Zeitschrift: Archi: rivista svizzera di architettura, ingegneria e urbanistica = Swiss

review of architecture, engineering and urban planning

Herausgeber: Società Svizzera Ingegneri e Architetti

Band: - (2010)

Heft: 2

Artikel: Costruzioni e sisma nella Svizzera italiana

Autor: Zanini, Cristina

DOI: https://doi.org/10.5169/seals-169948

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Cristina Zanini Barzaghi* Buildings and quakes in Italian-speaking Switzerland

Costruzioni e sisma nella Svizzera italiana

I terremoti sono sempre avvenuti anche in Svizzera, seppur con meno intensità rispetto a paesi a noi vicini come l'Italia, la Grecia o la Turchia.

Nella nostra società fortemente industrializzata e urbanizzata, anche un piccolo sisma potrebbe provocare danni enormi, come ad esempio nel caso di una panne di lunga durata di corrente elettrica in un ospedale o nel caso di rottura di un impianto in un'industria chimica. Anche senza crolli potremmo avere perdite e danni di non poco conto.

La migliore prevenzione è costruire edifici parasismici e salvaguardare il patrimonio costruito: sono infatti gli edifici che crollano – e non le scosse di terremoto – a causare vittime¹.

Sviluppi degli ultimi decenni in Svizzera

Già da molti anni nelle norme SIA sono contenute disposizioni in merito² e per parecchi ingegneri strutturisti il dimensionamento sismico è noto e affrontato come qualsiasi altra sollecitazione agente sulle strutture.

Negli ultimi decenni la ricerca universitaria si è occupata sempre più intensamente di questi temi ed ha posto domande importanti all'opinione pubblica³, ad esempio:

- nel caso di un sisma in Svizzera, sarebbe garantita o meno una sicurezza sufficiente per gli edifici strategicamente importanti (struttura e impianti)?
- come sono assicurati i danni alle costruzioni in caso di terremoto?
- quali sono i terreni di fondazione che amplificano le forze sismiche?

La Confederazione e i Cantoni hanno perciò intrapreso studi specifici con le compagnie di assicurazione, con i servizi geologici, con le scuole universitarie per dare risposte a questi quesiti. Nel contempo si è pure attivata una campagna di sensibilizzazione rivolta ai progettisti e ai proprietari privati e pubblici.

Il lavoro svolto nel contempo dalle specifiche cattedre al Politecnico di Zurigo e Losanna⁴ ha portato all'introduzione di regole dettagliate nelle nuove norme Swisscodes nel 2003, coerenti con le normative internazionali. Grazie a corsi di aggiornamento e alla formazione proposta oggi nei Politecnici e nelle Scuole universitarie professionali sup, le conoscenze della maggioranza degli ingegneri strutturisti sono aggiornate: il dimensionamento con forze sostitutive o spettri di risposta è applicato regolarmente nella pratica professionale.

Situazione attuale in Svizzera

Visto l'elevato potenziale di danno, in Svizzera il terremoto è il pericolo naturale che comporta il maggior rischio⁵. La sicurezza sismica di circa il 90% degli edifici non è mai stata esaminata oppure lo è stata secondo norme ormai desuete, pertanto potrebbe essere insufficiente.

Per gli edifici esistenti è stato sviluppato un metodo di valutazione che prevede l'analisi del rischio sismico direttamente dipendente dall'esposizione, la pericolosità sismica e la vulnerabilità⁶. L'esposizione è il valore degli edifici ed è una grandezza certa, così come la pericolosità sismica, che è l'entità e la frequenza dei terremoti. La vulnerabilità delle opere edili invece, vale a dire la propensione al danneggiamento e al crollo dovuti a eventi sismici, può essere drasticamente ridotta con pochi e mirati provvedimenti costruttivi.

A livello federale si sta anche discutendo sugli aspetti assicurativi, visto che questi danni al momento non sono coperti dalle polizze assicurative.

In Vallese e a Basilea, dove il rischio sismico è più alto, molti proprietari pubblici e privati si sono già attivati per mettere in regola le costruzioni e gli impianti esistenti. In alcuni Cantoni le amministrazioni pubbliche hanno avviato l'esame dei propri edifici e manufatti, come pure l'allestimento delle carte di catalogazione dei terreni in classi sismiche secondo la norma SIA 261. Il cantone di Basilea città ha inoltre introdotto l'obbligo legale di allestimento di un'autodichiarazione di sicurezza sismica al momento della domanda di costruzione. A dipendenza dell'importanza dell'edificio, questo Cantone controlla pure la conformità alle norme SIA 260 e 261 tramite la verifica del calcolo statico7. I committenti importanti - come le Ferrovie Federali Svizzere - operano incaricando un ingegnere verificatore del controllo della progettazione dei manufatti e degli edifici.

Situazione in Ticino

In Ticino il rischio sismico è più basso rispetto alle altre regioni svizzere, ma non per questo trascurabile. Nella progettazione ancora oggi l'argomento viene spesso messo in secondo piano, poiché si ritiene che il rischio non sia rilevante rispetto ad altri pericoli naturali⁸.

Per quanto concerne le seguenti categorie di edifici e impianti è pure da noi importante procedere con una seria riflessione sui reali rischi di danno sismico: – edifici di importanza rilevante in caso di catastrofe come ospedali, centrali di polizia, caserme pompieri, ecc,. , che devono garantire la propria efficienza soprattutto in caso di catastrofe,

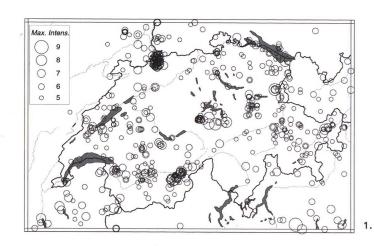
- scuole e edifici interessati da assembramenti di persone.
- edifici di grandi dimensioni o particolarmente alti,– monumenti storici.

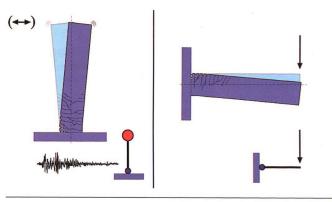
Anche in Ticino le nuove costruzioni vengono progettate e dimensionate in base alle recenti normative. Per contro, poco viene fatto per verificare la resistenza degli edifici e monumenti esistenti, anche laddove vengono eseguiti dei lavori di ristrutturazione.

Regole di progettazione per le nuove costruzioni

La conformazione dell'edificio è determinante per stabilire se sarà in grado o meno di rispondere efficacemente alle scosse di terremoto. In base all'osservazione del comportamento degli edifici danneggiati da terremoti in varie parti del mondo, emerge infatti che gli edifici rispondono al sisma in modo molto differenziato a dipendenza del loro sistema costruttivo e di controventamento.

È possibile costruire strutture efficienti al sisma, semplicemente impostando in modo adeguato la struttura, senza ripercussioni economiche e senza necessità di complessi calcoli statici.


Nelle norme sia in vigore⁹, sono state raccolte regole di progettazione semplici da adottare, che devono essere applicate non solo dagli ingegneri civili, ma soprattutto anche dai progettisti architetti. Esiste oggi numerosa letteratura in merito che spiega questi concetti basilari, validi sia per le costruzioni nuove che per quelle esistenti, rivolta anche a persone non specialiste . Ritengo che valga la pena illustrare alcune di queste regole, ricordando che – come sempre – è fondamentale una collaborazione efficace fra architetto, ingegnere civile e specialisti sin dall'inizio della progettazione.


Forze sismiche

Il sisma è un fenomeno di dissipazione di energia, che sollecita le strutture in modo molto differente rispetto alle normali azioni statiche.

L'energia sismica viene trasmessa alle strutture in tempi brevissimi con scosse improvvise e oscillatorie, provocando forze dinamiche e spostamenti considerevoli.

L'analisi strutturale deve quindi considerare il comportamento dinamico e il comportamento ultimo dei materiali (plasticità), in modo analogo a quanto viene eseguito in campo automobilistico nell'analisi del comportamento delle autovetture in caso di forti impatti (crash test). Si parla di «dimensionamento a capacità»: si tratta di un approccio innovativo per l'ingegneria civile, dove nel calcolo strutturale tradizionale si analizza in genere secondo la teoria elastica di primo ordine.

Azione sismica I carichi sono dipendenti dal comportamento deformativo dell'edificio sollecitato da oscillazioni sismiche

Il meccanismo di rottura con cerniera plastica è favorevole per dissipare l'energia sismica Azione «classica» Le deformazioni sono dipendenti dai carichi ai quali viene sottoposta la struttura

Non è possibile dimensionare considerando la cerniera plastica (meccanismo labile)

2.

m_n asta sostitutiva m₃ m₂ m₁

- Carta degli epicentri dei terremoti di intensità 5 o maggiore reperiti grazie a fonti storiche, dal 1300. Anche in Svizzera si possono verificare terremoti di intensità importante, paragonabili a quello recente in Abruzzo
- Modello dinamico con massa oscillante singola e cerniera plastica alla base: confronto con azioni statiche tradizionali
- Modello dell'edificio ad asta con masse oscillanti ad ogni piano

55

In genere le scosse sismiche vengono modellate con forze statiche orizzontali, stabilite sulla base di un modello ad asta con masse oscillanti.

Costruzioni massicce o leggere

Le scosse di terremoto dissipano energia negli edifici attraverso spostamenti e forze.

Costruzioni leggere e flessibili assorbono le scosse in modo preponderante oscillando con deformazioni più grandi rispetto alle costruzioni massicce e pesanti.

Le forze sismiche agenti sulle strutture sono proporzionali alla massa degli edifici e inversamente proporzionali alla capacità deformativa.

In genere le costruzioni in materiale massiccio (calcestruzzo o laterizio) sono interessate da forze sismiche più grandi rispetto ad edifici in costruzione leggera (legno, acciaio).

Le costruzioni leggere in acciaio e legno sono meno sensibili al sisma, il quale spesso non risulta determinante rispetto ad altre situazioni di carico.

Le recenti ricostruzioni in Abruzzo con case in legno hanno seguito questo principio.

Tipo di edificio

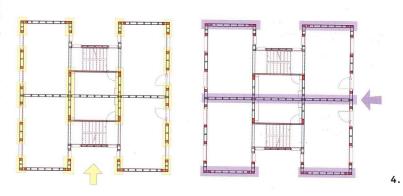
In base all'importanza dell'edificio o del manufatto, sono da seguire disposizioni differenziate con fattori che calibrano lo spettro di risposta sismico da utilizzare nel dimensionamento. Secondo la norma sia 261 gli edifici sono classificati in tre classi d'opera:

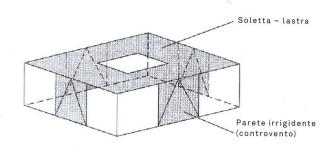
- classe d'opera I: edifici di abitazione o amministrativi senza assembramenti importanti di persone, senza rischi di danno ambientale e senza installazioni o merci di grande valore,
- classe d'opera II: edifici con possibili assembramenti di persone importanti a livello pubblico, come scuole, teatri e cinema, edifici pubblici, centri commerciali, chiese, ecc.
- classe d'opera III: edifici con ruolo vitale che devono restare perfettamente funzionanti in caso di catastrofe o con forte rischio di danni ambientali, ad esempio ospedali, centrali di polizia, pompieri, ponti e manufatti per importanti vie di traffico, telecomunicazioni, ecc. come pure cisterne, impianti chimici.

L'analisi sismica di quest'ultima categoria deve essere eseguita in modo da garantire la funzionalità dell'edificio anche in caso di catastrofe. Perciò per il dimensionamento vengono prescritte numerose regole di progettazione e un fattore di maggiorazione delle forze sismiche da considerare. Il calcolo viene in genere eseguito in base a modelli dinamici quali il metodo degli spettri di risposta.

Classificazione del terreno

L'entità delle sollecitazioni sismiche è pure condizionata dal tipo di terreno di fondazione.


Nel caso di terreni sciolti, limosi, argillosi le onde sismiche vengono amplificate e gli edifici devono essere dimensionati di conseguenza. Perciò la norma SIA 261 prevede la suddivisione dei terreni di fondazione in 5 classi. A livello svizzero sono state allestite le carte topografiche con l'indicazione delle classi di terreno, in Ticino al momento solo per le regioni più densamente costruite¹¹.


Sistemi di irrigidimento

Gli edifici vengono irrigiditi con solette orizzontali collegate a elementi stabilizzanti verticali, realizzati con pareti piene oppure con telai.

In Svizzera si impiega correntemente il sistema con pareti piene eseguite con calcestruzzo gettato in opera. La ripresa degli sforzi sismici viene concentrata su questi elementi, le restanti strutture verticali (colonne o pareti) vengono dimensionate prevalentemente per la ripresa dei carichi verticali.

La ripresa degli ulteriori carichi orizzontali come il vento o le spinte della terra segue il medesimo principio. L'inerzia delle pareti stabilizzanti deve essere proporzionata alle dimensioni dell'edificio e alla sua massa: prevedere un solo corpo lift e scala non è sempre sufficiente.

- 4. Casa Montarina (vedi Archi 1-2009). Le costruzioni leggere sono meno sollecitate dai sismi. Questa struttura completamente in legno su 6 piani è stata dimensionata per le forze orizzontali del vento, che sono risultate determinanti rispetto alle forze sismiche.
 - Schema in pianta degli elementi stabilizzanti, con una disposizione perfettamente simmetrica.
- 5. Principio di ripresa dei carichi orizzontali

5.

Disposizione delle pareti d'irrigidimento

Nel caso di edifici con pareti irrigidenti, esse devono essere disposte in pianta in modo che il loro baricentro (centro d'inerzia S) corrisponda con il baricentro della massa dell'edificio (centro di massa M). Ciò permette di riprendere le scosse sismiche prevalentemente con oscillazioni traslatorie e di dissipare in modo efficiente l'energia sismica.

In caso di elementi stabilizzanti fortemente eccentrici, l'edificio risponde al sisma con oscillazioni rotatorie e con forti sforzi torcenti nella struttura. Un errore di concezione di questo tipo può essere difficilmente corretto con il calcolo.

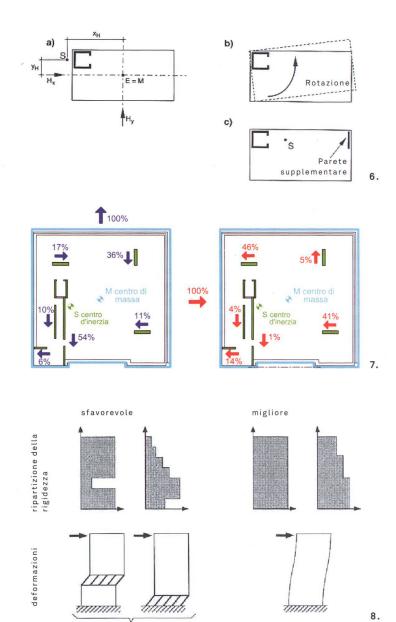
La disposizione simmetrica in pianta di almeno due pareti in ogni direzione è perciò di fondamentale importanza. È pure indispensabile che gli elementi d'irrigidimento verticali siano continui su tutta l'altezza, senza discontinuità in verticale e con poche aperture. Sono assolutamente da evitare piani poco rigidi, al piano terreno o ai piani superiori (effetto «soft floor»).

Elementi secondari non portanti

La caduta di suppellettili, controsoffitti, tamponamenti, impianti, può causare danni importanti. Quindi gli elementi non portanti devono essere adeguatamente fissati, pur mantenendo la loro indipendenza rispetto alla struttura portante principale.

Dimensionamento sismico

Nella nuova norma SIA 261 si prevedono due metodi di dimensionamento: il metodo degli spettri di risposta oppure il metodo delle forze sostitutive.


Il metodo degli spettri di risposta è in genere applicato con l'ausilio di programmi informatici e permette di analizzare in modo preciso il comportamento oscillatorio e le relative sollecitazioni sismiche in base alle teorie dinamiche.

Il metodo delle forze sostitutive permette di modellare il sisma con forze statiche proporzionali alla massa e distribuite sulla verticale in modo crescente. Si tratta di un metodo molto utilizzato per la sua semplicità di utilizzo, in genere più conservativo ma accettabile laddove il rischio sismico è basso come ad esempio nella Svizzera italiana.

Duttilità

Se l'energia sismica riesce ad essere assorbita con deformazioni, le forze dinamiche sono piu' ridotte. Perciò le nuove norme prevedono accorgimenti per aumentare la flessibilità della struttura sfruttando le capacità plastiche presenti anche nel caso di pareti stabilizzanti in calcestruzzo armato.

Aumentando la duttilità del sistema d'irrigidimento è possibile ridurre il quantitativo di armature necessarie. Per fare ciò è possibile scegliere acciaio d'armatura duttile tipo B500C e predisporre rinforzi con staffe conformate con ganci a 135 gradi.

- Esempio di miglioramento di disposizione asimmetrica del corpo stabilizzante con l'aggiunta di una parete supplementare
- 7. Centro Civico di Vezia (cfr. Archi n. 2./2006). La particolare struttura con solette di calcestruzzo di grande spessore è controventata da pilastri e pareti. Il dimensionamento è stato eseguito con gli spettri di risposta, considerando l'asimmetria degli elementi stabilizzanti. Nello schema è inserito il centro di massa M e il centro d'inerzia S
- 8. Ripartizione della rigidezza in altezza

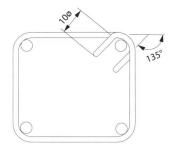
Traslazione della parte

superiore dell'edificio

- collasso

- disposizione inclinata delle colonne

Conclusione


Il campo dell'ingegneria sismica si è arricchito negli ultimi decenni di nuove conoscenze, che permettono di ottimizzare la struttura degli edifici e ridurre notevolmente il rischio di danni in caso di terremoto. Anche nella nostra regione che ha un rischio sismico contenuto, le nuove costruzioni devono essere concepite in base ai principi delle recenti normative Swisscodes.

Con i medesimi principi è indispensabile verificare e progettare eventuali interventi di rinforzo anche per gli edifici esistenti: spesso con investimenti poco importanti (aggiunta di controventi o tiranti disposti nei punti giusti) è possibile migliorare sensibilmente il comportamento sismico degli edifici che mostrano carenze.

Nei prossimi anni l'aumento di complessità dei nuovi edifici come pure la necessità di rinnovo del parco immobiliare richiederanno sempre più frequentemente a ingegneri, architetti e committenti di trattare con la dovuta importanza anche questo tema e sicuramente verranno proposti ulteriori contributi anche in questa rivista.

Note

- www.sgeb.ch. Con raccolta di documenti su ricognizioni su luoghi toccati da terremoti importanti.
- Già nella norma sia 160 del 1970, veniva menzionato il metodo delle forze sostitutive quale metodo per dimensionare le strutture al sisma (art. 22).
- 3. «La prevenzione sismica va intensificata perché la popolazione svizzera non è sufficientemente protetta dai terremoti. Il Consiglio federale ha pertanto deciso di intensificare il programma di misure della Confederazione relativo alla prevenzione sismica e di continuare a sostenere dal punto di vista tecnico i Cantoni, i Comuni e i privati», comunicato stampa 1.4.09. UFAM, coordinamento per la mitigazione dei sismi www.admin.ch.
- 4. Politecnico di Zurigo івк www.ibk.ethz.ch. Politecnico di Losanna імас imacwww.epfl.ch
- Dallo studio Katarisk della Confederazione del 2003 risulta che il rischio di terremoto è ca. il 30% rispetto alla totalità dei pericoli naturali.
- 6. Foglio informativo sia 2018.
- Dr. Blumer Giornata sia 5.9.08 «Sicurezza sismica di edifici. Questioni legali e responsabilità civile». Documentazione D0227 in tedesco
- 8. Nella legge cantonale sui territori soggetti a pericoli naturali (del 29 gennaio 1990), non viene previsto il rischio di terremoto (art. 4).
- 9. Norme sia Swisscodes 2003 260 267, Foglio informativo sia 2018 Valutazione sismica di edifici esistenti.
- 10. Pieghevole «Construction parasismique en Suisse, Ce qui est essentiel – et pourquoi», .pdf su www.news. admin.ch/message/index.html?lang=it&msg-id=7034; «Conception parasismique des bâtiments – Principes de base à l'attention des ingénieurs, architectes, maîtres d'ouvrages et autorités» prof. Bachmann, Direttiva n. 804.802 f ufaeg Berna, 2002, esiste anche in .pdf.
- 11. http://erdbeben.admin.ch

9. Rinforzi alle estremità delle pareti con staffe con ganci a 135 gradi

Bibliografia e web

- «Erdbebensicherung», Bachmann, Birkhaeuser 2002
- «Genie parasismique, conception et dimensionnement des bâtiments», Lestuzzi, PPUR 2008
- Servizio Sismologico Svizzero Politecnico federale di Zurigo http://seismo.ethz.ch
- Società Svizzera d'Ingegneria Sismica e Dinamica Strutturale http://www.sgeb.ch
- «Handlungsbedarf von Behörden, Hochschulen, Industrie und Privaten zur Erdbebensicherung der Bauwerke in der Schweiz», Documentazione SIA D0150 http://www.sia.ch
- Piattaforma nazionale pericoli naturali www.planat.ch
- Strutture di calcestruzzo, Zanini Mina, DACD SUPSI 2008, cap. 28 www.gc.supsi.ch
- * Ing. civile dipl. ETH SIA OTIA, contitolare studio d'ingegneria civile Borlini & Zanini SA, docente di strutture di calcestruzzo DACD SUPSI

Seismic safety must also be taken into account for buildings in Italian-speaking Switzerland. For new buildings, the correct positioning of the structural elements allows for the bearing of the seismic loads in an efficient manner without important financial implications.

The bracing walls must be symmetrically placed in the plan without excessive disruptions in the vertical.

For existing buildings, surveys are needed in order to determine their vulnerability.

Following the type of building and terrain, the seismic sizing is established and built according to the current paraseismic requirements that have introduced important concepts like ductility and load resistance factor design.