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Ueber die Darstellung des Potentiates einer durch

eine Kugelfläehe vom Radius rx naeh innen oder nach

aussen begrenzten Masse für einen Punkt des leeren

Raumes, wenn dasselbe auf der begrenzenden Fläche

bekannt ist.

1/er nachstellende Aufsatz enthält die Lösung einer

Aufgabe, die schon von den verschiedensten Mathematikern
auf die verschiedenste Weise gelöst worden ist. Die Lektüre

von Heines Handbuch über Kugelfunktionen hat mich

veranlaßt, auch auf den in der Ueberschrift bezeichneten

Gegenstand einzutreten, und ich glaube die Lösung der

Aufgabe auf eine Art und Weise durchgeführt zu haben

die neu zu sein scheint; wenigstens habe ich in der mir
zugänglichen Literatur diesen Gang nirgends gefunden.
Der Verfasser geht hiebei von dem Newton'schen Gesetze

aus, entwickelt an der Hand derselben den Begriff eines

Potentials und leitet hieraus die Laplace'sche Gleichung
ab. Im Weitern wird eine Funktion, die innerhalb einer

Kugelfläehe von Radius n dem Differentialparameter zweiter

Ordnung, d. h. der Laplace'schen Gleichung genügt, nach

Kugelfunktionen entwickelt. Von dieser Funktion wird nur

vorausgesetzt, daß sie in jedem Punkte des angegebenen

Eaumes nach dem Taylor'schen Satze entwickelbar sei, daß
Mittheilungen V. 1



n oc

man sie also in der Form V (x, y, z) 2 (x, y, z)n
n 0

wo die Gruppe (x, y, z)n eine homogene Funktion der Coor-

dinaten x, y und z vom Grade n ist, darstellen könne.

Es zeigte sich sofort, daß jede solche Gruppe dem

Differentialparameter genügen muß, und es wird bewiesen,
daß es im Ganzen (2n -f-1) homogene Funktionen der
Coordination (x, y, z) vom Grade n gibt, die der Gleichung

QV — o genügen. Diese (2n -j- 1) Funktionen werden

nun mittelst des Polinoms («x-f-ßy + rz)" in dem die
Elemente a, ß, y so bestimmt werden, daß die Gleichung

(«x -\- ßy -j- yzf o Statt hat, aufgesucht und in die
Reihe für V (x, y, z) eingesetzt. Nachdem die in dieser
Reihe noch auftretenden konstanten Elemente mittelst
Grenzbedingungen bestimmt worden sind, wird das Potential für
einen Punkt des leeren Raumes in der Form einer Doppelsumme

erhalten. Diese beiden Summen, von denen die
eine begrenzt, die andere unbegrenzt ist, werden nun, wie

mir wenigstens scheint, auf dem natürlichsten Wege aus-

gewerthet. Die begrenzte Summe ergibt sich als der
bekannte Ausdruck für Pn (cos Q cos 0i -J- sin 6sino i cos (<p — <pt

und die unbegrenzte Summe stellt sich als — dar, wo
P

p die Entfernung zweier Punkte im Räume bezeichnet.

Ich glaube, daß die Art und Weise, wie diese Summen aus-

gewerthet worden sind, den Leser interessiren werden. So

erhält man schließlich den bekannten Ausdruck für das

Potential eines Punktes des leeren Raumes. Zum Schlüsse

werden noch für die an der Oberfläche willkürlich gegebene

Funktion spezielle Annahmen gemacht und mittelst Green'-
scher Sätze die unter diesen Voraussetzungen wohlbekannten

Ausdrücke für das Potential aus der allgemeinen Integral-



form abgeleitet. Neue Resultate bietet mein Aufsatz keine.

Möge der Leser darüber urtheilen, ob die kleine Arbeit
der Veröffentlichung werth ist.

§ 1. Die Kraft K, mit der die in dem Punkte P (x, y, z)

vereinigte Masseneinheit von der in dem Punkte P0 (a0, b0, c0)

befindlichen Masse m0 angezogen wird, ist nach dem New-
ton'schen Gesetze

l0r<>

wenn r0* (a0—x)2 -f- (b0—y)2 -f- (c0—z)2 gesetzt wird.
Werden die Komponenten der Kraft nach den Haupttaxenrichtungen

mit X, Y, Z bezeichnet, so hat man

m„ a0—x _ mo b0—y _ m0 c0—z

Nun ist aber auch

1
1 a 1

d — t _
d

r, 1 a0—x r0 __
1 b0—y

dx r02 r0 dy r02

di
dz

1

r 2

somit ist

X
d1^

dx

d10? d^
Y -r^-, Z

dy ' dz
Wirken nun mehrere, in verschiedenen Punkten vertheilte
Massen m^ (für À 0, 1, 2 n) in gleicher Weise

auf die im Punkte P vereinigte Masseneinheit ein, so sind

die Komponenten der Kraft
x n m, a, —x i=n m, b> —y

x=o rx2 rx x=o rx2

^ n mj c-, — z

X or>-2 rx



oder auch, wenn

V
X

X

n m,
1 x

n l'X

gesetzt wird

X dV
~dx' Y dV~ dx' Z

dV
dz'

Wenn die Masse einen Raum stetig erfüllt, so ist klar,
daß sich obige Summen in Integrale verwandeln, die sich

über den ganzen massenerfüllten Raum ausdehnen, so daß

man hat

V — ÇÇÇ k da db dc

ÇÇÇ k da db de
_

a—x v _ fffkdadbdc b—y

-J3GF

r
k da db dc

r r
wo k die Dichtigkeit der Masse in dem Punkte (a, b, c)

bezeichnet, die im Allgemeinen eine Funktion dieser Coor-

dinaten ist. Die hier mit V bezeichnete Funktion wird

nun nach dem Vorgange von Green das Potential der Massen

für den Punkt P genannt. Wir wollen nun annehmen, der

Bezugspunkt P liege außerhalb des Massensystems. In
diesem Falle darf man, um die Ableitungen von V nach

x, y, z zu bilden, unter dem Integrationszeichen differen-

ziren, und weil nun

d'lr 1 3 (a—x)2 "t : 3 (b-y)
dx2 r3

dz2 r«

dy2 r3

3(c-z)2,
r5

r5



d2 V d^y_ d2 V I d2 V
3 t A„2 ~Tdx2 ' dy2 ' dz2 dx3

fffkdadbdc y dV ffr ,'3 3N

d2 d2 d2
Wenn also n -r—, + 3—5 + T—¦, so hat man für einen^ dx2 ' dy2 ' dx2
Punkt des leeren Raumes

?V 0
als die Gleichung von Laplace. Jede Funktion nun, welche

der Gleichung []V=0genügt, wird eine Potentialfunktion
genannt.

§ 2. Es sei nun V (x, y, z) eine Funktion, die der

Gleichung []V 0 genügen soll. Ich nehme an, die

Funktion sei in einem Gebiete, das nach außen durch eine

Kugelfläche vom Radius n begrenzt wird, überall nach dem

Taylor'schen Satze entwickelbar, es sei also

1) V (x, y, z) Ao + (Ai x + Bi y + Ci z)

+ Aiix2-f-B1iy2+Ciiz2+2Duxy4-2Eiixz-4-2Fiiy2)
+ (x, y, z)3 + + (x, y, z)" -f-

wo (x, y, z)n eine homogene Funktion der Coordination

x, y, z vom Grade n bezeichnet, so daß

1) V (x, y, z) 2' (x, y, z)"
n 0

ist. Soll nun die Funktion V dem Differentialparameter
zweiter Ordnung, d. h. der Gleichung QV 0 genügen,
so muß jede Gruppe für sich die gleiche Bedingung
erfüllen, d. h. es muß

[J (x, y, z)n 0 sein für n 0, 1, 2, 3, od

Die Gruppe (x, y, z)n weist nun so viele Tenne auf,
als sich die drei Elemente x, y, z zur Klasse n mit Wieder-



holungen combinieren lassen; ihre Anzahl ist daher

(n + 1) (n + 2)—J ~—- und so viele constante Elemente sind

vorhanden, die nun so bestimmt werden müssen, daß die

Gleichung Q (x, y, z)n 0 erfüllt ist. Das Symbol

erniedrigt den Grad der Funktion um 2, bringt ihn also

auf n —2 herab und die Anzahl der Terme nach geschehener

Ableitung ist gleich der Anzahl der Combinationen der drei
Elemente x, y, z zur Klasse n—2 mit Wiederholungen,

also gleich —-—~-. Die Coefficienten dieser Terme sind

lineare und homogene Funktionen der ursprünglichen con-
stanten Elemente und müssen verschwinden, wenn die

Gleichung fj (x, y, z)n 0 erfüllt sein soll. Wir haben

also zwischen den -—^jp— o— constanten Elementen

Y1—w~lineare Gleichungen, also
g ~g —i ~ö~

2n -}- 1 Gleichungen weniger als Elemente da sind.

Denkt man sich daher in dem Polinom (x, y, z)n 2n -j-1
Coefficienten willkürlich gegeben, so lassen sich alle andern

durch lineare und homogene Funktionen dieser (2n -|- 1)

frei gewählten Elemente ausdrücken. Werden diese Werthe
in das Polinom (x, y, z)n eingesetzt, so läßt sich dasselbe

in der Form

2) (x, y, z)n A0 g0 (x, y, z) + A1 g, + (x, y, z)

+ A2 g2 (x, y, z) + + A) gx (x, y, z) +
+ A2n §2n (X, J, z),

darstellen, wo die Funktionen g (x, y, z) wieder homogene

Funktionen von x, y, z vom Grade n sind; da nun aber

die A beliebige Constante sind, die auch gleich Null
gesetzt werden können, so muß jede g-funktion für sich dem



Differentialparameter genügen, und man erkennt, daß es

im Ganzen 2n -f- 1 verschiedene homogene Funktionen
der Coordinaten x, y, z vom Grade n gibt, die dem

Differentialparameter zweiter Ordnung genügen. Im folgenden

Paragraph sollen nun diese 2 n -f-1 Funktionen aufgesucht
werden.

§ 3. Es ist offenbar a x -f- ß y -|~ rz)n eine homogene

Funktion von x, y, z vom Grade n mit den drei constanten

Elementen a, ß, r, die nun so bestimmt werden sollem

daß die Gleichung Q (a x -j- ß y -j- y z)n 0 erfüllt ist.

Weil

<^2(/?x+/3y + rz)n n(n-l)a2(ax+^y+rz)n-2,

dyl(«x + /îy + rz)n=n(n-l)/3»(«x + /3y + rz)n-2,

(lz2(ax4-/9y-|-rz)»=n(n-l)r2(«x4-/3y + rz)n-2,

d»

k
di
so ist («x -f- ßy -\- yz)n

n(n—1) (ßX + /3y + rz)n-2 («' +ß* + fl
und demnach muß die Gleichung

n (n—1) (ax + ß J + Tz)n~2 («2 + ß2 + r2) 0
erfüllt sein. Daß Q (ß x -j- ß y + f z)n für n 0,1

verschwindet, versteht sich von selbst. Ist aber n > 2, so muß

notwendigerweise die Gleichung
ß2 _j_ £2 _j_ ri _ 0

zwischen den constanten Elementen Statt haben. Diese

Gleichung ist nun erfüllt, wenn a 2 t, /5 t2—1, also

r (t2 -f- 1) i gesetzt wird, wo t eine willkürliche
Constante bezeichnet. Setzt man nun diese Werthe in unser
Polinom ein, so wh'd

{ax + /3y + rz)°=(2tx4-(t2-l)y4-(t2+l)iz)n
eine Potentialfunktion, die für alle Werthe von t dem



Differentialparameter zweiter Ordnung genügt. Es sei nun
S» (y -\- i z) t2 + 2 x t — (y — i z), dann ist

Sn ((y + iz)t2-f-2xt-(y-iz))n
C„ t^+Cn-x t2n-1+C^2t2n-2+..+C0tn-f-C_1tn-1

+ c_2tn-2 + + c_n,
X 2n

2 cn_xt2"-^.
x o

Hier sind die C homogene, von einander verschiedene

Funktionen x, y, z vom Grade n, die alle dem Differentialparameter

zweiter Ordnung genügen müssen. Ihre Anzahl

ist 2n -f- 1. Ersetzt man t durch —, so folgt
1

(_tl2 S)" ((y - i z) tt3 + 2 x t, - (y 4- i z))n
X 2n

2 (—l)?- + n Cn-Xt/.
A 0

Nun unterscheidet sich (y — i z) t,2 -\- 2 x t, — (y -J- i z)

von S dadurch, daß i durch —i ersetzt ist; wenn daher
C und C conjugirte Funktionen bezeichnen, so ist

((y-iz)t12-J-2xt1-(y + iz))n- "/c.-it2"-1
J x o

X 2n
2 C'-n + Xt.X,

x o

daher die Gleichung
X 2n A 2n

2 (_l)X+nCn_xtiX s C'_n + ,t/
X O X 0

aus der sich die Relation

Cn_x (_l)A+»c_n+A für ;. 0, 1, 2, 2n

ergibt. Aus derselben folgt z. B., daß
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Cn (— l)nC'_», Ca_! (— 1)»+1 C'_(n_,),

Cx (-l)x C_x, C_x (- l)x C'a C_„ (-1)" C'a

Wenn nun die rechtwinkligen Coordinaten x, y, z durch

Kugelcoordinaten ersetzt werden, wenn also

x r cos 8, y r sin 8 cos <p, z r sin 8 sin <p gesetzt

wird, sogehtSinS=r (sin Öei*.t2+2 cos 8. t — sin6» e-'*)
über und verwandelt sich für

p sin 8 elçp, sin 8e~Up, x cos 8 (x ist
p

hier nur eine abkürzende Bezeichnung für cos 8) in

S ~((x-fpt)2-l).
Es sei nun

setzt man nun hier auf der linken Seite für Sn die oben

angegebene Reihe ein, so folgt
X — 2n - x — n

2 C„_x ia~x rn 2 T, t*, oder auch
A 0 A n

A — n A — n
2 CxtA rn 2 Tx t*

A n A n

woraus die Relation

Cx=r°Tx (für ; 0, 1, 2 n, — 1, —2, — n)

folgt. Da nun C^ eine homogene Funktion der rechtwinkligen

Coordinaten x, y, z vom Grade n ist, so muß Tx

eine homogene Funktion von cos 8 cos <p, sin 8 sin <p sein.
' / S \nWird nun ferner in dein Ausdrucke für (—— die Größeür (tt)

pt als Increment von x betrachtet, so ist nach dem Tay-

lor'chen Satze, wenn D abkürzend für —.— gesetzt wird,dx °
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A =2 n t\X /Y2 -i\nI D (X ii_pX-ntA-n
A 0 x

oder auch, wenn X — n durch ^ ersetzt wird

M r S n A=vTn DX + n (x2-l)° nA tA

Aus den Gleichungen a und b folgt nun sofort

T D"+V-l)° ¦

x
(n + /)! P '

(für/ 0, 1, 2, ...n, —1, -2, ...-n),
also ist auch

J)n + A /x2 J~j
^A=rn—-,—*. p für dieselben Werthe von À.

(n + X)

Nun ist auch

p/A ,.n
D" (x2—l)n n xC -i (n + ;o,

sm 0 p

und die Relation liefert somit die Gleichung

Wenn nun mit Heine

gesetzt wird, also vermöge der Relation 4 die Beziehung

Pn 0) (_ i)* p» (ö)

Statt findet, so ist

Tx 2n P" (0) eixv, Ca =2n rn P" (0) eix*,



ll^
und

[A n
Pn(<9)4- 2 P?(0)(ea* tx-\-

A l X

¦ÏÏQ t-3L)l.(-1) e"

Die 2 n -(- 1 homogenen Funktionen der Coordinaten x, y, z

vom Grade n, die dem Differentialparameter zweiter
Ordnung genügen, sind nun gefunden und können durch

rn Pn (6»), rn P" (8) cos X <p, rn P" (ff) sin À cp

(für X 1, 2, n)

dargestellt werden. Ersetzt man nun in dem Ausdrucke
für (x, y, z)n die Funktionen g (x, y, z) durch die obigen
Werthe, so hat man

(x, y, iY (r, 8, cpY

rn Ta; Pn(6>) + 2n Pj(0) (A^cos^+B^sin;^)]

und nach Gleichung lt erhält man schließlich für die

ursprüngliche Funktion V (x, y, z), von deren Betrachtung
wir ausgegangen sind und die der Gleichung Q 0

genügen soll, in Kugelcoordinaten den Ausdruck

5) V (r, 8, <p)

=n 2°V |a" Pn (O) +
'
2V (8) (A* cos X<p + Bn sin X o)

n=0 L A l x v x x A

Die Convergenz dieser Gleichung setzt aber r < 1 voraus ;

sie ist also nur für den Raum innerhalb einer Kugelfläche

gültig, deren Radius kleiner als 1 ist und die folgenden

Betrachtungen setzen diesen Fall voraus. Es gilt nun,
die constanten Elemente so zu bestimmen, daß die Funk-
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tion V (r, g, <p) für Punkte der begrenzenden Kugelfläche
in eine dort willkürlich gegebene Funktion f (r,, 8t, ç?,)

übergeht.

§ 4. Eine anziehende Masse werde nach innen durch
eine Kugelfläche begrenzt, deren Radius i\ kleiner als 1

ist. Man verlangt das Potential des Massensystems für
einen Punkt des Hohlraumes, wenn es in jedem Punkte
der begrenzenden Fläche gegeben ist. Nach dem Dirichlet'-
schen Prinzipe gibt es nur eine Funktion, die mit ihren
Abgeleiteten in einem vollständig begrenzten Räume überall
endlich und stetig bleibt, der Gleichung fjY 0 genügt
und in jedem Punkte der begrenzenden Fläche in eine dort
gegebene Funktion übergeht. Können wir daher in
Gleichung 5 die constanten Elemente so bestimmen, daß die

Funktion V (r, 8, f) für Punkte der Kugelfläche in das

dort gegebene Potential übergeht, so stellt der Ausdruck 5
das Potential der Masse für einen Punkt des Hohlraumes
dar. Ich erlaube mir hier eine Bemerkung über Heine's

Stellung zu dem Dirichlet'schen Prinzipe, wie sie sich in
seinem Handbuche offenbart, zu machen. Es ist zu
bedauern, daß Heine seine Lehre vom Potential nicht be-*

gründet hat. Ueberall handelt er so, als ob er das Dirich-
et'sche Princip für wahr halte, d. i. den Satz, daß unter

allen Funktionen V, welche den Grenzbedingungen genügen,
es eine gebe und zwar nur eine, welche das bis an die
Grenzfläche ausgedehnte Integral

JÏÏ -d\<V ,dVV rdV(£>+(£)+o>«**.
zu einem Minimum mache. Und doch sagt er auf Seite 66
seines Handbuches über Kugellünktionen, die Existenz eines
solchen Minimums sei nicht bewiesen. Da andern Sterb-
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liehen diese Existenz unmittelbar klar zu sein scheint,

warum setzt er denn seine Zweifel nicht auseinander?

Konnte er denn nicht offen sagen, er habe zwar diese und

diese Zweifel an der allgemeinen Gültigkeit des Dirichlet'-
schen Prinzipes, aber seine ganze Lehre vom Potential sei

auf dasselbe gebaut.

Wenn wir nun die Coordinaten für Punkte der Kugelfläche

mit Accenten bezeichnen, so hat man

5) f (r„ Ö„ ^) A0 +

jT r» \kn0 P0n (#,)+* 2°P;n (8t) (A); cos^, + B; Bin^,)1

Rs sei a sin 6>, d 6>, d <pt das Oberflächenelement der

Einheitskugelfläche,

C\ (8, cp) P>n (8) cos À <p, S » (8, <p) T>\ (8) sin ;. v,

dann finden bekanntlich die Gleichungen statt, wo sich die

Integration über die ganze Einheitskugelfläche erstreckt,

V $ Cnx(®:<P)- C^(8,9)a 0,

E=j*S^(ö,^). S;(fl,p)» 0,

von denen die zwei ersten nur so lange gültig sind, als

die ganzen Zahlen X, p und m, n von einander verschieden

sind, während die dritte immer Statt hat. Setzt man aber

/ p, so reduzhen sich D und E auf

D E ;r f P" (8). P"> (8) sin 8 d 8„ und für X 0
J o 1

ist



2 _,.. ^ n 2r n n
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D 2tt f'p;j(<9)P™(0) sinodo, E 0.

Ferner ist für n m

D_ e _ r j- (p; (9))* 3in 9 d e _ (2n+i) (n+fl ] (n_;).
und X 0

D *Jo>S(0))2smodo 2^, E 0.

Mit Hilfe dieser Fonneln lassen sich nun die
Coefficienten in der Gleichung 5, bestimmen. Man findet:

Rn (2n+l)(n+/)!(n—.*)! I /•, „n,fl,BI= 2*. n! n! "^J^"*''^ PX tt)sm^.*

A» (-^tl)-^j"f(r1,0lfl), P» («,)».

Werden nun diese Werthe für die constanten Elemente in

Gleichung 5 eingesetzt, so erhält man für das Potential
eines Punktes im Hohlräume den Ausdruck

n=co2n4-l rn t*
6) V (r, 8, <p) 2 —£-- ¦ -s £nf (rlf 0„ ^) a,

n 0 xj •/

wo

n! n! L ^W ^)-2 cos ^-V)
ßn Pn(Ö)Pn(01)4-

(n + fllQi-fll >-=*

A l
ist. Die nächste Aufgabe wird nun die sein, diese beiden

Summen, durch die das Potential V (r, 8, <p) ausgedrückt

wird, auszuweichen. Zunächst beschäftigen wir uns mit

ßn und suchen diese Summe für die Addition passend

einzurichten. Es ist
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pn(ö)pn(öi)==__ V, 2 ; UlA 2 /.

P.n (0) P" (0) sinx 0 ~ • sin*0 -7
*il (n -f- x) (n -j- X)

weil nun aber

,,/x'- l\n /Xa —1>
Dn+A(

sinAö rr-jn- (— 1X sin_Xö - '
(n + X) (n — X)

so ist auch

P°(ö).P;"(öO

0 sin 0, elfft
Setzt man noch p i—. so ist

sin(9elc'

o v /sinf? V /sin« W2cos;.(^-^) ^J P* + (^j p-i,
und man erhält für .0° den Ausdruck

^^iTnT^^r-^C*)"
+ "r(-i)i^D«-^)n .D;+ip!^)n

+ p-ADn+A £*-lJi Dn-A^V^lJ^J

Der zweite Term des in der runden Klammer
eingeschlossenen Ausdruckes unterscheidet sich von dem ersten



16

nur dadurch, daß X durch — X ersetzt ist ; man kann daher

beide Summen in eine vereinigen und hat

Es leuchtet nun von selbst ein, daß man hier die
Summe nach beiden Seiten beliebig erweitern kann, da

die Funktion (x3 — l)n nur auf den zweiten Grad steigt
und eine höhere als die 2 nte Ableitung die Terme von
selbst zum Verschwinden bringt. Nun soll aber diese

Summe ausgerechnet werden. Wenn nun für einen Augenblick

in dem Ausdrucke für ßn die drei Größen p, xi, x
als unabhängige Variable angesehen werden, so ist

1 A -f- oc/ i.«

d£n
__

und daher die Gleichung

di?" di?"
dx, dx

Wir wollen nun dieser partiellen Differentialgleichung eine

Bedeutung abzugewinnen suchen. Es sei nun if~ *= F (p, x,

x,) ; läßt man hier x und x, resp. in x -f- h, xt -)- ph über

gehen, wo h sehr klein gedacht wird, und entwickelt nach

dem Taylor'sehen Satze, so ist
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/dF d FN
F(p,x4-h,xl4-ph)=F(p,x,x,)4-^ + P^Jh+ -..;

d F d F
da aber -= \- p -r- 0, so ist auch F (p, x + h, x,+ph)

(I X QX|

— F(p,x, x,) 0,

also dJ2n 0, und somit ßn — Const-

Nun ist aber h dx, ph=dx,, also pdx — dxi=G
oder px—Xi Const.

Denkt man sich demnach in der Funktion Q* die Größe

p constant und läßt x und x, sich so ändern, daß px—Xi
auch constant bleibt, so behält auch die Funktion
denselben constanten Werth; es ist somit

£" F(p,(px — x))
Wir wollen nuu den Werth von ßn für Xi 1

berechnen. In diesem Falle ist also J2n F (p, px — 1) und

um den aligera. Ausdruck zu erhalten, hat man nur px—1
durch px — x, zu ersetzen. Es ist

/(x,+h)2-lV_l=V° /x,2-l V h*
a) \Z* J~i=oV 2 Jlï^

b) C^^7^"a4;-1r©a)1
(xt=l) 1 °

und aus der Vergleichung von a) und b) folgt, daß

D^+x /V-iv» _ (n-hQ! n! rj^-J.
Xl=l [ 2j~ (n—X) X \2) -

Wird nun dieser Werth in den Ausdruck für äa eingesetzt,

so folgt
/x2—l\n

gn -LXT fr+^)! p^ f u D"~^ 2 :¦x.,=l n!x=f_n X\2X -K (n-x)!
2
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oder nach Benutzung der Relation 4

Sin A n (|(l-x2))X n+x/x2_lY
^=1)~x=-n- Tl

'
n! V 2 J

Weil nun aber

1 TiPfx2— l\n n l n+A/V—IV 1 1

nTD (V) =P «.«.ist^D + (V) -D P (x),

und da eine negative Fakultät im Nenner den betreffenden

Term zerstört, so hat man schließlich

,On x= oo A n /p /1 jAA
fx=D= 2 d p (x). (1 a-*');

1=° IÏ
Diese Summe ist aber nichts anderes als die Taylor'-

sehe Reihe mit dem Incremente -g- (1—xJ) und es ist

somit

o» p ^ n /p2 + l-(px-l)2\(5=) P» (x+ | d-2)) P (S 27-^>
Ersetzt man hier nun p x — 1 durch p x — x1, so hat man

allgemein den Werth von ßn; also

£n pn (P2+1-(PX-X1)'A

Man setze

n _ P2+i-(px-Xl)2 1/ n x2p

+ XXl -f, =|(s4nAei^)+sm0e-i(^)2p 2 Nsinö ' sin0, y
sin0, i(*i—çp) „:—5- e cos^ö-f-cosöcosö.sin w

sin 0 cos2 0, —ife1—vi
2 sin 0,

e
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Demnach

U « sin 8 sin 8t cos (cp1 — <p) -j- cos 0 cos 0,

Wird nun der Winkel, den die beiden vom Ursprünge
aus nach den Punkten (r, 0, <p.) und (rt, 0,, ç?,) gehenden

Strahlen mit einander einschließen, mit ß bezeichnet,
so ist

cos ß cos 0 cos 0j -j- sin 0 sin 0, cos (<pt — <p),

also U cos ß und demnach ist &* Pn (cos /3).

Wir haben nun für Pn (cos ß) die bekannte Entwicklung

7) Pn(cosi?)= Pn(0)Pn(01)+2X2n (n+;0'(n-ßl x1

x=l n! n!

Px(0)P^ (0,)cosJ(c>,-0
gefunden. Wird nun in V (r, 0, <p) für Än der hier erhaltene

Werth eingesetzt, so erhält man

n co2n4-l rnf*8)V(r,0,0= 2 _H31_.l- f(ri>0lft)P»(cos0ff
n o * " *i v

als Ausdruck des Potentials für einen Punkt des

Hohlraumes. Nun ist noch die Summe

n oo rn

n o

auszuwerthen.

Weil aber

2 (2n + l)^Pn(cos/5)

n » rn2 (2n4-l)7^Pn(cos/3)

(2rs- + l)- 21 r^-Pn(cos/9),
ul n o x»

so reduzirt sich diese Aufgabe auf die Berechnung der
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Summe 2 — Pn (cos ß). Es sei nun x cos ß ; dann ist
n= o r'

/(x+h)2-l)V * n^ ^'-l^h*(-2—¦)" XZ* irr-) ri und nach

dem Satze von Cauchy ist demnach

"(x4-h)a — l\n dht.w-gçgjT-^j-(fe±y=i; hn+l

(Weg ein kleiner, rechtläufiger Kreis um Null).

Setzt man hier x -\- h t, also h t — x, so macht
die neue Variable einen Kreis um x, während h um o

herumläuft. Es ist also auch

schlossene, rechtläufige Curve um x).

Es steht nun frei, als Integrationsweg denjenigen Kreis

um x zu wählen, dessen Radius sin ß ist. In diesem

Falle kann man t x 4" sm ß eUp setzen, wo <p von o

bis 2 n läuft; dann ist

—»— sin ß elcfi (cos ß 4- i sin ß sin <p),t — x sin ß elcp,

dlog (t — x) —- id?,

aIso(2(t—x)y ^ri==i(cos'9+isill^sin^nd^
und somit ist auch

1
**

10) Pn (cos ß) -g— (cos ß 4- i sin ß sin ç>)n d tp

o

Wenn ferner s cos ß + i sin ß sin ç>, w sin ß cos ç>,
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_• 1 e~~ìtp
dann ist t s + w, t — x sin ß e 1(p, ——^->t — x sin ß

sin2 ß n — i<» t—x sin2/?
T=^- sin^e \smßcos<p==-T~+§^y

^ x sin2 3
i sin ß sin <p —« 9ft_ ¦>

und man erhält für s

den Ausdruck

_ t —x sin2 ß _ t2 —1
s —X"T 2 2(t—x) —2(t —x) -

Auch ist

w_Eni./V<PJ-e-if^ t —x sin2/? _t2—2tx4-lw— 2 ^e +e j_-^_-r-2(t_x)_ 2(t_x)
oder durch s ausgedrückt
w2 sin2 ß (1 — sin2 y) sin2 ß — sin2 ß sin2 <p sin2/3

4-(s —x)2 sa—2sx4-l (s —e^)(s —e-^).
Da ferner dt i sin ß elcp dy, ds i sin ß cos <p d <p, also

e^ds e^sin/îds JA e^sin/îds
dt== — y— > dt= —cos <p sm ß cos <p w

ds dt ds
(t—x)—> so ist ==—' und

w t—x w
demnach

\n dt n ds

2(t — x) y t—x w

Ich beabsichtige nun, die Integralformel für Pu (x) von
dem t-felde auf das S-feld überzutragen und muß nun den

neuen Integrationsweg zu ermitteln suchen. Dazu dient
die Beziehung

t2— 1

2(t —x)
Weil zu jedem Werthe von s im Allgemeinen 2

verschiedene Werthe von t gehören, so kann man sich das

s-feld zweiblätterig denken und die Verzweigungspunkte
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T J dS • i. HT C A i dS t2 2tX+lliegen da, wo jr o ist. Man findet -r- 0 -V-
dt clt ^ (t — x)

also muß t2 — 2tx 4" 1 o sein, was für t, el^>

tlt e—1/S stattfindet. Diese Werthe von t, in den

Ausdruck für s eingesetzt, liefern nun s, =e'ß, sM=e—lß,
als Verzweigungspunkte des zweiblätterigen s-feldes. Als

Uebergangslinie werde die gerade Verbindungslinie dieser
beiden Punkte gewählt. Isotimen nenne ich diejenigen
Curven auf dem t-felde, längs deren die Funktion s

denselben absoluten Werth behält und ich will nun als

Grenzscheide die Isotime aufsuchen, die zum absoluten Werthe
1 gehört. Bezeichnen t und tt conjugirte Werthe, so hat
man für dieselbe die Gleichung

t2—1 t2t — 1

2(t — x)
*

2(t,—x) — '

oder auch

((ttt)3 — 2tt, 4-1) - (t,2 4- t2 + 2tt,) 4- 4x (t + t1)

_4x2 0, (tt,— l)2 — (t-j-t,— 2x)2 0
also schließlich

(ttj — (t 4- t,)4-2x - 1) (tt, + (t 4-t,) — 2 x — 1) 0.

Der erste Faktor gleich null gesetzt gibt

(t — 1) (f — 1) 2 (1 — cos ß) 4 sin2 4'
und der zweite liefert die Gleichung

(t 4-1) (t, + 1) 4 cos2

l'Uni diese Gleichungen in rechtwinklichen Coordinaten zu
erhalten, setze man t=x4-iy, also t'=x—iy und findet

(x-l)s4-y==4sin'f, (x4-l)«4-y*=4cos2|-•

Die Isotime, die dem absoluten Werthe 1 entspricht, besteht
somit aus zwei Kreisen, von denen der eine mit dem Radius
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2 sin -g-um 1, der andere mit dem Radius 2 cos -g- um — 1

beschrieben ist. Schon aus der conformen Abbildung ist klar,
daß sich diese beiden Kreise in den Punkten e1^ und e—lß

rechtwinklich durchschneiden. Es leuchtet aber auch

geometrisch sofort ein; denn es ist in Fig. 1 CA CP CA1,

also 2 a 4- /? 2 R, oder a 4- -|- R. Die Linie Ansteht

also senkrecht auf ÄP und somit ist AT eine Tangente

an dem Kreise um 1 und ebenso ist AP eine Tangente

an dem Kreise um — 1. Ferner ist BP AT sin y und

da auch BP sin ß ist, so hat man AT —
8m

„sini-
2

2 cos -y und ebenso kann gezeigt werden, daß AP

2 sin Tj- ist. Für die Uebergangslinie kann man s cos ß

4- i sin ß sin <p setzen und wenn hier <p alle Werthe von

0 bis 2 ^ durchläuft, so läuft s von e1"3 nache-li<3 und

von hier zum Ausgangspunkte e1'5 zurück. Wir suchen das

Bild der Uebergangslinie auf dem t-felde. Man findet

(t — s)2 — sin2 ß cos2 <p 0,

also t — s sin ß cos <p, t — s 4~ sin ß cos <p 0,

oder t cos ß -\- sin ß e1^, t cos ß — sin ß e—1{p.

Die Variable t beschreibt demnach um den Punkt cos ß
mit dem Radius sin ß einen Kreis, der die Isotimen in
den Pnnkten e1-3 und e—1@ schneidet

Ist t reell und positiv sehr groß, se ist auch s reell
und positiv sehr groß und dieser Werth von t entspreche
dem Ostpunkte des ersten Blattes. Der Horizont des

t-feldes bildet sich dann wieder in den Horizont des ersten
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s-blattes ab. Rückt nun t auf der Realitätslinie von 4" °°

nach 0 vor, so bewegt sich auch s auf der Realitätslinie
des ersten Blattes von 4- °° gegen 0 hin, nud ist t im
Punkte B angelangt, so ist s 1 geworden und befindet

sich im Punkte a Fig. 2. In B ist t 1 4" 2 sin^-, also

(14-2sinJ-)2-l 4 sin | (1 +sin |)
2(1 4-2sin-f- — cos/?) 4sin § (1 + sinf)

1.

Nun beschreibe t einen positiven Viertelskreis um B
und gelange so in die Peripherie der Isotime um 1 ; dann

beschreibt auch s einen kleinen positiven Viertelskreis

um a und gelangt in die Peripherie des Einheitskreises
und der Bogen ap (Fig. 2) ist Bild des Kreisbogens BP (Fig. 1).
Wenn ferner t mittelst eines kleinen, positiven Viertelskreises

um P von der Peripherie des Kreises um 1 auf
die Peripherie des Kreises um — 1 gelangt, so macht s

von seinem alten Stande südlich von p aus einen kleinen,

positiven Halbkreis um p, setzt also seinen Weg auf dem

Einheitskreise fort, während t den Bogen PB'P' durchläuft

und ist in p1 angelangt, wenn t nach P1 kommt.

Führt man weiter t mittelst eines kleinen, positiven
Viertelskreises um P1 von der Peripherie des Kreises

um —1 auf die Peripherie des Kreises um 1, so macht

s von seinem alten Stande aus einen positiven Halbkreis
um p1, und der Bogen p'a ist somit das Bild des Bogens
P'B. Man erkennt so, daß sich derjenige Theil des t-feldes,
der von den beiden Isotimen nach innen begrenzt wird,
auf dem zweiblätterigen s-felde außerhalb des Einheitskreises

im ersten Blatte abbildet. Ebenso kann man

zeigen, daß der Einheitskreis im 2. Blatte des s-feldes
das Bild der beiden Kreisbogen PD1?1 und PDP1 ist und
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daß sich das von diesen zwei Kreisbogen eingeschlossene
Stück des t-feldes im zweiten Blatte des s-feldes außerhalb

des Einheitskreises abbildet. Der Punkt B entspricht
dem Horizonte des zweiten Blattes. Ferner ist das Innere
des Einheitskreises des ersten Blattes das Bild des von
den beiden Kreisbogen PB1?1 und PD'P1 eingeschlossenen

Flächenstückes, während sich schließlich das von den Bogen
PBP1 und PDP1 nach außen begrenzte Flächenstück des

t-feldes in's Innere des Einheitskreises des zweiten s-blattes
abbildet. Nach diesen Betrachtungen können wir nun den

neuen Integrationsweg auf dem s-felde angeben. In
Gleichung 9 beschreibt die Variable t auf ihrem Felde
eine den Punkt B umgebende, geschlossene Curve. Dehnt

man nun diese Curve so weit aus, daß alle ihre Theile
außerhalb der beiden Isotimen liegen, so entspricht ihr
auf dem zweiblätterigen s-felde eine geschlossene Curve,
die im ersten Blatte den Einheitskreis umgibt, also die

Uebergangslinie rechtläufig einschließt. Man hat also

ii\ r>n / a\ r n ds (Weg eine rechtläufig
11) P (COS ß) jrr- Is Zi n2i7Tj w geschlossene Curve um
die Uebergangslinie im erste Blatte, Fig. 2), und aus dieser

Formel folgt, daß

wie in Fig. 2); damit nun aber die Summe unter dem

Integrationszeichen convergiere, müssen wir bei 11, den

rs
Weg so legen, daß längs desselben mod, — < 1 d. h.

ri

mod. s < -r
Nun ist nach Annahme r > r, ; also liegt der Punkt
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— außerhalb des Einheitskreises und wir können als
r
Integrationsweg z. B. einen Kreis wählen, dessen Radius

größer als 1, aber kleiner als — ist, wie es in Fig. 2

angedeutet ist. In diesem Falle ist nun aber

n 0° 'rs Y A •

rs
v__1

— r.—rs

und somit nach Gleichung 11,

n
2°° f-Ypn (cos ß) ^r- f - —--— (Weg der

n 0\rJ ^ 2i7zJ w r, — rs

oben bezeichnete Kreis in Fig. 2.)

Von den drei Polen (e1^, e—"^, — dieses Integrals

werden die zwei ersten eingeschlossen, der dritte allein

liegt außerhalb des Weges. Wir beabsichtigen nun, den

Weg so umzugestalten, daß der Pol — allein eingeschlossen

wird, die beiden übrigen aber ausgeschlossen werden. Zu
diesem Zwecke müssen wir den Werth des Integrals im
Horizonte untersuchen. Ist s sehr groß, so kann w durch

s und r, —rs durch 4" rs ersetzt werden und das Integral

verschwindet somit wie Coeff. X —. Der Horizont ist so-
s

mit zugänglich und man kann nun dem Wege die in Fig. 2

gezeichnete Gestalt geben. Weil nun aber das auf den

Horizont fallende Stück des Weges wegfallt und der
Integrand nach durchlaufenem Horizonte auf seinen alten
Werth zurückkehrt, so verwandelt sich die Curve in einen

geschlossenen Weg, der, wieder ganz in's endliche Gebiet
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gebracht, allein den Pol — rückläufig umgibt. Es ist also

n 2°° f-Ypn (cos /?) -£~ f —(We
n o \rj ' 2iw J rw „_AV

r

rechtläufig geschlossene Curve um —

und nach Canchy erhält man sofort

n oo /„ \n°° / r \ r2 (- pn (C0S/?) ^-• -^= 2x^+1r '

|/r2—2rr, cos^4"ri2
wo cos ß cos 0 cos 0, 4- sin 0 sin 0, cos (f, — <p) ist. Wird
nun die Entfernung der beiden Punkte P und P1 mit p
bezeichnet, wo also

p |/r2 — 2 rr, cos/?4"ri2>
so ist

1 n oo rn
12) -= 2 —^P-Ccobäi" n o r, '

und wir haben die bekannte Entwicklung der umgekehrten
Distanz zweier Punkte nach Kugelfunktionen erhalten.

Es war

"I" (2n + l)^Pn(cos/?)
n o m

r a 11 co rn

(2r-£-4-l). 2 7TnPn(cos/?),
UI n o

also ist auch

n2C°(2n4-l)^Pn(cos/?) (2r(d-4-l)-^L
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und weil

a
q 1 dp^ r, cos ß — r ;

dr pl dr p%

so ist

"r (2n4-l)^Pn(cos/?)=2rri^T^-r)
n=o r' P

_)_^= r,(r,2—r2)
' P ¦ P*

und wir erhalten schließlich für das Potential eines Punktes
des Hohlraumes den Ausdruck

2.T.-T

i«n v (r a „\— r' (r<2—f2) ÇÇ f(r1,01,yi)sin0,d0,dy,
13) Ve(r,0,?)- 4ff JJ (r2_2rricos/?4-r.2)V

O 0

§ 5. Potential einer anziehenden Masse, die nach außen

durch eine Kugelfläche vom Radius ri begrenzt wird, für
einen Punkt des äußern Raumes, wenn dasselbe auf der

begrenzenden Fläche gegeben ist.

Wenn die rechtwinklichen Coordinaten x, y, z durch

Kugelcoordinaten ersetzt werden, so nimmt bekanntlich
der Differentialparameter zweiter Ordnung folgende
Gestalt an:

i -(-"S i *¦(*•£)nv=jLL_J r2 dr ' r2sin0 d0
1 d2V

~*~ r2sin20 d^2

Wenn nun V F (r, 8, <p) eine Potentialfunktion ist, so

ist klar, daß die Funktion U F -—, 8 tp
1 der andern



29_

Gleichung

4d2U r3 a\}moIä) r2 d2U_
dr* "T-fflntf d0 ~rsin20dc'2

genügt, die für U rW(r,0,ç>) in

i dCr if; i dlsin0tó-), i d2w
r2 dr ' r*sm0 d0 ' r2sina0 d^2 °'
also in den Differentialparameter übergeht. Ist daher
F (r, 0, <p) eine Potentialfunktion, so ist es auch

— F — ' 0, <p J und wir erhalten demnach für eine Potentialfunktion

außerhalb der Einheitskugelfläche die folgende

Entwicklung nach Kugelfunktionen

V(r,0)0 n2OO-^rrfA:Poa(0)
n o r r L

4- 2npn (0) (A£cosX<p + B£sinXcpU•
A l J

Werden auch hier mittelst der Grenzbedingungen die
konstanten Elemente bestimmt und die beiden Summationen

vollzogen, so erhält man für das Potential V, eines Punktes
des äußern leeren Raumes den Ausdruck

2.-T .TT

rt(r2—r,2) f f f(r,,0t,y1)sin0id0tdy1
cos/?4V)3'»

*14) Y^t,9,9)^ Ä- JJ ^=2^
o o

§ 6. Nach dem Vorgange von Schwarz ist es nicht
schwer zu beweisen, daß diese beiden Potentiale V0 und Vi
für Punkte der Oberfläche in f(ri,0,,c>,) übergehen. Ich
übergehe diesen G egenstand und behandle noch die Fälle,

wo erstens f(ri,0,,(p,) =— > d. h. gleich der reciproken
Po
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Entfernung einesPunktes der begrenzenden Flächevonirgend

einem Punkte, den ich Pol nennen und mit P0 (ro, 0O, %)
bezeichnen will, ist und zweitens, wo f(r(, 8,,<p,) Const,

über die ganze Oberfläche der begrenzenden Kugel. Ich
halte mich zuerst an V0 und nehme an, die anziehende

Masse sei 1 und in einem einzigen Punkte, also im Pole,
der in diesem Falle außerhalb der Fläche liegt, vereinigt.
Nach Dirichlet ist klar, daß das Potential für einen Punkt

des Hohlraumes -~ ist, wenn R die Entfernung des

Bezugspunktes vom Pole bezeichnet. Es ist nun zu zeigen,

daß sich auch der Ausdruck für V0 (Gl. 13) in ^ verwan¬
zt

delt und wir führen hier den Nachweis mit Hilfe der

Kugelfunktionen. Der Strahl r bilde mit den Strahlen r0

und ri resp. die Winkel a und /3, und ebenso sollen die

Strahlen r0 und r, den Winkel y einschließen. Ist nun

R j/r2 — 2rr0 cos a-)-r02 p -/r2 — 2rr, cos/?4-i"i2>

pB i/r02—2r„r, cos y-\- r,2, so folgt aus Gl. 13

Y0(r,8,<p)= -LHf£ J -pTp-f wo J ein Oberflächen-

ri r,

integral bezeichnet, das sich über die Kugelfläche vom
Radius ri erstreckt und a das Element der Einheitskugelfläche,

also gleich sin 0, d0, d^,, ist. Weil

— 2' * p»(Cos,-);P,B(co8r)
Po m o r0 ~

2 ^ra(rn^)Km-^ ö0 öo) ^ —
X— 0 ml m • *¦ *•

(für X 0 die Hälfte),
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1 m co r
— 2 -li
Po m o Lr„ra

a) so ist — 2 I-4^X

;£:2(^^)!(mm"^^(^rWcos;.(yi-,0))].

Ferner ist nach früherem

n oo

2 (2 n 4-1) -VP" (cos ß) und da auch
n. o r'n

Mr,2 — r2) n °°
._ r1

o"

P°(cos/?)=2^n(n+?!(n-^!X
ft o n • n

Pn (0) Pu (0.) cos/%, — <p), (für /* 0 die Hälfte),

also ist auch

r ft. 2 r2\ Il 00 T yJX

b) £l^t—= 2 2 (2n4-l)fnX
P n o L ll

{2?n+n?!(nn^")!p;^p;^co^^-^)]-
Werden nun die Werthe unter a) und b) in den

Integralausdruck für V„ (r, 0, <p) eingesetzt, so bleiben in dem
Produkte der beiden Doppelsummen nur diejenigen Terme

stehen, in denen m n und p X ist und weil

T/t.» ,ns ,o 2^-n!n!.1^(0.) cos W*=(2 n+J0IOl_^'

so ist
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P" (0) P° (€f)cosX(<p—<po) \, (für X 0 die Hälfte)..o)]

Aus der Gleichung

Pn(coS«)=2XJno(n + j)i(n~^)-!-P;(0)P;(0,)coS^(y-^o),

(die Hälfte für X 0)

folgt weiter, daß

n oo rn i
V0 (r, 0, cp) 2 —^rj- P° (cos a) -=r- • Das Integral

n=o r„

der Gleichung 13 stellt also in diesem Falle wkklich die

reciproke Entfernung des Bezugspunktes P vom Pole dar.

Es sei ferner f (r,, 0,, <p,) —, wo aber der Pol innerhalb
Po

der begrenzenden Kugelfläche liegen soll. In diesem Falle
stellt das Integral unter 13 die Greensche Funktion für
das Innere der Kugelfläche r, dar; die üblige Gestalt
derselben soll hergestellt werden. Weil hier r«<r,, so ist

j_ n °° r„
Po

A nf

a.) — 2 4»-Pn(cosr)=
n o r,"+1

und aus den Werthen von a,) und b) folgt aus den oben

angegebenen Gründen, daß

•P^(ö)P°(0„)cos^^-^)J,
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oder auch

n CO / sn

Vo(r,0,0=r,- 2 W Pn(cos«).
n o (r,2)"+1

Wenn nun x auch einen Leitstrahl bezeichnet, dessen

Länge durch die Gleichung r,2 r0.x bestimmt wird, so

hat man

r, n =,œ r»
Vo(r,0,^) -f 2 __p»(cosa)

lo ti — n Ä ^

oder

!o n o

1

ro y r2 — 2rxcosa4-x2

\„(r,6,<p) -
r„

|/r2-2r|-cos«4-(rÖ2
also die Greensche Funktion in der gewöhnlichen Gestalt.

Es bleibt uns jetzt noch übrig, den Integralausdruck
für V, (r,8,<p) unter denselben Voraussetzungen wie bei V0

zu verwandeln. Statt diese Aufgabe mit Hilfe der Kugel-
funktionen zu lösen, will ich hier einen etwas andern Weg
einschlagen. Der Pol P0 liege zuerst innerhalb der Kugelfläche.

Wenn U und V zwei Funktionen bezeichnen, die

mit ihren ersten Abgeleiteten im Innern eines vollständig
begrenzten Raumes überall endlich und stetig bleiben, so

gilt nach Green die Gleichung

(UQV — VQUjdx dydz (UDV—VDU>,
d2 d2 d2

wo rj -r^ 4" J~â ~T~ Im ß eme Ableitung in der positiven

Richtung der Normalen, die ich mir in den ausgeschlossenen

Raum gerichtet denke und w das Obernachenelement
bezeichnen. Für U und V wähle ich nun die Funktionen

Mittheilungen V. 3
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— und —. Die zweite Funktion hat innerhalb der Kugel-
P Po

fläche den Pol als Unstetigkeitspunkt. Man umgebe daher

denselben mit einer kleinen Kugel vom Radius e; im Räume,

der von diesen beiden Kugelflächen begrenzt wird, sind

nun die beiden Funktionen — und — überall endlich und
P po

stetig und genügen der Gleichung QV=0. Man hat
daher die Gleichung

(YID l-lpl)»- IYÌbÌ-IdIWJ \P Po Po PJ J \P Po P PJ
ri s

die man auch in der Form schreiben kann

flDl.0>-fi5DÌ..= flDl.0>-flDÌ-0,
J Po P '' P P J P Po J P Po
r, e Ti, e

Diese Integrale sollen nun ausgewertet werden und

wir fangen mit dem ersten auf der linken Seite an. Hier

ist io2 (x —x,)24-(y—y,)24-(z —z,)2, und daD yisd-
UXj

-\-ß-i hv t-> w0 x,p,v die Richtungscosinuse der Nor-

,1 ,1 ,lj d— d— d—
malen sind, so hat man D—= X-^--\-u-T^--\-\ —j-£—

p dx, dy, ' dz,

Nunist !i=^>^L^=^^=^dx, p* dy, /r dz, p

und ebenso X —> u —, v — >

n r, r,,
Daher

D J__J_. j._(x—x,)x,_ 1 ^xx, + yy,+ZZ,—r,2^
,o r, p° r, V />

1 ^xx, + yy, +zz,—r,2\
r, A P> r
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Weil nun aber

i02=r,24-r2—2rr,cos/9=r124-r2—22xx„
so ist auch

rl^JL / r.'4-r»—/>2—2r,2\=r2—r,2 1_

P 2r,V ps 2r,p* 2r,/
und da hier

so ist
w —r,*<x, wo <T sin0d0dç?,

'r^o /> 2 ^/»Vo 2^ pp0

Beim Integral

f 1 _ 1 4_ 1 1 (recos/?—e2) (rcos/?—s)
1 —D w istD—=— ~ -=- £s—-,J p„ p P e Rs Rs ',b

1 _. 1 e(rcos/?—e)a
— 1) u/ ^s—Po P ß

also — D u/ — ^rä—— und da s sehr klein ist,

t P Po

f 1 1
so fällt dieses Integral weg. Es soll fernerJ — D — •

berechnet werden. Weil hier
i r 2 r 2 1

T) —- —
/>0 2r,/>03 2rf/o0

so ist

fi d i. ._5fies2/.t,_ -S/f-î- ¦i P Pi 2 ^ i« /)03 2 ^ m
Im letzten Integral

1 —D co ist D—= k- > •—= ^r>

also

j° ft. j00
e2 p B.

j D
/° -°"
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Man erhält daher aus der Greenschen Formel die Gleichung

lü r.Cr'-r,») f <r r,(r,2-r02) f g
R 2 «J^Vo^ 2 J/.A«'

Wenn wir nun beweisen können, daß die beiden Integrale

(r.-r,,f^-md(r,-,.X^r.i„,„dergleich
% P3P i PPo3

sind, so habçn wir unsern Zweck erreicht. Zu diesem

Zwecke setze ich

D=r,(r2-r,2)r o r,(r,2-r„2) f a
4ff J p*Po 4a: •' pp*

Weil/)2==r24-r,2 —2rr,cos/?;/>02 r,14-r02 —2rir0cosr,
so ist

A l
0 a7 2r, dp 2r,rcos/? — 2r,2
* r« -5— — -7— 5

dr, p dr /r
_ r24-r,2—pi—2r,8 _ r2—r,2 1

/>3 p3 p 1

ebenso findet man
1

d^r r2 r2 ^2r,_g°-= r° r' idr, ^08 />„'
folghch ist

/>3 A dr, ' J p P<?

«(ap.JL+1).!.v dr, A/)0
Setzt man nun diese Werthe in die Integrale unter D ein,

so folgt

B-è/fc(»»£+07+?<<+')5)]-
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und da

1 dl1 9 1 d-
|

l Po dlPPo

Po dr, p dr, dr,
so hat man auch

D==^ rr,i-+0 ¦/-=#-•t'-T1^-2tt\ dr, / % ppü 2n dr, «' pp0

Wenn man nun beweisen kann, daß das Integral I ——-

von r, unabhängig ist, so ist dann auch bewiesen, daß

D 0, daß somit die oben bezeichneten beiden Integrale
gleich sind. Mittelst der Kugelfunktionen ist der Beweis

leicht zu führen. Es ist
1 oovn 1 m=oo_m

n£or4;-iP"(cosÄ,- ofo3_P"(c.sr).
p

also auch

1 J"^ r,° /^n2(n+/)!n->i)!
P n 0 r»+1Vx o n! nl

P^(0)Pnx(0,) cos,((?.-?)}

2' -Q / ^Ja2(m4-/i)!(m-^)!x
Po m or,m+1 V/* o m! m!

Pm(0o)Pm(0.) cosX{<p,—%)),
,« f/ d

somit

r d T11 ~ °° r n
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J fVl(8t)J ¦ COSX(<p — cPt)- cosX(<p0 — <p,) <r\,

ri
a fn=» i r n

dr. L n o2n+1 rn + 1

F2(ay)!"ar"!p:»»r;'8'-'^-4i=n

also auch

D 2r,fdr

/11 CO 1 n \
,Vn o2n+l r"+i V

Nun ist aber der in der Klammer stehende Ausdruck von

r, unabhängig, somit ist D=0, folglich

(r2-r,2)- f ^-=(ri2-r02) f---
8

•

JXi P Po l.PPo
Wir führen den Beweis dieser letzten Gleichung noch

auf eine andere Art. Man denke sich außerhalb der

Kugelfläche von Radius r, einen Punkt P2, dessen

Entfernung von einem beweglichen Punkte mit p, bezeichnet

werden soll. Ferner sei r2 die Entfernung dieses Punktes

vom Ursprünge. Die beiden Funktionen — und — sind nun

innerhalb der Kugelfläche überall endlich, stetig und

genügen der Gleichung QjV 0; aus dem Satze von Green

folgt daher die Gleichung

I —D— ¦co=\ ^D —
•J Pi P X P Pi

aus welcher sofort die andere

(r2-r,2) r-4- (r22-r,') f---,i P Pi % PPi
folgt.
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Auf dem Strahle r2 wähle man nun einen zweiten Punkt
Po, dessen Lage durch die Gleichung rur2=r,2 bestimmt
werden soll. Es ist klar, daß der Punkt P0 innerhalb der
Kugelfläche liegt, wenn P2 sich außerhalb derselben

befindet. Mittelst dieser Substitution geht nun p, in —p0ro
über und man erhält nun

(r2-r,2)jV==(r,2-r02) f—3-
%P% %PPoB
ri r,

Es ist demnach

1 .__r,(r2— r,2) S-.
R 4?r * p-Pä

Ti

was wir zu zeigen beabsichtigten. Die Betrachtung des

Falles, wo der Pol P0 außerhalb der Kugelfläche hegt,
bietet nichts neues dar. Auch hier sei P2 ein Punkt, der
im Innern der Kugelfläche auf dem Strahle r0 so liegt,
daß die Gleichuug r„r2=r,2 Statt hat. Aus früheren

Betrachtungen folgen nun die Gleichungen:

ÌE _ r-(r2-r.2) f a r,(r,2-r22) C a
R, 2 J p*Pl "T" 2 J PPl3

'

P Pori

(roS-r«2)fe-
,PPo

Entfernt man nun in der ersten Gleichung r2 mittelst der

Relation r0r2 =r,2, und berücksichtigt die zweite Gleichung,

so hat man

r, (r2-
TT J p'ftt/r.-'V^+Q-1)- 4* i
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stellt der Integralausdruck unter Gleichung 14 in diesem

Falle wirklich die Greensche Funktion für den Raum außerhalb

der Kugelfläche dar.

Wir wollen schließlich noch den Fall behandeln, wo
i(r,,8,,<p,) in jedem Punkte der Oberfläche gleich einer
Constanten ist die mit C bezeichnet werden soll. Diese

Aufgabe reduzirt sich auf die Betrachtung des Integrals

J — in den beiden Fällen, wo der Bezugspunkt außerhalb
r,

('

oder innerhalb der Kugelfläche liegt. Man nehme den

nach dem Bezugspunkt gehenden Strahl r als Axe an und
bezeichne den Cosinus des Winkels 0,den der nach dem Ober-

flächenelemente er, der begrenzenden Kugelfläche gehende

Strahl mit der Axe bildet, mit x. Dann wird r,2d- tf»

2^r,2dx eine schmale Zone,

io2=r24-r,2 — 2r,rx,
und

ri Li

+1
dx

c ^"fd.l:2r J p

also

V0=C-(r,!9 r?Y— i-) Const;2r Vr, — r r,4r/
ferner

V, (r, 0,cp) C • £
-0

—}- (- - ^—) Const. lì-r' 2r V1"—r, r4-ri/ r
Ist daher die anziehende Masse außerhalb der Kugelfläche

so vertheilt, daß das Potential derselben in Punkten
der begrenzenden Fläche konstant ist, so ist dasselbe auch

im eingeschlossenen Räume konstant. Dieser Satz gilt
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nicht nur für eine Kugelfläche, für die die Richtigkeit
oben bewiesen wurde, sondern er gilt auch für jede
beliebig geschlossene Fläche. Ist hingegen die anziehende

Masse innerhalb einer Kugeltiäche so vertheilt, daß das

Potential auf der Begrenzung überall konstant ist, so bleibt
dasselbe im äußern Räume nicht mehr konstant, ist aber
eine Funktion von r allein und nimmt ab, je mehr man
sich von der Fläche entfernt Man kann sich die Masse

auch in einem einzigen Punkte, nämlich im Mittelpunkte,
vereinigt denken und ihre Größe wird durch Const r,
angegeben.
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