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Premessa

II corpo di dottrina che oggi chiamiamo Analisi
Matematica ha ricevuto questo nome in epoca re-
lativamente recente, anche se le idee di base affon-
dano le proprie radici nella matematica greca
classica. Il grande matematico svizzero Leonhard
Euler (latinizzato Eulero) intitolava il suo pit im-
portante trattato Introductio in Analysim Infinitorum,
pubblicato nel 1748. In esso si tentava una siste-
mazione delle conoscenze acquisite fino all’epo-
ca della redazione dell'opera stessa, sulla base dei
risultati di G.W. Leibniz e I. Newton, che a loro
volta avevano sfruttato acquisizioni di B. Cavalie-
ri, E. Torricelli, I. Barrow, e cosi a ritroso, fino ai
grandi nomi dell’antichita greca, primo tra tutti
Archimede.

Quali sono i problemi di base di cui si occupa I'A-
nalisi Matematica? Dovendo operare una sintesi
drastica (potrei dire: brutale) tali problemi sono
riducibili a due: quello di determinare la tangen-
te ad una curva data, grafico di un’assegnata fun-
zione, e quello di determinare 'area sottesa dal
grafico di una tale funzione.

Stabilire la connessione tra questi due problemi
di base ha costituito un risultato di primaria im-
portanza: non a caso tale connessione &, per an-
tonomasia, il teorema fondamentale del Calcolo.

La quadratura del segmento di parabola

Archimede (287-212 a.C.) si pose il problema di
«quadrare» un segmento parabolico, cioe la re-
gione mistilinea delimitata da una corda che con-
giunge due punti di una parabola e I'arco di pa-
rabola avente gli stessi estremi. L'idea di base &
quella di invadere progressivamente il segmento
parabolico mediante poligoni di cui si sa valuta-
re I'area: si viene a costruire una successione S,
apmrendiiareeichele crescente:

SI< 52< i S”< Tess
I'area del segmento parabolico sara il piu picco-

lo numero che non & superato da alcuna delle

aree Sn.

Le idee di base dellAnalisi Matematica

Incontriamo qui uno dei concetti di base dell’A-
nalisi Matematica: quello di estremo superiore di un
insieme di numeri reali: tra i numeri s, che co-
struiremo tra poco, non ce n’¢ uno che sia mag-
giore di tutti gli altri, perché ogni termine della
successione ¢ strettamente inferiore al termine

seguente. A noi interessa il numero A che gode di

queste due proprieta:

1. ogni termine della successione s, non supera A:
s, S A per ogni indice n;

2.A ¢ il pitu piccolo numero che goda della pro-
prieta 1-, cioe se si considera un numero del ti-
po A — ¢, dove con € indichiamo un qualsivoglia
numero positivo, allora per un certo indice 7 (€)
sihas, (€)>A - &

Vediamo la costruzione di Archimede, aiutando-
ci con un poco di Geometria Analitica. Conside-
riamo la parabola di equazione

y = p(x): = ax® + bx + ¢, a>0,

e siano x; e x, due punti sull'asse delle ascisse con
x; < Xo; consideriamo i punti P, e P, sulla para-
bola, aventi ascisse x; e x, rispettivamente, e fi-
nalmente conduciamo la secante passante per ta-
li punti.

Figura 1
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Laregione di piano di cui vogliamo definire e cal-
colare I'area ¢ quella delimitata dall’arco di para-
bola costituito dai punti con ascissa compresa tra
X € Xo € il segmento congiungente i punti P; e P,.
Con riferimento alla figura 1, consideriamo il
punto medio dell'intervallo [x;, x,]:

Xy %o
2
e chiamiamo M il corrispondente punto sulla pa-
rabola: M := (xo, p(x3))
Una prima approssimazione (per difetto) dell’a-

x3:=

rea che vogliamo definire, e al tempo stesso cal-
colare, sara I'area del triangolo P; Py M: poiché il
lato P; P, ha come proiezione sull'asse x un seg-
mento di lunghezza: d :=x, - x,.

I'area di tale triangolo sara:

1 e o
Ap=—5d-MH,

dove H ¢ il punto medio del segmento [P, Py,
dunque il punto di tale segmento avente ascissa
Xg.

Calcoliamo la lunghezza del segmento MH, sia h,.
Si ha, in base a semplici considerazioni di tipo
geometrico,

hy:= MH = (ordinata di H) - (ordinata di M) =

$1+.’L’2) i
5 =

[ax%—f—bxl +c+ax§—+—bm2+c]+

2 2 9
Ty +x24+ H) +ba:1—;x2 +c) Lo

[p(a1) + p(a2)] —p(

N = N =

|
N
=3

1 1 1
= Za(:cf —1—1:% —2w1x9) = Za(xz —x1)2 = ZadQ.
Dunque
1 1
Alz?dhl =§ad3. [1]

A parole:

L’area del triangolo inscritto nel segmento para-
bolico delimitato dal segmento [P,P,] ed avente
come terzo vertice il punto M che ha come ascis-
sa la semisomma delle ascisse di P, e Py, & dato da
1/8 del prodotto del coefficiente a per il cubo del-
la differenza d =x, — x, tra le ascisse dei punti P,
e P,

Una prima conseguenza interessante: fissata una
parabola, il coefficiente a ¢ fissato; dunque 'area
del triangolo inscritto nel segmento parabolico
dipende solo da d, lunghezza della proiezione del
segmento stesso sull’asse delle ascisse.

In altri termini: data una parabola, due triangoli
inscritti in segmenti parabolici a cui corrispon-
dano proiezioni uguali delle due corde sull’asse
delle ascisse hanno uguale area, sempre che il ter-
zo vertice abbia come ascissa la semisomma delle
ascisse dei due restanti vertici.

Figura 2

Abbiamo cosi costruito un prima stima dell’area A:
spi=Ay

Una migliore approssimazione dell’area del seg-
mento parabolico si ottiene sommando ad A, le
aree dei due triangoli P,MM, e PyMM,, costruiti
sulle corde P\M e MP, esattamente come abbia-
mo fatto in precedenza sulla corda P; P,. In virta
della formula [1], ciascuno di questi due triango-
li avra area:

T |
§G(§>'"§Ah

dunque la somma delle aree di tali triangoli varra:

1
A2 — ZAI

Figura 3
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In definitiva la seconda approssimazione dell’a-
rea del segmento parabolico é:

1 1
521=A1+A2=A1+ZA1=A1 <1+Z>.

Evidentemente si puo proseguire allo stesso mo-
do, raddoppiando ad ogni iterazione il numero
dei triangoli inscritti nel segmento parabolico
che si aggiungono ai precedenti: dopo n iterazio-
ni, abbiamo per I'area A del segmento parabolico
la stima per difetto:

Sne1 =A1 +As+ ...+ Ap =

R et nerkoess
St focsa B it =

g 1
= Ay ity sl el yapends
1(+4+42+ +4n>

A questo punto siamo tentati di dire che 'area A
del segmento parabolico ¢ il prodotto di A per la
somma dei termini entro parentesi tonde, se in-
vece di prenderne un numero finito, sia esso n+1,
ne prendiamo infiniti. La cosa e vera, ma bisogna
intendersi sul significato dell’espressione «som-
ma di infiniti termini». Siamo di nuovo di fronte
al concetto di estremo superiore: la somma degli
infiniti termini:

i if s
P el gl gasact [
e 3 e P CE R An 7
¢, per definizione, il pitt piccolo numero che non
€ superato da alcuna delle somme:

1 i 1
1+Z+4-2+...+Z5.
Si tratta si sommare la cosiddetta serie geometrica,
cioe di trovare il piu piccolo numero che non &
superato dalle somme di # + 1 termini in pro-
gressione geometrica, come sono appunto le
somme [2].
Vediamo di calcolare questa somma, prima in ter-
mini intuitivi, cioé geometrici, poi in modo piu ri-
goroso, con gli strumenti dellAlgebra. Il fatto che
nelle somme [2] la ragione (cio¢ il rapporto costan-
te tra un termine e il termine precedente) sia 1/4
non ha alcuna rilevanza particolare. Consideriamo,
piut in generale, una somma di termini del tipo:

Pl o st

con la condizione che sia 0 <7 < 1. La quantita r &
la ragione (dal latino ratio = rapporto). Costruia-
mo un triangolo rettangolo isoscele di lato 1, co-
me mostrato in figura, e, sul prolungamento del
cateto orizzontale, costruiamo un altro triangolo
simile con i cateti lunghi r.

Figura 4

Congiungiamo ora i due vertici dei triangoli ap-
pena costruiti con una semiretta, a partire dal ver-
tice del triangolo di cateti uguali ad 1, fino ad in-
contrare la semiretta ottenuta prolungando il ca-
teto orizzontale del medesimo triangolo (figura 4).
Ora continuiamo a costruire triangoli rettangoli
isosceli, uno a fianco dell’altro, in modo che i ca-
teti orizzontali siano sempre sulla stessa semiret-
ta, e i vertici che sono gli estremi dei cateti verti-
cali siano tutti allineati con i vertici analoghi dei
due primi triangoli.

Considerazioni semplici sulla similitudine dei
triangoli ci dicono che i cateti di questi triangoli
rettangoli isosceli sono in progressione geometri-
ca di ragione 7, dunque valgono successivamente
2 v

Se immaginiamo di poter proseguire indefinita-
mente questo procedimento, intuitivamente sia-
mo condotti a dire che la somma di tutti i cateti
orizzontali € uguale al cateto orizzontale del trian-
golo rettangolo che contiene tutti i triangoli co-
struiti.

La lunghezza di tale cateto orizzontale si calcola
facilmente in base alla similitudine tra i triangoli
in figura 5. Si ha:

x:l=(-1):r & sr=5s-11=5s-sr=s(1-17),

Figura 5

il

da cui finalmente: s = : 1
—7r

(3]




Allo stesso risultato possiamo arrivare se ricordiamo
che la somma din+1 termini in progressione geo-
metrica, di primo elemento 1 e ragione 7, si scrive:
sn=l+r+ri4+.. . +rt= dedii
1—r

Se nell’ultima frazione trascuriamo 'addendo "1
otteniamo la quantita 1/(1 - r) che dunque ¢ mag-
giore di tutte le somme s, . D’altra parte tale quan-
tita & il minimo numero che non ¢ superato da al-
cuna somma s, ; basta considerare che, essendo
0 <r<1,le potenze r" si possono rendere piccole
quanto si vuole, a patto di prendere n convenien-
temente grande.

Tornando al nostro caso: la progressione geome-
trica ha ragione r = 1/4. Dunque il pit piccolo nu-
mero che non ¢ superato dalle aree s, dei poligoni
che abbiamo inscritto nel segmento parabolico é:

it 1 1
A—A1<1+Z+P+...+4—n+...>—
i 4
sl Bt s L
Yl e 3/
1
zéadg.

Fino a questo punto abbiamo supposto che sia
a > 0, cioe la parabola rivolga la propria concavita
verso l'alto; il risultato ottenuto sussiste anche se
a <0 (la parabola rivolge la propria concavita ver-
so il basso): basta scrivere |a| al posto di a:

asilamn !
A—6]a|d. [4']

Teniamo presente che, se a < 0, allora il valore as-
soluto di @ & l'opposto di a: |a|= — a. Verso la fine
del nostro viaggio considereremo una parabola
con il coefficiente a < 0.

La tangente al grafico di una funzione: la derivata

Il secondo problema di cui dobbiamo occuparci &
quello del tracciamento della tangente al grafico
cartesiano di un’assegnata funzione y = f(x). Suppo-
niamo di tracciare questo grafico rispetto un siste-
ma monometrico ortogonale (niente paura: signi-
fica solo che gli assi sono tra loro perpendicolari e
che si sceglie la stessa unita di misura sui due assi).
Se (x,, f(x,)) sono le coordinate di un punto P che
appartiene al grafico di f; sappiamo che tutte le ret-
te passanti per P, (con I'esclusione della parallela
all’asse delle ordinate), sono date dalla formula:

y=y+mx— %) [5]

il numero che ci interessa € m, il coefficiente angola-
re o pendenza della retta: esso ci indica di quanto

varia l'ordinata di un punto sulla retta quando I'a-
scissa viene aumentata di un’unita.

\/

Figura 6

Noi vogliamo determinare m in modo tale che la
retta rappresentata dalla [5], sia tangente al gra-
fico di f; questo particolare valore di m si chiama
derivata della funzione f calcolata nel punto x; e si
indica con il simbolo f'(x).

Per rispondere al quesito che ci siamo posti oc-
corre riflettere sul concetto di tangente ad una
curva. Supponiamo ancora che la nostra curva sia
una parabola, quella di equazione y = f(x) = x2. Pre-
s0 un punto x, il corrispondente valore y, vale x ;
scegliamo sulla nostra parabola anche un secon-
do punto P di coordinate generiche (x, ) = (x, x?).
Andiamo a scrivere I'equazione della secante che
passa per P, e P;il coefficiente angolare di tale se-
cante ¢ dato dal rapporto:

@) - f@) _P-a

X — Xg L= Lo

Yoo
T — Zo

Questo rapporto, fissato P, dipende da P e dun-
que ¢ anch’esso funzione di x. Trattandosi di un
rapporto, chiamiamolo 7(x):

)
= D). (6]
I — X9
1
0.5
= )5 0.5 1

Figura 7




Dato che la tangente ¢ la posizione limite che la
secante assume quando il punto P viene portato
a coincidere con P, la prima idea che viene &
che, per calcolare il coefficiente angolare della
tangente, basta prendere il coefficiente angolare
della secante e vedere che cosa accade quando
nella sua espressione si pone x = x,,. Il guaio & che
non succede proprio niente, perché, per x = %05
I'espressione del rapporto r(x) si riduce ad una
scrittura del tipo 0/0, che non ha alcun signifi-
cato.
Detto in altri termini: il dominio (o insieme di de-
finizione) della funzione » non contiene il pun-
to x,, anche se contiene tutti i punti distinti da
esso. E dunque possibile calcolare la funzione
r(x) in corrispondenza di valori arbitrariamente
prossimi a X, ma non ¢ possibile calcolarla in %,
stesso.
La situazione sembra disperata, se non fosse
che un po’ di algebra elementare viene in no-
stro aiuto. Vediamo se & possibile trovare un’
espressione equivalente al secondo membro
della [6] per x # x, ma un’espressione che ab-
bia senso anche per x = xq; il valore di tale
espressione per x = x;, potrebbe essere quello
che noi cerchiamo.
Ora non c’¢ bisogno di sapere molta matematica
per ricordare il prodotto notevole x? — xg =(x -
x,) (x + x,); dunque la [6] si scrive anche:

‘,.2

D
onis Sy e BNR 6]
T — g

D=

L'ultima espressione ¢ definita anche per x = 05
essa vale 2x,,.

Vediamo se questo ¢ il valore giusto: quanto piu
X & prossimo a x; tanto piui 7(x) = x + x,, & prossi-
mo a 2x,. Qui siamo di fronte ad un altro con-
cetto base dell’Analisi: il concetto di limite di una
funzione.

Dire che una funzione f(x) tende ad un certo li-
mite L quando x tende ad un valore X, non vuole
dire che f(x,) = L (anche se non si esclude che cio
possa accadere); vuol dire che f(x) si puo rendere
arbitrariamente prossimo a L a patto di prende-
re x convenientemente prossimo a X

Per tradurre tutto cio in un procedimento veri-
ficabile, K. Weierstrass (1815-1897) ha introdot-
to la notazione € - 8. Dire che il limite di f(x) per
x che tende a x, vale L, significa che, comunque
si fissi una tolleranza € > 0, si puo determinare
in corrispondenza una distanza & > 0 tale che,
per gli x # x, appartenenti al dominio D della
funzione, che distano da x;, meno di § si ha
[f(x) =L|<e.

Figura 8

Come dire: fissiamo un bersaglio centrato in L
di raggio € > 0: se a partire da tutti gli x per cui
0 < |x — x| <& i valori f(x) «colpiscono» il bersa-
glio, nel senso che [f(x) — L| <€, allora diciamo
che il limite & L e scriviamo:

limy fi(ac)i= L:

x>,

Attenzione all'ordine con cui si scelgono le co-
se: prima si sceglie € (cioe il bersaglio), poi &
(ciog il controllo); ci aspettiamo che, quanto piu
piccolo ¢ il bersaglio, tanto pitt piccolo sara il
raggio dell'insieme di controllo.

Perché la definizione precedente abbia senso
occorre che esistano x # X, in cui la f & definita,
prossimi tanto quanto si vuole a x;, (in termini
tecnici questo si esprime dicendo che x;, ¢ punto
di accumulazione del dominio di f), mentre I'e-
ventuale valore della f nel punto X, non in-
fluenza il limite della stessa funzione.
Torniamo al nostro rapporto r(x); poiché r(x) =
x + x,, se vogliamo che sia:

|(oe) =205 = |+ = 23| = i~ 5] <€

occorre e basta che sia |x — x| < 0 = €, cioe basta
prendere il raggio dell'insieme di controllo
uguale al raggio del bersaglio.

In conclusione: se f(x) =x% allora per ogni x,, rea-
le si ha f'(x;) = 2x,. Dato che x; & un qualunque
numero reale, possiamo scrivere semplicemen-
te x al posto di x,, e scrivere:

J@) =2 = f'(x)=2x [7]

Vediamo di ripetere il calcolo con una funzione
un po’ pin difficile: f(x) = x% Scriviamo il rap-
porto r che fornisce la pendenza di una secante
passante per i punti di ascisse x, e x; questo rap-
porto viene chiamato rapporto incrementale della
funzione f. Nel nostro caso:



plye f(z) — flxo) «*— =
e T G iy

3

Se dividiamo x® —x} per x —x, (ad esempio usan-

do la regola di Ruffini), troviamo x? + X% + x%.

Dunque:

g° =8

i) = = 22 4 zoz + z2.

T — o
L'ultima espressione vale 3x3 per x = x,. Vediamo
se riusciamo e verificare il test € — & di Weierstrass.
Dobbiamo verificare che la differenza r(x) — 3x3
si puo rendere in valore assoluto inferiore ad una
qualsivoglia tolleranza prefissata, a patto di pren-
dere x abbastanza vicino a x,. Ora si ha:

r(x)—8x3 =x®+ xpr b xd = Bxf = a2 +xg~2x3.[8]

e gy = (Ut giochi sono presto fatti: il secondo
membro di [8] si riduce a x% e si ha x? <€ se e solo
se |z| < v/€; dunque § = /.

Supponiamo dunque x, # 0. Dalla [8] segue:

2+ XX — Qx% =

=x?-x3 +xpx—x3 =

= (=l ) ekt etiong (oiss g I
= (% = xq)oe+ 20,)-

7 (x) —Sx% =

Prendiamo 1 valori assoluti, e ricordiamo che il
valore assoluto della somma non supera la som-
ma dei valori assoluti:

Ir(x) = Bx3| = |x— x| | + 2| < | = x| (%] + Llacg]).

A noi interessano i valori di x prossimi a x,, dun-
que non & restrittivo limitarsi a considerare gli x
per cui [x|< 2|x|. Per questi x abbiamo:

[r(a)= Sx%;S 4| o = 2

I'ultima quantita € minore di € per:

g
|.T = .’1,'0| < m
In conclusione: § =€ /(4|x,|). Dunque tutto qua-
dra, abbiamo:

lim 7 (x) = 3x,
x> .‘C”
o anche, scrivendo semplicemente x al posto di X5

f) =x*>= f(Ix)=3x* [9]

La [7] e la [9] sono casi particolari di un risultato
generale: per ogni naturale n>1,la derivata di f(x)
= x" vale nx""L.

In formula:

f(x) = 2" = f(x) = nx"L,

In generale la derivata di una funzione f ¢ il limi-
te del rapporto incrementale (sempre che tale li-
mite esista):

[ (@) = f(20)

lim ¥—————~—=,
T—To T — X9

)=

Per procedere abbiamo bisogno di due teoremi
sulle derivate: essi affermano che la derivata di
¢f(x) vale ¢f'(x), per ogni costante ¢, e che la deri-
vata di f(x) + g(x) & f'(x) + g'(x).

A parole: la derivata del prodotto di una costan-
te per una funzione ¢ uguale al prodotto della co-
stante per la derivata della funzione; la derivata
della somma di due funzioni ¢ uguale alla somma
delle rispettive derivate.

In formula: (¢f(x))' = ¢f'(x); (f(x) + g(x))'= f'(x) + g'(x).
Questi due risultati seguono dal fatto che i rap-
porti incrementali delle funzioni considerate si

SCrivono:
of(2) = ef(wo) _  1(@) = (o)
T — g T —To

e rispettivamente:

flz)-ole) — (fGo)halza)) o

T — To

f(@) — f(x0)

&L = To

, 9(@) = g(z0)
T — Xo-

Sarebbe bello se anche la derivata del prodotto
di due funzioni fosse uguale al prodotto delle
derivate: cio ¢ falso, ma dato che nel seguito non
ci serve I'espressione della derivata del prodot-
to di due funzioni, tralasciamo questo argo-
mento.

Il teorema fondamentale del Calcolo

Fino a questo momento ci siamo occupati dei
due problemi fondamentali dall’Analisi Matema-
tica: quello di determinare la tangente ad una
curva data, grafico di un’assegnata funzione, e
quello di determinare I'area sottesa dal grafico di
una tale funzione. A dire la verita, 'esempio con
cui abbiamo esordito (calcolo dell’area di un seg-
mento parabolico) non ¢ esattamente quello che
vogliamo.

Vediamo di riprendere in esame il problema.
Consideriamo una parabola passante per lorigi-
ne del sistema di riferimento e rivolta verso il bas-
so: la sua equazione sara:

y=f(x) = ax?®+ bx, a< 0.




Tale parabola incontra I'asse delle x, oltre che
nell'origine, nell'ulteriore punto x, = —b/a. Sup-
poniamo che b sia positivo, in modo che x; sia
anch’esso positivo, in quanto rapporto tra i nu-
meri positivi b € —a. In figura 9 & rappresentata
la parabola di equazione y = —2x2 +3x; tutto quel-
lo che diremo vale quali che siano i coefficienti
a e b, purché siano negativo il primo, positivo il
secondo.

Se vogliamo calcolare I'area del segmento para-
bolico individuato dall’asse delle ascisse, cioe
quello che ha come corda il segmento che con-
giunge lorigine col punto (x;, 0 ), abbiamo la for-
mula [4'] pronta allo scopo: basta scrivere al po-
sto di d il valore x; = —b/a.

Questo problema & un po’ troppo facile; vedia-
mone uno piu difficile. Scegliamo un valore qua-
lunque x, compreso tra 0 e x;: 0 < x, < x; voglia-
mo trovare I'area della regione di piano che & de-
limitata dall’asse delle ascisse e dal grafico della
funzione fcompreso nell'intervallo [0, x], cioe la
regione che & delimitata a destra dalla retta x = x,,.
Esaminiamo la figura 9; la regione di cui voglia-
mo calcolare I'area & I'unione del segmento para-
bolico delimitato dalla corda che congiunge l'ori-
gine col punto (x, f(x,)) e del triangolo di vertici
lorigine e i punti (x, 0) e (x, f(x,)), ombreggiato
in figura 9.

L’area di questo triangolo vale:

1

2 2 )

Quanto all’area del segmento parabolico, abbia-
mo pronta la formula [4']; tale area vale:

1 1

= |a|d® = —= ax}d,

6 6

dove abbiamo tenuto conto del fatto che |a| = —a,
a essendo negativo.

In conclusione I'area della regione che a noi in-
teressa vale:

-éawgﬁ—%aazg—kébx% = %aﬂcg%—%bx%.
Quest’area dipende dalla scelta di X, Cio€ ¢ una
funzione di x,,. Se scriviamo semplicemente x al
posto di x,,, abbiamo il seguente risultato: I'area
compresa tra I'asse delle ascisse e la parabola in
esame, relativamente alle ascisse comprese tra 0
€ x, si scrive:

il 1
Aln) = 3 az® + 3 bx?. [9]

Abbiamo costruito una funzione della variabile x
a partire dalla funzione f(x): & abbastanza naturale

i 1 1
= 2o+ f(xo) = = mo (az? + bxp) = = axd + 5[)3:3.
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Figura 9

chiedersi se esista un legame tra queste due fun-
zioni.

Proviamo a calcolare la derivata della funzione
A(x): ricordando i due teoremi sulle derivate che
abbiamo enunciato al termine del paragrafo pre-
cedente, abbiamo:

1 1
Allp)i= §a3x2 L §b2z = az? + bz
Miracolo: abbiamo ritrovato la funzione f(x) da
cui eravamo partiti:

Sembra dunque che, data una funzione f; che pos-
siamo supporre non negativa e definita su un in-
tervallo [xy, x,], per costruire un’altra funzione
che abbia come derivata proprio la fdi partenza,
basti procedere in questo modo: calcolare 'area
della regione di piano compresa tra I'asse delle
ascisse e il grafico della funzione f, relativamente
ai punti le cui ascisse sono comprese tra x,, e x: si
ottiene una funzione di x, sia A(x), che fa al caso
nostro.

Naturalmente I'esempio precedente non prova
proprio nulla, ma &, per cosi dire, un buon indi-
zio.

In effetti i pionieri del calcolo infinitesimale, so-
prattutto E. Torricelli (1608-1647) e L. Barrow
(1630-1677), che abbiamo citato all’inizio del no-
stro discorso, avevano intravisto, basandosi su
esempi semplici proprio come abbiamo fatto noi,
che i due problemi apparentemente cosi lontani,
quello di calcolare I'area sotto il grafico di una
funzione e quello di derivare una funzione (cioe
trovare la pendenza di una tangente al grafico
della stessa funzione) sono in realtd uno l'inverso
dell’altro.

I trucco & quello di pensare non ad un’area fissa-
ta, ma ad un’area che sia funzione del secondo



estremo dell'intervallo [x, x] su cui si proietta la
regione che noi consideriamo.

L'operazione con cui si calcola I'area compresa tra
l'asse delle ascisse e il grafico di una funzione va
sotto il nome di integrazione, secondo una termi-
nologia introdotta da G.W. Leibniz (1646-1716).
Sempre limitandoci a considerare funzioni non
negative, abbiamo che I'area della regione com-
presa tra 'asse delle ascisse, il grafico di f e le ret-
te x = x,, € x = x si indica col simbolo:

/ f(@) da,

che silegge «integrale di f(x) in dx per x da x;, a x;».
Il simbolo di integrale non ¢ altro che una esse al-
lungata, iniziale della parola latina summa, cio¢
somma. Leibniz, in cid influenzato da B. Cavalieri
(1598-1647), considerava la regione pit volte con-
siderata come «somma» di infinite striscioline pa-
rallele all’asse delle ordinate, ciascuna della quali
ha una base «infinitesima» dx e I'altezza f(x).

Con i simboli introdotti da Leibniz e tuttora in
uso, abbiamo:

Aw = [ ",

dove abbiamo usato una lettera diversa da x per
indicare la variabile indipendente della funzione
/ per non confonderla con I'estremo superiore
dellintervallo su cui essa viene «integrata».

Il teorema fondamentale del calcolo dice che per
le funzioni f«abbastanza regolari» (ad esempio per
tutte le funzioni elementari: polinomi, logaritmi,
esponenziali, funzioni circolari ecc.) si ha che:

Un’ idea della dimostrazione si ottiene se si scri-
ve il rapporto incrementale della funzione A (x).
Indichiamo con x e x + & i due punti in cui viene
calcolata la funzione A e supponiamo, per sem-
plicita, 2> 0. Allora A(x + h) — A(x) rappresenta I'a-
rea sotto il grafico di frelativa allintervallo [x, x +
h], in quanto si tratta della differenza tra le aree
relative agli intervalli [x), x + h] e [x, x] (Fig. 10).

Ne viene che per il rapporto incrementale della

funzione A:
Ale + h)— Alz) ., L "%
_(_}1’( o / F(t)t

cioe il rapporto tra I'area relativa all'intervallo
[x, x + /] e la «base» h della regione considerata.
Se h & «<molto piccolo» questa area non € troppo
diversa dal prodotto k- f(x) (base per altezza), e
quindi:

Alz+ k)= Alz) .

=20 ~ fe).

Il ragionamento precedente, opportunamente
«ripulito», diventa una vera dimostrazione.
A

A(z + h) A A@)
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Figura 10

Il cerchio & chiuso: se si integra una funzione su
un intervallo che ha un estremo fisso e il secondo
estremo variabile (chiamiamolo x) si ottiene una
funzione che, derivata rispetto a tale estremo va-
riabile, restituisce la funzione di partenza.

PS. Le idee presentate in questa nota sono svi-
luppate nel testo.
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