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Biologische Massenerscheinungen in mathe¬
matischer Beleuchtung*)

Von Ewald Bodewig

Äls im Jahre 1713 aus dem Nachlass von Jakob Ber-
nouilli ein Buch, benannt „Ars coniectandi oder die

Wahrscheinlichkeitsrechnung", herausgegeben wurde,
da ahnte wohl niemand, dass hier der Ansatz zu einer
Wissenschaft vorlag, die einige Jahrhunderte später, oft
allerdings zu Unrecht, unser ganzes modernes Leben beherrschen
sollte: die mathematische Statistik.

Allerdings hatten Bernouilli selbst und seine ihm
gleichwertigen Nachfolger: Daniel Bernouilli, und vor allem
Laplace und Poisson ihre Ansprüche noch höher geschraubt.
Und in der Tat waren um die Wende des Jahres 1800
die Wissenschaftler in ihrem Rationalismus davon überzeugt,
dass die Anwendung der Wahrscheinlichkeitsrechnung im täglichen

Leben eine Höherentwicklung der Menschheit in jeder
Beziehung zur Folge haben müsse.

Jakob Bernouilli's mathematische Leistung lag in dem

nach ihm benannten neuen Oesetz, dem ersten asymptotischen
Gesetz der Wahrscheinlichkeitsrechnung. Sein Inhalt lässt sich
in folgender Weise etwa plausibel machen: Nicht wahr, wenn es

regnet, so werden auf dem Marktplatz die Steine nass. Aber
sie werden nicht alle gleichmässig nass, besonders wenn der
Regen nur kurz ist. Je länger er aber dauert, umso kleiner werden

die Unterschiede. Und wenn es zwei Tage lang ununterbrochen

geregnet hat, dann sind alle Steine praktisch gleich
nass. Genauer ausgedrückt: Wenn der Marktplatz 10 000
Pflastersteine hat und es regnet 10 000 Tropfen, so fällt durchaus

nicht auf jeden Stein genau ein Tropfen. Aber wenn es
10 000 Millionen Tropfen regnet: dann bekommt jeder Stein
eine Million Tropfen ab oder nur ganz wenig davon verschieden.
Noch anders gesagt: Wenn zwei Spieler Kopf und Wappen werfen

und sie spielen bis zum finanziellen Ruin eines der beiden,
so gewinnt fast immer der Reichere. Dass der Aermere siegt,

*) Habilitationsrede, gehalten am 20. Februar 1936 in der Aula des

Museums für Völkerkunde in Basel.
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ist nur Zufall. Deshalb gewinnt in Monte Carlo letzten Endes
immer die Bank. Zwar rückt für jeden Spieler das Verhältnis
zwischen Gewinn und Verlust der 1 unbegrenzt näher, und zwar
umso näher, je länger die beiden spielen. Aber die Differenz
zwischen Gewinn und Verlust wächst über alle Grenzen.

Genau dies ist der Inhalt des Bernouillischen Gesetzes. Es

bedeutete einen entscheidenden Fortschritt gegenüber der
Wahrscheinlichkeitstheorie wie sie von Pascak und Fermât sowie den

Engländern betrieben worden war. Erst die asymptotischen
Gesetze begründen eine wirkliche Wahrscheinlichkeitsrechnung, die
auf die Vorgänge des täglichen Lebens anwendbar ist.

Denn die Wahrscheinlichkeitsrechnung sucht aus gewissen
Gesetzmässigkeiten eines empirischen Wiederholungsvorganges,
kurz einer Massenerscheinung, andere Gesetzmässigkeiten
herzuleiten.

Es gibt eben Naturvorgänge, die man in ihren einzelnen
Elementen nicht festhalten kann, sondern die erst als Massenerscheinung

der Beobachtung zugänglich sind. Und die Mathematik
hat dabei die Aufgabe, bei diesen Massenerscheinungen das

Gesetzmässige zu entdecken und von Nebensächlichem zu trennen.

Sie betrachtet dabei nicht die Individualität der Ereignisse,
sondern ihre Summe. Die Naturwissenschaft hat die Verhältnisse
im Kleinen zu untersuchen. Sie hat die Gesetze aufzustellen,
nach denen sich feder einzelne Vorgang abwickelt. Oft kann
aber die Naturwissenschaft — sei es beim derzeitigen Stand
der Wissenschaft, sei es aus Gründen, die in der Sache selbst
liegen, weil etwa die Ursachen der Erscheinung zu zahlreich
sind (man denke an alle Grössenbeziehungen eines Organismus)
— gar nicht die einzelnen Gesetze aufstellen, und es muss dann
bei einer Analyse im Grossen überhaupt bleiben. Z. B. kann
man unmöglich untersuchen, weshalb ein bestimmter Mensch
gerade 1,73 m gross geworden ist. Man muss vielmehr eine

lange Reihe von Menschen vornehmen und ihre Körperlängen
feststellen, dann wird man schon eher etwas sagen können.

Oft hat man auch gar kein Interesse an dem Einzelschicksal,
selbst wenn man es analysieren könnte, sondern interessiert sich

von vorne herein nur für das Verhalten im Grossen. Z. B. in der
Bevölkerungslehre.
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Oft aber ist, auch für eine Massenerscheinung, das
Einzelschicksal wichtiger als der Verlauf im Grossen. Denn der letztere

sagt ja nur etwas darüber aus, was in einer sehr grossen
Zahl von Fällen und durchschnittlich stattfindet. Das Naturgesetz

hingegen soll sich in allen Fällen bewahrheiten. Dann
aber kann man oft, wenn alle Mittel versagen, gerade mit den

Methoden der Mathematik etwas über die Einzelursache
aussagen oder wenigstens vermuten oder bestätigen.

So kann man zwischen verschiedenen Erscheinungen einen
mehr oder weniger festen Zusammenhang, eine Korrelation, oft
nachweisen oder, besser gesagt, bestätigen. Denn bevor man
etwas beweisen will, muss man wissen oder wenigstens
einleuchtende Gründe dafür haben, dass das, wovon man spricht,
auch wirklich existiert. Sonst kann man unter Umständen zu

viel beweisen, und man bringt eine Theorie über die
Eigenschaften von angeblichen Hexen heraus.

So hat es Autoren gegeben, die einen Zusammenhang zwischen
der Höhe der Wohnzimmer und der Grösse der Bewohner des
betreffenden Landes nachweisen wollten. Dadurch muss natürlich

die Mathematik in Misskredit kommen.
In der menschlichen Vererbungslehre sind ähnliche Schlüsse

leider ziemlich häufig. Aus einer beschreibenden Statistik wird
gefolgert, dass diese oder jene Erscheinung erblich bedingt sei,
und zwar ohne dass man die Erblichkeit überhaupt einmal exakt
nachgewiesen hätte, was beim Menschen nämlich beinahe
unmöglich ist. Ja, manche, wie Rüdin-München, behaupten
sogar, diese Untersuchung müsse später geschehen. Nun kann man
natürlich aus einer unbewiesenen Hypothese mathematische
Schlüsse ziehen. Aber man muss sich über die Bedingtheit dieser

Schlüsse im Klaren sein, und einmal muss man doch an die
Prüfung dieser Voraussetzungen schreiten, sei es auch erst
anhand der Schlussfolgerungen, die man vielleicht leichter
verifizieren kann als die Voraussetzungen selbst. Aber aus der
Statistik allein heraus den erblichen Charakter beweisen zu wollen,
ist sehr bedenklich, besonders da gerade auf diesem Gebiet die
elementarsten Voraussetzungen für eine Statistik, vor allem
eine sehr grosse Zahl von Fällen, fast nie erfüllt sind. Mit
derselben Methode könnte man etwa auch beweisen, dass Unglücksfälle

erblich sind.
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Aus dem gleichen Grunde waren auch alle mathematischen

Theorien, die aus dem Geschlechtsverhältnis im allgemeinen
das Geschlechtsverhältnis bei Zwillingen berechnen wollten,
ziemlich wertlos, solange man gar nicht wusste, dass die Zwillinge

in ein- und zweieiige zerfallen. —
Ferner müssen die Massenerscheinungen eine gewisse

Konstanz aufweisen, sonst kann man die Methode der
Wahrscheinlichkeitsrechnung und ähnliche nicht anwenden.

Bemerkt man andererseits, dass eine konstante Massenerscheinung

einen andern Verlauf als bisher nimmt, so wird man daraus

schliessen, dass von den vielen, vielleicht unbekannten
Ursachen, einige jetzt einen verstärkten Einfluss bekommen
haben. Und man wird vielleicht vermuten können, welches diese
Ursachen sind und hat damit Anregungen für neue, rein
naturwissenschaftliche Untersuchungen.

So ist also die mathematische Analyse von Massenerscheinungen

sehr wertvoll, wenn man nur die Voraussetzungen für ihre
Anwendung beachtet.

Daher hat auch auf diesem Gebiet die mathematische Behandlung

sich längst Eingang verschafft, wenn sie auch noch nicht
derart beherrschend geworden ist wie in der Physik. Besonders

die Variationsstatistik ist ein wichtiges Anwendungsgebiet.
Hier sollen uns aber die biologischen Massenerscheinungen

interessieren, und wir wollen vier Beispiele von ihnen betrachten:

Die Sterblichkeitstafeln, das Geschlechtsverhältnis
der Neugeborenen, einiges aus dem Problemkreis des

Kampfes ums Dasein und etwas aus der Vererbungslehre.

I.

Hat man eine Gruppe von, sagen wir 1000 neugeborenen
Kindern, willkürlich herausgegriffen; stellt man dann jedes Jahr
fest, wieviele von diesen ursprünglich Tausend gestorben sind,
und trägt diese Resultate in bekannter Weise graphisch ein, so

erhält man eine sogen. „Sterblichkeitskurve". Dabei hat

man keinen Unterschied zwischen den verschiedenen
Todesursachen gemacht. Vielmehr haben alle Einflüsse, die das
Leben beendigen, ihren Niederschlag gefunden. Für eine
Versicherungsgesellschaft, die sich ja meistens nur für den Eintritt des
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Todes, nicht für dessen Ursache interessiert, sicherlich das

einzig Richtige. Aber der Biologe interessiert sich umgekehrt
gerade für gewisse Todesursachen, insbesondere für den Tod
infolge Organabnützung: den biologischen Tod.

Ueber diese tiefer liegenden Verhältnisse in der Absterbeordnung

können aber die rohen Sterbetafeln und Kurven nichts

aussagen. Aus ihnen etwa ein „mittleres Lebensalter" berechnen

zu wollen, ist nur eine formale Spielerei, hat aber keine
biologische Bedeutung. Für die Berechnung des biologischen
mittleren Lebensalters hat man vielmehr alle Fälle auszuscheiden,
bei denen das Leben aus nichtbiologischen Gründen plötzlich
beendet wird.

Genau so wie man nun zur Feststellung der mittleren Körper-
grösse nur die völlig Ausgewachsenen berücksichtigt, so hat
man bei uns nur die biologisch reifen Individuen zu
untersuchen. Alle Todesfälle in der Kindheit scheiden daher sofort
aus. Sie sind nicht biologisch typisch in unserem Sinne. Das
geht schon daraus hervor, dass die Sterbehäufigkeit ein

deutliches Minimum im Alter von 11 Jahren zeigt. Aber auch die
Todesfälle bis weiterhin zum 40. Jahre etwa sind meist nicht
durch Abnützung der Organe, sondern von aussen her bedingt.
Erst der jetzt übrig bleibende Teil der Kurve kann
wahrscheinlichkeitstheoretisch untersucht werden. Alles andere ist blosse
mathematische Spielerei, mit der man wohl einige Grössen formal

definieren kann, in der einen biologisch aufklärenden Kern
zu sehen jedoch verfehlt wäre.

Meist stammen solche Spielereien übrigens nicht von
Mathematikern, sondern etwa von Volkswirtschaftlern. Wie z. B. die
mit grosser Geschäftigkeit verbreiteten Angaben Burgdorferi,

der die Vergreisung und den späteren Untergang des
deutschen Volkes prophezeit, wenn nicht irgendwie Einhalt
geboten werde. In Wirklichkeit liegt diese angebliche Vergreisung
zum grossen Teil daran, dass es der ärztlichen Wissenschaft
gelungen ist, eine früher gar nicht für möglich gehaltene Anzahl
von Menschen vor dem nicht biologischen Tode zu bewahren.
Ein Erfolg, für den man nur dankbar sein kann. Ist doch z. B.
die Sterblichkeit der Säuglinge unter einem Jahr in den letzten
50 Jahren auf den dritten Teil gesunken. Wollte man die angeb-
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liehe Vergreisung des Volkes verhindern, so müsste man vor
allem die ärztlichen Fortschritte der letzten Jahrzehnte künstlich
wieder rückgängig machen.

Sterblichkeitscnrve.
Die Zahlen links geben
an wie viele von den

ursprünglich 1000 Menschen
im laufenden Jahre
gestorben sind.

Das mittlere biologische Lebensalter liegt vielmehr bei etwa
70 Jahren. Und das Ziel der Wissenschaft sollte umgekehrt

gerade darin bestehen, dieses Alter auch praktisch bei

jedem Einzelmenschen zu erreichen.

Ganz ähnlicher Art wie diese rohen Sterbetafeln sind übrigens

die Tafeln der „empirischen Erbprognose" von Prof.
Rüdin-München. Auch in ihnen steckt nach Rüdin's eigenem

Ausspruch „alles drin". D. h. alle Ursachen für das
Zustandekommen einer bestimmten körperlichen Erscheinung. Sie
sind daher in ihrer Rohgestalt für biologische Zwecke ziemlich
wertlos und müssten erst bearbeitet werden. Umso bedenklicher
ist es, wenn dieses Rohmaterial dazu benutzt wird, um
Eingriffen in die persönliche Freiheit eine angeblich wissenschaftliche

Grundlage zu geben.

II.

Wir kommen zum zweiten Beispiel und bleiben dazu bei
unseren Neugeborenen. Unter ihnen befinden sich mehr Knaben
als Mädchen, und zwar etwa im Verhältnis 106:100. Man sagt:
Die Knabenziffer ist 106. Gewiss schwankt diese Zahl,
u. a. weil die Statistik über Totgeburten oder Fehlgeburten in
den verschiedenen Ländern verschieden gehandhabt wird.
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Aber trotz dieser Fehlerquellen bleibt die Knabenziffer in den

einzelnen Staaten innerhalb ganz enger Schranken. Man sagt:
Die Dispersion ist normal. Das bedeutet: Die Aussichten
für eine Knaben- oder Mädchengeburt sind dieselben wie die
bei einem reellen Glücksspiel mit 106 Treffern und 100 Nieten.
Jeder Einzelfall hat die gleiche Chance. Jeder Fall ist
unabhängig vom andern.

Freilich hat es genau wie beim Roulettespiel seit jeher Leute

gegeben, deren Bestreben es war, aus dem Glücksspiel ein

Geschicklichkeitsspiel zu machen. Auf die verschiedenen Theorien

der Geschlechtsbestimmung einzugehen, ist hier nicht der
Ort.

Trotz dieser Theorien ist es jedenfalls so, dass bisher die
Knabenziffer der Lebendgeborenen bewusst nicht beeinflusst
werden kann, sondern innerhalb jeder Nation eine
massenphysiologische Konstanz ist.

Nun waren aber schon die Statistiker des 19. Jahrhunderts
darüber beunruhigt, dass die Knabenziffer in den meisten
Ländern sank. Es setzte eine Flut von Erklärungsversuchen ein. Im
Jahre 1841 wies Christof Bernouilli, der grösste Nationalökonom

der Schweiz, darauf hin, dass viel mehr männliche
Embryos sterben als weibliche, dass also die Empfängnisziffer
weit höher als 106 sein muss.

Seltsamerweise ist dieser grundlegende Gedanke damals nicht
durchgedrungen, ja nicht einmal bekannt geworden. Erst heute
ist auf Grund eines überwältigenden Beweismaterials die Ber-
nouillische Theorie allgemein angenommen : dass nämlich die
Knabenziffer wesentlich beeinflusst wird von der vorgeburtlichen

Sterblichkeit. Und da die Vitalität des weiblichen
Geschlechtes grösser ist als die des Mannes — eine Erscheinung,
die sich z. B. auch darin äussert, dass es viel mehr alte Frauen
als Männer gibt und dass das biologische mittlere Alter der
Frau um etwa 2 Jahre grösser ist als das des Mannes — so
beträgt die Knabenziffer der Fehlgeburten 130—400 (je nach
dem Monat), die der Totgeburten 120—150.

Man kann nun mathematisch aus der statistisch gefundenen
Knabenziffer der Lebendgeborenen, der Knabenziffer der
Fehlgeburten, der Fehlgeburtenquote: die Empfängnisziffer berechnen.

Man erhält dann etwa 120—150.
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Geht man umgekehrt von letzterer Ziffer aus, so kann man
alle Schwankungen der Knabenziffer durch die Aenderung der
Fehlgeburtenquote erklären. So z. B. dass bei unehelichen
Geburten die Knabenziffer etwas geringer ist, nämlich 105,3, was
schon Chr. Bernouilli erklärt hat. Bei den Erstgeburten
hingegen 116. Bei Mehrgeburten umso kleiner, je grösser die

bisherige Kinderzahl ist. Oder auf eine ganze Population
angewandt: Dass in Ländern mit hoher Geburtenquote (besonders
also im 19. Jahrhundert, vgl. oben!) die Knabenziffer niedrig
ist, und umgekehrt.

Andererseits ist in neuerer Zeit die Knabenziffer infolge der
vielen Abtreibungen gesunken, so dass sich heute zwei Ursachen

(niedrige Geburtenquote und Abtreibungen) mit entgegengesetzten

Wirkungen überlagern und wir so niedrige Geburtenzahl
und zugleich niedrige Knabenziffern haben.

Schliesslich ergab sich, wie ich 1921 anhand der Geburtenstatistik

des Weltkrieges zeigte, eine Bestätigung der schon

Knabenziffer in
Kriegszeiten.

al~\ Maximum 1919

mit 108,5.

öfter ausgesprochenen Ansicht, dass nach Kriegen die Knabenziffer

wirklich erhöht ist und dies nicht auf zufälligen Schwankungen

beruht, sondern dass hier eine der Ursachen der Ge-
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schlechtsbestimmung sich geändert hat. Und zwar war diese

Aenderung umso stärker, je mehr das Land unter dem Kriege
zu leiden hatte, d. h. — um auf unser obiges Kennzeichen
zurückzukommen — je stärker der Rückgang der Geburtenquote
war. Und zwar lag in fast allen Ländern der Höhepunkt der
Ziffer im Jahre 1919, also als die Geburten wieder zu steigen
begannen. In Deutschland, besonders in Preussen und

Bayern, fiel der Höhepunkt genau auf das Vierteljahr, ja
sogar auf den Monat mit dem Wiederanstieg der Geburten
zusammen.

Wohl gemerkt: Die Dispersion des Geschlechtsverhältnisses
ist auch in Zeiten einer hohen Knabenziffer annähernd normal.
Es handelt sich also wieder um ein Glücksspiel, aber die
Bedingungen des Spieles sind eben andere geworden.

Hingegen besteht keine Korrelation zwischen der Knabenziffer

und dem Alter der Eltern oder der Rassenzugehörigkeit.

III.
Einem ganz anderen Problemkreis und zugleich andern

Methoden hat sich der italienische Mathematiker Volterra
zugewandt.

Ein biologischer Kollege hatte nämlich gefunden, dass besonders

gefrässige Fische des Adriatischen Meeres sich im Kriege
stark vermehrt hatten, was offenbar mit dem vernachlässigten
Fischfang zusammenhing. Er fragte daher Volterra, ob man
ein solches Ergebnis auch mathematisch hätte voraussagen können.

Er hatte sich dabei gerade an den Richtigen gewandt;
denn dieses Problem und die sich anschliessenden führten z. T.
zu Integro-Differentialgleichungen, einem Gebiet, auf dem
Volterra unbestrittener Meister war.

Angenommen also, in einem abgeschlossenen Milieu leben
verschiedene Arten von Lebewesen, etwa von Tieren, zusammen.
Wobei das Zusammenleben vor allem darin besteht, dass die
verschiedenen Arten einander auffressen oder zum mindesten ein-
ander die Nahrung wegnehmen. Dann handelt es sich darum:
unter gewissen Voraussetzungen die Aenderung der
Bevölkerungszahlen der verschiedenen Arten zu studieren.

Seine umfangreichen Untersuchungen fasste Volterra
zusammen unter dem Titel: „Mathematische Theorie des
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Kampfes ums Dasein". Einige dieser Ergebnisse sollen
kurz angegeben werden.

Es handelt sich zunächst um solche Arten, die sich gegenseitig

die Nahrung streitig machen. Infolge der natürlichen
Vermehrung wird nun der Nahrungsraum kleiner. Das beeinflusst
natürlich die Fortpflanzungsfreudigkeit. Und damit sieht man
schon einige bedrohliche Komplikationen am Horizont auftauchen.

In der Tat kann man zeigen, dass nach einiger Zeit alle
Rassen verhungert sind bis auf eine einzige, und das ist die-

j enige, die sich am stärksten vermehrt und zugleich am
bescheidensten lebt. Kurz: diejenige, von der kleinsten relativen
Gefrässigkeit. Ein Ergebnis, zu dem man als Humanist und

gleichzeitiger Europäer keine rechte Stellung zu nehmen weiss.

Wir gehen daher gleich zum zweiten Falle über, in welchem
einige Tierarten die anderen Tierarten auffressen. Wir
beschränken uns auf zwei Arten, von denen die erste von der
zweiten gefressen wird. Der Zustand wird dann abgesehen von
den relativen Gefrässigkeiten davon abhängen, wie häufig sich
die beiden Rassen begegnen. Denn jede Begegnung vermehrt die

Bevölkerungszahl der zweiten Rasse, während sie sich auf die
Zahl der ersten Rasse, die also von der zweiten gefressen wird
— sagen wir — in negativem Sinne äussert.

Bezeichnet man die Bevölkerungen der beiden Rassen mit
Ai bzw. N2 und den prozentualen Bevölkerungszuwachs mit
N\ bzw. N'z, so kann man die sich jetzt ergebende Verschiebung
mathematisch durch die Differentialgleichungen darstellen :

AV -+- Ex - Ti Na N2' - E2 + T2 N,

Das E ist bei jeder Rasse die Bevölkerungszunahme, die
vorhanden wäre, wenn die andere Rasse nicht existierte. Und das

Y bezieht sich bei jeder Rasse auf die Wirkung der Karambolagen.

Die verschiedenen Rollen, die das Schicksal den beiden
Rassen zugedacht hat, hat übrigens in den + Zeichen seinen
nüchternen mathematischen Ausdruck gefunden.

Verfolgt man die obigen Gleichungen weiter, so ergibt sich

folgendes Ergebnis: Angenommen, im Anfang nähme die
gefressene Rasse zu und ebenso die Raubtierrasse. Dann wird
letztere so viel fressen, dass die Bevölkerung der ersten Rasse
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allmählich abnimmt. Dadurch aber wird der Nahrungsspielraum
für die zweite Rasse kleiner, und die Fortpflanzungsfreudigkeit

sinkt. Dadurch wird die erste Rasse mehr geschont und
kann sich wieder vermehren. Infolgedessen kommt die zweite
Rasse wieder hoch. Ihre Oesamtgefrässigkeit nimmt also wieder

zu. Dadurch wird die erste Rasse zu stark dezimiert usw.

Verteilungscurven für die
Bevölkerungszahlen.
Q stabiler Zustand.

Ein Ergebnis, das man mehr oder weniger ahnen konnte.
Was man aber nicht vorausfühlen konnte, ist, dass es sich um
einen genauen Kreislauf handelt. D. h. es gibt bei jeder Rasse
eine minimale und eine maximale Bevölkerungszahl, die für alle
Zeiten fest bleiben. Und jede Rasse pendelt bis in alle Ewigkeit

zwischen diesen beiden Extremen periodisch hin und her.
Die Dauer der Periode ist dabei für ein und dieselben Anfangszahlen

für alle Zeiten unveränderlich (Natürlich, wenn es sich
stets um dieselben beiden Rassen handelt). Die Figur gibt
an, wie die Anzahlen Ni AL sich im Laufe der Zeit ändern.

Man ist versucht, solche Verhältnisse bei der Entstehung von
Seuchen vorauszusetzen. Denn bekanntlich glaubt man bei manchen

Seuchen ein periodisches Ab- und Anschwellen feststellen
Zu können. So bei der Diphtherie eine Periode von etwa 30
Jahren. Es wäre denkbar, dass es sich hier um einen rein
infernen Kampf zweier Mikroorganismen handelt. (Natürlich sind
auch andere Erklärungen möglich).

Es ist also bei diesen Verhältnissen ein ähnliches Spiel, wie
wenn zwei teilweise gefüllte Krüge zusammen eine Wasser-
uienge enthalten, die grösser ist als jeder Krug allein fassen
kann, und wie wenn man jetzt das Wasser aus dem einen Krug
ln den andern schüttet, bis dieser voll ist, und dann aus dem
vollen Krug wieder in den ersten schüttet, bis jener voll ist,

693



und dieses Spiel immer wiederholt. Und zwar ohne einen
einzigen Tropfen Wasser zu verschütten.

Die Lebewesen werden also gewissermassen bloss ineinander
umgeschüttet, was einen besonders tiefen Einblick in das Walten

der gütigen Mutter Natur gestattet. —
Interessant ist auch, dass es bei jedem Paar von feindlichen

Rassen, wenn der Koeffizient der Qefrässigkeit, der Koeffizient

der Fortpflanzungsfreudigkeit und die Zahl der
Zusammenkünfte der beiden Rassen festliegen, es genau einen einzigen
Zustand gibt, der sich überhaupt nicht ändert. Die Anzahlen der
beiden Rassen sind dann gerade so gross, dass die eine genau
so viel frisst, wie die andere produziert. Eine Art paradiesischer
Zustand.

Und um diesen ganz genau bestimmten stabilen Zustand
kreisen im allgemeinen Falle unsere Verteilungen herum. Alle
Verteilungskurven haben diesen Punkt in ihrem Innern. Und
je mehr der Anfangszustand sich von dem stabilen Zustand
unterscheidet, d. h. je grösser die Entfernung des Ausgangspunktes
N von Q ist, umso grösser ist die zugehörige Bevölkerungskurve.

Und es leuchtet ein, wenn ich als Resultat angebe : dass

auch die Periode, also die Zeit für die Rundfahrt, in diesem
Falle grösser ist.

Ferner wird es einleuchten, dass im allgemeinen Falle die
durchschnittliche Bevölkerung bei jeder der beiden Rassen stets

dieselbe ist bei jeder Verteilungskurve, und zwar gerade gleich
den beiden Zahlen im stabilen Zustand. D. h. die durchschnittliche

Bevölkerung der ersten Rasse ist gleich der Abszisse OA

von Q, die der zweiten Rasse gleich der Ordinate OB von Q-

Das Bisherige galt für den Fall, dass die beiden Rassen unter

sich gelassen werden. Dezimiert man aber jede der beiden
Rassen dauernd und zwar jede für sich dauernd gleich stark,
jedoch die eine Rasse anders als die andere, so ändern sich die
durchschnittlichen Bevölkerungszahlen der beiden und bleiben
also nicht konstant wie bisher. Aber die Aenderung äussert
sich bei beiden verschieden: Die gefressene Rasse nimmt zu,

die Raubtierrasse aber ab!
Damit war die Frage des biologischen Kollegen Volterras

betr. der adriatischen Fische beantwortet, und die Antwort
stimmte mit der Wirklichkeit überein.
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Vernichtet man übrigens nur eine der beiden Rassen, so wird
bloss die durchschnittliche Bevölkerung der anderen Rasse
verändert!

Man wird dies, ebenso wie das vorherige Resultat anzuwenden

haben auf gewisse Probleme der Hygiene, etwa der
Desinfektion: Vernichtet man zwei Bakterienarten, von denen die
erste von der zweiten lebt, und führt man diese Vernichtung
dauernd durch — so erlangt die gefressene Rasse relativ das

Uebergewicht. Was oft sehr bedenklich ist. Denn sie ist oft die

gefährlichere Art, während die andere jedenfalls für den
Menschen weniger schädlich ist, da sie ja von den anderen Bakter
rien lebt, ja sich vielleicht für den Menschen überhaupt nicht
interessiert.

Auch andere Probleme fallen vielleicht unter diesen Gesichtspunkt.

Z. B. hat man in Amerika eine Raubvogelart stark dezP

miert, weil sie schädlich war. Mit dem Erfolg, dass hinterher
Heuschreckenschwärme ganze Länder kahl frassen. Auch hier
scheint ein Beispiel dafür vorzuliegen, dass die gefressene Rasse
sich vermehrt, auch wenn sie selbst ebenfalls geschädigt wird.

So ergibt sich aus einem einzigen Beispiel der mathematischen
Analyse eine Fülle von Anregungen und neuen Gesichtspunkten

für den Biologen.
Daneben hat Volterra noch viele andere biologische

Möglichkeiten untersucht. Wie das Zusammenleben von beliebig
vielen Tierarten, den Einfluss äusserer Störungen, den Parasitismus

und vieles andere.

Von einem Bekanntwerden dieser Untersuchungen in biologischen

Kreisen kann man sich nur das Beste für beide Teile
versprechen.

IV.

Unser letztes Beispiel sei der Vererbungslehre entnommen:
Bekanntlich hat Mendel entdeckt, dass in einem

Lebewesen, also einer Pflanze, einem Menschen oder einem Tier,
sich gewisse äussere Eigenschaften erst zeigen, wenn ihnen eine

Erbanlage, ein Gen, zugrunde liegt, welche in dem betreffenden

Wesen doppelt vorhanden ist, während die einzelne Erbanlage

nach aussen hin wirkungslos ist. Man spricht von einem
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rezessiven Gen. — Hingegen gibt es andere Gene, die schon
dann eine bestimmte äussere Erscheinung bedingen, wenn sie

nur einzeln vorkommen : „Dominante Gene".

Nun findet sich aber nie ein Gen allein, sondern ist immer
mit einem von zwei bestimmten anderen Genen gekoppelt. Man
nennt solche, stets zusammen auftretenden Gene „allelomorphe
Gene". Das zu einem Gen allelomorphe kann nun von
derselben Art wie das erstere sein oder von entgegengesetzter Art.
Bezeichnet man also ein bestimmtes rezessives Gen mit r, das

zugehörige dominante Gen mit d, so hat das betreffende Wesen

eine der drei Genstrukturen: rr, rd, dd.

Hingegen gibt es infolge der Eigenschaften der Dominanz
und Rezessivität nur zwei Erscheinungsformen: rr (oder r) und

rd-\-dd (oder d).
• Für die Kreuzung zweier Genotypen hat Mendel nun das

Gesetz angegeben, das seit dieser Zeit seinen Namen trägt.
Was Mendel als Biologe nicht durchführte, war die

Untersuchung, wie sich die Verteilung der drei Genstrukturen innerhalb

einer ganzen Population im Laufe der Generationen
ändert. Es handelt sich dabei um eine rein mathematische
Fragestellung: Gegeben ist eine Population, in der die Typen rr, rd,
dd mit den relativen Häufigkeiten a, b, c, wo a b c=100%,
vorkommen. Wie gross sind diese relativen Häufigkeiten in der
nächsten Generation? (Wenn man annimmt, dass „gleichmässige
Panmixie" stattfindet, d. h. die einzelnen Typen bei der
Befruchtung keine bestimmten Partner bevorzugen, vielmehr die

Befruchtung regellos vor sich geht).
Um das Resultat möglichst anschaulich darzustellen, wollen

wir so vorgehen: Für jeden Verteilungszustand der a, b, c ist
ja die Summe konstant gleich 100% oder etwa gleich 1. Nun
hat ein gleichseitiges Dreieck die Eigenschaft, dass für jeden
Innenpunkt die Summe der Abstände von den drei Seiten
konstant, und natürlich gleich der Höhe des Dreieckes ist. Nimmt
man also ein gleichseitiges Dreieck mit der Höhe 1, so
entspricht jedem Punkt im Innern ein mögliches Tripel (a ,b, c).
Die möglichen Verteilungszustände werden also abgebildet auf
die Innenpunkte dieses Dreiecks. Die Seiten des Dreiecks
entsprechen den Zuständen a—O bzw. b=G bzw. c=0.
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Jeder Punkt im Dreiecks-
innern entspricht einer
möglichen Verteilung der
drei Erscheinungstypen.

Es gibt nun gewisse ausgezeichnete Zustände (in welcher
Weise sie ausgezeichnet sind, werden wir nachher sehen). Sie

Hegen auf einer Parabel, welche die Seiten a und c in ihren
Schnittpunkten mit b berührt und durch den Mittelpunkt der zu
b gehörigen Höhe läuft. Ihre Axe ist letztere Höhe.

Herrscht nun in der Population der Zustand a, b, c, so erhält
man den Zustand in der nächsten Generation, indem man den

entsprechenden Punkt parallel zur Parabelaxe verschiebt, bis
er auf die Parabel fällt. Von da an bleibt er jetzt unverändert
Hegen, denn die Parabelpunkte selbst können sich ja nicht mehr
verschieben. Ihnen entsprechen also Zustände, die sich
überhaupt nicht ändern. Man nennt sie „Stabile" oder „Natürliche
Zustände".

In der nächsten Generation
ist jede Verteilung auf die
Parabel gerückt und
dadurch stabil geworden.

a«o

Damit wäre der Einfluss der Panmixie auf den Verteilungszustand

geklärt.
Ein anderes Problem betrifft die Ausschaltung einer bestimmten

Erscheinungsform, also r oder d, und ihren Einfluss auf
Hie Verteilung.

Werden die d ausgeschaltet, so ist alles klar: Die Population
hat von jetzt an den reinrassigen Genotypus rr.

Anders ist es bei Ausschaltung der r. Etwa wenn bei einer
Hflanzenpopulation, die aus weissen und roten Exemplaren be-
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steht, wobei rot dominant gegen weiss sein soll, die weissen
Pflanzen beständig vernichtet werden. Dann werden sie trotzdem

in jeder Generation noch zum Vorschein kommen, weil sie

sich ja aus der Kreuzung der rd untereinander ergeben. Und
die Frage ist, wie man ihre Häufigkeit bestimmt.

Wir gehen von einem natürlichen Zustand 0 aus. Werden
jetzt die rr oder a eliminiert, so bleiben die b und c in ihrem
Verhältnis ungeändert. Alle solchen Verteilungen mit konstan-
bem b/c liegen aber auf der Ecklinie durch den Ausgangspunkt
0. So kommt in der Figur die Verteilung in den Punkt 0' zu
liegen. In der nächsten Generation wird durch Panmixie die

Verteilung 1 entstehen. Durch darauf folgende Vernichtung

der rr die Verteilung 1', und durch Panmixie daraus die
Verteilung 2. Usw. So nehmen natürlich die rr an Häufigkeit
stets ab; aber offenbar ist, wie man schon anschaulich sieht,
nur bei grossen a diese Abnahme stark. Bei kleinen a, d. h.
solchen, die fast in der Dreiecksecke ab liegen, ist die Abnahme
weder absolut noch relativ irgendwie von Belang. Und zwar
ist dies schon für a=1/40/0 der Fall. (Erst für den Punkt 19

in der Figur wäre a=i/4<y0).
Dass diese Verhältnisse betr. der Abnahme der rr tatsächlich

vorliegen, wird nicht nur durch Experimente an Pflanzen und
Tieren bewiesen, sondern auch beim Menschen, und zwar durch
die tödlichen, sogen, „lethalen", Erbanlagen, die also den Tod
der Kindes vor der Geburt, während der Geburt oder einige
Tage danach zur Folge haben. Hier nimmt ja die Natur schon
die Ausschaltung der rr oder a vor. Nun treten solche Krankheiten

aber sehr selten auf. Die Ausschaltung der Merkmals-

Wirkung der Auslese auf
die Verteilungszahlen.
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träger hat also praktisch gar keinen Erfolg, sie vermindert ihre
Häufigkeit praktisch gar nicht. Und dieses Ergebnis unserer
Betrachtungen wird durch die Erfahrung durchaus bestätigt.
Denn im Gegenfalle müssten ja umgekehrt die Merkmalsträger
in früheren Generationen viel zahlreicher gewesen sein als heute,
wofür sich aber keinerlei Anhaltspunkte ergeben.

Auch auf andere vererbungswissenschaftliche Fragen lässt
sich die mathematische Analyse anwenden. So z. B. wurden von
Felix Bernstein die sechs Konstitutionen der vier
menschlichen Blutgruppen, nach denen die Biologen
schon lange vergeblich gesucht hatten, auf rein mathematischem
Wege gefunden. Ebenso konnten von mir selbst die sogen,
geschlechtsgebundenen Erbanlagen, ihre Verteilung
und die Wirkung der Sterilisation auf sie untersucht werden und
dabei z. B. eine schon mehrmals in der medizinischeil Literatur
aufgestellte Behauptung, die Bluterkrankheit beruhe nicht nur
auf einem geschlechtsgebundenen rezessiven Gen, sondern sei
noch zu anderen (vielleicht sogar nichterblichen) Faktoren
abhängig, fast zur Gewissheit erhärtet werden.

So Hess sich an einigen Beispielen zeigen, wie eine mathematische

Behandlung sehr wohl in der Lage ist, auch in biologk-
sehen Fragen aufklärend oder bestätigend zu wirken.
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