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Über barometrische Höhenmessungen.
Von Ulr. Bigler.

Das Produkt aus Volumen und der Dichtigkeit eines

Körpers heißt dessen Masse. Die Dichtigkeit ist somit
die Masse in der Volumeneinheit. Die Größe des Druckes,
welchen ein Körper auf seine Unterlage ausübt, ist von
zwei Faktoren abhängig; einerseits von dessen Masse und

andererseits von der Größe der Anziehung durch die

Erde. Wird dieser Druck mit G bezeichnet, so ist
G m. g,

wenn m die Masse des Körpers und g dessen Beschleunigung

durch die anziehende Kraft der Erde bedeuten. Ist
ferner v das Volumen des Körpers und d dessen Dichtigkeit,

so ist
m v. d,

und daher auch G — v d g.
Bezeichnet ferner s das spezifische Gewicht des

Körpers, so ist auch

G v. s,

und daher ist s gleichbedeutend mit dem Produkte d. g
Q

und es ist daher d — •

g
Die Dichtigkeit ist daher auch gleich dem spezifischen

Gewichte dividiert durch die Beschleunigung durch die

Schwerkraft. Bezeichnet nun h den Niveauunterschied

des Quecksilbers in beiden Schenkeln des Barometers
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und d dessen Dichtigkeit, so läßt sich der Druck der

Atmosphäre auf die Flächeneinheit durch die Gleichung
G mg hdg,

darstellen. Nimmt man bei einer Temperatur von null
Grad den Barometerstand h 0,760 m an und setzt für
das Produkt dg den Wert für das spezifische Gewicht
des Quecksilbers, so hat man

G 760.13, 5975 kg 10334,1 kg
als Druck auf einen Quadratmeter der Erdoberfläche. Die
Masse der Luftsäule, welche diesen Druck ausübt, läßt sich

durch das Produkt hd wiedergeben. Nehmen wir für
einen Augenblick an, das Barometer zeige auf der ganzen
Erdoberfläche denselben Stand h 0,760 m, so läßt sich

der gesamte Druck der Atmosphäre auf die Erdoberfläche

durch den Ausdruck
2.4 10.17 hs

tx kg,
TT

und die Masse durch
2*. IO17 hs

M kg.,
TTg

darstellen. Bezeichnet ferner si das spezifische Gewicht
der Erde, so ist das Gewicht derselben

2*. IO17 si rbl —
Ò TT

und ihre Masse

2\ 10'7. n s
Mi

ÓTTg

Setzt man für si 5, 5, so findet man aus obigen
Ausdrücken in tiefster Näherung die Gleichung

M IO"6- Mi
Die Masse der Atmosphäre wäre daher in diesem Falle
ungefähr der millionste Teil der Erdmasse. Denken wir



uns ferner die Erde umgeben mit einer Atmosphäre von
überall gleicher Dichtigkeit, so ließe sich das Gewicht
der Luftsäule, welche der Quecksilbersäule von der Höhe h

das Gleichgewicht hält, durch

G H. dig,

darstellen, wo H die Höhe der Luftsäule und di deren

Dichtigkeit bezeichnet. Zur Bestimmung der Höhe H
würde dann die Gleichung

Hdi hd,
dienen, woraus

II i, d
v,

s
H h h

di si

sich ergeben würde. Setzt man nun hier für si das spezifische

Gewicht der Luft bei der Temperatur null und dem

Barometerstande 0,760 m, so ist bekanntlich — 10462
Sl

und daher

H 0,760. 10462 7950 m.

Daß unsere Atmosphäre weit über diese gefundene
Grenze hinaus reichen kann, ist klar, da ja die Dichtigkeit
nach oben aus naheliegenden Ursachen stetig abnehmen

muß und somit die Masse hd nur durch eine Verlängerung
der Luftsäule nach oben hergestellt werden kann. Auf die

Änderung der Dichtigkeit der Luft nach oben wirken
verschiedene Ursachen ein. Erstens ist es die Abnahme

der Schwere für höher liegende Luftteilchen; zweitens

die Änderung der Centrifugalkraft infolge der Rotation der
Erde ; drittens die Abnahme der Temperatur für höher

liegende Luftschichten und viertens die Änderung des

Wassergehaltes der Luft bei veränderter Temperatur. Der Druck,
welchen ein Luftteilchen auf die tiefer liegenden
Luftschichten ausübt, ist eine Folge der Atraction der Erde ;



so lange aber ein solcher Druck vorhanden ist, nimmt
das Luftteilchen an der Rotation der Erde teil und

bewegt sich so, wie wenn es mit der Erde fest
verbunden wäre. Nur diejenigen Luftteilchen können sich

in absoluter Ruhe befinden, oder sich im Welträume frei

bewegen, die keinen Druck mehr nach unten ausüben.

Wenn wir nun die Frage nach der Höhe der zur Erde

gehörenden Atmosphäre zu beantworten suchen, so kann

es sich nur darum handeln, diejenige Höhe zu bestimmen,

bis zu welcher die Luftteilchen noch so mit der Erde rotieren,

wie wenn sie mit der Erde fest verbunden wären.

Die Rotation eines solchen Luftteilchens erfolgt nun in
einer Ebene, welche auf der Rotationsaxe der Erde senkrecht

steht und der Radius des Rotationskreises ist die

vom Luftteilchen auf die Axe gefällte Senkrechte. Wie
die Rotation des Luftteilchens eine Folge der Schwerkraft

ist, so ist die Centrifugalkraft eine Folge der Rotation.

Diese Centrifugalkraft wirkt aber nur bei denjenigen

Luftteilchen direkt der Schwerkraft entgegen, welche

in der Ebene des Äquators rotieren und unsere nächste

Untersuchung bezieht sich der Einfachheit der Rechnung

wegen auf ein in der Ebene des Äquators rotierendes
Luftteilchen. Bezeichnet nun m die Masse des Luftteilchens

und M diejenige der Erde; ist ferner r der Radius

der Erde und z die senkrechte Erhebung des Luftteilchens

über dem Äquator, so kann die Schwerkraft durch

v mM
K - (r+z)*

dargestellt werden und

(r + z)*



ist die Beschleunigung des Luftteilchens durch dieselbe.

Bezeichnet nun g die Beschleunigung des Luftteilchens
durch die Schwere an der Erdoberfläche, so ist

M
g »TT-

und daher hat man
„S -.2

K m.
(r + z)" b (r + z)2

Dieser Schwerkraft wirkt nun die Centrifugalkraft des

Luftteilchens direkt entgegen Ist nun v dessen Geschwindigkeit

in seiner Bahn und r der Radius des Rotationskreises,

so ist die Normalbeschleunigung g gleich

- —,
v

v2

und daher die Centrifugalkraft C

C m.
r

Dieselbe ist daher dem Quadrate der Geschwindigkeit
direkt und dem Radius des Rotationskreises umgekehrt

proportional. Nun bewegen sich aber die Luftteilchen
mit verschiedenen Geschwindigkeiten in ihren Bahnen,

während doch alle dieselbe Winkelgeschwindigkeit besitzen.

Es ist daher angezeigt, statt v die Winkelgeschwindigkeit
a in die Rechnung einzuführen. Da nun

v r«,
ist, so hat man auch

g la2; C m. va2.

Die Centrifugalkraft ist daher dem Radius des Rotationskreises

direkt proportional und nimmt mit der Entfernung
des Luftteilchens vom Mittelpunkte der Erde an Größe

immer mehr zu, während die Schwerkraft im Abnehmen

begriffen ist- Wir suchen nun einen passenden Ausdruck
für die Winkelgeschwindigkeit « zu erhalten. Unter einem
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Sonnentage versteht man die Zeit von einer Kulmination
der Sonne bis zur andern und unter einem Sterntage die

Zeit zwischen zwei auf einander folgenden Kulminationen
desselben Fixsternes. Die Sterntage sind alle gleich lang
und entsprechen einer vollen Rotation der Erde. Da nun

aber die Sonne in ihrer scheinbaren, jährlichen Bahn immer

weiter nach Osten rückt, die Erde sich aber von Westen

nach Osten dreht, so sind die Sonnentage länger als die

Sterntage. Auch sind dieselben unter sich ungleichlang,
da die Sonne ihre Bahn mit veränderlicher Geschwindigkeit
durchläuft. Man spricht daher von einem mittlem Sonnentage

von 24 Stunden. Unter einem Jahre versteht man
die Zeit, welche die Sonne braucht, um in ihrer Bahn

nach Osten zu demselben Punkte zurückzukehren, von dem

sie ausgegangen ist. Als festen Punkt wählt man
gewöhnlich einen Fixstern, der sich in der Sonnenbahn
befindet. Diese Zeit hat 365'/4 mittlere Sonnentage zu
24 Stunden und entspricht 366 V* Rotationen der Erde.
Die Erde macht daher in 24 Std. mittlerer Sonnenzeit

etwas mehr als 1. Rotation, nämlich

366 Vi u&»
_ f-i 4 N

365'/4 ~ 1461 —
V 1461/'

Rotationen und daher ist die Winkelgeschwindigkeit a gleich

__ _tt___ 1465
_

tt 1465
" — 12.60*

"

1461 — 43200"
' TÏ6T

Für die Beschleunigung eines Luftteilchens durch die

Centrifugalkraft in der Entfernung r vom Mittelpunkte
der Erde erhält man daher den Ausdruck

r ?" ^1465Y.
432002 V 1461J



Nun soll dieser Betrag für ein Luftteilchen unter dem

Äquator berechnet werden. Setzt man daher r r und

2. IO7
beachtet daß, r ist, so folgt

TT

2. IQ7 / tt__ 1465
91 ~ tt

' \ 43200
'

1461

also

_^
1000. tt / 4 Y_ 1000tt f 1

9l ~" 93312
'

V +1461 I ~ 93312
'

V +IS2,6+'
und daher ist in tiefster Näherung

g __
9,809.93,312 /, _

1 \ 289>7)
9, * l 182,6

wenn man hier von einer Änderung der Beschleunigung
durch die Schwerkraft in Paris und am Äquator absieht

und daher für g den Betrag in Paris, nämlich 9,809 setzt.
Die Beschleunigung eines Luftteilchens am Äquator durch

die Schwere ist daher ungefähr 289,7 mal größer als die

Beschleunigung durch die Centrifugalkraft. Poisson gibt
dafür die Zahl 289 an. Der Einfachheit der Rechnung

wegen werde ich im Folgenden auch diese Zahl gebrauchen.
Da nun einerseits

Si rß2>

gist und anderseits g, ttttcJ'

gefunden wurde, so hat man schließlich
1 e

r 289
als Betrag für die Winkelgeschwindigkeit eines Luftteilchens

in der Äquatorialebene. Für ein beliebiges
Luftteilchen in der Höhe z über dem Äquator erhalten wir
daher für g den Ausdruck

__ r + z g
g (r + z)

r 289
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Dieser Beschleunigung durch die Centrifugalkraft wirkt
nun die Beschleunigung durch die Schwere im Betrage von

* 8 •

-oTF^"
direkt entgegen. Damit nun die Rotation des Luftteilchens

mit der Erde so erfolge, als ob es sich frei
bewegte, muß jene verlorne Kraft gleich der Schwere

werden; es muß daher für solche Luftteilchen die Gleichung

r2
__ r -f- z g

g '
(r + z)* ~ r~ ' 289'

bestehen. Aus derselben folgt nun, daß

\ + ^J= 289,

ist, was für z ungefähr den Wert
z 5,6115 X r,

ergibt.
Wenn eine Luftmasse in Bezug auf die Erde als ruhend

angenommen wird, so bildet diese einen ungeheuren, starken

Luftstrom. Die Bewegung zur Erde nennt man
absolute Geschwindigkeit; die Geschwindigkeit der Luft,
bezogen auf die Luftmasse, die mit der Erde rotiert, gibt
die relative Geschwindigkeit. Unsere starken Winde haben

nur eine geringe Geschwindigkeit, verglichen mit der

Rotationsgeschwindigkeit der Erde, als mit der absoluten

Geschwindigkeit. Der Teil der Atmosphäre, der nur durch

relativ geringe Geschwindigkeitsunterschiede, wie sie bei
den stärksten Winden vorkommen, von der
Rotationsgemeinschaft mit dem festen Erdkörper sich unterscheidet,
kann also unter dem Äquator nicht weiter als auf einen
Abstand von 6,6 Erdhalbmesser vom Mittelpunkte sich
erheben. Die Teilchen, die höher liegen, können sich in



absoluter Ruhe befinden aber sich im Welträume
zerstreuen. Man ist nicht berechtigt, auf eine Abgrenzung
der Atmosphäre durch eine Kugelfläche von geringerem
Radius zu schließen; man kann vielmehr annehmen, daß

unter dem Äquator mit wachsender Höhe ein immer
währender Ostwind an Stärke zunimmt, bis endlich in einer

Höhe, welche die 6,6 Erdhalbmesser beträchtlich
übersteigen kann, die Rotationsgemeinschaft ganz aufhört. In
der Atmosphäre von unsagbar geringer Dichtigkeit, die

der Raum des Sonnensystems erfüllt, müßte man sich eine

den Umläufen der Planeten entsprechende kreisförmige

Strömung um die Sonne denken, deren Winkelgeschwindigkeit

mit wachsender Entfernung von der Sonne abnehme,

sowie die umgekehrten Werte der Umlaufszeiten der
Planeten abnehmen. In dem zur Erde gehörenden
Luftstrom, der ungefähr die jährliche Geschwindigkeit der

Erde hätte, brächte diese durch ihre Rotation einen

fortschreitenden Wirbel hervor, vermöge dessen an beiden

Polen in beträchtlicher Höhe Luft zur Erde einströmte
und in der Gegend des Äquators ringsum abflösse.

Daraus ließe sich erklären, warum man noch keine Abnahme
des Sauerstoffgehaltes der Atmosphäre hat nachweisen

können. Wenn Poisson meint, durch die nach oben stark

abnehmende Temperatur und den dadurch erzeugten tropfbar
flüssigen Zustand werde der Atmosphäre lange vor
Erreichung jenes Abstandes von 6,6 Erdhalbinessern eine

Grenze gesetzt, so ist dagegen einzuwenden: 1) Daß unter
nullem Drucke der tropfbare Zustand kaum wird entstehen

können. 2) Daß die Teile der tropfbaren Flüssigkeit

wegen ihres großen, spezifischen Gewichtes immerfort
hinabsinken und in den tiefern und wärmern Schichten
wieder gasförmig werden würden und daß somit aus diesen
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Gründen eine aus tropfbarer Flüssigkeit bestehende
Grenzschicht der Atmosphäre undenkbar sei. Nach Poisson

kann die Art der Abnahme der Lufttemperatur nach oben

nicht aus Thermometerbeobachtungen, die auf Bergen
gemacht sind, erkannt werden, weil hier die Bestrahlung
des Bodens von großem Einflüsse ist, sondern nur aus

Beobachtungen, die von Luftschiffern gemacht sind. Gay-
Lussac fand in einer Luftfahrt, wo er sich bis zu einer

Höhe von 6980 m erhob, in dieser Höhe eine Lufttemperatur

von — 9,50 ° O, während sie am Boden 30,75 °

betrug. Einer Temperaturabnahme von einem Grade

entsprach also im Durchschnitte eine Erhebung von 175 m.

Um die Ausdehnung der Luft durch Erwärmung bei

konstantem Drucke zu bestimmen, wandte Gay-Lussac einen

großen, mit Luft gefüllten Glasballon an, der in eine enge,

genau kalibrierte Röhre endigte, worin die Luft mit einem

Quecksilbertropfen abgesperrt war. Die Luft war vorhin

durch Chlorcalcium vollständig von Wasserdampf befreit
worden. Der Glasballon war in ein Gefäß mit Wasser,

dem man eine beliebige Temperatur geben konnte,
versenkt und die Röhre ragte durch eine Öffnung in der
Seitenwand des Gefäßes hervor, so daß man die

Verschiebung des Hg-Tropfens beobachten konnte. Er fand,

daß das Volumen 1 beim Gefrierpunkte zu 1,375 bei

Siedepunkt wurde. Durch ähnliche Versuche fand Dalton

dasselbe. Später haben Rudberg, Magnus, Regnault den

Wert 1,3665 gefunden. Sie sind durch verschiedene

Methoden zu fast übereinstimmenden Resultaten gelangt. Alle

übrigen von Rudberg, Magnus und Regnault untersuchten

Gase haben einen etwas größeren Ausdehnungscoefficienten,
namentlich die zusammengesetzten, Kohlensäure und schwefelige

Säure. Diese unterscheiden sich noch dadurch, daß
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ihre Ausdehnungscoefficienten bei stärkerem Drucke
zunehmen. Das Annuaire du Bureau des Longitudes für
1881 hat für atmosphärische Luft und Stickstoff 1,3670;
für Wasserstoff 1,3661, für Kohlensäure 1,3710. Im
Folgenden bezeichnet nun a den Ausdehnungscoefficienten des

Gases. Sind V, D und p Volumen, Dichtigkeit und Spannung

einer Gasmasse bei der Temperatur null; Vi, Di
Volumen und Dichtigkeit derselben bei der Temperatur 8,

wenn die Spannung sich nicht ändert; dann ist
Vi (1 -4- a8) V.

Wird die eingeschlossene Gasmasse mit m bezeichnet,

so hat man

m VD Vi Di,
und es gibt daher die Proportion

Vi : V D : Di
Bei konstanter Spannung, aber verschiedener Temperatur
verhalten sich daher die Volumen wie umgekehrt die

Dichtigkeiten. Setzt man für Vi den oben gefundenen Wert
ein, so folgt

n D
Dl l + at,-

Wenn nun die Temperatur 8 dieselbe bleibt, aber die

Spannung sich ändert, so sollen p, Di in p und g

übergehen und Vi in Vu. Dann gelten die Gleichungen

1) Vi : Vu i> : Di
2) Vi : Vn p : p,

und daher hat man

P P

Di D
1 -4- a8

Setzt man abkürzend k —, so hat man

p k§ (1 + aß),
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als Ausdruck für die Spannung eines Gases von der
Temperatur 0 und der Dichtigkeit g. Wenn nun bei der

Temperatur null der Nieveauunterschied des Quecksilbers
in beiden Schenkeln des Barometers 0,760 m beträgt,
so ist für atmosphärische Luft

p 0,760 à g,

wenn d die Dichtigkeit des Quecksilbers bei derselben

Temperatur bezeichnet. Daher ist auch

k 0,760 ^ • g 0,760 • s" • g.

Nun wird gewöhnlich der Wert des Verhältnisses vom

spezifischen Gewicht des Quecksilbers zum spezifischen
Gewicht der Luft bei der Temperatur null, wenn dieselbe

vollkommen trocken ist, durch die Zahl 10462 angegeben.
Setzt man noch für g den Wert in Paris, also 9,809,
wobei also von einer Änderung der Schwere in Paris
und am Äquator abgesehen wird, so hat man schließlich
in tiefster Näherung

k 7951. 9,809 78000.

Bei der Temperatur null ist das Verhältnis der Dichtigkeit

der Luft mit größtem Wassergehalte zur Dichtigkeit
der vollkommen trockenen Luft gleich 0,9975. Für Luft,
deren Wassergehalt das Maximum bei 0 ° erreicht hat,
ist daher

k 7971,1. g.

Um dem gewöhnlichen Zustande zu entsprechen, nimmt
man aus beiden Zahlen das Mittel und setzt

k 7961. g.
Der Radius der Erde sei r bis zum fingierten Meeresspiegel

und verlängere sich um z bis zu dem Orte, wo

Spannung und Dichtigkeit der Luft p und g und die
Schwere gi betragen. Die Luftschicht von der Höhe dz
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belastet die Flächeneinheit der untern Luft mit g1 ç dz.

Um diesen Betrag nimmt daher die Spannung der Luft
bei einer Zunahme der Höhe von dz nach oben ab und

daher ist
dp — g1 g dz.

Sieht man von einer Änderung der Schwere durch die

Centrifugalkraft nach oben ab, so kann man
r2

g1 g ~.—j—rs- setzen. Zugleich ist
(r -f- z)2

p kg (1 + aß)

dp gr'2 dz
und somit

p k(l+a») (r + z)2

8 ist eine Funktion von z, die man aber nicht genau
kennt. Man nimmt für 8 das Mittel zwischen der untern
und obern Lufttemperatur und behandelt es als eine

Konstante. Wird nun die obige Differentialgleichung von z o

bis zu einem beliebigen Werte von z, also auch von p — «
bis zu p integriert, so erhält man die Gleichung

_p_ g_r_z°g
w k (1 + a8) (x + z)

'

wo also iö die Spannung in z o bedeutet. Unten sei

h die beobachtete Barometerhöhe, T die Temperatur des

Quecksilbers, t diejenige der Luft; oben seien hi, Ti, ti,
dieselben Dinge. Man führe nun zuerst hi auf die untere

Quecksilbertemperatur zurück. Für 1 ° C dehnt sich das

Quecksilber um '/5550 seines Volumens aus; daher ist

V.1 mi T — Tl)h (1 + 5550
hl

die auf die untere Temperatur T zurückgebrachte
Barometerhöhe des oberen Standes. Es ist dann

w hdg: p h'dgi hldü
(r + z)2
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und somit

w_ _ (x -j- z)2 Ji
p

~~ "" r2 " '
h1

Da gewöhnlich mit steigender Temperatur auch der Wassergehalt

der Luft steigt, die Dichtigkeit also in stärkerem
Verhältnis abnimmt, als wenn der Wassergehalt derselbe

bliebe, so erhöhe man die Zahl a — 0,00375 der

Bequemlichkeit der Rechnung wegen auf 0,004 und setze

1 4. aß 1 4.
2 fr + fa).

-t- au 1-1- 1000
Man hat dann

log A + 2 log (l 4- IV grZ
f/ LA 2

(1+Iöoö-(t + tl))r+z)
und aus dieser Formel folgt nun

-i[ 1 + ÜBo1'-1-*') ,ogi,+ 2,„g(1+i-)|.(1+|).
Man hat vorhin k 7961 G angenommen, wo G die in
Paris beobachtete Schwere bedeutet. Aus Beobachtungen
der Länge des Sekundenpendels an verschiedenen Orten
auf der Erdoberfläche hat man auf folgende empirische
Formel für die Schwere g unter der geographischen
Breite \t> am Meeresspiegel geschlossen

g Const. X (1 — 0,002588 cos 2 xp).

Wenn man daher den Unterschied der Schwere in Paris
und am Meeresspiegel vernachlässigt, so hat man auch

G Const. X (1 — 0,002588 cos (97 ° 401 28 "))
da die Breite von Paris 48° 501 14" ist. Weil aber die

Schwere in Paris G 9,80896 m ist, so hat man im

Meeresspiegel irgend eines Ortes der Erdoberfläche

_£ _
1 — 0,002588 cos 2 j>

G ~ T— 0,002588^os~(97MO' 28")
'
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daher ist auch

k 7QR1 1
G 7Q«1 1 (l-0,002588cos(97»40'28"))- 79bl,l - — 7961,1 r n nnoKQO o ;

g g 1 — 0,002588 cos 2 xp

Um die Tafeln gebrauchen zu können, muß man die

natürlichen Log. in Briggische verwandeln. Werden diese

mit Log u bezeichnet, so ist bekanntlich

log u log 10. Log u.
Man hat dann

k log 10
__

7961,10 X 2,3025851 y< 1,0003456

g
— - j _ o,Ö02588" cos 2 V

18337,46
1 —"0,002588 cos 2 xp

'

und daher ist schließlich

18337,46
z Kioöö^)]

4-2 Log (l+

1
h

Log^T

z\l + rJ

1—0,002588 cos 2 V _
z

Poisson rät die Zahl 18337,46 durch 18336 zu ersetzen,
weil diese Zahl aus dem Durchschnitte einer großen

Menge von Höhen, die trigonometrisch gemessen wurden,
bestimmt worden ist. Bei einer ersten Berechnung ver-

nachlässigt man — und bekommt so einen angenäherten

Wert von z, den man bei der zweiten Rechnung rechts
einsetzt. Für r setzt man r 6,366198 m. Für xp nimmt
man das Mittel der geographischen Breiten beider
Standpunkte. Um z zu berechnen, muß man t, ti, h, h1 und

xp kennen. Die Kenntnis von h1 verlangt wiederum T,
Ti und hi. Wir hatten bei der Aufgabe angenommen,
der untere und obere Standpunkt seien in gerader Linie
und t, h, T und xp beziehen sich also auf diesen unteren,
fingierten Punkt des Meeresniveau. Dieser Punkt ist nur
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fingiert; wir nehmen für ihn den unteren Standpunkt.
Auch haben wir bei der Lösung der Aufgabe die Anziehung
des Berges unberücksichtigt gelassen, weil zwischen z o

und z keine Materie angenommen wurde nach der Formel

r 4" iJ
Wenn der obere Standpunkt über einer ausgedehnten

Hochebene liegt, der untere am nächsten Meeresufer, so

muß noch die Anziehung der ganzen über dem Meeresspiegel

liegenden Schicht berücksichtigt werden. Einem
Punkte 0 liege eine unbegrenzte, ebene Schicht in der
Entfernung z und der Dicke dz gegenüber; ihre Dichtigkeit

sei konstant und gleich d und f sei der Faktor der
Gravitation. A sei Fußpunkt der aus 0 auf die Schichtebene

gefällten Senkrechten, P irgend ein Punkt dieser

Ebene.

AP x; ÖP r; x2 r2 — z2.

Beschreibt man um A zwei Kreise mit den Radien x und

x 4* dx, so liegt zwischen beiden ein Stück der Schicht,

deren Masse durch 2^-.d.x.dxdz dargestellt werden kann.

Weil nun für diese Schicht z konstant ist, so ist auch

x d x r d r und daher die Masse

m 2 TX d r d r dz.

Auf 0 wird in der Richtung von r die Kraft f • —j

ausgeübt. Wir suchen die Componente in der Richtung OA,

ID Z
und erhalten dafür den Wert f. —r- Setzt man hier noch

für m obigen Ausdruck ein, so folgt

k =2 tt d f. z. dz •
dx
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Um nun die Größe der Anziehung der ganzen Schicht zu

erhalten, muß dieser Wert von r z bis r a integriert
werden. Man erhält so

K 2^dfdz.
Integrieren wir diesen Ausdruck noch von z o bis zu

einem beliebigen Werte von z, so erhält man
K 2 tt d.i. z,

als Größe der Anziehung, welche die Schicht von der
Dicke z auf den in ihrer obern Grenzfläche befindlichen

Punkt 0 ausübt. Bedeutet ferner d die mittlere Dichtigkeit

der Erde, so ist die Anziehung in einem Punkte ihrer
Oberfläche roh geschätzt

4 r8 tt d. f 4
g _ ___ _ Œ _ „d f. F|

und daher ist, wenn man das Verhältnis der Dichtigkeit

der Schicht zur Dichtigkeit der Erde durch die Zahl -jr-
tu

ersetzt 3 g z

4 r
Die Beschleunigung, welche die Erdmasse allein an

einem Massenteilchen in der Entfernung z von der Ober-
-2

fläche hervorbringt, kann durch — —^ g dargestelltr
(r + z)2

werden. Dazu kommt nun noch die Beschleunigung durch
3 z

eine Schicht von der Dicke z im Betrage von -j- • — g und

daher kann die gesamte Beschleunigung durch

f r" ,3z \
9 g [jï+iy + 4

• T/
dargestellt werden. In diesem Falle hat man die Differentialgleichung

dp — g f x%
i

3 z^ dz.
p k(\ + a0) V(r4-z)2 ' 4

Mitteilungen der aarg. naturf. Gesellschaft. VIII. 2
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Entwickelt man nun den Ausdruck -,—r—^- nach stei-
(r -f z)2

z
genden Potenzen von — setzt also

i?fe-0+f)",-1-,r- + i-(T),+
und berücksichtigt von dieser Reihe nur die zwei ersten

Terme mit Vernachlässigung der zweiten und aller höhern

Potenzen von —, so kann der obige Klammerausdruck durch
r

5 z \
t~ — ersetzt werden und man hat dann
4 x J

<*P_ g f\ b l\A,
p

— k(l 4-aÖ) \ 4 xJaZ
Wird nun diese Gleichung von z o bis zu einem

beliebigen Werte von z integriert und die Spannung im
Meeresniveau wie früher mit w bezeichnet, so erhält man

\ 1 *> g \
& z

Nun ist auch hier w h <? g und für die Spannung p
erhält man zunächst

»-»'"-»"«(öfT^+T-f.
Wird auch der Klammerausdruck nach steigenden Potenzen

von — entwickelt, so erhält man mit Vernachlässigung

der zweiten und aller höhern Potenzen von — für p den
r

angenäherten Wert

p h^g(l-||
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Beachtet man ferner, daß in tiefster Nähe-

4 r
/ 5 z \ /5rung durch 1 -f- -j- — j also auch durch i 1 4~ -ö-

dargestellt werden kann, so erhält man für den Quotienten
tö
— den Wert
r

m h A 5 z

J — h~l
'

V
"*" ¥ 7

und daher ist auch

b) log-^ logA_j_21ogfl4--|- j
Aus den Gleichungen a und b folgt nun

k(14-aö) /. 5 zV, " oi /. i
5 z^z -^-(l+87J(logK14-2log(l+¥-)J,

und endlich findet man

_
18336. (l + ^ • (t + ti)

Z
1—0,002588 cos 2 V

h-F+2^('+l~)j('+fT
Das Annuaire von 1881 hat eine mit der vorigen im

wesentlichen übereinstimmende Formel, wahrscheinlich weil
die Schätzung der über dem Meeresspiegel liegenden
Erdschicht zu unsicher ist, da ohnehin die Dichtigkeit der
Erdkruste von Ort zu Ort variert. Diese Formel setzt
aber nicht voraus, daß der untere Standort im Meeresspiegel

liege. Wie früher sei r 6366198 m der Radius
der Erde, (r 4~ s) der Abstand des untern Standpunktes
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vom Mittelpunkte der Erde, (r -{- s 4" z) derjenige des

Obern. Unten seien T und t die Temperaturen des Quecksilbers

und der Luft, h die Barometerhöhe; oben seien

Ti, ti die zwei Temperaturen, hi die beobachtete, h1 die

auf die Temperatur T zurückgeführte Barometerhöhe.

Weil die Barometer gewöhnlich eine messingene Skala

tragen, so kann nicht die absolute Ausdehnung des Hg
beobachtet werden, sondern nur seine relative Ausdehnung

zu Messing. Diese ist nur m ; daher ist

h1 h/l+T"Tl'6200

Die Integration der Differentialgleichung

dp g r2 dz
~T~ ~ ~ MIT « V)

*

(r 4- s 4- z)2
'

von z o bis zu einem beliebigen Werte von z ergibt nun

log -P- =_ £l!_ (-1 -1

ëp k(l-j-«#) \r + * r4-s4-z
gz r2

k (1 4- a 6) (r 4- s) (r 4- s 4- z)

und aus dieser Gleichung ergibt sich für z der Wert

Nun ist wieder

p h1 d g __£!__ ; p» h d g(r 4- s -j- z)2 ' v B (r 4- s)s

und daher

h1 V ' r + s
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2
Weil — schon sehr klein ist, so darf man in tiefster

r

Näherung (l-\ -r—J durch f 1 -4- 2 J darstellen;

dann ist auch

d) log-^. logA + 2y,
I Z \ z

wenn log 1 4- 2 • — durch 2 ersetzt wird. Nach° V r / r
der Gleichung c) ist aber z in erster Annäherung gleich

k pi
z log —-i

g P

und weil nach Gleichung d) log - annähernd durch

log -r— dargestellt werden kann, so ist

0 z 2k, h
2 — log ^r g h

eine annähernd richtige Gleichung. Setzen wir nun diesen
<7

Wert für 2 — in die Gleichung d) ein, so folgt

i Pl A i
2 k l \ h

Ersetzt man noch das Produkt der drei Faktoren

1 + J. 14-S_t"-) 14- — •- durch den
r / V r y V g r/

angenähert richtigen WTert 1 4 {2 s —}— z 4 '

so erhält man schließlich für z den Ausdruck

k(l + c») f. 1 /0 2kxl. h
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k k
Innerhalb der Klammer nimmt das Annuaire — y- 7961

g G

(bei Poisson) an; außerhalb braucht es im Ausdrucke

für g den Coefficienten 0,00265 statt 0,002588 bei Poisson,

hat demnach

k log 10 18336

g
"" 1 — 0,00265. cos 2 xp

'

PAO V -»ft

und schreibt dafür, da man das Quadrat von nft
und

die höheren Potenzen davon vernachlässigen kann

k l0g 10
18336. (1 4- 0,00265 cos 2 V).

to

Es hat daher für den Niveauunterschied z zwischen

beiden Stationen den Ausdruck

2 (t 4- ti)
z 18336 (1 4- 0,00265 cos 2 rp) 1 -4-

1000

/ ^-f- 15926 s J^X V ~"~ 6366198 ^ 3183099 X g h1

Der Verfasser Mathieu des Artikels sagt, daß bis auf den

g
Term „,0„mn diese Formel sich in der Mécanique

oioouyy
céleste finde. Da

T —Ti

so ist

h' hi i 4-

Log h ' Log hi 4"

6200

T — Ti

und weil

6200 log 10

18336
6200 log 10

1, 2843,
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also

18336 Log A 18336 Log A — 1,2843 (T — Ti)

ist, so hat man auch

z [l8336 Log A- 1,2843 (T - Ti)j [l 4" ^Jj^]
14- 0,00265 cos 2*4-^ilrX1 + slSSS»}

Für die Höhe s der unteren Station über Meer darf

man mit hinreichender Näherung

s 18336 log ~-,
setzen. Mathieu gibt folgenden Gang der Rechnung an :

a 18336 Log A — 1, 2483 (T — Ti),

A==a(1 + ^oööL"/

z A.[l + O,00B65cob8*= ^^6] (l +^und gibt zur Unterstützung der Rechnung folgende vier
Tafeln:

1) Die Tafel I gibt in Metern die Werte von

18336. Log h — 44428,128.

(Die abgezogene Zahl entspricht dem Werte Log h 2,423,
h 0,26485 m.)

2) Die Tafel II gibt die Werte von 1,2483 (T — Ti).
3) Die Tafel III mit doppeltem Eingange, wo die

Werte von A von 1 X bis 30 X 100, 3500,
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von 4 X bis 7 X 1000 betragen und xp von
0 X bis 21 X 3° läuft, gibt die Werte von

A [0,00265 „,, + *££?].
4) Die Tafel IV mit doppeltem Eingange gibt die

Werte von

8 18336 760 nnn,7ßl 760.
A-3Ï83Ô99==A-3183099 l0g X ^ A°'O0576-Jogir'
A geht von 1 X bis 10 X 100, dann von 6 X bis 15 X 200,

endlich von 4 X bis 8 X 1000; und h geht in Differenzen

von je 0,030 von 0,460 bis 0,730. Als Beispiel führt
Mathieu eine Messung der Höhe des Montblanc durch

Bravais und Martins vom 29. August 1844 an.

Untere Station: Sternwarte zu Genf

h 0,72965; T 18°, ß; t= 19°, 3.

Obere Station : 1 m unterhalb des Gipfels.

hi =0,42405, Ti =-4°, 2;ti=- 7 °,6.

18336. Log A 4321,8; 1,2843. (22°,8) 29,3,

a 4292,5; a • 2~r£^~ 100>4;
1UUU

A 4392,5.
Breite xp 46 °. Die Tafel III gibt 13,6 und die Tafel IV
gibt 0,4; also ist

z 4406,9; s 408.
Der Gipfel des Montblanc ist also 4815,9 m über Meer.

Für xp nimt man die mittlere Breite. In der Tafel sind

für A nur bestimmte Werte angegeben. Die andern müssen

durch Interpolation gefunden werden.
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