
Zeitschrift: Archi : rivista svizzera di architettura, ingegneria e urbanistica = Swiss
review of architecture, engineering and urban planning

Herausgeber: Società Svizzera Ingegneri e Architetti

Band: - (2006)

Heft: 1

Artikel: Le idee di base dell'Analisi Matematica

Autor: Barozzi, Giulio C.

DOI: https://doi.org/10.5169/seals-133429

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-133429
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Le idee di base dell'Analisi Matematica Giulio C. Barozzi*

Premessa

Il corpo di dottrina che oggi chiamiamo Analisi
Matematica ha ricevuto questo nome in epoca
relativamente recente, anche se le idee di base affondano

le proprie radici nella matematica greca
classica. Il grande matematico svizzero Leonhard
Euler (latinizzato Eulero) intitolava il suo più
importante trattato Introductio inAnalysimlnfinitorum,
pubblicato nel 1748. In esso si tentava una
sistemazione delle conoscenze acquisite fino all'epoca

della redazione dell'opera stessa, sulla base dei
risultati di G.W. Leibniz e I. Newton, che a loro
volta avevano sfruttato acquisizioni di B. Cavalieri,

E. Torricelli, I. Barrow, e così a ritroso, fino ai

grandi nomi dell'antichità greca, primo tra tutti
Archimede.

Quali sono i problemi di base di cui si occupa
l'Analisi Matematica? Dovendo operare una sintesi
drastica (potrei dire: brutale) tali problemi sono
riducibili a due: quello di determinare la tangente

ad una curva data, grafico di un'assegnata
funzione, e quello di determinare l'area sottesa dal

grafico di una tale funzione.
Stabilire la connessione tra questi due problemi
di base ha costituito un risultato di primaria
importanza: non a caso tale connessione è, per
antonomasia, il teoremafondamentale del Calcolo.

Incontriamo qui uno dei concetti di base dell'Analisi

Matematica: quello di estremo superiore di un
insieme di numeri reali: tra i numeri sn che
costruiremo tra poco, non ce n'è uno che sia

maggiore di tutti gli altri, perché ogni termine della
successione è strettamente inferiore al termine
seguente. A noi interessa il numero A che gode di

queste due proprietà:
l.ogni termine della successione sn non supera A:

s < A per ogni indice n;
2. A è il più piccolo numero che goda della

proprietà 1-, cioè se si considera un numero del

tipo A - e, dove con e indichiamo un qualsivoglia
numero positivo, allora per un certo indice n (e)

si ha sn (e) > A - e.

Vediamo la costruzione di Archimede, aiutandoci

con un poco di Geometria Analitica. Consideriamo

la parabola di equazione

y p(x): ax2 + bx + e, a > 0,

e siano Xj e x2 due punti sull'asse delle ascisse con

Xj < x2; consideriamo i punti Pj e P2 sulla parabola,

aventi ascisse Xj e x2 rispettivamente, e

finalmente conduciamo la secante passante per tali

punti.

La quadratura del segmento di parabola

Archimede (287-212 a.C.) si pose il problema di
«quadrare» un segmento parabolico, cioè la

regione mistilinea delimitata da una corda che

congiunge due punti di una parabola e l'arco di
parabola avente gli stessi estremi. L'idea di base è

quella di invadere progressivamente il segmento
parabolico mediante poligoni di cui si sa valutare

l'area: si viene a costruire una successione s;, s2,

s di aree che è crescente:

S,< $2< -¦<«„<" •>'

l'area del segmento parabolico sarà il più piccolo

numero che non è superato da alcuna delle
aree f_.

Pi

\ J

Figura 1



La regione di piano di cui vogliamo definire e

calcolare l'area è quella delimitata dall'arco di parabola

costituito dai punti con ascissa compresa tra

Xj e x2 e il segmento congiungente i punti P, e P2-

Con riferimento alla figura 1, consideriamo il
punto medio dell'intervallo [x1; x2]:

¦ti ' Ao

e chiamiamo M il corrispondente punto sulla
parabola: M := (x2, jb(x3))

Una prima approssimazione (per difetto) dell'area

che vogliamo definire, e al tempo stesso

calcolare, sarà l'area del triangolo Pj P2 M: poiché il
lato Pj P2 ha come proiezione sull'asse x un
segmento di lunghezza: d : x2 - x-,.

l'area di tale triangolo sarà:

AV.= ~dMH,

dove H è il punto medio del segmento [P, Pfi\,

dunque il punto di tale segmento avente ascissa

x3.

Calcoliamo la lunghezza del segmento MH, sia hy
Si ha, in base a semplici considerazioni di tipo
geometrico,

hy=MH (ordinata di H) - (ordinata di M)

2
[p(xi) + P(X2Ì] -p(— 2)

1

- \ax\ + bx\ + e + ax\ + bx2 + e] -

x\ + x\ + 2x-tX2 ,Xi+X2+ b — ')

a (x\ + x2 - 2x\X2) - a (x2 - x\Y ad1

Dunque

1

dh^-j-ad*. [1]

A parole:
L'area del triangolo inscritto nel segmento
parabolico delimitato dal segmento [P]P2] ed avente

come terzo vertice il punto M che ha come ascissa

la semisomma delle ascisse di Pl e P2, è dato da

1/8 del prodotto del coefficiente a per il cubo della

differenza d =x2 - xl tra le ascisse dei punti Pj
eP2.
Una prima conseguenza interessante: fissata una
parabola, il coefficiente a è fissato; dunque l'area
del triangolo inscritto nel segmento parabolico
dipende solo da d, lunghezza della proiezione del

segmento stesso sull'asse delle ascisse.

In altri termini: data una parabola, due triangoli
inscritti in segmenti parabolici a cui corrispondano

proiezioni uguali delle due corde sull'asse

delle ascisse hanno uguale area, sempre che il terzo

vertice abbia come ascissa la semisomma delle
ascisse dei due restanti vertici.

A? "3 %4

Figura 2

Abbiamo così costruito un prima stima dell'area A:

h-=Ai.

Una migliore approssimazione dell'area del
segmento parabolico si ottiene sommando ad Aj le

aree dei due triangoli PjMMj e P^MM^, costruiti
sulle corde P^M e MPc, esattamente come abbiamo

fatto in precedenza sulla corda Px P2. In virtù
della formula [1], ciascuno di questi due triangoli

avrà area:

1 (d
8a 2

1

Ai,

dunque la somma delle aree di tali triangoli varrà:

a2 \a,.

fifi

x2A ;

Figura 3



In definitiva la seconda approssimazione dell'area

del segmento parabolico è:

s2 := Ai Ai+~Al=r'Al 1 +

Evidentemente si può proseguire allo stesso modo,

raddoppiando ad ogni iterazione il numero
dei triangoli inscritti nel segmento parabolico
che si aggiungono ai precedenti: dopo n iterazioni,

abbiamo per l'area A del segmento parabolico
la stima per difetto:

Sn+l Ai + A2 + + An+1

Ai
1

+ -A1 + (5)'*-
Ai H+ 1

42
+

1

4«

A questo punto siamo tentati di dire che l'area A
del segmento parabolico è il prodotto di A1 per la

somma dei termini entro parentesi tonde, se

invece di prenderne un numero finito, sia esso n+1,
ne prendiamo infiniti. La cosa è vera, ma bisogna
intendersi sul significato dell'espressione «somma

di infiniti termini». Siamo di nuovo di fronte
al concetto di estremo superiore: la somma degli
infiniti termini:

1 1

4 42 +
1

[2]

è, per definizione, il più piccolo numero che non
è superato da alcuna delle somme:

1 1 1

i + T + Tô + ••• + -r-4 42 4«

Si tratta si sommare la cosiddetta serie geometrica,

cioè di trovare il più piccolo numero che non è

superato dalle somme di n + 1 termini in
progressione geometrica, come sono appunto le

somme [2].
Vediamo di calcolare questa somma, prima in
termini intuitivi, cioè geometrici, poi in modo più
rigoroso, con gli strumenti dell'Algebra. Il fatto che

nelle somme [2] la ragione (cioè il rapporto costante

tra un termine e il termine precedente) sia 1/4
non ha alcuna rilevanza particolare. Consideriamo,

più in generale, una somma di termini del tipo:

1 + r + r2 + r3 + + p>

con la condizione che sia 0 < r < 1. La quantità r è

la ragione (dal latino ratio rapporto). Costruiamo

un triangolo rettangolo isoscele di lato 1,

come mostrato in figura, e, sul prolungamento del
cateto orizzontale, costruiamo un altro triangolo
simile con i cateti lunghi r.

Figura 4

Congiungiamo ora i due vertici dei triangoli
appena costruiti con una semiretta, a partire dal vertice

del triangolo di cateti uguali ad 1, fino ad

incontrare la semiretta ottenuta prolungando il
cateto orizzontale del medesimo triangolo (figura 4).

Ora continuiamo a costruire triangoli rettangoli
isosceli, uno a fianco dell'altro, in modo che i
cateti orizzontali siano sempre sulla stessa semiretta,

e i vertici che sono gli estremi dei cateti verticali

siano tutti allineati con i vertici analoghi dei
due primi triangoli.
Considerazioni semplici sulla similitudine dei

triangoli ci dicono che i cateti di questi triangoli
rettangoli isosceli sono in progressione geometrica

di ragione r, dunque valgono successivamente
r2, r3, r4,...

Se immaginiamo di poter proseguire indefinitamente

questo procedimento, intuitivamente siamo

condotti a dire che la somma di tutti i cateti
orizzontali è uguale al cateto orizzontale del triangolo

rettangolo che contiene tutti i triangoli
costruiti.

La lunghezza di tale cateto orizzontale si calcola
facilmente in base alla similitudine tra i triangoli
in figura 5. Si ha:

se : 1 (s - l) :r <=> sr s - 1 <=> 1 s - sr s (1- r),

2 „3r r

s -1

Figura 5

da cui finalmente: s l-r [3]



Allo stesso risultato possiamo arrivare se ricordiamo
che la somma din+l termini in progressione
geometrica, di primo elemento 1 e ragione r, si scrive:

1 + r
1 _n+l

1-r
Se nell'ultima frazione trascuriamo l'addendo r"+1

otteniamo la quantità 1/(1 - r) che dunque è

maggiore di tutte le somme s D'altra parte tale quantità

è il minimo numero che non è superato da

alcuna somma sn ; basta considerare che, essendo

0 < r < 1, le potenze rn si possono rendere piccole

quanto si vuole, a patto di prendere n convenientemente

grande.
Tornando al nostro caso: la progressione geometrica

ha ragione r 1/4. Dunque il più piccolo
numero che non è superato dalle aree sn dei poligoni
che abbiamo inscritto nel segmento parabolico è:

Ai 1
1 1

4
+ 42

Ai
1

1-1/4 3
Ai

1

4«

[4]

adfi

Fino a questo punto abbiamo supposto che sia

a > 0, cioè la parabola rivolga la propria concavità

verso l'alto; il risultato ottenuto sussiste anche se

a <0 (la parabola rivolge la propria concavità verso

il basso): basta scrivere \a\ al posto di a:

A=-\a\d3.
6 ' '

[4>]

Teniamo presente che, se a < 0, allora il valore
assoluto di a è l'opposto di a: \a\= - a. Verso la fine
del nostro viaggio considereremo una parabola
con il coefficiente a < 0.

La tangente al grafico di una funzione: la derivata

Il secondo problema di cui dobbiamo occuparci è

quello del tracciamento della tangente al grafico
cartesiano di un'assegnata funzione y =f[x). Supponiamo

di tracciare questo grafico rispetto un sistema

monometrico ortogonale (niente paura: significa

solo che gli assi sono tra loro perpendicolari e

che si sceglie la stessa unità di misura sui due assi).

Se (xq,/(xq)) sono le coordinate di un punto Pq che

appartiene al grafico di/, sappiamo che tutte le rette

passanti per P0 (con l'esclusione della parallela
all'asse delle ordinate), sono date dalla formula:

y=y0 + m(x-x0); [5]

il numero che ci interessa è m, il coefficiente angolare

o pendenza della retta: esso ci indica di quanto

varia l'ordinata di un punto sulla retta quando
l'ascissa viene aumentata di un'unità.

m > 0

il

m 0

1

0 1

m < 0

Figura 6

Noi vogliamo determinare m in modo tale che la

retta rappresentata dalla [5], sia tangente al grafico

di/; questo particolare valore di m si chiama
derivata della funzione/calcolata nel punto x0 e si

indica con il simbolo/'(x0).
Per rispondere al quesito che ci siamo posti
occorre riflettere sul concetto di tangente ad una
curva. Supponiamo ancora che la nostra curva sia

una parabola, quella di equazione y =f(x) x2. Preso

un punto x0, il corrispondente valore y0 vale x q ;

scegliamo sulla nostra parabola anche un secondo

punto P di coordinate generiche (x, y) (x, x2).

Andiamo a scrivere l'equazione della secante che

passa per P0 e P; il coefficiente angolare di tale
secante è dato dal rapporto:

y-yo f(x) - /Qo) _
x2 -x2Q

X — Xq X — Xq X — Xq

Questo rapporto, fissato P0, dipende da P e dunque

è anch'esso funzione di x. Trattandosi di un

rapporto, chiamiamolo r(x):

r(x) :-
(-o

X — Xq
[6]

0.5

/il

3.5 3.5

Figura 7



Dato che la tangente è la posizione limite che la
secante assume quando il punto P viene portato
a coincidere con PQ, la prima idea che viene è

che, per calcolare il coefficiente angolare della
tangente, basta prendere il coefficiente angolare
della secante e vedere che cosa accade quando
nella sua espressione si pone x xQ. Il guaio è che

non succede proprio niente, perché, per x x0,

l'espressione del rapporto r(x) si riduce ad una
scrittura del tipo 0/0, che non ha alcun significato.

Detto in altri termini: il dominio (o insieme di
definizione) della funzione r non contiene il punto

x0, anche se contiene tutti i punti distinti da
esso. È dunque possibile calcolare la funzione
r(x) in corrispondenza di valori arbitrariamente
prossimi a xQ, ma non è possibile calcolarla in x0
stesso.

La situazione sembra disperata, se non fosse
che un po' di algebra elementare viene in
nostro aiuto. Vediamo se è possibile trovare un'
espressione equivalente al secondo membro
della [6] per x t- xQ, ma un'espressione che abbia

senso anche per x x0; il valore di tale
espressione per x x0 potrebbe essere quello
che noi cerchiamo.
Ora non c'è bisogno di sapere molta matematica

per ricordare il prodotto notevole x2 - xfj (x -
x0) (x + x0); dunque la [6] si scrive anche:

r(x)
x0

¦- x-r-x0. w

L'ultima espressione è definita anche per x xy.

essa vale 2xQ.

Vediamo se questo è il valore giusto: quanto più
x è prossimo a xQ tanto più r(x) x + x0 è prossimo

a 2xQ. Qui siamo di fronte ad un altro
concetto base dell'Analisi: il concetto di limite di una
funzione.
Dire che una funzione f(x) tende ad un certo
limite L quando x tende ad un valore x0 non vuole
dire che/(x0) L (anche se non si esclude che ciò

possa accadere); vuol dire che/(x) si può rendere
arbitrariamente prossimo aia patto di prendere

x convenientemente prossimo a x0.
Per tradurre tutto ciò in un procedimento
verificabile, K. Weierstrass (1815-1897) ha introdotto

la notazione e- S. Dire che il limite di/(x) per
x che tende a x0 vale L, significa che, comunque
si fissi una tolleranza e > 0, si può determinare
in corrispondenza una distanza ô > 0 tale che,

per gli x ^ x0 appartenenti al dominio D della
funzione, che distano da xQ meno di ô si ha

/

Figura 8

Come dire: fissiamo un bersaglio centrato in L
di raggio e > 0: se a partire da tutti gli x per cui
0 < |x - xQ| < 8 i valori/(x) «colpiscono» il bersaglio,

nel senso che \f(x) - L\ < e allora diciamo
che il limite èie scriviamo:

lim/(x) L.
x->x0

Attenzione all'ordine con cui si scelgono le cose:

prima si sceglie e (cioè il bersaglio), poi ô

(cioè il controllo); ci aspettiamo che, quanto più
piccolo è il bersaglio, tanto più piccolo sarà il
raggio dell'insieme di controllo.
Perché la definizione precedente abbia senso
occorre che esistano x ^ xQ in cui la /è definita,
prossimi tanto quanto si vuole a x0 (in termini
tecnici questo si esprime dicendo che x„ èpunto
di accumulazione del dominio di f), mentre
l'eventuale valore della f nel punto x0 non
influenza il limite della stessa funzione.
Torniamo al nostro rapporto r(x); poiché r(x)
x + x0, se vogliamo che sia:

|r(x) - 2xn |a i Aa ™ n i n <£

occorre e basta che sia |x - x0| < ô e, cioè basta

prendere il raggio dell'insieme di controllo
uguale al raggio del bersaglio.
In conclusione: se/(x) =x2, allora per ogni xQ reale

si ha/'(x0) 2xq. Dato che x0 è un qualunque
numero reale, possiamo scrivere semplicemente

x al posto di xQ e scrivere:

/(x) =x2 =>/'(*) =2x [7]

Vediamo di ripetere il calcolo con una funzione
un po' più difficile:/(x) x3. Scriviamo il
rapporto r che fornisce la pendenza di una secante

passante per i punti di ascisse x0 e x; questo
rapporto viene chiamato rapporto incrementale della
funzione/. Nel nostro caso:



r(x) /o) - /K)
X — Xq X — Xq

Se dividiamo x3 - x q per x - x0 (ad esempio usando

la regola di Ruffini), troviamo x2 + xflx + x^.
Dunque:

X2 + XqX + Xq.rix)
X — Xq

L'ultima espressione vale 3x2 per x xQ. Vediamo

se riusciamo e verificare il test e - 8 di Weierstrass.

Dobbiamo verificare che la differenza r(x) - 3xq
si può rendere in valore assoluto inferiore ad una
qualsivoglia tolleranza prefissata, a patto di prendere

x abbastanza vicino a xfl. Ora si ha:

rivi ^V ¦» 38 V^ -1- V V -I- V * Xv * zz V~ -4- V V V V * I ÎS I
l A I v^A fi A T Ai(\t\ I iA. ri «JA ri A I A/jA AA r\ • U

Se Xq 0, i giochi sono presto fatti: il secondo

membro di [8] si riduce a x2 e si ha x2 <£ se e solo

se \x\ < sfa; dunque ô y/ê.

Supponiamo dunque x0 t- 0. Dalla [8] segue:

ri VI — Av * — ry^ _J_ y tv* __ /\i *i\A/ ../A ri A T A/"iA «i,A /\
2 2- r q

(X ArvH A i Ai"i) i A/-i (A "'fi/

Prendiamo i valori assoluti, e ricordiamo che il
valore assoluto della somma non supera la somma

dei valori assoluti:

|r(x)-3x2| |x - x0| |x + 2x0| <\x- x0| (|x| + 2|x0|).

A noi interessano i valori di x prossimi a ss«, dunque

non è restrittivo limitarsi a considerare gli x

per cui |x|< 2|Xq|. Per questi x abbiamo:

|r(x) — 3x2|< 4|xq| \x -x0|

/(x) xn —>f'(x) nxn \
In generale la derivata di una funzione/è il limite

del rapporto incrementale (sempre che tale
limite esista):

f'(x) := lim
X—>Xq

/OWOo)^
X — Xq

Per procedere abbiamo bisogno di due teoremi
sulle derivate: essi affermano che la derivata di

cf(x) vale cf(x), per ogni costante e, e che la derivata

di/(x) +g(x) èf'(x)+g'(x).
A parole: la derivata del prodotto di una costante

per una funzione è uguale al prodotto della
costante per la derivata della funzione; la derivata
della somma di due funzioni è uguale alla somma
delle rispettive derivate.
In formula: (cf(x))'= cf'(x); lf{x) +g(x))'=f'(x)+g'(x).
Questi due risultati seguono dal fatto che i
rapporti incrementali delle funzioni considerate si

scrivono:

c/0) - c/Qo) /0) - /Qo)
X — Xq X — Xq

e rispettivamente:

/P)+gP)-(/Po)+gQo)) _
X — Xq

/0) - /Oo) gP) - ffOo)
X — Xq X — Xq.

Sarebbe bello se anche la derivata del prodotto
di due funzioni fosse uguale al prodotto delle
derivate: ciò è falso, ma dato che nel seguito non
ci serve l'espressione della derivata del prodotto

di due funzioni, tralasciamo questo
argomento.

l'ultima quantità è minore di 8 per:

ìx-xoì<^k\-
In conclusione: 8 E /(4|xQ|). Dunque tutto quadra,

abbiamo:

lim r(x) 3xq,

o anche, scrivendo semplicemente x al posto di x0,

f(x) x3 =>/(ix) 3x2 [9]

La [7] e la [9] sono casi particolari di un risultato
generale: per ogni naturale n > 1, la derivata di/(x)

xn vale rex"

In formula:

II teorema fondamentale del Calcolo

Fino a questo momento ci siamo occupati dei
due problemi fondamentali dall'Analisi Matematica:

quello di determinare la tangente ad una
curva data, grafico di un'assegnata funzione, e

quello di determinare l'area sottesa dal grafico di
una tale funzione. A dire la verità, l'esempio con
cui abbiamo esordito (calcolo dell'area di un
segmento parabolico) non è esattamente quello che

vogliamo.
Vediamo di riprendere in esame il problema.
Consideriamo una parabola passante per l'origine

del sistema di riferimento e rivolta verso il basso:

la sua equazione sarà:

J =f(x) ax^ + bx, a< 0.

71



Tale parabola incontra l'asse delle x, oltre che

nell'origine, nell'ulteriore punto Xj -b/a.
Supponiamo che b sia positivo, in modo che xt sia
anch'esso positivo, in quanto rapporto tra i
numeri positivi b e -a. In figura 9 è rappresentata
la parabola di equazione y -2x2 +3x; tutto quello

che diremo vale quali che siano i coefficienti
a e b, purché siano negativo il primo, positivo il
secondo.
Se vogliamo calcolare l'area del segmento
parabolico individuato dall'asse delle ascisse, cioè
quello che ha come corda il segmento che

congiunge l'origine col punto (xj, 0 abbiamo la
formula [41] pronta allo scopo: basta scrivere al posto

di d il valore Xj -b/a.
Questo problema è un po' troppo facile; vediamone

uno più difficile. Scegliamo un valore
qualunque x0 compreso tra 0 e Xj: 0 < x0 < Xj; vogliamo

trovare l'area della regione di piano che è

delimitata dall'asse delle ascisse e dal grafico della
funzione/compreso nell'intervallo [0, x0], cioè la

regione che è delimitata a destra dalla retta x x0.
Esaminiamo la figura 9; la regione di cui vogliamo

calcolare l'area è l'unione del segmento
parabolico delimitato dalla corda che congiunge l'origine

col punto (x0,/(x0)) e del triangolo di vertici
l'origine e i punti (x0, 0) e (x0,/(x0)), ombreggiato
in figura 9.

L'area di questo triangolo vale:

xq ¦ /Oo) xq {axl + bx0) - axl + - òXq.

Quanto all'area del segmento parabolico, abbiamo

pronta la formula [41]; tale area vale:

\ l«M3
i

¦ ax\o-

dove abbiamo tenuto conto del fatto che \a\ -a,
a essendo negativo.
In conclusione l'area della regione che a noi
interessa vale:

1 1 1 1

-g a.xaQ + - axl +
2

bxo ^ ax* ~

Quest'area dipende dalla scelta di x0, cioè è una
funzione di xQ. Se scriviamo semplicemente x al

posto di x0, abbiamo il seguente risultato: l'area

compresa tra l'asse delle ascisse e la parabola in
esame, relativamente alle ascisse comprese tra 0

e x, si scrive:

3 ' -bx2
2 ' [9]

Abbiamo costruito una funzione della variabile x
a partire dalla funzione/(x): è abbastanza naturale

n ¦in

¦il

¦'ìi

Figura 9

chiedersi se esista un legame tra queste due
funzioni.

Proviamo a calcolare la derivata della funzione
A(x): ricordando i due teoremi sulle derivate che
abbiamo enunciato al termine del paragrafo
precedente, abbiamo:

1 1

A'{x) -a3x2 + -blx ax2 + bx.
o A

Miracolo: abbiamo ritrovato la funzione/(x) da
cui eravamo partiti:

A'P) fix).

Sembra dunque che, data una funzione/, che
possiamo supporre non negativa e definita su un
intervallo [xq, xj, per costruire un'altra funzione
che abbia come derivata proprio la/di partenza,
basti procedere in questo modo: calcolare l'area
della regione di piano compresa tra l'asse delle
ascisse e il grafico della funzione/ relativamente
ai punti le cui ascisse sono comprese tra xQ e x: si

ottiene una funzione di x, sia A(x), che fa al caso
nostro.
Naturalmente l'esempio precedente non prova
proprio nulla, ma è, per così dire, un buon indizio.

In effetti i pionieri del calcolo infinitesimale,
soprattutto E. Torricelli (1608-1647) e I. Barrow
(1630-1677), che abbiamo citato all'inizio del
nostro discorso, avevano intravisto, basandosi su

esempi semplici proprio come abbiamo fatto noi,
che i due problemi apparentemente così lontani,
quello di calcolare l'area sotto il grafico di una
funzione e quello di derivare una funzione (cioè
trovare la pendenza di una tangente al grafico
della stessa funzione) sono in realtà uno l'inverso
dell'altro.
Il trucco è quello di pensare non ad un'area fissata,

ma ad un'area che sia funzione del secondo



estremo dell'intervallo [x0, x] su cui si proietta la

regione che noi consideriamo.

L'operazione con cui si calcola l'area compresa tra
l'asse delle ascisse e il grafico di una funzione va

sotto il nome di integrazione, secondo una
terminologia introdotta da G.W. Leibniz (1646-1716).

Sempre limitandoci a considerare funzioni non
negative, abbiamo che l'area della regione
compresa tra l'asse delle ascisse, il grafico di/e le rette

x xn e X ; Xj si indica col simbolo:

/'J Xn
/0) dxs

che si legge «integrale di/(x) in dx per x da xQ a Xj».

Il simbolo di integrale non è altro che una esse

allungata, iniziale della parola latina summa, cioè

somma. Leibniz, in ciò influenzato da B. Cavalieri

(1598-1647), considerava la regione più volte
considerata come «somma» di infinite striscioline
parallele all'asse delle ordinate, ciascuna della quali
ha una base «infinitesima» dx e l'altezza/(x).
Con i simboli introdotti da Leibniz e tuttora in

uso, abbiamo:

A(x) f(t)dt,

dove abbiamo usato una lettera diversa da x per
indicare la variabile indipendente della funzione

/ per non confonderla con l'estremo superiore
dell'intervallo su cui essa viene «integrata».
Il teorema fondamentale del calcolo dice che per
le funzioni/«abbastanza regolari» (ad esempio per
tutte le funzioni elementari: polinomi, logaritmi,
esponenziali, funzioni circolari ecc.) si ha che:

A(x + h) - A{x)
h /0)-

Il ragionamento precedente, opportunamente
«ripulito», diventa una vera dimostrazione.

4 A(x + h)

x x + h

» i

H»H

A{x)

A(x + h) - A{x)

Figuralo

Il cerchio è chiuso: se si integra una funzione su

un intervallo che ha un estremo fisso e il secondo

estremo variabile (chiamiamolo x) si ottiene una
funzione che, derivata rispetto a tale estremo
variabile, restituisce la funzione di partenza.

A'(x) =/(x)

Un' idea della dimostrazione si ottiene se si scrive

il rapporto incrementale della funzione A(x).
Indichiamo con x e x + hi due punti in cui viene
calcolata la funzione A e supponiamo, per
semplicità, h > 0. Allora A(x + h) - A(x) rappresenta
l'area sotto il grafico di/relativa all'intervallo [x, x +

h], in quanto si tratta della differenza tra le aree
relative agli intervalli [x0, x + h] e [x0, x] (Fig. 10).

Ne viene che per il rapporto incrementale della
funzione A:

A(x + h) - A(x)
h

i px+h

h Jx /(*)*

cioè il rapporto tra l'area relativa all'intervallo
[x, x + h] e la «base» h della regione considerata.
Se A è «molto piccolo» questa area non è troppo
diversa dal prodotto h ¦ f(x) (base per altezza), e

quindi:

P.S. Le idee presentate in questa nota sono
sviluppate nel testo.
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