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Uber barometrische Hohenmessungen.
Von Ulr. Bigler.

Das Produkt aus Volumen und der Dichtigkeit eines
Korpers heiit dessen Masse. Die Dichtigkeit ist somit,
die Masse in der Volumeneinheit. Die Grofle des Druckes,
welchen ein Korper auf seine Unterlage ausiibt, ist von
zwei Faktoren abhingig; einerseits von dessen Masse und
andererseits von der Grofle der Anziehung durch die
Erde. Wird dieser Druck mit G bezeichnet, so ist

G = m. g,
wenn m die Masse des Korpers und g dessen Beschleuni-
gung durch die anziehende Kraft der Erde bedeuten. Ist
ferner v das Volumen des Korpers und d dessen Dichtig-
keit, so ist

m = v. d,
und daher auch G =vdg.

Bezeichnet ferner s das spezifische Gewicht des Kor-
pers, so ist auch

G = v. s,
und daher ist s gleichbedeutend mit dem Produkte d. g
und es ist daher d = .z..

Die Dichtigkeit ist daher auch gleich dem spezifischen
Gewichte dividiert durch die Beschleunigung durch die
Schwerkraft. Bezeichnet nun h den Niveauunterschied

des Quecksilbers in beiden Schenkeln des Barometers
Mitteilungen der aarg. naturf. Gesellschaft. VIIL 1
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und d dessen Dichtigkeit, so 146t sich der Druck der At-
mosphiire auf die Flacheneinheit durch die Gleichung
G = mg = hdg,

darstellen. Nimmt man bei einer Temperatur von null
Grad den Barometerstand h = 0,760 m an und setzt fiir
das Produkt dg den Wert fiir das spezifische Gewicht
des Quecksilbers, so hat man

G = 760.13, 5975 kg = 10334,1 kg
als Druck auf einen Quadratmeter der Erdoberfliche. Die
Masse der Luftsdule, welche diesen Druck ausiibt, 146t sich
durch das Produkt hd wiedergeben. Nehmen wir fiir
einen Augenblick an, das Barometer zeige auf der ganzen
Erdoberfliche denselben Stand h = 0,760 m, so lafit sich
der gesamte Druck der Atmosphire auf die Erdoberfliche
durch den Ausdruck

L. 2.4 10.'7 bs
G = — - kg,
und die Masse durch
4 17
M — 24, 10'7 hs k.,
g

darstellen. Bezeichnet ferner si das spezifische Gewicht
der Erde, so ist das Gewicht derselben

24, 107 g r
G == e

und ihre Masse

My — 2. ?0‘7. I S

Swg

Setzt man fiir ss = 5, b, so findet man aus obigen Aus-
driicken in tiefster Naherung die Gleichung

M = 10~ Mi

Die Masse der Atmosphire wire daher in diesem Falle
ungefihr der millionste Teil der Erdmasse. Denken wir
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uns ferner die Erde umgeben mit einer Atmosphéire von
iiberall gleicher Dichtigkeit, so liefe sich das Gewicht
der Luftsiule, welche der Quecksilbersdule von der Hohe h
das Gleichgewicht hilt, durch

G = H. dig,
darstellen, wo H die Hohe der Luftsiule und di deren
Dichtigkeit bezeichnet. Zur Bestimmung der Hohe H
wiirde dann die Gleichung

Hd: = hd,
dienen, woraus

d 8
H=ho =h-"

sich ergeben wiirde. Setzt man nun hier fiir s: das spezifi-
sche Gewicht der Luft bei der Temperatur null und dem

Barometerstande 0,760 m, so ist bekanntlichs—f- — 10462

und daher
H = 0,760. 10462 = 7950 m.

Dafl unsere Atmosphire weit iiber diese gefundene
Grenze hinaus reichen kann, ist klar, da ja die Dichtigkeit
nach oben aus naheliegenden Ursachen stetig abnehmen
mufl und somit die Masse hd nur durch eine Verlingerung
der Luftsiule nach oben hergestellt werden kann. Auf die
Anderung der Dichtigkeit der Luft nach oben wirken
verschiedene Ursachen ein. Erstens ist es die Abnahme
der Schwere fiir hoher liegende Luftteilchen; zweitens
die Anderung der Centrifugalkraft infolge der Rotation der
Erde; drittens die Abnahme der Temperatur fiir héher lie-
gende Luftschichten und viertens die Anderung des Wasser-
gehaltes der Luft bei verinderter Temperatur. Der Druck,
welchen ein Luftteilchen auf die tiefer liegenden Luft-
schichten ausiibt, ist eine Folge der Atraction der Erde;
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so lange aber ein solcher Druck vorhanden ist, nimmt
das Luftteilchen an der Rotation der Erde teil und
bewegt sich so, wie wenn es mit der Erde fest ver-
bunden wire. Nur diejenigen Luftteilchen konnen sich
in absoluter Ruhe befinden, oder sich im Weltraume frei
bewegen, die keinen Druck mehr nach unten ausiiben.
Wenn wir nun die Frage nach der Hohe der zur Erde
gehorenden Atmosphidre zu beantworten suchen, so kann
es sich nur darum handeln, diejenige Hohe zu bestimmen,
bis zu welcher die Luftteilchen noch so mit der Erde rotie-
ren, wie wenn sie mit der Erde fest verbunden wéren.
Die Rotation eines solchen Luftteilchens erfolgt nun in
einer Ebene, welche auf der Rotationsaxe der Erde senk-
recht steht und der Radius des Rotationskreises ist die
vom Luftteilchen auf die Axe gefillte Senkrechte. Wie
die Rotation des Luftteilchens eine Folge der Schwer-
kraft ist, so ist die Centrifugalkraft eine Folge der Rota-
tion. Diese Centrifugalkraft wirkt aber nur bei denjeni-
gen Luftteilchen direkt der Schwerkraft entgegen, welche
in der Ebene des Aquators rotieren und unsere nichste
Untersuchung bezieht sich der Einfachheit der Rechnung
wegen auf ein in der Ebene des Aquators rotierendes
Luftteilchen. Bezeichnet nun m die Masse des Luftteil-
chens und M diejenige der Erde; ist ferner r der Radius
der Erde und z die senkrechte Erhebung des Luftteil-
chens iiber dem Aquator, so kann die Schwerkraft durch

mM
| = ot
dargestellt werden und
M

= o)’
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~ist die Beschleunigung des Luftteilchens darch dieselbe.
Bezeichnet nun g die Beschleunigung des Luftteilchens
durch die Schwere an der Erdoberfliche, so ist

., M
5T 2 ?
. und daher hat man
K—=m I . g; g =___r_2 g
(r- z)* (r-+z)*

Dieser Schwerkraft wirkt nun die Centrifugalkraft des
Luftteilchens direkt entgegen Ist nun v dessen Geschwin-
digkeit in seiner Bahn und v der Radius des Rotations-
kreises, so ist die Normalbeschleunigung g gleich

v:!
=
und daher die Centrifugalkraft C
2

C=m "
. T
Dieselbe ist daher dem Quadrate der Geschwindigkeit
direkt und dem Radius des Rotationskreises umgekehrt
proportional. Nun bewegen sich aber die Luftteilchen
mit verschiedenen Geschwindigkeiten in ihren Bahnen,
wiahrend doch alle dieselbe Winkelgeschwindigkeit besitzen.
Es ist daher angezeigt, statt v die Winkelgeschwindigkeit
« in die Rechnung einzufiihren. Da nun
¥ = I,
ist, so hat man auch
- f = w?; € = m, "
Die Centrifugalkraft ist daher dem Radius des Rotations-
kreises direkt proportional und nimmt mit der Entfernung
des Luftteilchens vom Mittelpunkte der Erde an Grife
immer mehr zu, wiahrend die Schwerkraft im Abnehmen
begriffen ist. Wir suchen nun einen passenden Ausdruck
fiir die Winkelgeschwindigkeit « zu erhalten. Unter einem
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Sonnentage versteht man die Zeit von einer Kulmination
der Sonne bis zur andern und unter einem Sterntage die
Zeit zwischen zwei auf einander folgenden Kulminationen
desselben Fixsternes. Die Sterntage sind alle gleich lang
und entsprechen einer vollen Rotation der Erde. Da nun
aber die Sonne in ihrer scheinbaren, jihrlichen Bahn immer
~ weiter nach Osten riickt, die Erde sich aber von Westen
nach Osten dreht, so sind die Sonnentage linger als die
Sterntage. Auch sind dieselben unter sich ungleichlang,
da die Sonne ihre Bahn mit verinderlicher Geschwindigkeit
durchlauft. Man spricht daher von einem mittlern Sonnen-
tage von 24 Stunden. Unter einem Jahre versteht man
die Zeit, welche die Sonne braucht, um in ihrer Bahn
nach Osten zu demselben Punkte zuriickzukehren, von dem
sie ausgegangen ist. Als festen Punkt wihlt man ge-
wohnlich einen Fixstern, der sich in der Sonnenbahn be-
findet. Diese Zeit hat 365'/s mittlere Sonnentage zu
24 Stunden und entspricht 366!/s Rotationen der Erde.
Die Erde macht daher in 24 Std. mittlerer Sonnenzeit
etwas mehr als 1. Rotation, namlich

3664 1465 4\
s = et — (! + aer)

totationen und daher ist die Winkelgeschwindigkeit « gleich
o 1465 'rs 1465

“ T 12.60° T 1461 T 43200 1461
Fiir die Beschleunigung eines Luftteilchens durch die
Centrifugalkraft in der Entfernung r vom Mittelpunkte
der Erde erhdlt man daher den Ausdruck
7 (14651%
43200 \ 1461

q=1.
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Nun soll dieser Betrag fiir ein Luftteilchen unter dem
Aquator berechnet werden. Setzt man daher r = r und

7
beachtet dal, r = 2 730 ist, so folgt
2,107 ' T 1465 \?
& = 43200 1461
also

T ¢ 1000 7
81 = 93312‘ ‘\\1+14b1) 93312 (1"'"{8”2‘6 )
und daher ist in tiefster Niherung

g _ 9,809.93312 < 1 )
g, T (\ 182.6

wenn man hier von einer Anderung der Beschleunigung
durch die Schwerkraft in Paris und am Aquator absieht
und daher fiir g den Betrag in Paris, ndmlich 9,809 setzt.
Die Beschleunigung eines Luftteilchens am Aquator durch
die Schwere ist daher ungefihr 289,7 mal grofler als die
Beschleunigung durch die Centrifugalkraft. Poisson gibt
dafiir die Zahl 289 an. Der FEinfachheit der Rechnung
wegen werde ich im Folgenden auch diese Zahl gebrauchen.
Da nun einerseits

Gy = 'razf
; ; _ &
ist und anderseits g, = 989
gefunden wurde, so hat man schliefilich
1 g
S S,
=T 289

als Betrag fiir die Winkelgeschwindigkeit eines Luftteil-
chens in der Aquatorialebene. Fiir ein beliebiges Luft-
teilchen in der Hohe z iiber dem Aquator erhalten wir
daher fiir ¢ den Ausdruck

== P ._I— z) a? = _I:__-I:i . _ﬁ_
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Dieser Beschleunigung durch die Centrifugalkraft wirkt
nun diec Beschleunigung durch die Schwere im Betrage von

r'&

BT G
direkt entgegen. Damit nun die Rotation des Luftteil-
chens mit der Erde so erfolge, als ob es sich frei be-
wegte, mufl jene verlorne Kraft gleich der Schwere wer-
den; es muf} daher fiir solche Luftteilchen die Gleichung

r? _r-z g

ST e+ r T T ¢ 289

bestehen. Aus derselben folgt nun, dall

(1 e %)sz 289,

ist, was fiir z ungefihr den Wert
z = H,611D X r,

ergibt.

Wenn eine Luftmasse in Bezug auf die Erde als ruhend
angenommen wird, so bildet diese einen ungeheuren, star-
ken Luftstrom. Die Bewegung zur Erde nennt man ab-
solute Geschwindigkeit; die Geschwindigkeit der Luft, be-
zogen auf die Luftmasse, die mit der Erde rotiert, gibt
die relative Geschwindigkeit. Unsere starken Winde haben
nur eine geringe Geschwindigkeit, verglichen mit der
Rotationsgeschwindigkeit der Erde, als mit der absoluten
Geschwindigkeit. Der Teil der Atmosphére, der nur durch
relativ geringe Geschwindigkeitsunterschiede, wie sie bei
den stirksten Winden vorkommen, von der Rotations-
gemeinschaft mit dem festen Erdkorper sich unterscheidet,
kann also unter dem Aquator nicht weiter als auf einen
Abstand von 6,6 Erdhalbmesser vom Mittelpunkte sich
erheben. Die Teilchen, die hoher liegen, konnen sich in
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absoluter Ruhe befinden aber sich im Weltraume zer-
streuen. Man ist nicht berechtigt, auf eine Abgrenzung
der Atmosphire durch eine Kugelfliche von geringerem
Radius zu schliefen; man kann vielmehr annehmen, dal
unter dem Aquator mit wachsender Hohe ein immer wih-
render Ostwind an Stirke zunimmt, bis endlich in einer
Hohe, welche die 6,6 Erdhalbmesser betrachtlich iiber-
steigen kann, die Rotationsgemeinschaft ganz aufhort. In
der Atmosphidre von unsagbar geringer Dichtigkeit, die
der Raum des Sonnensystems erfiillt, miiite man sich eine
den Umldufen der Planeten entsprechende kreistérmige
Stromung um die Sonne denken, deren Winkelgeschwindig-
keit mit wachsender Entfernung von der Sonne abnehme,
sowie die umgekehrten Werte der Umlaufszeiten der
Planeten abnehmen. In dem zur Erde gehdrenden Luft-
strom, der ungefihr die jihrliche Geschwindigkeit der
Erde hiatte, brachte diese durch ihre Rotation einen fort-
schreitenden Wirbel hervor, vermige dessen an beiden
Polen in betriachtlicher Hohe Luft zur Erde einstromte
und in der Gegend des Aquators ringsum abflisse. Da-
raus lieffe sich erkliren, warum man noch keine Abnahme
des Sauerstoffgehaltes der Atmosphdre hat nachweisen
konnen. Wenn Poisson meint, durch die nach oben stark
abnehmende Temperatur und den dadurch erzeugten tropfbar
fliissigen Zustand werde der Atmosphire lange vor Kr-
reichung jenes Abstandes von 6,6 Erdhalbmessern eine
Grenze gesetzt, so ist dagegen einzuwenden: 1) Dal unter
nullem Drucke der tropfbare Zustand kaum wird entstehen
konnen. 2) Dall die Teile der troptharen Fliissigkeit
wegen ihres grofen, spezifischen Gewichtes immerfort
hinabsinken und in den tiefern und wirmern Schichten
wieder gasformig werden wiirden und daf somit aus diesen
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Griinden eine aus tropfbarer Fliissigkeit bestehende Grenz-
schicht der Atmosphire undenkbar sei. Nach Poisson
kann die Art der Abnahme der Lufttemperatur nach oben
nicht aus Thermometerbeobachtungen, die auf Bergen ge-
macht sind, erkannt werden, weil hier die Bestrahlung
des Bodens von groffem Einflusse ist, sondern nur aus
Beobachtungen, die von Luftschiffern gemacht sind. Gay-
Lussac fand in einer Luftfahrt, wo er sich bis zu einer
Hohe von 6980 m erhob, in dieser Hohe eine Lufttem-
peratur von — 9,60° C., wihrend sie am Boden 30,75 °
betrug. Einer Temperaturabnahme von einem Grade ent-
sprach also im Durchschnitte eine Erhebung von 175 m.
Um die Ausdehnung der Luft durch Erwadrmung bei kon-
stantem Drucke zu bestimmen, wandte Gay-Lussac einen
groflen, mit Luft gefiillten Glasballon an, der in eine enge,
genau kalibrierte Rohre endigte, worin die Luft wit einem
Quecksilbertropfen abgesperrt war. Die Luft war vorhin
durch Chlorcalcium vollstindig von Wasserdampf befreit
worden. Der Glasballon war in ein Gefif mit Wasser,
dem man eine beliebige Temperatur geben konnte, ver-
senkt und die Rohre ragte durch eine Offnung in der
Seitenwand des Gefafles hervor, so dafl man die Ver-
schiebung des Hg-Tropfens beobachten konnte. Er fand,
dal das Volumen 1 beim Gefrierpunkte zu 1,375 bei
Siedepunkt wurde. Durch dhniiche Versuche fand Dalton
dasselbe. Spiter haben Rudberg, Magnus, Regnault den
Wert 1,3665 gefunden. Sie sind durch verschiedene Me-
thoden zu fast iibereinstimmenden Resultaten gelangt. Alle
iibrigen von Rudberg, Magnus und Regnault untersuchten
Gase haben einen etwas grofferen Ausdehnungscoefficienten,
namentlich die zusammengesetzten, Kohlensdure und schwe-
felige Saure. Diese unterscheiden sich noch dadurch, daf}



ihre Ausdehnungscoefficienten bei stirkerem Drucke zu-
nehmen. Das Annuaire du Bureau des Longitudes fiir
1881 hat fiir atmosphérische Luft und Stickstoff 1,3670;
fir Wasserstoff 1,3661, fiir Kohlensdure 1,3710. Im Fol-
~ genden bezeichnet nun « den Ausdehnungscoefficienten des
Gases. Sind V, D und p Volumen, Dichtigkeit und Span-
nung einer Gasmasse bei der Temperatur null; Vi, Di
Volumen und Dichtigkeit derselben bei der Temperatur 6,
wenn die Spannung sich nicht &ndert; dann ist

Vi = (1 4+ «b) V.
Wird die eingeschlossene Gasmasse mit m bezeichnet,
so hat man
_ m = VD = Vi D,
und es gibt daher die Proportion

Vi: V=D: Di
Bei konstanter Spannung, aber verschiedener Temperatur
verhalten sich daher die Volumen wie umgekehrt die Dich-
tigkeiten. Setzt man tiir Vi den oben gefundenen Wert
ein, so folgt

D
TF b
Wenn nun die Temperatur # dieselbe bleibt, aber die
Spannung sich #ndert, so sollen p, D1 in p und ¢ iber-
gehen und Vi in Vii. Dann gelten die Gleichungen
1) Vi : Vis = 0 : D1
2) Vi: Vu = p: p,

und daher hat man

Di =

p=7p.¢ _ ﬁ{’(l 5 s
Di D\ —+ u@)
Setzt man abkirzend k = %—, so hat man

p=ko.(1 + a#),
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als Ausdruck fiir die Spannung eines Gases von der Tem-
peratur & und der Dichtigkeit ¢. Wenn nun bei der
Temperatur null der Nieveauunterschied des Quecksilbers
in beiden Schenkeln des Barometers 0,760 m betrégt,
so ist fiir atmospharische Luft
p = 0,760.0.g,

wenn o die Dichtigkeit des Quecksilbers hei derselben
Temperatur bezeichnet. Daher ist auch

0 S
= S 60 - — . o,
k 0,760 D 8 0,760 o g

- Nun wird gewdohnlich der Wert des Verhéltnisses vom
spezifischen Gewicht des Quecksilbers zum spezifischen
Gewicht der Luft bei der Temperatur null, wenn dieselbe
vollkommen trocken ist, durch die Zahl 10462 angegeben.
Setzt man noch fiir g den Wert in Paris, also 9,809,
wobei also von einer Anderung der Schwere in Paris
und am Aquator abgeseheu wird, so hat man schlieflich
in tiefster Niherung

k = 7951. 9,809 = 78000.

Bei der Temperatur null ist das Verhéltnis der Dichtig-
keit der Luft mit groftem Wassergehalte zur Dichtigkeit
der vollkommen trockenen Luft gleich 0,9975. Fiir Luft,
deren Wassergehalt das Maximumn bei O° erreicht hat,
ist daher

k = 1971,1. g.
Um dem gewohnlichen Zustande zu entsprechen, nimmt
man aus beiden Zahlen das Mittel und setzt

k = 7961, g.

Der Radius der Erde sei r bis zum fingierten Meeres-
spiegel und verlingere sich um z bis zu dem Orte, wo
Spannung und Dichtigkeit der Luft p und ¢ und die
Schwere g1 betragen. Die Luftschicht von der Héhe dz
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belastet die Flicheneinheit der untern Luft mit g' ¢ dz.
Um diesen Betrag nimmt daher die Spannung der Luft
bei einer Zunahme der Héhe von dz nach oben ab und
daher ist
dp = — g' ¢ dz.

Sieht man von einer Anderung der Schwere durch die
Centrifugalkraft nach oben ab, so kann man

1

g setzen. Zugleich ist

r2
= g. o+ 2 T 2
p = ko (1 4 ab)
., dp gr’ dz

und somit - anias k( F a8) - (1‘7—1:_2?

® ist eine Funktion von z, die man aber nicht genau
kennt. Man nimmt fir ® das Mittel zwischen der untern
und obern Lufttemperatur und behandelt es als eine Kon-
stante. Wird nun die obige Differentialgleichung von z =o
bis zu einem beliebigen Werte von z, also auch von p = o
bis zu p integriert, so erhédlt man die Gleichung

log - S g7 )
w k(1 4 ab) (r + 2)
wo also @ die Spannung in z = o bedeutet. Unten sei
h die beobachtete Barometerhohe, T die Temperatur des
Quecksilbers, t diejenige der Luft; oben seien hi, Ti, ti,
dieselben Dinge. Man fiihre nun zuerst hi auf die untere
Quecksilbertemperatur zuriick. Fiir 1° C dehnt sich das
Quecksilber um '/ss50 seines Volumens aus; daher ist
T — Thv)
ht = (1 + —r5—
die auf die untere Temperatur T zuriickgebrachte Baro-
meterhihe des oberen Standes. Es ist dann

hi

@ = hég; p = h'og1 = hlig - A(_m——:’f“z)?,
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und somit

@ (r 4+ 2z)* h

> =3 =3
Da gewohnlich mit steigender Temperatur auch der Wasser-
gehalt der Luft steigt, die Dichtigkeit also in stirkerem
Verhiltnis abnimmt, als wenn der Wassergehalt derselbe
bliebe, so erhohe man die Zahl ¢« = 0,00375 der Be-

quemlichkeit der Rechnung wegen auf 0,004 und setze
1 4+ b =1+ _%Jl_tt‘_)

Man hat dann

log 42 log (1_;_,.._}__ . g 17
" k<1+1000 (t‘i‘tl)\l‘ﬂ-z}

und aus dieser Formel folgt nun

lg{ [1 + —IUOO(t+t1)] [log mit 210g(1 +-—)] (1 +-—-\

Man hat vorhin k = 7961 G angenommen, wo G dle in
Paris beobachtete Schwere bedeutet. Aus Beobachtungen
der Lange des Sekundenpendels an verschiedenen Orten
auf der Erdoberfliche hat man auf folgende empirische
Formel fiir die Schwere g unter der geographischen
Breite ¥ am Meeresspiegel geschlossen

= Const. XX (I — 0,002588 cos 2 v).

Wenn man daher den Unterschied der Schwere in Paris
und am Meeresspiegel vernachlidssigt, so hat man auch
G = Const. X (1 — 0,002588 cos (97 ° 40! 28'%))
da die Breite von Paris 48° 50! 14" ist. Weil aber die
Schwere in Paris G = 9,80896 m ist, so hat man im
Meeresspiegel irgend eines Ortes der Erdoberfliche

g 1 — 0,002588 cos 2 ¢ |
G 1 — 0,002688 cos (97° 40’ 281’
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daher ist auch
k g (1—0,002588 cos (97°40 28))

o 7961,1 i 1961,1 1 — 0,002588 cos 2 ¢

Um die Tafeln gebrauchen zu konnen, mufl man die
natiirlichen Log. in Briggische verwandeln. Werden diese

mit Log u bezeichnet, so ist bekanntlich
log u = log 10. Log u.

Man hat dann
k log 10 7961,10 X 2,30258561 > 1,0003456
g 1 — 0,002588 cos 2 ¥
1833746
1 — 0,002688 cos 2
und daher ist schliefilich

18337,46 2 ' h
2= 10,002588 cos 2+ [1 + 1000 ¢ T t‘)] Log

+2L0g(\1+?>J <1+-;/
Poisson rit die Zahl 18337,46 durch 18336 zu ersetzen,
weil diese Zahl aus dem Durchschnitte einer grofen

Menge von Hihen, die trigonometrisch gemessen wurden,
bestimmt worden ist. Bei einer ersten Berechnung ver-

. V/ : .
nachlissigt man—r— und bekommt so einen angendherten

Wert von z, den man bei der zweiten Rechnung rechts
einsetzt. Fiir r setzt man r = 6,366198 m. Fiir ¥ nimmt
man das Mittel der geographischen Breiten beider Stand-
punkte. Um 2z zu berechnen, muf man t, t:, h, h! und
¥ kennen. Die Kenntnis von h' verlangt wiederum T,
T: und bi. Wir hatten bei der Aufgabe angenommen,
der untere und obere Standpunkt seien in gerader Linie
und t, h, T und v beziehen sich also auf diesen unteren,
fingierten Punkt des Meeresniveau. Dieser Punkt ist nur
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fingiert; wir nehmen fiir ibn den unteren Standpunkt.
Auch haben wir bei der Losung der Aufgabe die Anziehung
des Berges unberiicksichtigt gelassen, weil zwischen z = o
und z keine Materie angenommen wurde nach der Formel

Ulza.( ry
= © r 4 z

Wenn der obere Standpunkt iiber einer ausgedehnten
Hochebene liegt, der untere am nichsten Meeresufer, so
mufl noch die Anziehung der ganzen iiber dem Meeres-
spiegel liegenden Schicht beriicksichtigt werden. Einem
Punkte O liege eine unbegrenzte, ebene Schicht in der
Entfernung z und der Dicke dz gegeniiber; ihre Dichtig-
keit sei konstant und gleich d und f sei der Faktor der
Gravitation. A sei Fullpunkt der aus O auf die Schicht-
ebene gefillten Senkrechten, P irgend ein Punkt dieser
Ebene.

AP =% OF == F 8" == 7% == @&

Beschreibt man um A zwei Kreise mit den Radien x und
X -+ dx, so liegt zwischen beiden ein Stiick der Schicht,
deren Masse durch 27.d.x.dxdz dargestellt werden kann.
Weil nun fiir diese Schicht z konstant ist, so ist auch
Xdx = rdr und daher die Masse
m=2=z.d.r.drdz

Auf O wird in der Richtung von r die Kraft f - % aus-
geiibt. Wir suchen die Componente in der Richtung OA,

m

z .
— Setzt man hier noch

und erhalten dafiir den Wert f.

fir m obigen Ausdruck ein, so folgt

k=2x.d.f.2z.dz - dT;
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Um nun die Grofle der Anziehung der ganzen Schicht zu
erhalten, mufl dieser Wert von r = z bis r = « integriert
werden. Man erhilt so

K=2rdfdz
Integrieren wir diesen Ausdruck noch von z = o bis zu
einem beliebigen Werte von z, so erhdlt man

K= 2z4.%3z
als Grofe der Anziehung, welche die Schicht von der
Dicke z auf den in ihrer obern Grenzfliche befindlichen
Punkt O ausiibt. Bedeutet ferner ¢ die mittlere Dichtig-
keit der Erde, so ist die Anziehung in einem Punkte ihrer

Oberfliche roh geschitzt

Avndf _ 4
8= T3 T 3T b

und daher ist, wenn man das Verhdltnis der Dichtigkeit

der Schicht zur Dichtigkeit der Erde durch die Zahl 5

ersetzt K — 3 gz
4 r
Die Beschleunigung, welche die Erdmasse allein an
einem Massenteilchen in der Entfernunc z von der Ober-

fliche hervorbringt, kann durch dargestellt

(—I—)‘“"

werden. Dazu kommt nun noch die Beschleunigung durch

3
eine Schicht von der Dicke z im Betrage von T ~§— g und

daher kann die gesamte Besch]eunigung durch

— o L2,
8 ( (r ~|—z)‘ T 4 r/
dargestellt werden. In diesem Falle hat man die Differential-
gleichung

dp __ g . r 3 .z
p k(46 ((r+z)2+4 r>dz'

Mitteilungen der aarg. naturf, Gesellschaft. VIII, 2
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Entwickelt man nun den Ausdruck . nach stei-

(r+z)*

Z
genden Potenzen von R setzt also

(r—l—z)’ 1“|"—”> —1-——2———+—3 <m/ ........

und beriicksichtigt von dieser Reihe nur die zwei ersten
Terme mit Vernachlissigung der zweiten und aller héhern

z .
Potenzen von — 80 kann der obige Klammerausdruck durch

(1 —_— ?f %) ersetzt werden und man hat dann

d g 5 1z
Vvt (11 1)

Wird nun diese Gleichung von z = o bis zu einem
beliebigen Werte von z integriert und die Spannung im
Meeresniveau wie frither mit w bezeichnet, so erhilt man

o _ 8 . _5 z)
2) g =8 Z<1 8 1-)

Nun ist auch hier ®« = h 0 g und fiir die Spannung p
erhialt man zunichst

. r? 3 z
—_— hl A — hl 2 . . — e
p-—-h ()g__h og((r Z)2+4 1‘)

Wird auch der Klammerausdruck nach steigenden Potenzen

von —f'— entwickelt, so erhdlt man mit Vernachldssigung

der zweiten und aller hGhern Potenzen von ——Zl;" fir p den

angendherten Wert

1 5 z



Beachtet man ferner, dafl - lb in tiefster Néhe-
oo e B
4 r

5 2

rung durch ( 14 -i— —?;) also auch durch ( 14 3 -%)

dargestellt werden kann, so erhdlt man fiir den Quotienten

—‘;’m den Wert

o

h z \?

N

*cs}sl

und daher ist auch

7] h 5 z°

Aus den Gleichungen a und b folgt nun

—E0TeD) (1 DY g R o (145 ),

und endlich findet man

18336, (1 + s (G m))
1 — 0,0025688 cos 2 ¢

|rog 42 Log (145 9] - (1+5 )

Das Annuaire von 1881 hat eine mit der vorigen im
wesentlichen iibereinstimmende Formel, wahrscheinlich weil
die Schitzung der iiber dem Meeresspiegel liegenden Erd-
schicht zu unsicher ist, da ohnehin die Dichtigkeit der
Erdkruste von Ort zu Ort variert. Diese Formel setzt
aber nicht voraus, dafl der untere Standort im Meeres-
spiegel liege. Wie frither sei r = 6366198 m der Radius
der Erde, (r 4 s) der Abstand des untern Standpunktes

7 =
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vom Mittelpunkte der Krde, (r 4 s-}-z) derjenige des
Obern. Unten seien T und t die Temperaturen des Queck-
silbers und der Luft, h die Barometerhéhe; oben seien
Ti, t1 die zwei Temperaturen, h1 die beobachtete, h' die
auf die Temperatur T zuriickgefiihrte Barometerhohe.
Weil die Barometer gewdhnlich eine messingene Skala
tragen, so kann nicht die absolute Ausdehnung des Hg
beobachtet werden, sondern nur seine relative Ausdehnung

: ; ; 1
zu Messing. Diese ist nur ——=: daher ist

6200’
— T
| R— .
B = h‘(l +-5 6200 ,,)
Die Integration der Differentialgleichung
dp gr ¥ dz
p  k(+eb G+s+2F
von z= 0 bis zu einem beliebigen Werte von z ergibt nun
1 2 1
g L.—_ 8 (1 _ —
p k(14 a6) Kr—[—s r+s-4z

r2

gz )
k(a6 GF+oc+s+o

und aus dieser Gleichung ergibt sich fiir z der Wert

§  ge k(1—|-a9) (1+ ><1+s+z>log%_

Nun ist wieder
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e B L. C
Weil - schon sehr klein ist, so darf man in tiefster

: 5 :
Niherung (1 —+ T—-TH—HQJ durch (1 -+ 2. i) darstellen;

dann ist auch
1

P el g2

d) lOg p ——IOg h! +2 r
wenn log < 142 . i) durch 2 f ersetzt wird. Nach
der Gleichung ¢) ist aber z in erster Annidherung gleich

g p

und weil nach Gleichung d) log% annihernd durch

h ;
log T dargestellt werden kann, so ist

z 2k h
2 - = —
r g log ht
eine anndhernd richtige Gleichung. Setzen wir nun diesen
Wert fiir 2 —E— in die Gleichung d) ein, so folgt

1 h

Ersetzt man noch das Produkt der drei Faktoren
5 S—|— _z\ / 2k 1) X

(\14— r/) (1-|- ! ) (\1+ ) dureh den
angendhert richtigen Wert, ( 14 1 (2 s+ z 4 ik~) .),
\ r g 7/

so erhidlt man schlieflich fiir z den Ausdruck

k(1+fﬁ)_ [1+%(23+Z+_2g£)]10g Fh'
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Innerhalb der Klammer nimmt das Annuaire —g— = % = 7961

(bei Poisson) an; aufilerhalb braucht es im Ausdrucke
fiir g den Coefficienten 0,00265 statt 0,002588 bei Poisson,
hat demmach

‘klog 10 18336

g  1—0,00265. cos2¢’

cos 2 ¢
400

die hoheren Potenzen davon vernachldssigen kann
k log 10

und schreibt dafiir, da man das Quadrat von und

— 18336. (1 + 0,00265 cos 2 ).

Es hat daher fiir den Niveauunterschied z zwischen
beiden Stationen den Ausdruck

’ 2(t+t)°
z = 18336 (1 + 0,00265 cos 2 ¥) (1 + (10_&) : )

z -+ 15926 8 h
* (1 T 6366198 T 3183099 < L% 1t
Der Verfasser Mathieu des Artikels sagt, daf bis auf den

Term diese Formel sich in der Mecanique

S
3183099
céleste finde. Da

T — T
1 L )
h' = h (1 6200 )

T —T:
[ | =
Log b = Log b 1 555 log 10

80 ist

und weil
18336

6200 log 10 1, 2843,




also

18336 Log % — 18336 Log ‘1}1{ —1,2843 (T —T4)

ist, so hat man auch

7 =[18336 Log %ﬂ — 11,2848 (T — Tl)] [ 2 ('; o_(i)_otl)

2+ 15926 \
X(l 10,0026 cos 24 + 56108 (1 + 3183099)

Fiir die Hohe s der unteren Station iiber Meer darf
man mit hinreichender N#éherung

760
h

setzen. Mathieu gibt folgenden Gang der Rechnung an:

s = 18336 log

a = 18336 Log —;1— — 1,2483 (T — Th),
1

_ (t4t)
a(l"‘ 1000

15926
= A.[l +0,00265 cos 2= %6—6?1-32—] ( 1+ 3@%05‘9‘)'

und gibt zur Unterstiitzung der Rechnung folgende vier
Tafeln:
1) Die Tafel I gibt in Metern die Werte von
18336. T.og h — 44428,128.
(Die abgezogene Zahl entspricht dem Werte Log h = 2,423,
h = 0,26485 m.)
2) Die Tafel II gibt die Werte von 1,2483 (T — Th).
3) Die Tafel III mit doppeltem Eingange, wo die
Werte von A von 1 X bis 30 X 100, 3500,
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von 4 X bis 7 > 1000 betragen und ¥ von
0 X bis 21 X 3° lauft, gibt die Werte von
) A | 15926
A [0,00265 cos 2 v - wﬁf?%ﬁggﬁ].
4) Die Tafel IV mit doppeltem Eingange gibt die
Werte von
] 18336 160 760 .
3783099 — A- 3183099 log = A.0,00576. log 5
A geht von 1 X< bis 10 X< 100, dann von 6 >< bis 15 X< 200,
endlich von 4 >< bis 8 > 1000; und h geht in Differenzen
von je 0,030 von 0,460 bis 0,730. Als Beispiel fiihrt
Mathieu eine Messung der Hoéhe des Montblane durch
Bravais und Martins vom 29. August 1844 an.
Untere Station: Sternwarte zu Genf
h==0,72965: T ==18% 6;t==199, 3.
Obere Station: 1 m unterhalb des Gipfels.
h1 =0,42405,T1 =—4° 2;t:=—T9,6.

18336. Log B 4321,8; 1,2843. (22°,8) = 29,3,

A

hh
. = ? SN -
a — 4292,5, a —1—0“00 = 100,4,
A = 43925,

Breite ¥» =46 °. Die Tafel III gibt 13,6 und die Tafel IV
gibt 0,4; also ist
z = 4406,9; s = 408.

Der Gipfel des Montblanc ist also 4815,9 m iiber Meer.
Fiir ¥ nimt man die mittlere Breite. In der Tafel sind
fiir A nur bestimmte Werte angegeben. Die andern miissen
durch Interpolation gefunden werden. |
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