiden Kochstellen mit 2 Rundbrennern von 45 mm Durchmesser ausgerüstet. Der Backofen des Gasherdes war 37 cm breit, 54 cm

hoch und 43 cm tief und konnte mit Ober- und Unterhitze betrieben werden. Als Kochtöpfe wurden graue und braune Emailtöpfe von 22, resp. 14 cm Durchmesser und 18 – 10 cm Höhe benützt.

Alles in der Haushaltung benötigte warme Wasser wurde auf den Versuchsherden erwärmt und der Leitung mit $5-6^{\circ}$ C entnommen. Ein anderer Warmwasser-

apparat stand nicht zur Verfügung. Beim An- und Fortkochen waren die Deckel der Kochgefässe ständig aufgesetzt. Bei den elektrischen Versuchen achtete man darauf, dass der Strom immer frühzeitig genug ausgeschaltet wurde, damit die in den Kochplatten noch aufgespeicherte Wärme durch Aufstellen von kaltem Wasser usw. ausgenützt wurde. Eine Kochkiste wurde nicht benutzt.

Die Ablesungen an der Gasuhr und am Elektrizitätszähler fanden während der ersten Versuchstage nach jeder Hauptmahlzeit, später nur noch abends statt. In der Tabelle XVII sind die täglichen Strom- und Gasverbrauche und die entsprechenden Auslagen für die gelieferte Energie notiert. Schon aus den Notierungen kann man ersehen, dass die Versuche sehr sorgfältig durchgeführt wurden, denn der Energieverbrauch schwankte für das gleiche Menu wenig.

Elektrizität und Gasverbrauch bei den vergleichenden Kochversuchen.

Energiepreise 1 kWh = 12 Rp., 1 m³ Gas = 60 Rp.

Tabelle XVII

		Elektrisch	e Versuch	e	Gasversuche				
	Ver	brauch in l	cWh	Kosten	Verb	Kosten			
Versuchs-No.	1 2		Mittel	Rp.	3 4		Mittel	Rp.	
Montag	3,6	3,8	3,70	44,4	940	855	897,5	53,85	
Dienstag	3,4	3,3	3,35	40,2	880	820	850,0	51,0	
Mittwoch	2,8	2,9	2,85	34,2	650	680	665,0	39,9	
Donnerstag .	2,8	2,8	2,80	33,6	670	720	695,0	41,7	
Freitag	3,4	3,3 🖹	3,35	40,2	730	865	797,5	47,85	
Samstag	4,4	3,8	4,10	49,2	1150	1170	1160,0	69,60	
Sonntag	4,6	4,7	4,65	55,8	1710	1540	1625,0	97,5	
Tqtal	25,0	24,6	24,8	297,6	6730	6650	6690	401,4	

Tagesdurchschnitt 3,54 kWh bezw. 956 l Gas Pro Tag und Person wurden im Mittel verbraucht:

bei der Gasküche . . . 239 1 Gas = 14,3 Rappen bei der elektrischen Küche 0,89 kWh = 10,7 Rappen

Das Aequivalenzverhältnis zwischen Gas und Elektrizität ergibt sich zu 1 m³ Gas = 3,7 kWh. Bei einem Strompreis von 12 Rappen müsste der m³ Gas also 44,4 Rappen kosten. In Fig. 23 sind der tägliche Gas- und Elektrizitätsverbrauch und die entsprechenden, daraus erwachsenden Kosten graphisch dargestellt worden. In den ersten Wochentagen, besonders aber am Mittwoch, Donnerstag und Freitag, an welchen Tagen alles Essen auf den Kochplatten zubereitet wurde, sind die Kosten zwischen Elektrizität und Gas nicht sehr verschieden. Am Samstag und Montag dagegen stiegen die Ausgaben der Gasküche stark an, was nur auf die Benützung des Gasbackofens zurückzuführen ist. Der elektrische Backofen arbeitete also kalorisch besser, denn er war sehr sorgfältig isoliert, so dass nur kleine Wärmeverluste durch Leitung und Strahlung auftraten. Beim Gasbackofen dagegen waren die Wärmeverluste durch Strahlung und abziehende Verbrennungsgase relativ hoch. Die Heizwirkung der Gasbacköfen ist ja auch allgemein bekannt. Es soll hier noch erwähnt werden, dass z. Z. Untersuchungen über die Verhältnisse an Gasback- und Bratöfen im Gange sind und ein noch ökonomischeres Backen und Braten mit Gas erwartet werden darf.

Aus den Einzelablesungen ging weiter hervor, dass die Zubereitung des Frühstücks auf dem elektrischen und Gaskochherd bei den angegebenen Energiepreisen

gleichviel kostete. Es zeigt sich auch hier, dass die Erwärmung kleiner Milch- und Kaffeemengen unter Benützung je einer besondern elektrischen Kochplatte nicht vorteilhaft ist, besonders, wenn das Frühstück nicht von allen Personen gleichzeitig eingenommen wird. Der Gasherd bietet hier grössere Vorteile. Auch elektrische Einzelkocher arbeiten für diesen Zweck wirtschaftlicher als Kochplatten.

Endlich sei noch erwähnt, dass im gleichen Haushalt während mehrerer Tage die Getränke und das Abwaschwasser nur im elektrischen Schnellkocher zubereitet

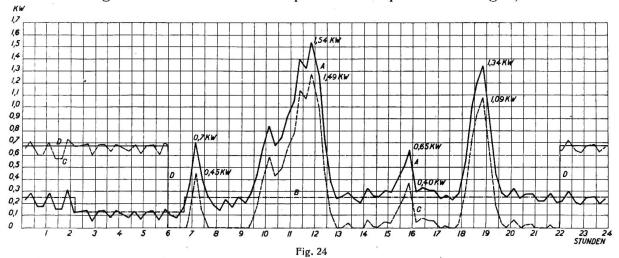
Energieverbrauch und Kosten bei vergleichenden praktischen Kochversuchen auf einem elektrischen Kochherd bezw. einem Gaskochherd.

- a) Tägliche Kosten der Gasküche.
- Tägliche Kosten der elektrischen Küche.
- c) Täglicher elektrischer Energiekonsum.
 d) Täglicher Gasverbrauch.

wurden. Man erzielte dadurch, wie zu erwarten war, beim Frühstück eine Ersparnis, währenddem tagsüber sich kein wesentlicher Unterschied ergab, ob man Kochplatten oder Selbstkocher benutzte. weil der Wärmeinhalt der Kochplatten durch Aufstellen von kaltem Wasser gut ausgenützt wurde. Die Aequivalenzzahl zwischen Gas und Elektrizität verschob daher bei Verwendung von Selbstkochern auch nur wenig, nämlich auf $1 \text{ m}^3 \text{ Gas} = 3.57$ kWh.

In einer zweiten Haushaltung, die aus zwei Erwachsenen und drei Kindern von 10, 5 und 4 Jahren bestand, wurde ebenfalls nach einem bestimmten Speisezettel während je zwei Wochen mit Gas und Elektrizität gekocht. Die beiden Herdkonstruktionen waren ungefähr gleich, wie die vorhin beschriebenen, dagegen stand zur Bereitung von warmem Wasser ein elektrisch geheizter Warmwasserspeicher zur Verfügung. Sein Stromverbrauch wurde in die nachstehenden Preisberechnungen nicht mit einbezogen. da er für beide Versuchsreihen benutzt wurde. Man brauchte

pro Woche im Mittel entweder 26,35 kWh oder 7,57 m³ Gas, woraus sich die Aequivalenzzahl zwischen Gas und Elektrizität zu 1 m³ Gas = 3,48 kWh berechnet.


Ausser den besprochenen Versuchen wurden uns die von einem Ingenieur in den Jahren 1911 – 1914 in seinem eigenen Haushalt sehr sorgfältig durchgeführten Messungen über den Gas-, bezw. Elektrizitäts-Verbrauch in der Küche zur Verwendung in diesem Aufsatz überlassen.

 835 m^3 Der Gasverbrauch betrug 1911 775 m^3 direkt an der Gasuhr abgelesen. 1912 1913 720 m^3

Daraus berechnet sich der mittlere jährliche Gasverbrauch zu 777 m³.

Anfangs 1914 wurde der Gasherd durch eine elektrische Einrichtung ersetzt, indem man einen, mit drei Platten und einem Bratofen ausgerüsteten Kochherd und einen Warmwasserapparat aufstellte. Der Verbrauch an elektrischer Energie belief sich für das Jahr 1914 auf 3256 kWh oder 8,92 kWh pro Tag. Dazu wurden während der Uebergangszeit aber noch 83 m³ Gas konsumiert, weshalb für Vergleichsrechnungen der mittlere Gasverbrauch für die Jahre 1911-1913 um diesen Betrag gekürzt werden muss, sich also zu 694 m³, entsprechend einem täglichen Gasverbrauch von 1,90 m³, ergibt. 1 m³ Gas war aequivalent 4,7 kWh. Bei dem damaligen Gaspreise von 20 Rappen pro m³ errechnet sich der Aequivalenzpreis für die elektrische Energie zu 4,26 Rappen pro kWh.

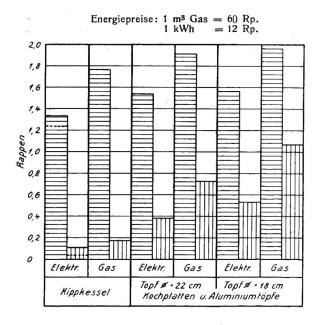
In Fig. 24 ist der Stromverbrauch des Kochherdes und des Warmwasserapparates als Durchschnitt einer 32-tägigen Beobachtungsperiode graphisch aufgetragen. Der Kochherd zeigt die den Mahlzeiten entsprechenden Spitzenbelastungen, währenddem

Mittlerer (32 Tage) Energiekonsum eines elektrischen Kochherdes und Warmwasserspeichers.

- A. Energieverbrauch des Kochherdes und des Warmwasserspeichers;
- B. Energieverbrauch des Warmwasserspeichers;
 C. Energieverbrauch des Kochherdes und des Warmwasserspeichers, wenn der letztere nur nachts aufgeladen würde;
 D. Energieverbrauch des Warmwasserspeichers bei Ladung ausschliesslich während der Nacht.

Anschlusswerte nach Katalog: 2 Kochplatten 32 cm 🚫 = 1800 W

- 1 Kochplatte 18 cm 🛇 = 600 W
- 1 Backofen = 1300 W 1 Warmwasserspeicher = 235 W


Total = 3935 W

der Warmwasserapparat einen ziemlich regelmässigen, dauernden Stromverbrauch aufwies, da er nicht zum Betrieb mit Nachtstrom eingerichtet war, was mit ein Grund gewesen sein mag, dass das Aequivalenzverhältnis zwischen Gas und Elektrizität bei diesen Beobachtungen etwas ungünstiger ausfiel, als bei den in Davos durchgeführten praktischen Kochversuchen. Wie das Stromverbrauchsdiagramm etwa aussehen würde, wenn der Wärmespeicher nur während der Nacht eingeschaltet gewesen wäre, ist ebenfalls aus der Figur in den Linien C und D ersichtlich.

B. Vergleich der Betriebskosten von elektrischen- und von Gas-Küchen.

Wenn zum Schlusse der Ausführungen über die Verwendung von Elektrizität und Gas in der Küche einige Vergleichszahlen angeführt werden, so sei vorweg erwähnt, dass sich die folgenden Zahlenangaben ausschliesslich auf die mitgeteilten Versuche beziehen. Sie können schon ihrer grossen Uebereinstimmung wegen, wenn auch auf verschiedenem Wege gefunden, für wirtschaftliche Berechnungen als Richtlinie dienen. In einzelnen Fällen und bei verschiedenen örtlichen Verhältnissen werden sich aber immer mehr oder weniger grosse Abweichungen von den hier mitgeteilten Werten ergeben. Der Aequivalenzpreis kann sich ferner verschieben, wenn gewisse Apparate weiter verbessert werden. So kann man annehmen, dass

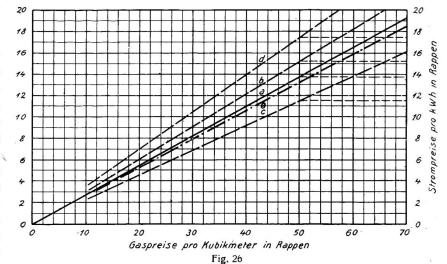
sowohl die Gaskippkessel als auch die Gasbratöfen in konstruktiver Hinsicht noch vervollkommnet werden. Ferner können elektrische Speicherkochherde aufkommen,

Kosten der Erwärmung eines LitersWasser von 15° auf 90° C. Kosten der Warmhaltung eines LitersWasser auf 90° während einer Stunde.

Fig. 25

Vergleich der Betriebskosten für An- und Fortkochen von elek-trisch beheizten Kippkesseln und Kochplatten mit gasbeheizten Kippkesseln bezw. Kochstellen.

die die Verwendung des billigen Nachtstromes für Kochzwecke ermöglichen.


Endlich muss auch darauf hingewiesen werden, dass die Gasqualität wechseln kann und dass ausserdem bei gleicher Gasqualität bei dem heutigen Verkaufssystem in höher gelegenen Ortschaften weniger Energie im gleichen Gasvolumen enthalten ist, als in tiefern Lagen, weil das Gas dort unter kleinerem Druck steht. Will man an verschiedenen Orten durchgeführte Versuche unabhängig von der geographischen Lage miteinander vergleichen, so muss der Gasheizwert dem mittleren Barometerstand des Ortes angepasst werden. Das im hochgelegenen Davos bei den Versuchen verwendete Gas wies denn auch einen relativ hohen Heizwert auf.

Sowohl bei der elektrischen Küche, als auch bei der Gasküche kann bei unzweckmässiger Verwendung und unrichtiger Bedienung der Apparate Geld verschwendet werden, wodurch sich die Aequivalenzzahl zugunsten der einen oder andern Energiequelle ebenfalls verschieben kann. Die praktischen Erfah-

rungen im Küchenbetrieb lehren ja, wie sehr ein sparsamer Betrieb von der Bedienung abhängig ist.

Die Versuche haben aber zweifellos ergeben, dass das Ankochen des Wassers in Grossküchen, sowohl bei der elektrischen Küche, als auch bei der Gasküche am

besten in den Warmwasserspeicheranlagen, wie sie eingangs bewurden, gehandelt schieht. Nur wenn solche Einrichtungen nicht vorhanden sind. sollten hierfür andere Apparate verwendet werden. Das Fortkodien wird um so billiger, je mehr sich die verwendeten Apparate hinsichtlich ihrer Isolierung einer guten Kochkiste nähern und je besser die Energiezukann. Wie hoch sich bei raten die Kosten für das An- und Fortkochen von de Mittelwert der Ankochversuche mit Kochtöpfen. de Mittelwert der Fortkochversuche mit Kochtöpfen. de Mittelwert der praktischen Kochversuche.

fuhr reguliert Werden Aequivalenzpreise zwischen 1 m³ Gas und 1 kWh elektrischer Energie bei verschiedenen An- und Fortkochversuchen.

den üblichen Kochappa
^a Mittelwert sämtlicher Davoserversuche.

^b Mittelwert der Davoserversuche unter Berücksichtigung der verbesserten elektr. Kippkessel.

Wasser bei den angegebenen Energiepreisen durchschnittlich belaufen, ist in Fig. 25 bildlich dargestellt. Bei andern Preisverhältnissen werden sich die Kosten entsprechend verschieben.

Im Mittel wurden bei den verschiedenen Versuchen folgende Aequivalenzzahlen zwischen Gas und Elektrizität gefunden:

Tabelle XV 1

	1 m³ Gas ist aequivalent	Bei einem Preis von 12 Rp. pro kWh ergibt sich ein Gaspreis von (Mittlerer Heizwert des Gase: 4079 WE pro m³ = 5228 WE m bei 00 C und 760 mm Barometer stand.)
	kWh	Rp.
 Versuche mit gewöhnlichen Kochtöpfen und elektrischen oder Gasherden Versuche mit Kippkesseln	3;64 3,70	43,7 44,4
3. Praktische Kochversuche: I. Versuchsreihe	`3,70	44,4
II. Versuchsreihe	3,48	41,8
III. Versuchsreihe	4,7	56,4

In Fig. 26 sind die Beziehungen zwischen den Preisen für Gas und elektrischer Energie unter Benützung der verschiedenen gefundenen Werte graphisch dargestellt, so dass der, einem bestimmten Gaspreis aequivalente Preis pro kWh ohne weiteres abgelesen werden kann. Diese Werte beziehen sich ausschliesslich auf die Energiekosten. Die Verzinsung und die Amortisation der Anlagekosten ist nicht mit einbezogen worden. Diese letzteren müssen aber bei wirtschaftlichen Berechnungen berücksichtigt werden, da sie für die verschiedenen, in Betracht fallenden Einrichtungen recht stark wechseln.

C. Vergleichende Kochversuche mit einem Kohlenherd und elektrisch geheizten Kippkesseln in der Zürcher Heilstätte Clavadel.

Die Zürcher Heilstätte Clavadel war während der besprochenen Versuche eben daran, ihren Kohlenherd und die mit Dampf geheizten Kippkessel nach und nach durch elektrische Einrichtungen zu ersetzen. Fünf elektrische Kippkessel waren bereits installiert, dagegen fehlten die elektrischen Herde und Backöfen damals noch, so dass noch nicht alle Speisen elektrisch gekocht werden konnten. Da aber die Kippkessel für die Herstellung gewisser einfacher Speisen genügen, wurde die Gelegenheit benützt, um eine Anzahl vergleichende Versuche durchzuführen. Die Verwaltung der Anstalt hatte sich dazu in entgegenkommender Weise bereit erklärt und nahm während der Versuche alle nötigen Ablesungen, Wägungen usw. in zuverlässigster Weise vor; ausserdem sind dieselben kontrolliert worden.

Die Küche mit dem Herd und den Kippkesseln ist in Fig. 27 abgebildet. Der Kohlenherd hat eine nutzbare Herdplatte von 205 > 86 cm und eine Rostfläche von 830 cm². Er ist etwas zu klein bemessen, es musste deshalb stets stark gefeuert werden und die Herdplatte war immer gut ausgenützt. Ueber dem Roste sind Herdschlangen eingebaut, die mit einem an der Küchenwand befindlichen kleinen Wärmespeicher verbunden sind, der das warme Wasser für Kochzwecke liefert, währenddem das übrige Gebrauchswasser dem Warmwasserspeicher der Heizung entnommen wird. Zwischen dem Herd und dem etwa 10 m entfernten Kamin ist ein Tellerwärmer eingebaut, der von den Rauchgasen umspühlt wird.

Die elektrische Einrichtung besteht aus 5 Kippkesseln von 50-180 Liter Inhalt. Bei der ersten Versuchsserie waren diese Kessel noch nicht genügend isoliert. Der Strom wird mit 220 Volt Spannung zugeführt und in 3 Stufen unterteilt.

Bei allen Versuchen wurde das kalte Wasser der Wasserleitung entnommen. Der Kohlenherd war nie ganz kalt. Die Deckel der Kochgefässe waren in der Regel beim An- und Fortkochen aufgesetzt. Nur beim Fortkochen der Fleischbrühe entfernte man dieselben. Der Kohlenherd wurde mit einer langflammigen Kohle von folgender Zusammensetzung geheizt:

Gehalt	an	Wasser	•								•			1,8	0/0 .
Gehalt					•									10,5	°/ ₀
Gehalt	an	flüchtigen	Bes	tand	lteilen,	bez	zogen	auf	wasse	r- ui	nd asc	henfr	eie		
		Substanz												40,7	
Unterer	. H	eizwert pr	o kg			•		•		٠			٠.,	7013	WE.

Sowohl die Kohle, als das zum Anheizen nötige Holz wurde gewogen. Der Stand der Elektrizitätszähler wurde nach jeder Mahlzeit abgelesen.

Für die vergleichenden Versuche wurden 2 verschiedene Mahlzeiten für je 178 Personen zusammengestellt, nämlich:

Versuchsgruppen No. 1 und 2

Verbrauch

, , ,	adiograppen no. x and z	, or brandi
Frühstück	Milchkaffee	<pre> 45 1 Kaffeewasser 80 1 Milch </pre>
Mittagessen	Suppe, Rindfleisch gesotten	160 1 Suppe 28 kg Ochsenfleisch
	Salzkartoffeln und gehackter Kohl	37 kg geschälte Kartoffeln 26 kg vorgedämpfter Kohl
Vesper	Milchkaffee	50 1 Kaffeewasser 80 1 Milch
Nachtessen	Kaffee komplett	3 45 1 Kaffeewasser 80 1 Milch
V	ersuchsgruppe 3	160 l kalte Milch
Frühstück	Milchkaffee	80 1 Kaffeewasser
Mittagessen	Suppe,	160 1 Suppe
_	Kalbsvoressen	58 kg geschälte Kartoffeln
	und Nudeln	12 kg Nudeln
Vesper	Milchkaffee	28 kg Kalbfleisch
Nachtessen	Mehlsuppe und	100 1 Knochenbrühe, die kalt aufgestellt
	geschwelte Kartoffeln	und 5 Stunden lang gekocht wurde.

Die bei den Vergleichsversuchen aufgewendeten Energiemengen sind in nachstehender Tabelle XIX zusammengestellt.

Vergleichende Zusammenstellung der Kochversuche im Sanatorium Clavadel. Energiepreise: 100 kg Kohle = Fr. 27,50, 100 kg Holz = Fr. 10,-, 1 kWh = 12 Rp. Tabelle XIX

nergiepie	130. 100 kg	Komo = 11,	21.00, 100 kg	11012 - 11.	10.—, 1 KWII	— 12 кр.		1 2	ibelie XIX		
Nr. der		Kochen En	mit elektri ergieverbr	ischen Kipp auch in kV	okesseln Vh			nit dem Ko offverbrau			
Ver- suche	Früh- stück	Mittag- essen	Vesper	Nacht- essen	total kWh	Fr.	Kohlen kg	Holz kg	Fr.		
1	14	50	15	15	94	Vei	ersuch 1 und 2 zusammen				
2	14	52	14	15	95	22,68	168,3	6,0	46,88		
3	15	61	15	25	116	13,92	84,0	2,5	23,35		
Mittel pro Tag	14,33	54,33	14,66	18,33	101,66	12,20	84,1	2,83	23,41		

Das elektrische Kochen war bei den angegebenen Energiepreisen also um 48 % billiger als das Kochen mit Kohle. Erst bei einem Kohlenpreise von Fr. 14.35 franko Keller wären die Ausgaben gleich geworden.

Die beim elektrischen Kochen aufgewendete Energie von 101,66 kWh entspricht einer Wärmemenge von rund 87500 WE, von denen bei einem Nutzeffekt von 83% rund 72500 WE ausgenutzt wurden. Bei der Kohlenfeuerung wurden 598000 WE aufgewendet. Nimmt man nun an, dass dort ebenfalls nur 72500 nutzbar gemacht wurden, so ergäbe sich beim Kohlenherd eine Wärmeausnutzung von nur 12%. Es

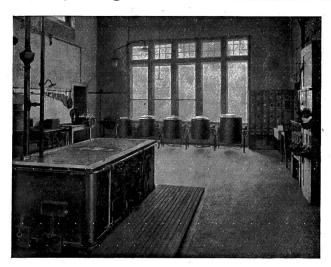


Fig. 27
Küche im Sanatorium Clavadel.

ist beabsichtigt, weitere vergleichende Versuchsreihen zwischen der Kohlenheizung und der vollständigen elektrischen Kocheinrichtung auszuführen und dabei den Kohlenherd etwas eingehender zu untersuchen, weshalb der eben angeführte niedrige Wirkungsgrad unter allem Vorbehalt mitgeteilt wird.

Da bei den, an elektrischen Kippkesseln vorgenommenen Versuchen festgestellt wurde, dass die kleinste Schaltstufe für das Fortkochen zu gross bemessen war, wurde auch an diesen Kippkesseln die Bodenheizung in drei Stufen unterteilt, die Kessel gut isoliert und hierauf die Kochversuche genau wiederholt. Dabei wurde bei der Bereitung des Frühstücks, Vespers und Nachtessens, wo es sich vorzugsweise um das Ankochen der Speisen handelte,

nur eine geringe Stromersparnis erzielt. Beim Mittagessen dagegen wurden 9% Energie erspart. Beim Kochen des zweiten Menus (Versuchsgruppe 3) sank der Energieverbrauch von 116 auf 95 kWh, was eine Ersparnis von Fr. 2.50 bedeutete. Endlich wurde der Versuch No. 1 noch in der Weise ausgeführt, dass auch die Fleischbrühe bei lose geschlossenem Deckel fortgekocht und die Stromzufuhr sorgfälltig überwacht wurde, womit eine weitere Einsparung von 8 kWh ermöglicht wurde. Während der letzten Versuche wurden mit dem Kohlenherd pro Person 0,48 kg Brennstoff, mit der elektrischen Kippkesselanlage 0,5 kWh gebraucht. Bei einem Strompreis von 12 Rappen pro kWh ergäbe sich ein Kohlenpreis von Fr. 12.50 pro 100 kg und 7000 WE pro kg.

Es ist ferner noch zu berücksichtigen, dass die elektrische Küche im Sommer kühler ist, im Winter dagegen muss sie besonders geheizt werden.

IV. Zusammenfassung.

- 1. Es wurden sechs vergleichende Dauerversuche an Warmwasserbereitungsanlagen verschiedener Hotels und Sanatorien mit Koks- und elektrischer Heizung
 durchgeführt und die Anlagen und Versuchsausführung kurz beschrieben. Auf Grund
 der Versuchsergebnisse wurde der Aequivalenzpreis zwischen Koks und Elektrizität
 berechnet und graphisch dargestellt. Die Versuchsreihen wurden durch weitere Beobachtungen ergänzt. So wurde z. B. der Wasserverbrauch und der Temperaturverlauf
 in den Wärmespeichern bei Koks- und elektrischer Heizung, ferner die Wärmeabgabe
 eines Speichergefässes an die Umgebung ermittelt und graphisch dargestellt.
- 2. Mit verschiedenen, in Küchen verwendeten elektrischen- und Gaskocheinrichtungen wurden vergleichende An- und Fortkochversuche ausgeführt und beschrieben. Im Anschluss daran wurde über verschiedene praktisch durchgeführte vergleichende

Kochversuche mit Gas bezw. Elektrizität berichtet. Aus den Versuchsergebnissen wurde der Aequivalenzpreis zwischen Gas und Elektrizität berechnet und graphisch dargestellt. Die Versuche wurden wiederum durch weitere Beobachtungen ergänzt. So kamen die Beziehungen zwischen Topffüllung und Energieausnützung bei elektrischen Apparaten und Gaskochern, der Temperaturverlauf bei Ankochversuchen, und beim Abkühlen des Wassers in Kippkesseln usw. zur graphischen Darstellung.

3. Zwei vergleichende, an einem Kohlenherd einerseits und an elektrisch geheizten Kippkesseln anderseits ausgeführte Reihen praktischer Kochversuche wurden beschrieben

und diskutiert.

Berichtigung. Im Bulletin No. 10, Seite 267 dieses Artikels muss es in der sechsten Zeile von oben (unter dem Titel "Versuche an der Anlage No. 6") heissen: "Bei dieser Anlage diente die elektrische Heizung usw."

Ferner muss die Legende von Fig. 10, Seite 270 desselben Aufsatzes wie folgt lauten:

Fig. 10

Aequivalenzpreise zwischen elektrischer Energie und Koks.

a Mittelwert sämtlicher Versuche. Koksheizwert 6500 WE.

c Unwirtschaftlichster Versuch. Koksheizwert 6500 WE.

b Wirtschaftlichster Versuch. Koksheizwert 6500 WE.

d Mittelwert sämtlicher Versuche. «Koksheizwert 6600 WE.

Comment tenir compte du facteur de puissance dans les tarifs.

Par O. Ganguillet, ingénieur à Zurich.

Lorsqu'on a commencé à distribuer de l'énergie électrique sous forme de courants alternatifs, il a paru équitable de ne pas faire payer aux clients les kVA, c'est-à-dire l'énergie apparente, mais bien les kWh, l'énergie effective. En conséquence on a construit des compteurs de kWh et l'on s'est d'autant moins soucié du déphasage que la consommation de courant pour l'éclairage l'emportait alors sur la consommation pour la force motrice et que les appareils d'éclairage sont en général dépourvus de self-induction.

Peu à peu, les installations de distribution prenant de l'extension, on s'est rendu compte qu'on commettait une erreur, que les frais de distribution entraient en si forte proportion dans le prix de l'énergie rendue au lieu d'utilisation qu'il était indiqué de faire aussi payer les courants déwattés, ces parasites des réseaux électriques, qui augmentent si désagréablement les dépenses à faire pour les lignes, les transformateurs et les alternateurs. Le besoin de rendre les tarifs dépendants du déphasage est devenu plus pressant encore depuis qu'on transporte l'énergie électrique à de grandes distances et qu'on constate quel grand avantage il y aurait pour le rendement des lignes et pour le réglage à ce que les courants déwattés soient faibles.

Le consommateur peut, en particulier par l'emploi plus fréquent de moteurs synchrones, améliorer le facteur de puissance de son installation, mais, comme ce moyen entraı̂ne pour lui un surcroı̂t de dépenses, il ne l'emploiera que si le courant déwatté lui cou te suffisamment cher. Il s'agit donc d'établir comment le prix du kWh doit varier avec $\cos \varphi$, le facteur de puissance.

Un article publié au "Bulletin" en août 1917 par le Secrétariat général a fait connaître l'opinion des centrales suisses sur ce sujet et a orienté les lecteurs sur les méthodes proposées jusqu'alors. Depuis cette époque la question a été étudiée un peu partout. En Suisse aussi elle est à l'étude: un questionnaire adressé tout récemment aux principales centrales nous a permis de le constater. Mais la plupart des centrales hésitent encore dans leur choix de la méthode à appliquer.

Nous espérons que la présente étude, quoique très succincte, pourra leur être utile. Voici les principales manières jusqu'ici envisagées de tenir compte du déphasage dans la facture: