Zeitschrift: Archi: rivista svizzera di architettura, ingegneria e urbanistica = Swiss

review of architecture, engineering and urban planning

Herausgeber: Società Svizzera Ingegneri e Architetti

Band: - (2016)

Heft: 6: Bellinzona, l'architettura die Roberto Bianconi

Rubrik: Progetti

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La circonvallazione di Roveredo

Definizione del progetto

Con la costruzione dell'autostrada A13 alla fine degli anni '60 del secolo scorso, il paese di Roveredo venne letteralmente tagliato in due parti, deturpando l'armonia del contesto paesaggistico. Il traffico crescente in questi decenni ha poi provocato il continuo aumento di immissioni nocive, con conseguenze importanti sulla popolazione del luogo. L'USTRA nel 2007, con il passaggio di proprietà della Strade nazionali dai Cantoni alla Confederazione, ha ripreso il progetto della Circonvallazione di Roveredo dal Cantone dei Grigioni che lo aveva elaborato e pubblicato in precedenza Con la realizzazione di questo progetto si è finalmente liberato il paese di Roveredo dagli effetti nocivi che, fino al 7 novembre 2016, l'autostrada ha prodotto sul territorio e sui suoi abitanti. Il centro del paese potrà così essere ridefinito e la qualità di vita della popolazione potrà essere sensibilmente migliorata.

Il tracciato

Il tracciato della nuova autostrada aggira il paese di Roveredo a sud su un tratto di circa 5.7 km, che si estende tra l'area di servizio Campagnola sul comune di San Vittore a ovest e il confine preesistente tra i comuni di Grono e Leggia a est. L'opera principale di tutto il progetto è la galleria San Fedele, con una lunghezza di ca. 2.4 km, che attraversa il versante orografico sud della Mesolcina con la val Traversagna.

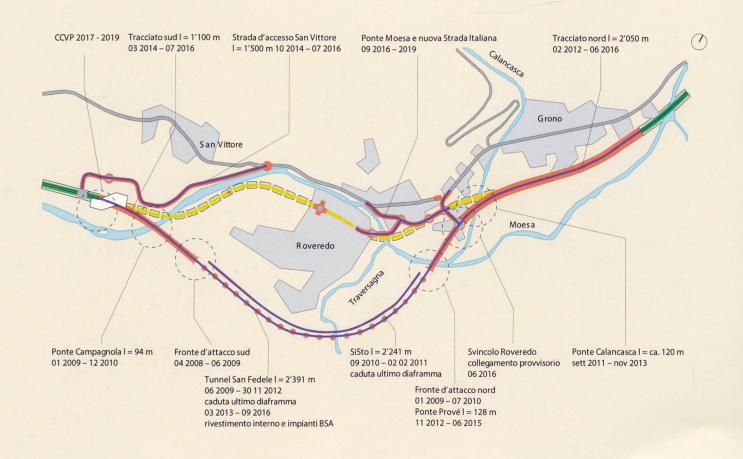
Il tracciato all'aperto scorre sul fondovalle e deve attraversare, oltre al fiume Calancasca, due volte la Moesa a nord (Ponte Provè) e a sud (Ponte Campagnola) della galleria. A nord della galleria, tra i due ponti sulla Moesa e sulla Calancasca, è stato costruito uno svincolo completo in territorio di Roveredo, in sostituzione di quello esistente che verrà demolito dopo aver spostato il traffico sul nuovo tracciato autostradale.

Parte integrante della circonvallazione è anche il nuovo semisvincolo di San Vittore e il relativo collegamento con la strada cantonale in zona Sassello.

In prossimità di Grono è pure stato realizzato un semisvincolo, per ora ancora «di servizio», ma per il quale è già stato pubblicato il relativo progetto esecutivo per ottenere l'autorizzazione dell'apertura al traffico.

La galleria

Il profilo di spazio libero della galleria San Fedele rispetta le norme SIA in materia più recenti con una larghezza di 7.75 m e un'altezza di 4.50 m + 0.70 m per lasciare spazio alla segnaletica necessaria. La pendenza longitudinale della galleria è dello 0.8%. La galleria è dotata di soletta intermedia equipaggiata con


serrande di aspirazione dei fumi in caso di incendio. La centrale di ventilazione e il camino di espulsione dei fumi si trovano al portale Valasc. L'intera struttura, a eccezione dello sbocco del camino, è stata completamente ricoperta secondo un concetto preciso di sistemazione finale, che prevede altresì l'utilizzo della maggior parte del materiale di scavo della galleria. La galleria è pure dotata di tre centrali tecniche principali: una a sud (integrata nella centrale di ventilazione), una a metà galleria e una oltre il portale nord.

Parte integrante della galleria San Fedele è il cunicolo di sicurezza, posizionato a valle della galleria e collegato a quest'ultima ogni 300 m mediante sette cunicoli trasversali.

Gli impianti di esercizio e di manutenzione

L'insieme degli impianti di esercizio e di manutenzione è convenzionalmente suddiviso nei seguenti impianti, a loro volta articolati in sottoimpianti: energia, illuminazione, ventilazione, segnaletica, impianto di sorveglianza, comunicazione e sistema di gestione, cablaggio e impianti annessi. Gli equipaggiamenti di comando sono previsti nelle tre centrali tecniche (SUD, MED, NOR), nei due locali tecnici del cunicolo di sicurezza e nei 7 cunicoli trasversali.

Paolo Spinedi Ingegnere ETHZ, Edy Toscano SA

Programma lavori e costi rispettati

Con soddisfazione si può dire che il programma dei lavori per la realizzazione della Circonvallazione di Roveredo e i costi sono stati rispettati.

Infatti, fin dal 2007, dopo l'inizio dei lavori, era stata definita la messa in servizio della circonvallazione per il 2016. A fronte di un preventivo dei costi, che aggiornato al rincaro intervenuto dal 2001 a oggi, ammonta a ca. 435 mio CHF (con una precisione pari a \pm 10%), la previsione di spesa finale è attualmente stimata in ca. 437 mio CHF.

Programma dei lavori

Dopo l'approvazione del progetto esecutivo AP il 23.04.2004, la successiva elaborazione dei primi progetti di dettaglio e la messa in appalto dei lavori, nel mese di maggio del 2007 è stato dato avvio all'esecuzione della Circonvallazione di Roveredo. Dopo i primi lavori preparatori, si è potuto iniziare l'esecuzione dello scavo di approccio presso il portale Valasc. Nel 2009 hanno potuto iniziare i lavori per lo scavo della galleria e del cunicolo di sicurezza, dopo che anche il nuovo ponte Moesa Campagnola ha potuto essere costruito.

In parallelo, si è pure dato avvio allo scavo di approccio presso il portale nord.

A partire dal 2012 sono iniziati i lavori per l'allargamento e l'abbassamento del tracciato autostradale sito in territorio di Grono. La maggior parte di questi lavori, compresa l'esecuzione dei nuovi ponti Calancasca e Provè e dei nuovi cavalcavia La Guerscia e ai Mondan si è protratta fino al 2016.

Nel frattempo, a partire dal 2014, sono iniziati i lavori relativi al nuovo tracciato a sud della galleria, compreso l'esecuzione del nuovo sottopasso Campagnola e della strada di accesso San Vittore. A partire dall'inizio del 2015 si è proceduto al montaggio di tutti gli impianti che garantiscono la sicurezza e l'esercizio della galleria.

Dopo la messa in servizio della circonvallazione si procederà alla demolizione dell'autostrada esistente, alla costruzione della nuova strada italiana, alla rinaturalizzazione della zona Pascol Grand e alla sistemazione definitiva del deposito Tir. La fine di tutti i lavori è prevista per la fine del 2020.

Cost

Con soddisfazione possiamo affermare che la previsione di spesa finale rispetterà il preventivo dei costi aggiornato al rincaro.

La ripartizione dettagliata dei costi nelle varie voci è indicata nel grafico riportato qui di seguito.

> Paolo Spinedi Ingegnere ETHZ, Edy Toscano SA Giovanni Luca Sciuto Ingegnere POLIMI, Edy Toscano SA

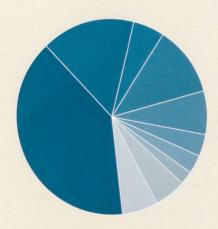
Stima dei costi totali 420 milioni CHF

67, Progettazione, direzione lavori, amministrazione

22, Espropr

49, Tracciati

30, Manufatti


15, Strada italiana e ricucitura centro urbano

13, Smantellamento vecchio tracciato N13c

10, Ecologia

22, Cunicolo di sicurezza

25, Elettromeccanica

La Galleria San Fedele

La Galleria San Fedele è una galleria autostradale con una corsia per direzione di marcia. La sua lunghezza è di 2381 me transita formando una grande curva sotto il versante a sud dell'abitato di Roveredo. Al portale Valasc (sud) e al portale Val Gugia (nord) ci sono tratte di gallerie artificiali (a cielo aperto) di lunghezza a sud di 107,8 m e a nord di 58 m. La galleria presenta una pendenza longitudinale di 0.8% da nord a sud e una pendenza traversale unilaterale del 4,75% e del 3% nella zona del portale Val Gugia. Nicchie di sosta contrapposte si trovano a uno e a due terzi della lunghezza totale della galleria.

Sul lato valle, a 30 m dall'asse e parallelo alla galleria si trova il cunicolo di sicurezza collegato alla galleria da 7 cunicoli trasversali ogni 300 m.

Geologia

La geologia del territorio risulta alquanto diversificata lungo il profilo longitudinale della galleria. Lungo i fianchi della bassa Valle Mesolcina e della Val Traversagna si trovano prevalentemente gneiss della zona delle radici pennidiche. Questi gneiss sono composti da lastre e ammassi rocciosi e di regola abbastanza stabili. Nella parte centrale del profilo oltre a banchi di gneiss piegati ma stabili si trovano formazioni di orneblenda e anfibolite. La fratturazione degli gneiss è di regola moderata e diventa più accentuata soltanto in alcune zone limitate. La permeabilità del massiccio gneissico è piuttosto bassa.

Al portale sud la roccia è coperta da detriti di smottamento della Val Traversagna composti prevalentemente da ghiaia limosa, sabbia, sassi e blocchi rocciosi. Il materiale depositato sciolto sopra lo strato roccioso presenta una compattazione media: non ha una vera coesione ed è poco calettato.

Al portale nord la roccia è coperta da una morena di fondo non tanto spessa e prevalentemente costituita da detriti riportati dal pendio. Si tratta di ghiaia limosa con sabbia e presenza cospicua di sassi e blocchi. Gli elementi spigolosi sono calettati.

Profilo normale

Il profilo normale, in sotterraneo su tutta la lunghezza, è costituito da un doppio anello. L'anello esterno comprende le misure di sicurezza e ha uno spessore variabile secondo necessità mentre l'anello interno, in calcestruzzo non armato, ha uno spessore costante di 30 cm.

Nelle tratte in materiale sciolto il rivestimento di calcestruzzo è armato, spesso fino 120 cm e comprende anche una platea ad arco rovescio.

Tra i due anelli si trova l'impermeabilizzazione a forma di ombrello realizzata con fogli di PVC.

La sagoma libera della galleria ha una larghezza di 7,75 m, un'altezza di 4,50 m e uno spazio di 30 cm in alto e sui lati come profilo libero per la sicurezza. Sopra lo spazio di sicurezza superiore si trovano altri 40 cm liberi per gli equipaggiamenti di sicurezza e di servizio. Ulteriori 5 cm liberi fino alla soletta intermedia servono a compensare le imprecisioni di costruzione e le deformazioni della roccia.

Sopra il vano traffico e separato dalla soletta intermedia poligonale, si trova il canale di scarico dell'aria viziata. Nella soletta intermedia che inizia presso la centrale di ventilazione Valasc e finisce 250 m prima del portale Val Gugia è presente ogni 100 m una serranda per l'evacuazione di gas e fumi in caso d'incendio.

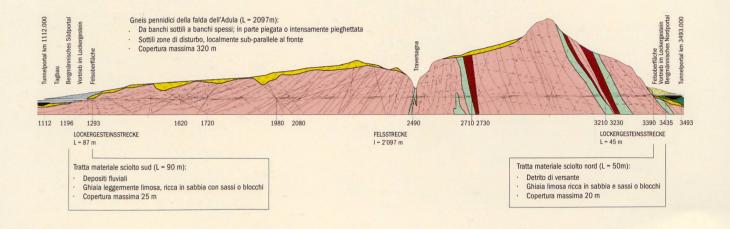
La carreggiata è del tipo convenzionale con fondazione in misto granulare e tre strati di asfalto.

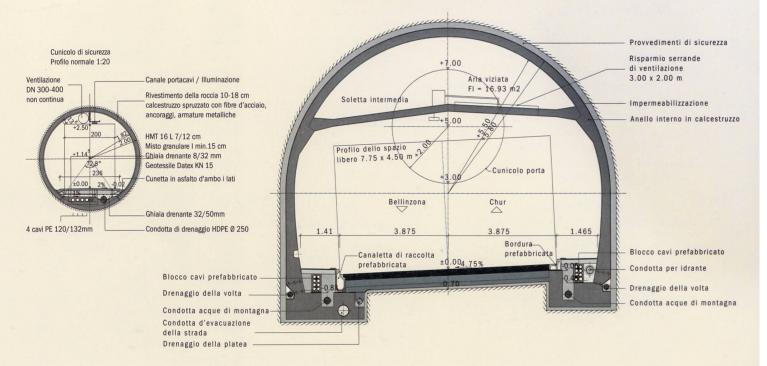
Le infrastrutture presenti in banchina, ai bordi della carreggiata, comprendono un blocco cavi con otto tubi fodera e una condotta che porta l'acqua di drenaggio al portale Valasc. Nella banchina a monte si trova inoltre la condotta per l'approvvigionamento degli idranti con acqua di spegnimento.

Il collettore delle acque luride e il drenaggio del fondo si trovano sotto il punto più basso della carreggiata, davanti alla banchina a valle. Acque e liquidi di avarie che finiscono sul campo stradale sono raccolti in una canaletta al bordo inferiore della carreggiata e evacuati attraverso pozzetti sifonati ed una condotta separata al portale Valasc. Da qui scorrono fino al bordo del fiume Moesa e confluiscono nell'impianto di trattamento delle acque luride prima di essere scaricate nel ricettore.

Cunicolo di sicurezza

Il cunicolo di sicurezza presenta un profilo circolare con anello unico in calcestruzzo spruzzato. Il diametro di scavo è di 4 m, quello del vano interno varia a dipendenza delle misure di sicurezza da 3,64 a 3,80 m.


La sagoma libera ha una larghezza di 2,0 m e una altezza di 2,5 m. La platea in calcestruzzo gettata in opera contiene quattro tubi fodera per cavi e la condotta di drenaggio.


Galleria a cielo aperto e centrale Valasc

La galleria a cielo aperto comprende quattro profili diversi: un profilo a ferro di cavallo senza soletta intermedia all'inizio, un profilo rettangolare rispettivamente a ferro di cavallo allargato di una nicchia di sosta e con soletta intermedia lungo la centrale di ventilazione e un profilo a ferro di cavallo con soletta intermedia piana alla fine. Nel canale sopra la soletta intermedia l'aria viziata è deviata verso i tre ventilatori disposti perpendicolarmente all'asse della galleria e nella parte sud sono ubicati il locale USV, il locale delle batterie e un magazzino.

La centrale di ventilazione interrata, situata sul lato monte della galleria a cielo aperto, presenta uno strato di impermeabilizzazione con fogli in PVC. Tre grandi ventilatori disposti all'altezza della soletta intermedia e al di fuori della zona carreggiata aspirano gas e fumi in caso d'incendio nel vano circolazione.

Sotto i ventilatori si trova l'area di montaggio, separata dal vano di circola-

zione da un portone scorrevole e percorribile da mezzi pesanti. Con il carroponte posizionato nella sala dei ventilatori è possibile calare i ventilatori nell'area di montaggio per revisione o direttamente sul mezzo di trasporto.

Alla sala dei ventilatori segue il canale dell'aria viziata attraverso il quale i gas e i fumi vengono spinti verso il camino e da qui evacuati nell'atmosfera. Il camino ha un diametro di 3,8 m e supera la linea del terreno di 4 m.

Sul lato sud (lato portale) della centrale sono presenti i locali per gli impianti elettrici. Le quattro celle dei trasformatori, dotate di portoni, sono accessibili direttamente dall'area di montaggio. Al livello carreggiata si trovano i locali per la media tensione, la bassa tensione, la ventilazione della centrale e per i fornitori della telefonia mobile.

Un piano superiore è presente unicamente al di sopra delle celle dei trasformatori, del locale della media tensione e del corridoio. Dalla strada di campagna, passante sopra il portale è presente un accesso diretto al corridoio dal quale si raggiungono tutti i locali del secondo piano e la scala al pianterreno.

Galleria a cielo aperto e riparo Val Gugia

La galleria a cielo aperto presenta su tutta la lunghezza un profilo normale a ferro di cavallo senza soletta intermedia e una platea al posto dell'arco rovescio. Inizialmente il profilo ha le stesse dimensioni della tratta in sotterraneo, poi si allarga con un cono alle dimensioni del portale che comprende l'appoggio del seguente ponte Provè.

Al portale il tubo della galleria è tagliato obliquo e inclinato, seguendo l'andamento del muro di riva. Tutta la costruzione è impermeabilizzata con fogli di PVC e fortemente armata. Sotto le pareti laterali sono disposti 10 risp. 11 pali trivellati, che scaricano il grande carico del riparo caduta massi nella sottostante morena portante e che hanno, in aggiunta, ridotto l'assestamento dell'opera da 30 cm a 5 cm.

La galleria a cielo aperto è coperta dal riparo Val Gugia che protegge il portale e il ponte Provè da cadute massi e ha nello stesso tempo permesso il deposito di materiale di scavo.

A lato del portale il rilevato del riparo è stabilizzato da un muro di blocchi posati in calcestruzzo, protetto al piede (riva della Moesa) da una gettata di blocchi. La corona del muro alto fino a 22 m è percorsa da una strada forestale.

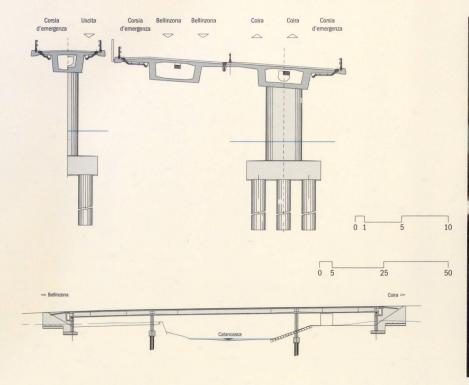
Il riparo vero e proprio si estende fino a 16 m sopra la calotta della galleria. Verso valle il rilevato è stato sistemato a verde e scende con una pendenza del 2:3 fino alla strada forestale rispettivamente fino al terreno naturale. Verso monte il rilevato è rivestito con un muro di sassi e il terreno naturale è stato sistemato in modo da lasciare su tutta la lunghezza del muro una fossa di ritenimento per il materiale che scende dal pendio.

Avanzamento

Al portale Valasc la galleria attraversa una zona di materiale sciolto lunga 87 m e di scarsa resistenza meccanica. In questa tratta la galleria è stata scavata a mezza sezione con la calotta protetta da un ombrello d'infilaggi.

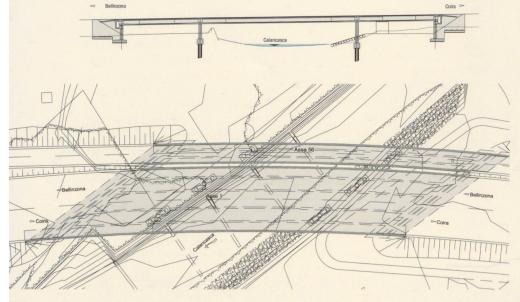
Lo stesso sistema è stato adottato per scavare i primi 45 m in materiale sciolto al portale Val Gugia.

Come prima tappa dello scavo in roccia è stato fresato un cunicolo pilota, impiegando la stessa TBM come per lo scavo del cunicolo di sicurezza.


Questo ha permesso di ridurre le vibrazioni e il rumore durante il successivo allargamento della galleria tramite esplosivo e di conoscere meglio le caratteristiche geologiche della roccia nel tratto sud e sotto la Traversagna.

Come misure di sicurezza sono stati impiegati ancoraggi e calcestruzzo spruzzato rinforzato con fibre o reti d'acciaio, sporadicamente anche centine metalliche. La parte sud della galleria ha richiesto maggiori misure di sicurezza, in quanto l'asse tagliava scistosità e fratturazione in obliquo.

Circa 9 mesi dopo lo scavo della calotta nella tratta in materiale sciolto Valasc si è improvvisamente formata una dolina sulla superficie del terreno soprastante. Un cavallo che stava pascolando è stato trascinato nel pozzo ed è stato salvato illeso a 5 m di profondità con l'aiuto di un elicottero. Si suppone che, nonostante il riempimento in calcestruzzo spruzzato dei primi vuoti dovuti a erosione interna, la parte interessata sia stata dilavata e lo spostamento della sabbia abbia creato la formazione della dolina.


Prima di abbattere lo strozzo della galleria sono stati pertanto effettuati sondaggi e iniezioni ecc.

Martina Fasani Ingegnere ETHZ, Consorzio GIM Eduard Ammann Ingegnere ETHZ, Consorzio GIM

Fotostudio Cereghetti Landrini

Il ponte Calancasca

Il fiume Calancasca è attraversato con uno angolo sbieco dal tracciato principale (asse 1) e dalla corsia da Coira in uscita allo svincolo di Roveredo (asse 56). L'angolo tra l'asse longitudinale del manufatto e la perpendicolare della spalla è relativamente importante: sulla spalla Nord risulta pari a 50.0° (asse 1) risp. 48.8° (asse 56) mentre sulla spalla sud risulta pari a 57.0° (asse 1) risp. 55.1 (asse 56).

L'attraversamento è previsto con 2 ponti indipendenti:

Il ponte principale (asse 1) è previsto quale trave continua a 3 campate in calcestruzzo precompresso con una lunghezza totale di 122.0 m (in asse delle spalle) e con campate di 30.5 m, 61.0 m e

30.5 m. La sezione trasversale è composta da 2 cassoni e da un'unica piattabanda. L'altezza di 2.20 m rimane costante su tutta la lunghezza, la larghezza della sezione è pari a 24.90 m.

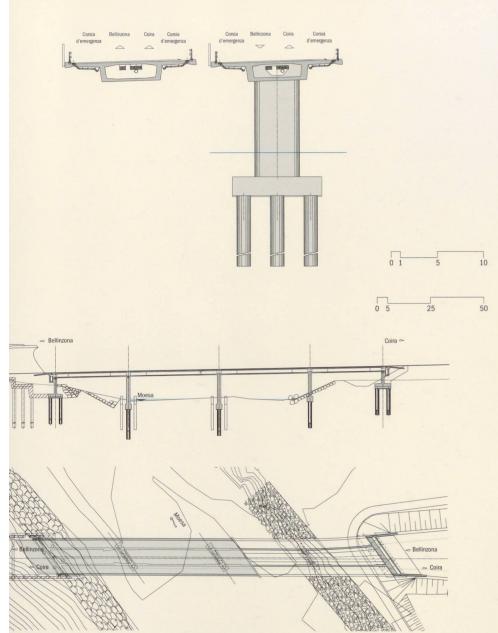
Il ponte della corsia di uscita da Coira (asse 56) è analogo quale tipologia strutturale. Presenta una lunghezza totale totale di 118.24 m (in asse delle spalle) e con campate di 31.01 m, 56.19 m e 31.04 m. La sezione trasversale è a cassone. L'altezza di 2.20 m rimane costante su tutta la lunghezza, la larghezza della sezione è pari a 7.90 m.

Impalcati.

L'impalcato del ponte principale (asse 1) si compone di 2 cassoni precompressi con un'altezza costante pari a

2.20 m. Tenuto conto della luce maggiore pari a 61.00 m si ottiene una snellezza pari a 1/27.7. La larghezza inferiore di entrambi i cassoni è pari a 5.31 m, la larghezza totale (compreso i cordoli) è di 24.90 m. La larghezza della carreggiata è di 23.50 m.

Le anime dei cassoni presentano una larghezza di 70 cm in campata e di 80 cm sugli appoggi e sono leggermente inclinate (ca. 8:1). Sopra le pile e le spalle sono previste travi trasversali.


Le mensole aggettano su una lunghezza di 3.00 m e presentano uno spessore variabile tra 45 cm all'incastro nel cassone e 25 cm in corrispondenza del cordolo.

L'impalcato del ponte corsia di uscita da Coira (asse 56) si compone di un cassone precompresso con un'altezza costante pari a 2.20 m. Tenuto conto della luce maggiore pari a 56.19 m si ottiene una snellezza pari a 1/25.5. La larghezza inferiore del cassone è pari a 3.06 m, la larghezza totale (compreso i cordoli) è di 7.90 m. La larghezza della carreggiata è di 6.50 m.

Le anime del cassone presentano una larghezza di 60 cm in campata e di 80 cm sugli appoggi e sono leggermente inclinate. Sopra le pile e le spalle sono previste travi trasversali.

Le mensole aggettano su una lunghezza di 1.50 m e presentano uno spessore variabile tra 35 cm all'incastro nel cassone e 25 cm in corrispondenza del cordolo.

Fabio Bernasconi Ingegnere SUPSI, Consorzio IMARO

Il ponte Moesa Prové

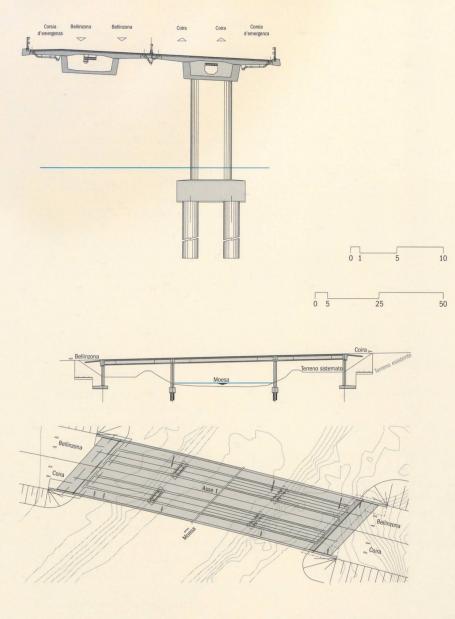
A nord del tunnel di San Fedele, il ponte fa parte della progettata circonvallazione di Roveredo della Strada Nazionale A13c e permette l'attraversamento con un angolo sbieco della Moesa.

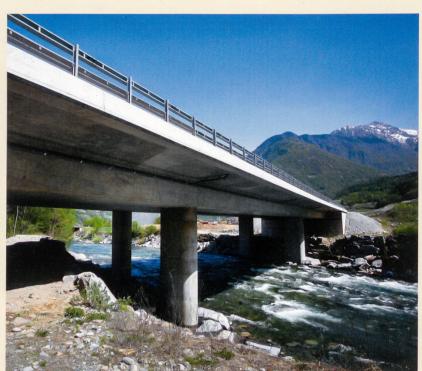
Il nuovo ponte è previsto quale trave continua a 4 campate in calcestruzzo precompresso con una lunghezza totale di 128 m (in asse ponte) e con campate di 28.5 m, 35.5 m, 35.5 m e 28.5 m.

La sezione trasversale è a cassone con un'altezza di 2.0 m costante su tutta la lunghezza. La larghezza totale del ponte è variabile: 14.15 m costante dalla spalla sud alla pila P3 e variabile da 14.15 m in corrispondenza della pila P3 a 15.732 in corrispondenza della spalla nord.

Impalcato

L'impalcato si compone di un cassone precompresso con un'altezza costante pari a 2.00 m. Tenuto conto della luce maggiore pari a 35.50 m si ottiene una snellezza pari a 1/17.75. La larghezza inferiore del cassone è variabile da 6.35 m a 7.932 m. La larghezza totale (compreso i cordoli) è variabile da 14.15 m. a 15.732. La larghezza della carreggiata è variabile da 12.75 m a 14.332 m.


Le anime dei cassoni presentano una larghezza di 55 cm in campata e di 70 cm sugli appoggi e sono leggermente inclinate (ca. 8:1). Sopra le pile e le spalle sono previste travi trasversali.


Le mensole aggettano su una lunghezza costante di 3.00 m e presentano uno spessore variabile tra 45 cm all'incastro nel cassone e 25 cm in corrispondenza del cordolo.

> Fabio Bernasconi Ingegnere SUPSI, Consorzio IMARO

Fotostudio Cereghetti Landrini Hsaskia

Il ponte Campagnola

Il manufatto fa parte della circonvallazione di Roveredo della Strada Nazionale A13c e permette l'attraversamento della Moesa a sud del tunnel di San Fedele.

Il nuovo ponte è previsto quale trave continua a 3 campate in calcestruzzo precompresso con una lunghezza totale di 94 m (in asse delle spalle) e con campate di 27 m, 40 m e 27 m. La sezione trasversale è composta da 2 cassoni e da un'unica piattabanda. In caso di necessità (lavori di risanamento e/o riparazione) è comunque possibile separare i 2 cassoni e formare così 2 manufatti indipendenti.

L'altezza di 2.00 m rimane costante su tutta la lunghezza, la larghezza totale della sezione è pari a 24.40 m.

Impalcato

L'impalcato si compone di 2 cassoni precompressi con un'altezza costante pari a 2.00 m. Tenuto conto della luce maggiore pari a 40.00 m si ottiene una snellezza pari a 1/20. La larghezza inferiore di entrambi i cassoni è pari a 5.10 m, la larghezza totale (compreso i cordoli) è di 24.40 m. La larghezza della carreggiata è di 23.00 m.

Le anime dei cassoni presentano una larghezza di 55 cm in campata e di 70 cm sugli appoggi e sono leggermente inclinate (ca. 8:1). Sopra le pile e le spalle sono previste travi trasversali.

Le mensole aggettano su una lunghezza di 3.00 m e presentano uno spessore variabile tra 45 cm all'incastro nel cassone e 25 cm in corrispondenza del cordolo. Il collegamento tra i 2 cassoni avviene su una lunghezza di 6.00 m con spessore di 45 cm all'incastro e 25 cm al centro. Con le dimensioni previste è quindi possibile in qualsiasi momento separare il manufatto in 2 parti.

Fabio Bernasconi Ingegnere SUPSI, Consorzio IMARO

Entoctudio Caradhatti I andrini Heas

Cronologia del progetto

1969

Apertura del tratto autostradale esistente della A13 tra Castione e Grono.

1975

Prime avvisaglie all'attenzione del CdS a Coira sui disturbi causati dal traffico autostradale.

1981

L'Ufficio federale delle strade dà avvio alla progettazione della Circonvallazione di Roveredo.

1984

Posa dei ripari fonici lungo il tracciato nell'abitato di Roveredo.

1998

Approvazione del progetto generale da parte del Consiglio Federale.

2001

Pubblicazione del progetto esecutivo, approvato nel 2004.

2007

Approvazione delle modifiche di progetto per l'introduzione del cunicolo disicurezza.

2007

Il 31 maggio si dà avvio ai lavori per la costruzione della circonvallazione (posa della prima pietra).

2008

Approvazione delle modifiche di progetto per l'abbassamento del tracciato a Grono.

2010

Inizio dello scavo del cunicolo pilota.

2011

Fine dello scavo del cunicolo di sicurezza.

2012

Il 30 novembre si celebra l'abbattimento dell'ultimo diaframma. Lo scavo della galleria è dunque terminato.

2016

Nel mese di luglio sono messi in servizio il nuovo semisvincolo di San Vittore e il collegamento alla strada cantonale detto strada di accesso San Vittore.

2016

Nel mese di settembre iniziano i lavori per la costruzione della nuova strada italiana.

2016

Il 7 novembre è messa in servizio la Circonvallazione di Roveredo.

Paolo Spinedi Ingegnere ETHZ, Edy Toscano SA Giovanni Luca Sciuto Ingegnere POLIMI, Edy Toscano SA

La Circonvallazione in cifre

Lunghezza

2381 m

Cunicolo di sicurezza

2241 m

Inizio e fine dei lavori

2007-2016

Profilo

a volta, con soletta intermedia

Tipo di traffico

bidirezionale

Carreggiate

1

Corsie

2 (1 per ogni senso di marcia)

Velocità

80 km/h

Centrali tecniche

3

Locali tecnici

7 nei cunicoli di collegamento (carrozzabili, pedonali) ca. ogni 300 m, 2 ai portali del cunicolo di sicurezza

Centrale principale

centrale di ventilazione sud Valasc

1º centrale secondaria

centrale nord

2° centrale secondaria

centrale mediana

Inizio tratta [km]

5.190

Fine tratta [km]

10.897

Cantone

Grigioni

Unità territoriale competente

UTIV, UTV

Svincoli

km 5.150 semi-svincolo SanVittore, km 9.100 svincolo Roveredo

Aree di sosta/servizio

km 5.330

area di sosta Campagnola, km 5.500 area diservizio Campagnola

Centro di controllo dei veicoli pesanti

km 5.330 nei pressi dell'area di sosta Campagnola/SanVittore

Comuni attraversati

San Vittore, Roveredo, Grono

Manufatti presenti

3 ponti, 2 cavalcavia, 3 impianti di depurazione acque stradali (SABA), 1 parete antirumore (Roveredo-Grono), 1 galleria, 1 cunicolo di sicurezza a servizio della galleria.

Dario Mondini Ingegnere UNIBS, Edy Toscano SA

Scheda

Committente

Ufficio federale delle strade USTRA Divisione Infrastruttura stradale est Filiale Bellinzona

Sostegno al committente

Edy Toscano SA Engineering & Consulting, Rivera

Ingegneria galleria

Consorzio GIM, Ennetbaden: Gähler + Partner AG,

IM Maggia Engineering SA

Ingegneria tracciato

Consorzio WIMA, Coira: Winkler Ernst + Partner AG, Marcionelli & Winkler + Partners SA

Ingegneria manufatti

Consorzio IMARO, Coira: dsp Ingenieure & Planer AG, ewp Ingenieure, Planer und Geometer AG, Spataro Petoud Partner SA, Marcionelli & Winkler + Partners SA, Dr. Baumer Geologi Consulenti

Ingegneria e direzione lavori impianti di esercizio e sicurezza

IM Maggia Engineering SA, Locarno

Ingegneria e direzione dei lavori

impianto di ventilazione HBI Haerter AG, Zurigo

Ingegneria e direzione lavori

acquedotto

Giudicetti & Baumann SA, Roveredo

Ingegneria Nuova Strada Italiana e demolizione del tracciato A13

Project Partners Ltd Consulting Engineers, Grancia

Accompagnamento ambientale

IFEC Ingegneria SA, Rivera Ingegneria Collegamento pedonale Campagnola

Studio d'ingegneria G. Dazio & Associati SA, Cadenazzo

Direzione lavori per galleria e tracciato

Consorzio TAM, Lugano: Renzo Tarchni Cantieri & Contratti SA, Lugano; Anastasi Ingegneria SA, Locarno; IM Ingegneria Maggia SA, Locarno

archi

6 2016

Archi rivista svizzera di architettura,

ingegneria e urbanistica

Fondata nel 1998, esce sei volte all'anno. ISSN 1422-5417 tiratura REMP diffusa: 2918 copie, di cui 2759 vendute via Cantonale 15, 6900 Lugano tel. +41 91 921 44 55 redazione@rivista-archi.ch www.espazium.ch

Direttore

Alberto Caruso AC

Coordinamento editoriale

Stefano Milan SM

Assistenti al coordinamento

Mercedes Daguerre MD Teresa Volponi TV

Redazione

Debora Bonanomi DB Andrea Casiraghi ANC Laura Ceriolo LC Piero Conconi PC Gabriele Neri GN Manuel Lüscher ML Andrea Pedrazzini AP Andrea Roscetti AR Enrico Sassi ES

Stefano Tibiletti ST

Graziella Zannone Milan GZM

Redazione comunicati SIA

Frank Peter Jäger, frank.jäger@sia.ch

Impaginazione

Silvana Alliata

Corrispondenti

Andrea Bassi, Ginevra Francesco Collotti, Milano Jacques Gubler, Basilea Ruggero Tropeano, Zurigo Daniel Walser, Coira

Traduzioni italiano-tedesco

Alexandra Geese

Correzione bozze

Fabio Cani

Consiglio editoriale

Tonatiuh Ambrosetti, fotografo, Losanna
Nicola Baserga, arch. ETHZ, Muralto
Jacqueline Burkhardt, storica
dell'architettura, Zurigo
Marco Della Torre, arch. POLIMI, Milano-Como
Franco Gervasoni, ing. ETH, Bellinzona
Nicola Nembrini, ing. STS, Locarno
Nathalie Rossetti, arch. ETHZ, Zollikon
Armando Ruinelli, arch., Soglio
Nicola Soldini, storico dell'architettura,

Editore

espazium – Edizioni per la cultura della costruzione Staffelstrasse 12, 8045 Zurigo tel. 044 380 21 55, fax 044 380 21 57 Martin Heller, presidente Katharina Schober, direttrice Hedi Knöpfel, assistente

Abbonamenti e arretrati

Stämpfli Publikationen AG, Berna tel. 031 300 62 57, fax 031 300 63 90 abbonamenti@staempfli.com Abbonamento annuale (6 numeri) Svizzera Fr. 135.- / Estero Fr. 140.-, Euro 119.50, Studenti Svizzera Fr. 67.50 Numeri singoli 24.- Abbonamenti soci SIA: SIA, Zurigo tel. 044 283 15 16, fax 044 283 15 16 rettifiche@sia.ch

Organo ufficiale

SIA Società svizzera ingegneri e architetti, www.sia.ch OTIA Ordine ticinese ingegneri e architetti, www.otia.ch

Associazioni garanti

SIA Società svizzera ingegneri e architetti www.sia.ch FAS Federazione architetti svizzeri www.architekten-bsa.ch USIC Unione svizzera ingegneri consulenti www.usic-engineers.ch Fondation Acube, www.epflalumni.ch/fr/ prets-dhonneur ETH Alumni, www.alumni.ethz.ch

Stampa e rilegatura

Stämpfli Publikationen AG, Berna

Pubblicità

Zürichsee Werbe AG Seestrasse 86, 8712 Stäfa tel. +41 44 928 56 11, fax + 41 44 928 56 00 info@zs-werbeag.ch, www.zs-werbeag.ch

La riproduzione, anche parziale, di immagini e testi, è possibile solo con l'autorizzazione scritta dell'editore e con la citazione della fonte.

