Zeitschrift: Bulletin de l'Association suisse des électriciens

Herausgeber: Association suisse des électriciens

Band: 11 (1920)

Heft: 5

Artikel: Entgegnung zum Artikel: eine neue Schaltung zur Umformung von

Zweiphasen- in Dreiphasen-Wechselstrom und umgekehrt; Erwiderung

zum Vorstehenden

Autor: Lorenz, H. / Sachs, K.

DOI: https://doi.org/10.5169/seals-1056290

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ment besteht aus zwei Duantenpaaren (Fig. 8), dem drehbaren Flügel und dem geerdeten Metallgehäuse. Das eine Duantenpaar ist geerdet und bildet mit der darin befindlichen Flügelhälfte gewissermassen den an Erde liegenden Kondensator. Das andere Duantenpaar

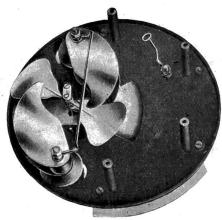


Fig. 8

ist mit der spannungführenden Klemme verbunden und bildet mit der darin befindlichen Flügelhälfte den Vorschaltkondensator. Das Metallgehäuse umhüllt das ganze System fast vollständig, sodass dieses Instrument von äussern Einflüssen praktisch ganz unabhängig ist. Gegen ungenügende Isolationswiderstände ist es wenig empfindlich, denn wenn sich die Spannung nicht immer genau im selben Verhältnis (ca. 1:1) auf beide Kondensatoren verteilt, so wirkt allerdings auf die eine Flügelhälfte eine etwas kleinere, dafür aber auf die andere Hälfte eine grössere Kraft. Mit solchen Instrumenten erreicht man doppelt so hohe Spannungsmessbereiche als bei gewöhnlicher Schaltung statischer Voltmeter.

Zusammenfassung.

- 1. Es wird untersucht, welche Kondensatorschaltungen für technische elektrostatische Spannungsmesser angewandt werden dürfen.
- 2. Der Einfluss der ohm'schen Leitfähigkeit der Kondensatoren wird untersucht und es wird gezeigt, dass für genaue Gleichstrominstrumente keine Vorschaltkondensatoren angewandt werden dürfen.
- 3. Die Wirkung der Randentladungen wird erklärt.
- 4. Es werden Angaben über die Abschirmung statischer Instrumente gemacht und anschliessend ist eine Ausführungsform beschrieben, und
- 5. wird schliesslich eine weitere Ausführungsform statischer Instrumente beschrieben.

Entgegnung zum Artikel: Eine neue Schaltung zur Umformung von Zweiphasen- in Dreiphasen-Wechselstrom und umgekehrt.

Von Ing. H. Lorenz, Weiz.

Zu diesem im Bulletin No. 2, 1920 erschienenen Aufsatze sei zunächst bemerkt, dass der Unterzeichnete bereits vor längerer Zeit genau dieselbe Idee für die Schaltung zur Umformung von Zweiphasen in Dreiphasen-Wechselstrom hatte, die Idee jedoch wieder fallen liess, weil bei dieser Schaltung in den zusätzlichen Wicklungen U'U und V'V um 90° gegeneinander verschobene Ströme fliessen, die eine Verzerrung des Spannungsdreieckes bewirken. Diese Verzerrung ist entschieden ein erheblicher Nachteil des neuen Zweiphasen-Dreiphasen-Wechselstromtransformators der A.-G. Brown-Boveri & Cie. gegenüber dem der Gesellschaft für elektrische Industrie, Weiz. Auf einen genauen Vergleich beider Schaltungen unter verschiedenen Belastungsverhältnissen kann jedoch hier nicht näher eingegangen werden.

Herr Dr. Sachs berechnet, dass für eine gegebene Leistung, die von Zweiphasen- in Dreiphasenwechselstrom umgeformt werden soll, ein normales Drehstrom-Transformatoren-Modell mit 7% höherer Leistung sowohl für verketteten als auch unverketteten Zweiphasenstrom zu verwenden ist. Dass diese Rechnung nicht stimmen kann, ist leicht einzusehen, wenn man nur die beiden Figuren 1 und 4 des genannten Aufsatzes betrachtet. Setzt man sowohl bei verkettetem als auch bei unverkettetem Zweiphasenstrom voraus, dass die gleiche Leistung umgeformt werden soll, so fliesst im ersten Falle in den Wicklungen

X-U' und Y-V' ein Strom $I_2'=I_2''=I_2\sqrt{\frac{2}{3}}=0.817~I_2$, im zweiten Falle jedoch der volle Strom I_2 . Bei unverkettetem Zweiphasenstrom fliesst ausserdem in der Ausgleichswicklung des betreffenden Kernes ein Strom $I_a=0.241~I_2\frac{W_2}{W_a}$. Es müssen also

für unverketteten Zweiphasenstrom die Verluste auf der Zweiphasenseite grösser sein als für verketteten Zweiphasenstrom und daher muss im ersten Fall unbedingt ein grösseres Drehstrom-Transformatoren-Modell gewählt werden. Um wieviel dieses grösser sein muss, rechnet sich mit Beibehaltung der Bezeichnungen und unter denselben Voraussetzungen, wie sie Herr Dr. Sachs macht, wie folgt:

Für den verlustlosen Transformator gilt
$$2 I_2 E_2 = 3 i_3 E_3$$
 (1)

Ferner ist
$$E_2 = E \sqrt{\frac{3}{2}}$$
 (2)

$$E = E_3 \frac{W_2}{W_3} \tag{3}$$

Daraus folgt
$$E_2 = E_3 \frac{W_2}{W_3} \sqrt{\frac{3}{2}}$$
 (4)

und wenn man diesen Wert in die Gleichung (1) einsetzt, erhält man

$$I_2 = i_3 \frac{W_3}{W_2} \sqrt{\frac{3}{2}} \tag{5}$$

Für die Widerstände gilt
$$r_2: r_3 = \frac{W_2}{I_2}: \frac{W_3}{I_3}$$
 (6)

und durch Einsetzen des Wertes für I2 aus Gleichung (6) erhält man

$$r_2 = r_3 \frac{{w_2}^2}{{w_3}^2} \sqrt{\frac{2}{3}} \tag{7}$$

Für die Stromwärmeverluste in jedem der beiden gleichbewickelten Kerne gilt

$$W_{21} = W_{22} = I_2^2 r_2 + I_a^2 r_a + i_3^2 r_3$$

Unter Benützung der von Herrn Dr. Sachs berechneten Werte für I_a und γ_a berechnet man leicht

$$W_{21} = W_{22} = \left\{ 1 + \sqrt{\frac{3}{2}} \left[1 + \frac{\left(1 + \sqrt{2} - \sqrt{3}\right)^2}{4\sqrt{2}\left(\sqrt{3} - \sqrt{2}\right)} \right] \right\} i_3^2 r_3 = 2 \cdot 54 i_3^2 r_3$$
 (8)

Im mittleren Kern sind dagegen die Stromwärmeverluste nur

$$W_{23} = 2 I_2^2 r_2' + I_a^2 r_a + i_3^2 r_3$$

$$= \left\{1 + \sqrt{\frac{3}{2}} \left[\sqrt{3} - 1 + \frac{\left(1 + \sqrt{2} - \sqrt{3}\right)^2}{4\sqrt{2}\left(\sqrt{3} - \sqrt{2}\right)} \right] \right\} i_3^2 r_3 = 2 \cdot 21 i_3^2 r_3 \tag{9}$$

Wäre der Transformator für Drehstrom normal bewickelt, so wären die Verluste in der Wicklung eines jeden Kernes

$$W_{31} = W_{32} = W_{33} = 2 i_3^2 r_3 (10)$$

Für die Wahl der Modellgrösse sind also die Verluste in den beiden gleich bewickelten Kernen massgebend und es ist daher für unverketteten Zweiphasenstrom ein DrehstromModell von $\sqrt{\frac{2\cdot54}{2}}$ = 1,13 facher Leistung, nicht aber 1,07 facher wie für verketteten Zweiphasenstrom, zu wählen.

Nach diesen Richtigstellungen erhält man auch für die zulässige Leistungserhöhung nach der Umschaltung auf Drehstrom bei gleichzeitiger Erhöhung der Periodenzahl etwas andere Werte; doch ist dieser Unterschied ganz geringfügig.

Ob die neue Schaltung mit Rücksicht auf die Unterteilung der Wicklungen in eine ganze Anzahl verschiedener Spulengruppen zwecks späterer Umschaltung für Drehstrom fabrikatorisch einfacher und billiger ausfällt als die Schaltung der Gesellschaft für elektrische Industrie, sei dahingestellt. Das eine aber steht für den Transformatorenfachmann fest, dass die Schaltung der Gesellschaft für elektrische Industrie die wissenschaftlich und technisch bessere Lösung des Umformungsproblems darstellt.

Erwiderung zum Vorstehenden.

Von Dr. K. Sachs, Baden.

Die Bemerkungen des Herrn Ing. Lorenz geben mir Gelegenheit die bereits beabsichtigte Korrektur der Gleichungen 25 und 26 meiner Arbeit (Bulletin No. 2 dieses Jahrgangs, S. 30) vorzunehmen. Nur glaubte ich, dieselben von dem einfachen Ansatz

$$I_a{}^2 r_a + I_2{}^2 r_2 = i_3{}^2 r_3 \dots$$
 (1)

ausgehend berichtigen zu sollen, da es mir *formell* unrichtig erscheint, bei Berechnung der Verluste von einer Gleichung auszugehen, die für den verlustlosen Transformator Geltung hat. Die Abweichungen von den Werten, wie sie Hr. Ing. Lorenz in seinen Gleichungen (8) und (9) erhält, sind natürlich unwesentlich und für das Endresultat bedeutungslos. Es ist dann:

$$W_{21} = W_{22} = I_2^2 r_2 + I_a^2 r_a + I_3^2 r_3 = I_2^2 r_2 \left[2 + \frac{(1 + \sqrt{2} - \sqrt{3})^2}{2\sqrt{2}(\sqrt{3} - \sqrt{2})} \right] = 2,515 I_2^2 r_2 \dots (2)$$

und

$$W_{23} = 2 I_2^2 r_2' + I_a^2 r_a + i_3^2 r_3 = I_2^2 r_2 \left[\sqrt{3} + \frac{(1 + \sqrt{2} - \sqrt{3})^2}{2\sqrt{2}(\sqrt{3} - \sqrt{2})} \right] = 2,25 I_2^2 r_2 \dots (3)$$

Es ist daher bei Umformung von unverkettetem Zweiphasenstrom in Dreiphasenstrom ein Drehstrommodell von

$$\sqrt{\frac{2,515}{2}} = 1,12$$
 facher Leistung

zu wählen.

Dass der Zweiphasen-Dreiphasen-Transformator der Gesellschaft für elektrische Industrie (G. f.e. I.) wissenschaftlich von Interesse ist, habe ich bei Erwähnung desselben in der Einleitung zu meiner Arbeit ausdrücklich gesagt, dass er jedoch mit seinen verschiedenen Säulen und Spulenzylindern im Vergleich zu einem Transformator, der jedes normale dreisäulige Gestell zu verwenden gestattet, eine kostspielige Abnormität darstellt, kann ernstlich wohl von Niemandem in Abrede gestellt werden. Der Hauptvorteil der der A.-G. Brown, Boveri geschützten Schaltung liegt in der zwanglosen Umschaltmöglichkeit von Zweiphasen- auf Dreiphasen-Anschluss bei gleichzeitiger Erhöhung der Frequenz von 40 auf 50, was heute gerade hierzulande von besonderer Bedeutung ist, wo mehr und mehr alte 40 periodige

Ortszentralen mit zweiphasigem Primärnetz den Anschluss ihrer Sekundärnetze an interkantonale 50 periodige Dreiphasen-Hochspannungs-Ueberlandnetze suchen müssen und dann die heute noch notwendig werdenden, neu zu bestellenden Zweiphasen-Dreiphasen-Verteilungstransformatoren bei späterem primärem Dreiphasenanschluss ohne weiteres wieder verwenden wollen. Der Zweiphasenbetrieb dieser Transformatoren ist hier vielfach ein mehr oder weniger kurzzeitiges Provisorium; wichtiger ist, dass sie bei späterem definitivem Dreiphasenbetrieb möglichst rationell arbeiten und voll ausgenützt sind. Diese Aufgabe aber kann im Gegensatz zu der beschriebenen Schaltung durch den Transformator der G.f.e.l. gar nicht oder nur in sehr unrationeller Weise gelöst werden, da bei diesem bei Dreiphasenanschluss nach sehr umständlicher Abänderung der Wicklung die mittlere Säule magnetisch immer unausgenützt bleibt.

Die von Herrn Ing. Lorenz befürchtete Verzerrung des Spannungsdreieckes durch die phasenverschobenen Ströme in den freien Wicklungen U'-U und V'-V kann, wie Messungen an ausgeführten Transformatoren ergeben haben, durch Vermischung (Verschachtelung) dieser Wicklungen, eine jedem Praktiker geläufige Massnahme, so viel wie ganz behoben werden.

Ueber Unfälle an elektrischen Starkstromanlagen in der Schweiz.

Vom Starkstrominspektorat des S. E. V.

Das Starkstrominspektorat hatte bis zum Jahre 1908 in jährlichen Mitteilungen, die nur den Mitgliedern des Schweizerischen Elektrotechnischen Vereins zugestellt wurden, eine Zusammenstellung der Unfälle an elektrischen Starkstromanlagen gegeben, wobei in der Regel auf besonders bemerkenswerte Fälle etwas näher eingetreten wurde. Nach Herausgabe des Bulletins des S. E. V. als Zeitschrift wurden diese Sonderveröffentlichungen, die mehr internen Charakter hatten, eingestellt. Man begnügte sich mit der Wiedergabe der vom Starkstrominspektorat aufgestellten und im Bundesblatt unter dem Abschnitt Starkstromkontrolle im Rahmen des Jahresberichtes des Eisenbahndepartements veröffentlichten Statistik. Es besteht aber in Fachkreisen allgemein der Wunsch, über die Unfälle an Starkstromanlagen mehr und Eingehenderes zu erfahren als bis anhin und es sollen daher, einem Antrage von Herrn Direktor Geiser in Schaffhausen im Verband Schweizerischer Elektrizitätswerke Folge gebend, in Zukunft wieder ausführlichere Berichte über Starkstromunfälle im Bulletin des S. E. V. erscheinen. Der Zweck der heutigen Veröffentlichung ist zunächst, eine kurze Zusammenstellung der seit dem Jahre 1909 vorgekommenen Unfälle zu geben und daran anschliessend einige Interesse bietende Fälle aus den letzten Jahren hervorzuheben. Dabei sind in allen Zusammenstellungen Unfälle, die sich an Bahnanlagen ereignet haben, nicht einbezogen worden.

Ueber die Anzahl und die Art der Starkstromunfälle in der Zeitperiode vom Jahre 1909 bis 1919 orientieren die nachstehenden beiden Tabellen.

Aus diesen beiden Tabellen ist zunächst ersichtlich, dass die Zahl der Starkstromunfälle im Laufe der letzten 11 Jahre zwar nicht stetig, aber doch im ganzen etwas zugenommen hat und zwar rührt diese Zunahme in der Hauptsache von den Unfällen her, die sich an Niederspannungsanlagen ereignet haben. Wenn man aber die ganz gewaltige Ausdehnung, welche die elektrischen Anlagen erfahren haben, berücksichtigt und in Betracht zieht, wie viel mehr Menschen heute mit elektrischen Einrichtungen aller Art in Berührung kommen als vor 10 Jahren, so kann man doch von einer merklichen relativen Abnahme der Starkstromunfälle sprechen. Trotzdem ist die Zahl der Starkstromunfälle noch eine recht hohe und es ereignen sich auch heute immer noch zahlreiche, in manchen Fällen vermeidbare Unfälle. Es bedarf der andauernden und angestrengtesten Aufmerksamkeit der verantwortlichen Organe, um die Zahl der Unfälle auf das erreichbare Mindestmass zu reduzieren. In dieser Hinsicht ist anzuerkennen, dass die elektrischen Unternehmungen im Grossen und Ganzen redlich bestrebt sind, ihre Anlagen in sicherheitstechnischer Hinsicht zu verbessern