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Ueber die Darstellung des Potentiales einer durch

eine Kugelfliche vom Radius r. nach innen oder nach

aussen begrenzten Masse fiir einen Punkt des leeren

Raumes, wenn dasselbe auf der begrenzenden Fliche
bekannt ist.

—

Der nachstehende Aufsatz enthilt die Losung einer Auf-
gabe, die schon von den verschiedensten Mathematikern
auf die verschiedenste Weise gelost worden ist. Die Lek-
tiire von Heines Handbuch iiber Kugelfunktionen hat mich
veranlafit, auch auf den in der Ueberschrift bezeichneten
Gegenstand einzutreten, und ich glaube die Losung der
Aufgabe auf eine Art und Weise durchgefiibrt zu haben
die neu zu sein scheint; wenigstens habe ich in der mir
zuginglichen Literatur diesen Gang nirgends gefunden.
Der Verfasser geht hiebei von dem Newton’schen Gesetze
aus, entwickelt an der Hand derselben den Begriff eines
Potentials und leitet hieraus die Laplace’sche Gleichung
ab. Im Weitern wird eine Funktion, die innerhalb einer
Kugelfiiche von Radius r: dem Differentialparameter zweiter
Ordnung, d. h. der Laplace’schen Gleichung geniigt, nach
Kugelfunktionen entwickelt. Von dieser Funktion wird nur
vorausgesetzt, dafi sie in jedem Punkte des angegebenen

Raumes nach dem Taylor’schen Satze entwickelbar sei, dal
Mittheilungen V. 1
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n —
man sie also in der Form V (x, y, z) = 2
n —

[/ 4
x, 5, 2",
0

wo die Gruppe (X, ¥, z)® eine homogene Funktion der Coor-
dinaten x, y und z vom Grade n ist, darstellen konne.
Es zeigte sich sofort, dafl jede solche Gruppe dem Dif-
ferentialparameter geniigen muf, und es wird bewiesen,
daf es im Ganzen (2n-} 1) homogene Funktionen der
Coordination (x, y, z) vom Grade n gibt, die der Gleichung
[JV = o geniigen. Diese (2n + 1) Funktionen werden
nun mittelst des Polinoms (ex -+ By 472", in dem die
Elemente ¢, 3, 7 so bestimmt werden, dal die Gleichung
[](ex+4 By + rz)» = o Statt hat, aufgesucht und in die
Reihe fiir V (%, y, z) eingesetzt. Nachdem die in dieser
Reihe noch auftretenden konstanten Elemente mittelst Grenz-
bedingungen bestimmt worden sind, wird das Potential fiir
einen Punkt des leeren Raumes in der Form einer Doppel-
summe erhalten. Diese beiden Summen, von denen die
eine begrenzt, die andere unbegrenzt ist, werden nun, wie
mir wenigstens scheint, auf dem natiirlichsten Wege aus-
gewerthet. Die begrenzte Summe ergibt sich als der be-
kannte Ausdruck fiir P» (cos 6 cos 61 -}-sin #sinB1 cos (¢ — ¢1))

1
und die unbegrenzte Summe stellt sich als ? dar, wo

p die Entfernung zweier Punkte im Raume bezeichnet.
Ich glaube, dafl die Art und Weise, wie diese Summen aus-
gewerthet worden sind, den Leser interessiren werden. So
erhilt man schlieflich den bekannten Ausdruck fir das
Potential eines Punktes des leeren Raumes. Zum Schlusse
werden noch fiir die an der Oberfliche willkiirlich gegebene
Funktion spezielle Annahmen gemacht und mittelst Green’-
scher Sitze die unter diesen Voraussetzungen wohlbekannten
Ausdriicke fiir das Potential aus der allgemeinen Integral-
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form abgeleitet. Neue Resultate bietet mein Aufsatz keine.
Moge der Leser dariiber urtheilen, ob die kleine Arbeit
der Veroffentlichung werth ist.

§ 1. Die Kraft K, mit der die in dem Punkte P (x, y, z)
vereinigte Masseneinheit von der in dem Punkte P, (a,, b, ¢,)
befindlichen Masse m, angezogen wird, ist nach dem New-
ton’schen Gesetze.

wenn 1,° = (a,—x)% -} (by—Y)? + (c,—=z)® gesetzt wird.
Werden die Komponenten der Kraft nach den Haupttaxen-
richtungen mit X, Y, Z bezeichnet, so hat man

X=Jﬁvﬁzi,y=“ﬁjw_y Z—"o C—2

iy Iy ) o Ty . I
Nun ist aber auch
1 |
& 1 a—x %% 1 by
d x /S dy I o
1
= H
dz Ta? T,
und somit ist
i q e d e
L Yo _ Ty o T .
=Tx =Ty =7,

Wirken nun mehrere, in verschiedenen Punkten vertheilte
Massen m, (fir 2=0, 1, 2.... n) in gleicher Weise
auf die im Punkte P vereinigte Masseneinheit ein, so sind
die Komponenten der Kraft

A—=n A=—n
m a, —X m b, —
Xe=3 2. 2% yo 3y 3. AT,
3=0 I‘k I'l 1 =0 I').Q Il
lzn Cl—z
Z=2 : —



oder auch, wenn

gesetzt wird
Ry av , _ dvVv
Xe=oe T =yx 157

Wenn die Masse einen Raum stetig erfiillt, so ist klar,
dall sich obige Summen in Integrale verwandeln, die sich
iitber den ganzen massenerfiillten Raum ausdehnen, so dafl

man hat
V=J‘J‘J‘ k da;lb dc,

ladb d — —Y
ij]‘ k”r(zb(c‘a I-X’Y=q‘ kda1(‘12bdc‘b r},

sz‘fj‘kdatglbdc _ c—mz’
r r

wo k die Dichtigkeit der Masse in dem Punkte (a, b, c¢)
bezeichnet, die im Allgemeinen eine Funktion dieser Coor-
dinaten ist. Die hier mit V bezeichnete Funktion wird
nun nach dem Vorgange von Green das Potential der Massen
fiir den Punkt P genannt. Wir wollen nun annehmen, der
Bezugspunkt P liege aullerhalb des Massensystems. In
diesem Falle darf man, um die Ableitungen von V nach
X, ¥, z zu bilden, unter dem Integrationszeichen differen-

ziren, und weil nun

2 1 g 1
U+ 13— Y5 1 30
dx®*  r® r*  dy: 13 ¥
1

y)*

5
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d*v . d*V v ¥ d*V
dx? +dy + dz? —  dx*
* kdadbde 3 43— 3
=“‘J‘J——"’“ ; = ffﬁ{d&dhd(} ) 0.
Wenn also [ | = 2—1— d(;z—}- Ty SO hat man fir einen

Punkt des leeren Raumes

[JV=0
als die Gleichung von Laplace. Jede Funktion nun, welche
der Gleichung [ ]V = O geniigt, wird eine Potentialfunktion
genannt.

§ 2. Es sei nin V (x, y, z) eine Funktion, die der
Gleichung [ ]V =0 geniigen soll. Ich nehme an, die
Funktion sei in einem Gebiete, das nach aufien durch eine
Kugelfliche vom Radius 11 begrenzt wird, iiberall nach dem
Taylor’schen Satze entwickelbar, es sei also

1) V& v, z2)=AF+ A1 x4+ By C 2)
+ A11x®4-Buy?+4-Ci1224-2Duxy 4+ 2Euxz 4 2Fu1 y%)
+&nP 4, &
wo (X, y, z)* eine homogene FIunktion der Coordination
X, ¥, z vom Grade n bezeichnet, so daf}

n—aw

1) VEvzn= 2 &y 2P

n =
ist. Soll nun die Funktion V dem Differentialparameter
zweiter Ordnung, d. h. der Gleichung [ ]V =0 geniigen,
so mull jede Gruppe fiir sich die gleiche Bedingung er-
fiilllen, d. h. es muf}
[, y, z2»=0 sein fir n=0, 1, 2, 3,...... w .
Die Gruppe (x, y, z)* weist nun so viele Terme auf,
als sich die drei Elemente x, y, z zur Klasse n mit Wieder-
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holungen combinieren lassen; ihre Anzahl ist daher

(n+1) (14 2)
1. 2

und so viele constante Elemente sind

vorhanden, die nun so bestimmt werden miissen, daf die
Gleichung [ ] (x, y, z)* = O erfiillt ist. Das Symbol [ ]
erniedrigt den Grad der Funktion um 2, bringt ihn also
auf n—2 herab und die Anzahl der Terme nach geschehener
Ableitung ist gleich der Anzahl der Combinationen der drei
Elemente x, y, z zur Klasse n—2 mit Wiederholungen,
n (n—1)
1. 2

lineare und homogene Funktionen der urspriinglichen con-
stanten Elemente und miissen verschwinden, wenn die
Gleichung [ ] (%, y, z)* = O erfiillt sein soll. Wir haben

also gleich . Die Coefficienten dieser Terme sind

also zwischen den (n _ll— 14 _g & constanten Elementen
n(n—1) .. : n—+1) m+42) n(-1)
1 o lineare Gleichungen, also 5 9 19

= 2n -}- 1 Gleichungen weniger als Elemente da sind.
Denkt man sich daher in dem Polinom (x, y, z)* 2n--1
Coefficienten willkiirlich gegeben, so lassen sich alle andern
durch lineare und homogene Funktionen dieser (2n -}-1)
frei gewihlten Elemente ausdriicken. Werden diese Werthe
in das Polinom (x, y, z)* eingesetzt, so 1aft sich dasselbe
in der Form
2) X%y D=A8&Y 2+ A 8+ &y 2
+A g Y2+ A8 &Y, 2+
i i g B (x, v, 2),
darstellen, wo die Funktionen g (x, y, z) wieder homogene
Funktionen von x, y, z vom Grade n sind; da nun aber
die A beliebige Constante sind, die auch gleich Null ge-
setzt werden konnen, so muf} jede g-funktion fiir sich dem
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Differentialparameter geniigen, und man erkennt, dafl es
im Ganzen 2n -+ 1 verschiedene homogene Funktionen
der Coordinaten x, y, z vom Grade n gibt, die dem Dif-
ferentialparameter zweiter Ordnung geniigen. Im folgenden
Paragraph sollen nun diese 2n -} 1 Funktionen aufgesucht
werden.

§ 3. Esist offenbar ¢« x 4+ 3y -+ 7 2)" eine homogene
Funktion von x, y, z vom Grade n mit den drei constanten
Elementen «, 3, 7, die nun so bestimmt werden sollen,
daBl die Gleichung [ ] (ex + 8y~ 7z)» = 0 erfiillt ist.

Weil

a xe L BxA By 479 =n(—1) e @x By +7D2,
dya(“x'{"ﬁY'{‘TZ)“—"n(n—l)ﬁs(ax+ﬁy+rz)n 2

W(ax-l—ﬂy-l-rz)“ =n({@m—1) 7 (ex+4 By +rz*3

S0 ist [])(ax -+ By 4+ rz)*
=n(@m—1) (ex+Fy+7r2)" 2 (e® + B+ 79,
und demnach muff die Gleichung
n(m—1) (ex+pBy+ror-2@@482+1H=0
erfiilllt sein. DaB [ ] (ex + By -+ 72" firn=0,1 ver-
schwindet, versteht sich von selbst. Ist aber n § 2, so muld
nothwendigerweise die Gleichung
o 4§+ 11 =0
zw1schen den constanten Elementen Statt haben. Diese
Gleichung ist nun erfiillt, wenn ¢ = 2t, 3 = t?—1, also
7= (t* 4 1) i gesetzt wird, wo t eine willkiirliche Con-
stante bezeichnet. Setzt man nun diese Werthe in unser
Polinom ein, so wird
(@x~+ By + 12 =@tx 4 ¢*—1) y+ 2 + Dizp

eine Potentialfunktion, die fiir alle Werthe von t dem



8

Differentialparameter zweiter Ordnung geniigt. Es sei nun
Ste==(y-t+iz)t?+ 2xt — (y — iz), dann ist

=+ it +2xt— (y—iz)) =
Co t™ FCug 07 o Cama 70 72 -Cot” +C_it"
4 C gt ... Oy,

A=2n
= 2 Cn—l t2 n—2,
A=0
Hier sind die C homogene, von einander verschiedene
Funktionen x, y, z vom Grade n, die alle dem Differential-
parameter zweiter Ordnung geniigen miissen. Ihre Anzahl -

ist 2n -} 1. Ersetzt man t durch ——1—, so folgt
1
(—t2pr=(y—iDt>+2xt,—@F+i2)

J=2n
W (__ 1))h+n Cn—ltll .
A=0
Nun unterscheidet sich (y —iz) t,? - 2xt, — (y-}+iz)
von S dadurch, dafl i durch —1i ersetzt ist; wenn daher
C und C’ conjugirte Funktionen bezeichnen, so ist

A= 2n
(=it +2xt—(G il = 2 Co_ptor=?
| A=0
2= 2n
—_— 2' C"—““"}‘.tl}",
A=0 .
daher die Gleichung
Aoz B =20
DTGt = X Ot
A=0 5 —

aus der sich die Relation
. Cn—l:(—l) Atn C___n_’_;\ fiir 4 =’0, 1, 2, v 21],

ergibt. Aus derselben folgt z. B., dafl
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Cn = (— l)n C'._n, Cn- 1= (—” ]_)n+1 C‘——(n——-l)a ...... 4
C, =(—1*C_y, O, =(—1D' C2,Cou=(—11 ¢,
Wenn nun die rechtwinkligen Coordinaten x, y, z durch
Kugelcoordinaten ersetzt werden, wenn also |
X=rc¢0s &, y=rsin 6 cos ¢, z=r sin 6 sin ¢ gesetzt
wird, so gehtSin S=r (sin Qel® 2 “+2cos 0.t —sin® e %)
itber und verwandelt sich fur
2

sin® @

p=sin @ '?, ——=sin@e ™ '?, x =cos & (x

_ hier nur eine abkiirzende Bezeichnung fiir cos &) in
r "
=—I;((X—|-Pt)“—1)-

Es sei nun

v G =)=

setzt man nun hier auf der linken Seite fiir S™ die oben
angegebene Reihe ein, so folgt

)\.=2n v 5 ) A=—-—n
3 G t""r=rm X T,t*, oder auch
2=20 i=n
A= —n = —n ;

Y QG tt=1r ¥ T, t

A=n A=n
woraus die Relation
C=rT, firi=0,1,2...n, —1, —2, ... —n)

folgt. Da nun C; eine homogene Funktion der rechtwink-
ligen Coordinaten x, y, z vom Grade n ist, so mufl T,

eine homogene Funktion von cos @ cos ¢, sin @ sin ¢ sein.
Wird nun ferner in dem Ausdrucke fiir (Tst_) die Grofie
pt als Increment von x betrachtet, so ist nach dem Tay-

1 ,
lor’chen Satze, wenn D abkiirzend fiir -d(_x gesetzt wird,
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(rS ) (pt)n ((X pt)? — l)n

A=2n A v2 __ 1\n
— ¥ D (x‘ ' 1) ph—ng—n
A=0 - Al
oder auch, wenn 1 — n durch A ersetzt wird
A=0 DA (x2—1)e
= 5 t
b) ) A=n (A~+n)! [)
Aus den Gleichungen a und b folgt nun sofort
T D"+}"(X2f“1)n p*
(n4-4) ! ’
(firi=0,1,2, ...n, —1, —2, ... —n),
also ist auch
C¢ — Dn+}: (Xz_l)
(n-4-A)!

Nun ist auch

pl fir dieselben Werthe von A.

D" 12 (x2—1)

. .n 222 —
C* =1 W sin“*@ p— 4,
und die Relation liefert somit die Gleichung
Dn—{—}x(xg—l n—}(x2'—'1
1V | L
Wenn nun mit Heine
D2 (12—1
n I |
Pl. (6) = sin* 6 CEY

gesetzt wird, also vermige der Relation 4 die Beziehung
P’ 0)=(—1" P (6)
Statt findet, so ist
T, = 2" P (9) oo () =2" P?L @) eih
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und
Ll=n ¢

§p = 9nyn tn [P“(@)+ 3 PrO) (e tA 4
: 2 |

(—1) e~ 1t® t—?-)J.

Die 2 n - 1 homogenen Funktionen der Coordinatenx, y, z
vom Grade n, die dem Differentialparameter zweiter Ord-
nung geniigen, sind nun gefunden und kénnen durch

™ P" (6), ™ P2 () cosZg, 1 P7 () sindg
(fir 2=1, 2, ...n)

dargestellt werden. Ersetzt man nun in dem Ausdrucke
fir (x, y, z)* die Funktionen g (x, v, z) durch die obigen
Werthe, so hat man

(XJ Y, Z)n = (i‘a 69 Sa)n
u A=n . . )
=1 [ A, P(O)+ li . P, (0) (A ,€05 2 ¢—+B) sin 2 ga)]

und nach Gleichung 1, erhilt man schlieflich fiir die
ursPriingliche Funktion V (x, y, z), von deren Betrachtung
wir ausgegangen sind und die der Gleichung [ ]=0 ge-
niigen soll, in Kugelcoordinaten den Ausdruck

5) V=@, 6, ¢)

L= A=n
= 2 [AE1 P (6)+ X P; () (A;‘ cos A¢ + B;l sin 4 o)]
o P ! ,
Die Convergenz dieser Gleichung setzt aber r <1 voraus;
sie ist also nur fiir den Raum innerhalb einer Kugelfliche
giiltig, deren Radius kleiner als 1 ist und die folgenden
Betrachtungen setzen diesen Fall voraus. Es gilt nun,
.die constanten Elemente so zu bestimmen, dafi die Funk-
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tion V (r, g, ¢) fiir Punkte der begrenzenden Kugelfliche
in eine dort willkiirlich gegebene IFunktion f (r,, 6,, ¢,)
iibergeht. .

_ § 4. FEine anzichende Masse werde nach innen durch

eine Kugelfliche begrenzt, deren Radius r, kleiner als 1
ist. Man verlangt das Potential des Massensystems fiir
einen Punkt des Hohlraumes, wenn es in jedem Punkte
der begrenzenden Fliche gegeben ist. Nach dem Dirichlet’-
schen Prinzipe gibt es nur eine Funktion, die mit ihren
Abgeleiteten in einem vollstindig begrenzten Raume iiberall
endlich und stetig bleibt, der Gleichung [ ]V = 0 geniigt
und in jedem Punkte der begrenzenden Fliche in eine dort
gegebene [Funktion iibergeht. Koénnen wir daher in Glei-
chung 5 die constanten Elemente so bestimmen, dafi die
Funktion V (r, 6, ¢) fiir Punkte der Kugelfliche in das
dort gegebene Potential iibergeht, so stellt der Ausdruck 5
das Potential der Masse fiir einen Punkt des Hohlraumes
dar. Ich erlaube mir hier eine Bemerkung iiber Heine’s
Stellung zu dem Dirichlet’schen Prinzipe, wie sie sich in
seinem Handbuche offenbart, zu machen. Es ist zu be-
dauern, dafl Heine seine Lehre vom DPotential nicht be-
grilndet hat. Ueberall handelt er so, als ob er das Dirich-
et’sche Princip fiir wahr halte, d. i. den Satz, dafl unter
allen Funktionen V, welche den Grenzbedingungen geniigen,
es eine gebe und zwar nur eine, welche das bis an die
Grenzfliche ausgedehnte Integral

WG+ +D) axayas

zu einem Minimum mache. - Und doch sagt er auf Seite 66
seines Handbuches iiber Kugelfunktionen, die Existenz eines
solchen Minimums sei nicht bewiesen. Da andern Sterb-
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lichen diese Existenz unmittelbar klar zu sein scheint,
warum Setzt er denn seine Zweifel nicht auseinander?
Konnte er denn nicht offen sagen, er habe zwar diese und
diese Zweifel an der allgemeinen Giiltigkeit des Dirichlet’-
schen Prinzipes, aber seine ganze Lehre vom Potential sei
auf dasselbe gebaut.

Wenn wir nun die Coordinaten fiir Punkte der Kugel-
fliche mit Accenten bezeichnen, so hat man
D) f(r, 6, ¢)=A4A,-}

n—aw A=n '
2‘1 I, [AO P, (0')-'_;‘—2_.-.‘ 1P; (6,) (A;‘ cosdg, + B;‘ sind¢, )]
Rssei o =sin 0, 4 6, d ¢, das Oberflichenelement der
Einheitskugelfliche,
C, (8, ¢)="P; (0) cos 4, S (6, ¢)="D,(6) sinig,

dann finden bekanntlich die Gleichungen statt, wo sich die
Integration iiber die ganze Einheitskugelfliche erstreckt,

p=[ @9 6 =0
E= [ 6.0 526, 9o=0,

F=J‘Sf:(9,¢). c;l(@, ¢) 0 =0,

~von denen die zwei ersten nur so lange giiltig sind, als
die ganzen Zahlen 2, ¢ und m, n von einander verschieden
sind, wihrend die dritte immer Statt hat. Setzt man aber
A== p, 80 reduziren sich D und E auf

_T.
D=E==:rj‘ P (6). Pm(9) sin6 46, und fir 1 =0 ist
| .5 h
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x
D=2nJ‘ P} (6) P2 (6) sin@ d6, E=0.
. |

Ferner ist fir n=m
n e 27 m L
=FE = WJ‘ (P (@)) 3in 6 46 = 2n4+1)(n+2) ! (n—2) !

und A =0
47

— B n 2 & —— — R — =
INAO T s E=0.
Mit Hilfe dieser Formeln lassen sich nun die Coef-
ficienten in der Gleichung B, bestimmen. Man findet:

an CndDm+D) ! (n—=)! 1
Al "”(27-+ )(nT) (n! 2! J‘f(ri, 61, ¢1). P (6,)cosd¢, o
(n—A)!
Bn (2n+1)(11+/1) (n /1) f(rl, 1,(P1) Pn (8 )Sln)‘q)’
s 24‘. n!
' 2 D1
Ay — (“” J'f(m 1901) P" (6,) 7.

Werden nun diese Werthe fiir die constanten Elemente in
Gleichung 5 eingesetzt, so erhdlt man fiir das Potential
eines Punktes im Hohlraume den Ausdruck

n—w2n—|—1 i n
OVEO 9= T 5 [ @166 a)0

wo

Q= P(6) P*(6,) +

-+ =t A7 P2 (6,) P (6). 2cos 2 (9 — ¢
A=1

n ! n!
ist. Die nichste Aufgabe wird nun die sein, diese beiden
Summen, durch die das Potential V (r, 6, ¢) ausgedriickt
wird, auszuwerthen. Zuniichst beschiftigen wir uns mit
0" und suchen diese Summe fiir die Addition passend ein-
zurichten. Es ist
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D" [/ xt —1 x,2—1
1 2 S
P"(6)P" () = 13 ( ) L),
D"+}\(X2;1)n Drta x_}_’;:j_' "
n i@
P (G)P (6) ==sin* ey sin* @ EWE
weil nun aber
x?—1\n x?—1
. prti 5 ) A o Dn__l 3 )
sin*@ Ry = (— 1* sin 9. =7

b

so ist auch
P; (8) P;: (91) =
X;?_1\n
Dyt ( 12 1 gin— 2 = ngl)n
S0, (2! (1) sin™ %6 m—2A1
" i(p
Setzt man noch p= s.m b, L , S0 ist
sin @ e'?

sin @ \A sin 6
2 c0s A (¢ —¢) = (sin 6, p* (sin @,

und man erhilt fiir 2" den Ausdruck

| P ) D} ()

S =

A=n
> (—1 A Dn——l x—l . Dn-}-l ‘x,i-:l n
+ 2 (=D ( = (e

-y (SR L D (1) )]

Der zweite Term des in der runden Klammer einge-
schlossenen Ausdruckes unterscheidet sich von dem ersten
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nur dadurch, dafl 2 durch — 2 ersetzt ist; man kann daher
beide Summen in eine vereinigen und hat

? -n
3 (_( 1)1 p? DA (32—1 ) Dn-l—? (xl 5 ))

Es leuchtet nun von selbst ein, daf man hier die
Summe nach beiden Seiten beliebig erweitern kann, da
die Funktion (x®*-—1)* nur auf den zweiten Grad steigt
und eine hohere als die 2nt® Ableitung die Terme von
selbst zum Verschwinden bringt. Nun soll aber diese
Summe ausgerechnet werden. Wenn nun fiir einen Augen-

Qll

blick in dem Ausdrucke fir £" die drei Grofen p, Xi, X
als unabhiingige Variable angesehen werden, so ist

a0t
dx

= Iln : j-?'j: :<(_1)l p). pr—*+l1 (xﬂ_z_l)n. Drll—i—) (ﬂ;{)nl

d et
d x,

A= $__
1 X 3 -—1 >
_— 1 n—241
n'n',gg <( ) D +( ) Dn (
und daher die Gleichung

dL" d 2"
d x, T d x =l

Wir wollen nun dieser partiellen Differentialgleichung eine

—c
—

p

- Bedeutung abzugewinnen suchen. Es sei nun £"=F (p, x,
x,); liBt man hier x und x, resp. in x -} h, x, 4 ph iiber
gehen, wo h sehr klein gedacht wird, und entwickelt nach
dem Taylor’'schen Satze, so ist
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/dF | dF
F(p,x—l—h, X +ph)=F (@,%x:) + (7, +7D ;ﬁ)h—l----;
da aber — +p gF—O so ist auch F (p, x-+h, x,-}-ph)

- F(P, X, Xl) — Oa
also d22 =0, und somit £" = Const.

Nun ist aber h=dx, ph=dx,, also pdx — dx, =0
oder px—x, = Const.

Denkt man sich demnach in der Funktion £° die Grife
p constant und liBt x und x, sich so dndern, dafl px—x,
auch constant bleibt, so behidlt auch die Funktion den-
selben constanten Werth; es ist somit

" =F (p, (px-—x))
Wir wollen nuu den Werth von £° fiir x, =1 be-
‘rechnen. In diesem Falle ist also £* =TF (p, px — 1) und
um den allgem. Ausdruck zu erhalten, hat man nur px—1
durch px—x, zu ersetzen. Es ist

@pkmi—ln b= rxi—1\"n*
a) ( ,L____O( 2 )
x1——1 (x,=1)

s ()= 306

(x1=1)
und aus der Vergleichung von a) und b) folgt, daQ
D,o+2 x’—1\n (0! n! 1 \4
) = (=)

31—“:l \ 2 (n——,l)! Al

Wird nun dieser Werth in den Ausdruck fiir 2 eingesetat,
so folgt

)
SR S CEO LI I N I
x:,—l""ﬁlzbn 11 9% (=  (a—2)!

2
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oder nach Benutzung der Relation 4

111

On —Il. (-— (I_Xz)) 1 Dn+l
2

(x ‘“1)—" Y
Weil nun aber
1 n/x%—1\n n 1 _n42r /x> —1\n r_A
=D - ist — -
] 5 ) P (x),smstn!D ( 5 DP (x),

und da eine negative Fakultit im Nenner den betreffenden
Term zerstort, so hat man schliellich

(x%—j_ll) l_' * DR Pn (x). (g (lmxn))l
A=0 By '

Diese Summe ist aber nichts anderes als die Taylor’-
sche Reihe mit dem Incremente —g— (1—x?% und es ist

somit
Qn — n .Apﬂ —_2 I n
=P et ) =" (B

Ersetzt man hier nun px—1 durch px—x', so ha_t man
allgemein den Werth von £2=; also

On — pn p2+1-—(px—x1)2).
2p

el (px—l) )

Man setze
_ D 3 4-1—(px—x)* ( 1)
v=s 2p =z 0ty )%

sin 6, 1(99 -p) sm 6 —i(gp™p)
) (sm 6 ° sm Qle )

+xx, —

sm 6 i( 1 —@)

—sne © cos? - cos 6 cos 6,

sin @ cos?29, —i(e'—o)
2 sin 6, @ _ ?
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Demnach
U = sin 6 sin 6, cos (501'— ¢) -+ cos 6 cos 6

Wird nun der Winkel, den die beiden vom Ursprunge
aus nach den Punkten (r, 6, ¢.) und (r,, 6,, ¢,) gehen-
den Strahlen mit einander einschliefen, mit 3 bezeichnet,
S0 ist

cos B ==cos 6 cos 8, -} sin 8 sin 6, cos (¢, —¢),
also U = cos 8 und demnach ist 2° = P» (cos ).

Wir haben nun fiir P (cos 3) die bekannte Entwick-
lung

) P (cosh)=P" (6 P'(8)+2 T et —D)!
=1 1! nl

P, (6) P} (8:) cos A(pi—¢)

gefunden. Wird nunin V (r, 6, ¢) fiir £* der hier erhal-
tene Werth eingesetzt, so erhidlt man

AL 2 6,00 P (cos o

8) V(r,0,¢9)= X

n=—29
als Ausdruck des Potentials fiir einen Punkt des Hohl-
raumes. Nun ist noch die Summe

n—auwo
) (2n+1) — P" (cos )
n=~o
auszuwerthen.
Weil aber
n—a
z (2n+1)"—P (cos B)
n=29o
2 d n=—aw o n
:_:( I‘d—r—l—l).ngo I‘T’"ﬁ“P (COS‘@),

so reduzirt sich diese Aufgabe auf die Berechnung der
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n—auaw
rn . :
Summe 2 — P" (cosf). Esseinunx == cos/3; dann ist
n=o0 It

((X-i-h)z——l))_lun 1(;&—1\ %__ und nach

A=0

dem Satze von Cauchy ist demnach

P (X) —D (x —1 2171. ((X—]—h)’——' 1) h'(llil 1

(Weg ein kleiner rechtliufiger Kreis um Null).

Setzt man hier x 4+ h =1t, also h =1t —x, so macht
die neue Variable einen Kreis um x, wihrend h um o
herumliuft. Es ist also auch

2
P E = %E f (2t(t-—i) i ti—t!x (Weg aime ge-
schlossene, rechtliufige Curve um Xx).

Es steht nun frei, als Integrationsweg denjenigen Kreis
um x zu wihlen, dessen Radius sin S ist. In diesem
Falle kann man t = x - sin 3 ¢'? setzen, wo ¢ von o
bis 2 7 lauft; dann ist
t2—1

2

=sin B e'? (cos 81 sin A sin ¢),t —x==sinfi el

d log (t—-x)=tﬂ" =ide,

X

t2__1 n dt . . s . n
also<2(t__x) t_x--l(cosﬁ—[-lsmﬂsmgo) do

und somit ist auch

. 27
10) Pn(GOSﬁ)=§_1;J‘(COS‘8+iSiIlﬂSiIlgo)nd@

Wenn ferner s == cos 8 - isin 8 sin ¢, w = sin j cos ¢,
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d. t I JG - .

t—x

=gsinfe

—ig . t—-—x sin® 8
, 8in 3 cos ¢ == +2(t D’

i in2
§==% Ly und man erhilt fiir s

i sin 3 sin ¢ = Y o
den Ausdruck

t—x  sin?f t2—1
B=X-+ 5~ 2(t-—-x)_2(t-—x)'
Auch ist

smﬁ i i sin® __ t*—2tx41
S (eoreiv) = +2(t—x) 7t —x)

oder durch s ausgedriickt,

w? = sin? B (1 — sin® ¢) = sin? # — sin® 3 sin? ¢ = sin®pB
4+ (s —x)2=52— 253} 1==(s—ei3) (s—e—16),

Da ferner dt —1isinfe'® dg, ds = isin 4 cos ¢ d ¢, also

1t — el?ds el sinfds 1t — e' sin 3 ds
~ cosg  sinfcoseg W
= (t—x) gs, so ist it _ 08, und
W t—x w
demnach

——rr

2t —x) /) t—x S W |
Ich beabsichtige nun, die Integralformel fiir P» () von
dem t-felde auf das S-feld iiberzutragen und mufl nun den

neuen Integrationsweg zu ermitteln suchen. Dazu dient
die Beziehung

( t2—1 n dt n dS

2—1

) (t —"
Weil zu jedem Werthe von s im Allgemeinen 2 ver-
schiedene Werthe von t gehdren, so kann man sich das
s-feld zweiblitterig denken und die Verzweigungspunkte
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liegen da, wo %E— o ist. Man findet % & ;ﬁ(t'?_t%j;l
also muf t?—2tx 4~ 1 =0 sein, was fiir t, = ¢l5,
fiey == e 18 gtattfindet. Diese Werthe von t, in den Aus-
druck fiir s eingesetzt, liefern nun s, = '8, 5, =e 18,
als Verzweigungspunkte des zweiblitterigen s-feldes. Als
Uebergangslinie werde die gerade Verbindungslinie dieser
beiden Punkte gew&dhlt. Isotimen nenne ich diejenigen
Curven auf dem t-felde, lings deren die Funktion s den-
selben absoluten Werth behalt und ich will nun als Grenz-
scheide die Isotime aufsuchen, die zum absoluten Werthe
1 gehort. Bezeichnen t und t, conjugirte Werthe, so hat
man fiir dieselbe die Gleichung -
PP 1 t,, —1
2 (t—x) " 2(t, —x)

=1,

oder auch
(tt)? —2¢tt, +1) — .24 t2 4 2tt,) + 4x(t+t‘)
—4x2=0, (tt, — 12— (t4-t, — 2x)? =
also schliefilich
(tt, —t+t)+2x — 1) (tt, + t +t,) —2x—1)=0.
Der erste Faktor gleich null gesetzt gibt
t—1t'—1)=2(1 —cos p) = 4 sin"’%’
und der zweite liefert die Gleichung

(t 1) (b 1) =4 cos* &-
Um diese Gleichungen in rechtwinklichen Coordinaten zu
erhalten, setze man t=x-}-iy, also t'=x—1iy und findet

x—1)+y’= 4sin‘—‘g, (x-+1)*-}-y*=4cos® —g

- Die Isotime, die dem absoluten Werthe 1 entspricht, besteht
somit aus zwei Kreisen, von denen der eine mit dem Radius
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2 sin g—uml, der andere mit dem Radius2 cos g— um — 1 be-

schrieben ist. Schon aus der conformen Abbildung ist klar,
daB sich diese beiden Kreise in den Punkten e'# und e~
rechtwinklich durchschneiden. Es leuchtet aber auch geo-
metrisch sofort ein; denn es ist in Fig. 1 CA = CP = CA,

also 2 ¢+ B=2R, oder « +-5-==R. Die Linie AP steht

also senkrecht auf AP und somit ist AP eine Tangente

an dem Kreise um 1 und ebenso ist AP eine Tangente

an dem Kreise um — 1. Ferner ist BP = A'P sin —g— und

gin 3

‘da auch BP = sin (8 ist, so hat man AP == 3
: sin &
2

— 2 cos £ und ebenso kann gezeigt werden, dall AP

2

= 2 gin -g— ist. Fiir die Uebergangslinie kann man s = cos 8

— i sin 3 sin ¢ setzen und wenn hier ¢ alle Werthe von
O bis 2 7# durchldauft, so lduft s von 18 nache—18 und

von hier zum Ausgangspunkte el zuriick. Wir suchen das
Bild der Uebergangslinie auf dem t-felde. Man findet

(t — 8)? — sin? 3 cos® ¢ =0,
also t—s==sinpf cos ¢, t — s~} sin 8 cos ¢ =0,
oder t=cos 3 +sin e, t = cos f—sin g e~ 1P,

Die Variable t beschreibt demnach um den Punkt cos 8
mit dem Radius sin # einen Kreis, der die Isotimen in
den Pnnkten e'® und e —18 schneidet

Ist treell und positiv sehr grofl, se ist auch s reell
und positiv sehr grol und dieser Werth von t entspreche

dem Ostpunkte des ersten Blattes. Der Horizont des
t-feldes bildet sich dann wieder in den Horizont des ersten
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s-blattes ab. Riickt nun t auf der Realititslinie von -~ »
nach O vor, so bewegt sich auch s auf der Realitiitslinie
des ersten Blattes von 4 « gegen O hin, nud ist t im
Punkte B angelangt, so ist s == 1 geworden und befindet

sich im Punkte a Fig.2. In Bist t=1-}2 sin—‘g, also

L 12 sin—g-)z-—— L dsin g (A4sin &) .
2(1+2sin§ﬁ————cosﬁ) 4sin‘g(l+sing)

Nun beschreibe t einen positiven Viertelskreis um B
und gelange so in die Peripherie der Isotime um 1; dann
beschreibt - auch s einen Kkleinen positiven Viertelskreis
um a und gelangt in die Peripherie des Einheitskreises
und der Bogen ap (Fig. 2) ist Bild desKreisbogens BP (Fig. 1).
Wenn ferner t mittelst eines kleinen, positiven Viertels-
kreises um P von der Peripherie des Kreises um 1 auf
die Peripherie des Kreises um — 1 gelangt, so macht s
von seinem alten Stande siidlich von p aus einen kleinen,
positiven Halbkreis um p, setzt also seinen Weg auf dem
Einheitskreise fort, wihrend t den Bogen PB'P' durch-
liuft und ist in p' angelangt, wenn t nach P! kommt.
Fithrt man weiter t mittelst eines Kkleinen, positiven
Viertelskreises um P' von der Peripherie des Kreises
um — 1 auf die Peripherie des Kreises um 1, so macht
$ von seinem alten Stande aus einen positiven Halbkreis
um p', und der Bogen p'a ist somit das Bild des Bogens
P'B. Man erkennt so, daB sich derjenige Theil des t-feldes,
der von den beiden Isotimen nach innen begrenzt wird,
auf dem zweibldtterigen s-felde auflerhalb des. Einheits-
kreises im ersten Blatte abbildet. Ebenso kann man
zeigen, dafl der Einheitskreis im 2. Blatte des s-feldes
das Bild der beiden Kreisbogen PD'P' und PDP" ist und
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dafl sich das von diesen zwei Kreisbogen eingeschlossene
Stiick des t-feldes im zweiten Blatte des s-feldes aufler-
halb des Einheitskreises abbildet. Der Punkt B entspricht
dem Horizonte des zweiten Blattes. Ferner ist das Innere
des Einheitskreises des ersten Blattes das Bild des von
den beiden Kreishogen PB'P! und PD'P* eingeschlossenen
Flichenstiickes, wihrend sich schlieflich das von den Bogen
PBP! und PDP' nach aufien begrenzte Flichenstiick des
t-feldes in’s Innere des Einheitskreises des zweiten s-blattes
abbildet. Nach diesen Betrachtungen konnen wir nun den
neuen Integrationsweg auf dem s-felde angeben. In
Gleichung 9 beschreibt die Variable t auf ihrem Felde
eine den Punkt B umgebende, geschlossene Curve. Dehnt
man nun diese Curve so weit aus, dafl alle ihre Theile
aufierhalb der beiden Isotimen liegen, so entspricht ihr
auf dem zweiblidtterigen s-felde eine geschlossene Curve,
die im ersten Blatte den Einheitskreis umgibt, also die
Uebergangslinie rechtliufig einschlieit. Man hat also

y 1 n ds (Weg eine rechtliufig
1) B foos ) = 2ix J. ® W geschlossene Curve um
die Uebergangslinie im erste Blatte, Fig. 2), und aus die-
ser Formel folgt, daf

n=w ' 1 = o

11) 2 o P" (cos B) =

n=o0 "1

rs \" ds
‘H(Weg

2in) g — 5 \ I

wie in Fig. 2); damit nun aber die Summe unter dem
Integrationszeichen convergiere, miissen wir bei 11, den

Weg s0 legen, dal lings desselben mod, 1;- <1 d. h.

1
' r
mod. s < —1;1

Nun ist nach Annahme r > r,; also liegt der Punkt
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1:;— auflerhalb des FEinheitskreises und wir konnen als
Integrationsweg z. B. einen Kreis wihlen, dessen Radius
grofler als 1, aber kleiner als rT‘ ist, wie es in Fig. 2 ange-
deutet ist. In diesem Falle ist nun aber

— . —1
D=0 /yg\" rs _
2 — ) = (1—— = r,—7rs
r, 3 I, 1

n=—o

und somit nach Gleichung 11,

1;—_0: (“") B* (c0s ) = 2mf“

oben bezeichnete Kreis in Fig. 2.)

Von den drei Polen (eiﬁ, e 18, —1;—}) dieses Integrals

werden die zwei ersten eingeschlossen, der dritte allein
liegt aullerhalb des Weges. Wir beabsichtigen nun, den

Weg so umzugestalten, dall der Pol—I;T1 allein eingeschlossen

wird, die beiden iibrigen aber ausgeschlossen werden. Zu
diesem Zwecke miissen wir den Werth des Integrals im
Horizonte untersuchen. Ist s sehr groB, so kann w durch
s und r, —rs durch -~ rs ersetzt werden und das Integral

verschwindet somit wie Coeff. >< % Der Horizont ist so-

mit zuginglich und man kann nun dem Wege die in Fig. 2 ge-
zeichnete Gestalt geben. Weil nun aber das auf den
Horizont fallende Stiick des Weges wegfillt und der In-
tegrand nach durchlaufenem Horizonte auf seinen alten
Werth zuriickkehrt, so verwandelt sich die Curve in einen
geschlossenen Weg, der, wieder ganz in’s endliche Gebiet
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gebracht, allein den Pol Lrl riickliufig umgibt. Es ist also

1 ds .
2 ( )P (cos B) = 217r_frw - _L(Wegeme

ST

rechtlaufig geschlossene Curve um —E—‘-)

und nach Canchy erhilt man sofort

n—aw

2. () ren RO

= 1/1“2—21'1'1 cos ﬁ—-{—rx
W0 cos 3 ==cos 6 cos 8, |- sin 6 sin 6, cos (¢, — ¢) ist. Wird
nun die Entfernung der beiden Punkte P und P' mit p
bezeichnet, wo also

p —_— 1/1'2‘-'—2 I'I'l COS/Q+1°12,

so ist

1 n =‘oo m n
12) — = 2 ot B (cos j3)

und wir haben d_ie bekannte Entwicklung der umgekehrten
Distanz zweier Punkte nach Kugelfunktionen erhalten.

Es war
n—=—auo : rn
) (2n—|—1)——nP“(cosﬁ)
n—o
n—oo )
-—(21' -|-1) _lnP“(cos A),

also ist auch

n=acaw

5 (2n-|—1)~—P (cosﬁ)—(2r -I-l)

n-—-o
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und weil
al
o 1 dp _ recosf—r,
dr =~ pPdr = p°

s0 ist

2rr,(r,cos 3 —r)

n = m o,
2 @n+41)—=P (cosp)= 2
n=—o Iy o
4 Iy __ r, (r,2—1r?)
i P . pB
und wir erhalten schliefllich fiir das Potential eines Punktes
des Hohlraumes den Ausdruck

: 22a
5 (r,*—r?) * £(r,,6,,¢,)806,d6,dy,
13) ¥y (I',Qiﬂp)"" J‘f (1'2—21'1‘, cosﬁ—]—rﬁ)% .
00 )

§ 5. Potential einer anziehenden Masse, die nach auflen
durch eine Kugelfliche vom Radius r, begrenzt wird, fiir
einen Punkt des auflern Raumes, wenn dasselbe auf der
begrenzenden Flache gegeben ist.

Wenn die rechtwinklichen Coordinaten x, y, z durch
Kugelcoordinaten ersetzt werden, so nimmt bekanntlich
der Differentialparameter zweiter Ordnung folgende Ge-
stalt an: |

d ) dav
vy a (G 41 9-(3‘“9 i)
T or? dr r2sin @ dé
1@V

r’sin?@ de?
Wemn nun V=F (r, 6, ¢) eine Potentialfunktion ist, so

ist klar, da die Funktion U=F (—%—, 6 go) der andern



Gleichung
. o dU
W80 d (sin6 7o Lo dU

dr® ' siné dé sin?@ de®
geniigt, die fir U=rW (1,6, ¢) in

dw ‘ aw
1 d(rz_.d_;_m n 1 d(sm@—a—@—) 1 de——O
r dr ' r%sin@ a6 +_172sin28 de? 7
also in den Differentialparameter iibergeht. Ist daher
F (r, 6, ¢) eine Potentialfunktion, so ist es auch

0

1
=1 F ( _'-1_" 6, ¢ )und wir erhalten demnach fiir eine Potential-

funktion auBerhalb der Einheitskugelfliche die folgende
Entwicklung nach Kugelfunktionen

n—aw, 1

V(r,6,90)= 20 rn.i.]_ [Ang(e)

n.=

A=n !
+1€1P; (6) (A} cosdo + Bl 'sin 2 r,o)]

Werden auch hier mittelst der Grenzbedingungen die
konstanten Elemente bestimmt und die beiden Summationen
vollzogen, so erhilt man fiir das Potential V, eines Punktes
des dulern leeren Raumes den Ausdruck

27 7 :
: 8 2\ 4 .
14) Vi(r,6,90)= 1.1(1‘47r Iy )v‘"‘f(riealagpl)sule'ldeldsol.
0°0

(r?—2rricosf+41,%)h

§ 6. Nach dem Vorgange von Schwarz ist es nicht
schwer zu beweisen, dafl diese beiden Potentiale V, und V,
fir Punkte der Oberfliche in f(r:,6,,¢,) iibergehen. Ich
iibergehe diesen Gregenstand und behandle noch die Fille,

wo erstens f(r;,6,,¢,) =pi, d. h. gleich der réciproken

0
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Entfernung eines Punktes der begrenzenden Fliche yonirgend
einem Punkte, den ich Pol nennen und mit P, (1o, 8,, ¢,) be-
zeichnen will, ist und zweitens, wo f(r,, 8y, ¢;) = Const.
tiber die ganze Oberfliche der begrenzenden Kugel. Ich
halte mich zuerst an V, und nehme an, die anziehende
Masse sei 1 und in einem einzigen Punkte, also im Pole,
der in diesem Falle auflerhalb der Fliche liegt, vereinigt.
Nach Dirichlet ist klar, dafi das Potential fiir einen Punkt

1. .
des Hohlraumes T ist, wenn R die Entfernung des Be-

zugspunktes vom Pole bezeichnet. Es ist nun zu zeigen,

daf sich auch der Ausdruck fir V, (GL 13) in % verwan-

delt und wir fithren hier den Nachweis mit Hilfe der
Kugelfunktionen. Der Strahl r bilde mit den Strahlen r,
und r, resp. die Winkel « und 3, und ebenso sollen die
Strahlen 1o und r, den Winkel y einschliefen. Ist nun

R= 12— 2rr,cos a-+1,% , o =¥/ 1*—2rr, cos 1.2,
= 1/1‘02 — 21,1, 008 y 1.2, so folgt aus Gl 13

— 2 |
Vo, 6, 9)= = (rl r) f > WO J‘ein Oberfldchen-

integral bezeichnet, das sich iiber die Kugelfliche vom
Radius r; erstreckt und ¢ das Element der Einheitskugel-
fliche, also gleich sin 6, d 6, dfﬁn, ist. Weil

1 m-=—aw

e B
Po m=ol, 'H

P™ (cos 7); P ™ (cos r)

A=m A m '
=2 lfo(m_gl) (mm.A)! (O)P (8,) cos 2 (@1 — @)

(fiir A= 0 die Hilfte),
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1 m=o [ pm
a) | S0 ist — = 2.[ B 7

Qo m=o |r, !

,(’Lgmz(mw)'(mm 2!

A=0 m !

Pm (8, )P (8,)cos A (¢ — %))]

Ferner ist nach fritherem

pe = 2 (2n-1) mP“ (cos 3) und da auch

n—=—=o

Pn(cosﬂ)__2u—£n (H-I—p)'(n—/i)' P
w=o n! n

P"; )] P: (8,) cos p(¢y — o), (fiir o = 0 die Halfte),

also ist auch

ri(rlz_rZ) n=—auw

— e ¥ 2[(2n—|—-1)—

0o n=o

( Zn(n—l—m (n— p2)! P? (6) P’ (9)005”(90‘_9’))]

b)

=0 n:

Werden nun die Werthe unter a) und b) in den Integral-
ausdruck fiir V, (1, 6, ¢) eingesetzt, so bleiben in dem Pro-
- dukte der beiden Doppelsummen nur diejenigen Terme
stehen, in denen m=n und g=41 ist und weil

27-n!n!
“(Pa(@‘)cosm)z =CitDhaina—n!

I

‘80 1st

_r=er om ASRn+A) ! 0—2)!
Vo(rsaﬁgp)_nio-rg_{__‘ ()_—EO .n! n!
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P* (6) P! (Gﬂ)COSZ(qp—gpo))}, (fir 2=0 die Hilte).

Aus der Gleichung

P" (cosa)—2 2 (n+l) (nn P (G)Pn(ﬁo)cosil(gp ®o)s

A—o0

(die Hilfte fiir A=0)
folgt weiter, dal3

n—aw

Vo (r,0,9) = 2 = L, Das Integral

n—o ro R

der Gleichung 13 stellt also in diesem Falle wirklich die
reciproke Entfernung des Bezugspunktes P vom Pole dar.

Es sei ferner f(r,, @1,¢1)=%, wo aber der Pol innerhalb

der begrenzenden Kugelfliche liegen soll. In diesem Falle
stellt das Integral unter 13 die Greensche Funktion fiir
das Innere der Kugelfliche r, dar; die iiblige Gestalt der-
selben soll hergestellt werden. Weil hier r, <r,, so0 ist

1 n=—auao

&1-) —_——
po n=49 I'l

n={ 0[ :—:1 lio2(n:")-) (I; !3) Pn (8,)P™ (91)0083(900”50))]

- P" (cos )=

und aus den Werthen von a,) und b) folgt aus den oben
angegebenen Grimden, daf

=2 ) S22 (n— )]
Vo(r,e,go) r, 2 (I':Z)n—{-l(li‘o n! n! X

P (6) P; (8,) cos 2 (¢ — gao))] .
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oder auch

} n=—aua= (I‘l‘ )11 -
YV, (r,8,0)=1,- 2 0 P (cos a).
( (,0) ! o (1',2)"+l ( )

Wenn nun x auch einen Leitstrahl bezeichnet, dessen
Linge durch die Gleichung r,;®>=r,.x bestimmt wird, so
hat man |

V ( 6 ) r‘ 11=‘CD m Pn( )
r p) = — COS a
o Wetnd Yy p—o X1
r 1 .
= —: oder
Iy 4/ r*—2rxcosa—--x>
r
rﬁ

Vu(r’6>¢) ===

2o N’ r?\2
‘/I‘ 21 T, CcOoS ﬂ—]_(i_(;)
" also die Greensche Funktion in der gewohnlichen Gestalt.

Es bleibt uns jetzt noch iibrig, den Integralausdruck
fir V, (r,0,¢) unter denselben Voraussetzungen wie bei V,
zu verwandeln. Statt diese Aufgabe mit Hilfe der Kugel-
funktionen zu losen, will ich hier einen etwas andern Weg
einschlagen. Der Pol P, liege zuerst innerhalb der Kugel-
fliche. Wenn U und V zwei Funktionen bezeichnen, die
mit ihren ersten Abgeleiteten im Innern eines vollstindig
begrenzten Raumes iiberall endlich und stetig bleiben, so
gilt nach Green die Gleichung |

J]T(UDV — V[ JUdx dydz = r(UDV —VDU)w,

d? d2 42 : ; ; 2 ;
wo[ |= o T iy* -+ 1,7 D eine Ableitung in der positiven

Richtung der Normalen, die ich mir in den ausgeschlossenen
Raum gerichtet denke und « das Oberflichenelement be-

zeichnen. Fiir U und V wiihle ich nun die Funktionen
Mittheilungen V. 3
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L und L. Die zweite Funktion hat innerhalb der Kugel-

Qo

fliche den Pol als Unstetigkeitspunkt. Man umgebe daher
denselben mit einer kleinen Kugel vom Radius ¢; im Raume,.
der von diesen beiden Kugelﬂiichen begrenzt wird, sind

nun die beiden Funktionen }— und~—~ itberall endlich und

\ 50

stetig und geniigen der Gleichung [ JV=0. Man hat da-
her die Gleichung

f(~D7 0o p)w'_f(“D“ - %—\)w=0‘

die man auch in der Form schreiben kann

D—— w—r——D—- W= D-— aJ— D—!—'a)..
IO 20 10 Lo

Dlese Integrale sollen nun ausgewerthet werden und

wir fangen mit dem ersten auf .der linken Seite an. Hier

ist p2=—_(x——x,)2+(y—y,)z—i—(z-—-zj)z, und da D —lag—
1

—I—u

—|—v az wo 4,4,V die Richtungscosinuse der Nor-

dy,
p o dy Al di
malen sind, so hat man D-—h:A 9 -|-,1 o ¢ +v dz
1 1 1
Nun ist d—‘?_=(X“x')’d?= ¥ —v,), d7’—= (2—2).
‘ Xm pB dY| _‘03 dZ1 ‘08
und ebenso 4 = ~*, p= i,y=2,
rl I‘I 13

Daher
D 1 —_— . 2 (X )i)xl —_— 1 . (XX,-]—yy, -1; ZZ, -1y )‘—
p rl p p
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‘Weil nun aber
=y, 24-r? ——-2rr,cos,?-—1,9—|—1 —22%xx,,
80 ist auch |
D‘71)—=21r1 . ( 1"2+1‘2:fg_2r12)=I;:;:g—--gri_.,
10
und da hier

w=r*c, wo 6=sin8d6doe,

so ist
1 1 r(rf—r,?) o 1 G
—D— 0= g— — .
“r O P 2 PP 2% pp
Beim Integral
1 1 . 1 1 (recosp—e?) __(reosf—e)
POD? wlstDp-——-—e—- RS RS j
also ES D 1. W= e(rcosﬂs——-e)a und da e sehr klein ist,
P 0 R
so fallt dieses Integral weg. Es soll ferner J‘—— D—F—)—
0
berechnet werden. Weil hier
2__r 2
D 1 ) rL 1 ,
Po  21ipg 21 po
S0 1st
f—-D-_ 1(10 "—'rzg)‘f 72 L Iy J‘ a
2 PP 2y o
Im letzten Integral |
. 1 1 1 1
‘f—‘D""”—'° [4)] lStD—=—'—'§- ’ '—p—_—"'——‘ ﬁ’

0 e
also |
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Man erhilt daher aus der Greenschen Formel die Gleichung

4r 1,(1‘ ——r,"’)j' 1 (r,® 102)f
R p° P Ppo

Wenn wir nun bewelsen konnen, dafl die beiden Integrale

ag
(1.2_1.‘2)"‘ 3
. 0%

sind, so haben wir unsern Zweck erreicht. Zu diesem
Zwecke setze ich

p— D (r? -——1:2) “ 1'1(1: —r 2)[‘
I l” pO ppﬁ

und (r2—r,? f““‘q“é"' einander gleich
r, 000

Weil p?=12+}r,* — 2rr,cos88;p,2 =11 41,2 —~2r,r0cosr,
so ist
1

d_ 2r; dp 21’,1‘0038-—21‘,2'
211 ﬁ“’ —
dr, o dr p®
21,2 —p?—2r,2 . 1.2_1,'2_i
P’ p° P
ebenso findet man
1
2r, dz‘ro- _ Lf—rt 1
dry Poa Po’
folglich ist
r2—r,2 d 1 r2—p2
B, e 2r i 1 ey 0 1
p° ( tdr, + ) p 0o
d 1
=92 S
(g +1). 5

Setzt man nun diese Werthe in die Integrale unter D ein,
so folgt

i o d 1 1 d 1
| pYer ey
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und da
1

- (’90
o dr, = dry

d I
1 1
+=

2o dll
so hat man auch

1 f fl"“.
d1.+ ) 0, Zn dl, r 0P
1
;o

Wenn man nun beweisen kann, dafl das Integralj‘ e
Fud ]

3
von r, unabhingig ist, so ist dann auch bewiesen, dafl
D=0, daBl somit die oben bezeichneten beiden Integrale
gleich sind. Mittelst der Kugelfunktionen ist der Beweis
leicht zu fithren. Es ist

1 Ozo' P" (cosﬂ) = y 2
0 n=orl 'H 'p D:O ;m+l
also auch
N=0o .n A=n A1 AL
_l_ﬁ 5 5 2(n4 2)In—2)!
£ aw=o "t \u=0 n! n}

P} (B)F} (6) cos2 (91— ¢) ),

m.._oo =1 o
1 m = Orm+1 ( 2 2(m+#)’(nl #)'X

P m!

= (80 P (6) cos (s -—sao)),
somit

p T d [“"—}:.‘” r,"

on dr, S

e rn+l
Sedy :
. (2(n+x)!(n 'U!) P} (6) P (6,)

2.—0 n!
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. _
f(P;L‘ (91)) + €08 A (g—¢,) + €08 (¢,—¢1) + o ]
I, )
n—aw n
o d [P57, L

324D —2)!

P (80) P] () cos A (¢ — %)]

1_0 n! n!
also auch
p—or, L ("7 1
o rlai’; nio 2n+1 r’ +1P (COSO',))

Nun ist aber der in der Klammer stehende Ausdruck von
r, unabhingig, somit ist D=0, folglich

(@?—r?) - J‘ *-*(r 2__1o%) f "o_a...

Wir fiihren den Bewels dieser letzten Gleichung noch
auf eine andere Art. Man denke sich auflerhalb der
Kugelfliche von Radius r, einen Punkt P,, dessen Ent-
fernung von einem beweglichen Punkte mit p, bezeichnet
werden soll. Ferner sei r, die Entfernung dieses Punktes

; . : 1 -
vom Ursprunge. Die beiden Funktzonen;und P sind nun
1

mnerhalb der Kugelfiiche iiberall endlich, stetig und ge-
niigen der Gleichung [ ]V =0; aus dem Satze von Green
folgt daher die Gleichung

1 1 1 _ 1
—D—wo=)—D—- o,
oo P v 0P

aus welcher sofort die andere

folgt.
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Auf dem Strahle r, wihle man nun einen zweiten Punkt
Po, dessen Lage durch die Gleichung r,r,=r,? bestimmt
werden soll. Es ist klar, dafl der Punkt P, innerhalb der
Kugelfliche liegt, wenn P, sich aufBlerhalb derselben be-

findet. Mittelst dieser Substitution geht nun p, in = p,
. 1]
itber und man erhilt nun

2 My B —r 2 _o__
(r—r.)f =) ) o

Es ist demnach

1 _r,(r”—-—r,“)f o
R 4r < 0%p,
1

~ was wir zu zeigen beabsichtigten. Die Betrachtung des
~ Falles, wo der Pol P, auflerhalb der Kugelfliche liegt,
bietet nichts neues dar. Auch hier sei P, ein Punkt, der
im Innern der Kugelfliche auf dem Strahle r, so liegt,
dafl die Gleichuug r,r,=r,? Statt hat. Aus fritheren Be-
trachtungen folgen nun die Gleichungen:

4r _ n(r —~r.2) J‘ r(r,® -—r,z)-f
R, PP t ope®

Ri2=r*+4r,2—2r,1r,c08¢, (r*—r’ )J‘

o° Py

=(r s;r12)‘f el 3 .
’ r, 00

Entfernt man nun in der ersten Gleichung r, mittelst der
Relation r,r, =r,%, und beriicksichtigt die zweite Gleichung,

so hat man
) 51

T __ T _(1_ —r, 2)j'
P Po

‘/ (:OSa —+ (n )
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stellt der Integralausdruck unter Gleichung 14 in diesem
Falle wirklich die Greensche Funktion fiir den Raum aufier-
halb der Kugelfiiche dar.

Wir wollen schliefflich noch den Fall behandeln, wo
f(r,, B1,¢,) in jedem Punkte der Oberfliche gleich einer
Constanten ist die mit C bezeichnet werden soll. Diese
Aufgabe reduzirt sich auf die Betrachtung des Integrals

‘f‘; in den beiden Fillen, wo der Bezugspunkt auflerhalb
Ty
oder innerhalb der Kugelfliche liegt. Man nehme den
nach dem Bezugspunkt gehenden Strahl r als Axe an und
bezeichne den Cosinus des Winkels @, den der nach dem Ober-
flachenelemente &, der begrenzenden Kugelfliche gehende
Strahl mit der Axe bildet, mit x. Dann wird r.2s=oa
= 27r,2dx eine schmale Zone,

p?=r?~-r?—2r,rx,
und

2 o 1
Vﬂ(r, 9,99):0. Iy (r‘ ) "_‘"—Cl (r| '—I') (:;Xa

.Ql_—r2) fd

also

. ri—r’ 1
\'0=C-( 9y )<r,—r P ) Const.;
ferner
. (*—r? 1
Vi (,6,¢)=C- e e )<1_r’ r+
Ist daher die anziehende Masse auflerhalb der Kugel-
flache so vertheilt, dafl das Potential derselben in Punkten
der begrenzenden Fliche konstant ist, so ist dasselbe auch
im eingeschlossenen Raume konstant. Dieser Satz gilt
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nicht nur fiir eine Kugelfliche, fiir die die Richtigkeit
oben bewiesen wurde, sondern er gilt auch fiir jede be-
liebig geschlossene Fliche. Ist hingegen die anziehende
Masse innerhalb einer Kugelfiiiche so vertheilt, dafi das
Potential auf der Begrenzung iiberall konstant ist, so bleibt
dasselbe im idufiern Raume nicht mehr konstant, ist aber
eine Funktion von r allein und nimmt ab, je mehr man
sich von der Iliche entfernt. Man kann sich die Masse
auch in einem einzigen Punkte, nimlich im Mittelpunkte,
vereinigt denken und ihre Grofe wird durch Const. r,
angegeben.
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