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Biologische Massenerscheinungen in mathe-
matischer Beleuchtung?)

Von Ewald Bodewig

Is im Jahre 1713 aus dem Nachlass von Jakob Ber-

nouilli ein Buch, benannt ,Ars coniectandi oder die
Wahrscheinlichkeitsrechnung”, herausgegeben wurde,
da ahnte wohl niemand, dass hier der Ansatz zu einer
Wissenschaft vorlag, die einige Jahrhunderte spiter, oft aller-
dings zu Unrecht, unser ganzes modernes Leben beherrschen
sollte: die mathematische Statistik.

Allerdings hatten Bernouilli selbst und seine ihm gleich-
wertigen Nachfolger: Daniel Bernouilli, und vor allem La-
place und Poisson ihre Anspriiche noch hoéher geschraubt.
Und in der Tat waren um die Wende des Jahres 1800
die Wissenschaftler in ihrem Rationalismus davon iiberzeugt,
dass die Anwendung der Wahrscheinlichkeitsrechnung im tagli-
chen Leben eine Hoherentwicklung der Menschheit in jeder Be-
ziehung zur Folge haben miisse. |

Jakob Bernouilli’s mathematische Leistung lag in dem
nach ihm benannten neuen Gesetz, dem ersten asymptotischen
Gesetz der Wahrscheinlichkeitsrechnung. Sein Inhalt liasst sich
in folgender Weise etwa plausibel machen: Nicht wahr, wenn es
regnet, so werden auf dem Marktplatz die Steine nass. Aber
sie werden nicht alle gleichmissig nass, besonders wenn der
Regen nur kurz ist. Je linger er aber dauert, umso kleiner wer-
den die Unterschiede. Und wenn es zwei Tage lang ununter-
brochen geregnet hat, dann sind alle Steine praktisch gleich
nass. Genauer ausgedriickt: Wenn der Marktplatz 10000
Pflastersteine hat und es regnet 10000 Tropfen, so fillt durch-
aus nicht auf jeden Stein genau ein Tropfen. Aber wenn es
10000 Millionen Tropfen regnet: dann bekommt jeder Stein
eine Million Tropfen ab oder nur ganz wenig davon verschieden.
Noch anders gesagt: Wenn zwei Spieler Kopf und Wappen wer-
fen und sie spielen bis zum finanziellen Ruin eines der beiden,
so gewinnt fast immer der Reichere. Dass der Aermere siegt,

—

*) Habilitationsrede, gehalten am 20. Februar 1936 in der Aula des Mu-
seums fiir Volkerkunde in Basel.
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ist nur Zufall. Deshalb gewinnt in Monte Carlo letzten Endes
immer die Bank. Zwar riickt fiir jeden Spieler das Verhdltnis
zwischen Gewinn und Verlust der 1 unbegrenzt niher, und zwar
umso niher, je linger die beiden spielen. Aber die Differenz
zwischen Gewinn und Verlust wichst iiber alle Grenzen.

Genau dies ist der Inhalt des Bernouillischen Gesetzes. Es
bedeutete einen entscheidenden Fortschritt gegeniiber der Wahr-
scheinlichkeitstheorie wie sie von Pascak und Fermat sowie den
Englindern betrieben worden war. Erst die asymptotischen Ge-
setze begriinden eine wirkliche Wahrscheinlichkeitsrechnung, die
auf die Vorginge des tidglichen Lebens anwendbar ist.

Denn die Wahrscheinlichkeitsrechnung sucht aus gewissen Ge-
setzmissigkeiten eines empirischen Wiederholungsvorganges,
kurz einer Massenerscheinung, andere Gesetzmissigkeiten her-
zuleiten.

Es gibt eben Naturvorginge, die man in ihren einzelnen Ele-
menten nicht festhalten kann, sondern die erst als Massenerschei-
nung der Beobachtung zuginglich sind. Und die Mathematik
hat dabei die Aufgabe, bei diesen Massenerscheinungen das
Gesetzmissige zu entdecken und von Nebensichlichem zu tren-
nen. Sie betrachtet dabei nicht die Individualitit der Ereignisse,
sondern ihre Summe. Die Naturwissenschaft hat die Verhiltnisse
im Kleinen zu untersuchen. Sie hat die Gesetze aufzustellen,
nach denen sich jeder einzelne Vorgang abwickelt. Oft kann
aber die Naturwissenschaft — sei es beim derzeitigen Stand
der Wissenschaft, sei es aus Griinden, die in der Sache selbst
liegen, weil etwa die Ursachen der Erscheinung zu zahlreich
sind (man denke an alle Grossenbeziehungen eines Organismus)
— gar nicht die einzelnen Gesetze aufstellen, und es muss dann
bei einer Analyse im Grossen iiberhaupt bleiben. Z. B. kann
man unmoglich untersuchen, weshalb ein bestimmter Mensch
gerade 1,73 m gross geworden ist. Man muss vielmehr eine
lange Reihe von Menschen vornehmen und ihre Korperlangen
feststellen, dann wird man schon eher etwas sagen konnen.

Oft hat man auch gar kein Interesse an dem Einzelschicksal,
selbst wenn man es analysieren konnte, sondern interessiert sich
von vorne herein nur fiir das Verhalten im Grossen. Z. B. in der
Bevolkerungslehre.

684



Oft aber ist, auch fiir eine Massenerscheinung, das Einzel-
schicksal wichtiger als der Verlauf im Grossen. Denn der letz-
tere sagt ja nur etwas dariiber aus, was in einer sehr grossen
Zahl von Fillen und durchschnittlich stattfindet. Das Natur-
gesetz hingegen soll sich in allen Fillen bewahrheiten. Dann
aber kann man oft, wenn alle Mittel versagen, gerade mit den
Methoden der Mathematik etwas iiber die Einzelursache aus-
sagen oder wenigstens vermuten oder bestitigen.

So kann man zwischen verschiedenen Erscheinungen einen
mehr oder weniger festen Zusammenhang, eine Korrelation, oft
nachweisen oder, besser gesagt, bestitigen. Denn bevor man
etwas beweisen will, muss man wissen oder wenigstens ein-
leuchtende Griinde dafiir haben, dass das, wovon man spricht,
auch wirklich existiert. Sonst kann man unter Umstinden zu
viel beweisen, und man bringt eine Theorie iiber die Eigen-
schaften von angeblichen Hexen heraus.

So hat es Autoren gegeben, die einen Zusammenhang zwischen
der Hohe der Wohnzimmer und der Grésse der Bewohner des
betreffenden Landes nachweisen wollten. Dadurch muss natiir-
lich die Mathematik in Misskredit kommen.

In der menschlichen Vererbungslehre sind idhnliche Schliisse
leider ziemlich hdufig. Aus einer beschreibenden Statistik wird
gefolgert, dass diese oder jene Erscheinung erblich bedingt sei,
und zwar ohne dass man die Erblichkeit iiberhaupt einmal exakt
nachgewiesen hitte, was beim Menschen namlich beinahe un-
moglich ist. Ja, manche, wie Riidin-Miinchen, behaupten so-
gar, diese Untersuchung miisse spiter geschehen. Nun kann man
natiirlich aus einer unbewiesenen Hypothese mathematische
Schliisse ziehen. Aber man muss sich iiber die Bedingtheit die-
ser Schliisse im Klaren sein, und einmal muss man doch an die
Priifung dieser Voraussetzungen schreiten, sei es auch erst an-
hand der Schlussfolgerungen, die man vielleicht leichter veri-
fizieren kann als die Voraussetzungen selbst. Aber aus der Sta-
tistik allein heraus den erblichen Charakter beweisen zu wollen,
ist sehr bedenklich, besonders da gerade auf diesem Gebiet die
elementarsten Voraussetzungen fiir eine Statistik, vor allem
eine sehr grosse Zahl von Fillen, fast nie erfiillt sind. Mit der-
selben Methode kdénnte man etwa auch beweisen, dass Ungliicks-
fille erblich sind.



Aus dem gleichen Grunde waren auch alle mathematischen
Theorien, die aus dem Geschlechtsverhiltnis im allgemeinen
das Geschlechtsverhiltnis bei Zwillingen berechnen wollten,
ziemlich wertlos, solange man gar nicht wusste, dass die Zwil-
linge in ein- und zweieiige zerfallen. —

Ferner miissen die Massenerscheinungen eine gewisse Kon-
stanz aufweisen, sonst kann man die Methode der Wahrschein-
lichkeitsrechnung und adhnliche nicht anwenden.

Bemerkt man andererseits, dass eine konstante Massenerschei-
nung einen andern Verlauf als bisher nimmt, so wird man dar-
aus schliessen, dass von den vielen, vielleicht unbekannten
Ursachen, einige jetzt einen verstirkten Einfluss bekommen ha-
ben. Und man wird vielleicht vermuten koénnen, welches diese
Ursachen sind und hat damit Anregungen fiir neue, rein natur-
wissenschaftliche Untersuchungen.

So ist also die mathematische Analyse von Massenerscheinun-
gen sehr wertvoll, wenn man nur die Voraussetzungen fiir ihre
Anwendung beachtet.

Daher hat auch auf diesem Gebiet die mathematische Behand-
lung sich langst Eingang verschafft, wenn sie auch noch nicht
derart beherrschend geworden ist wie in der Physik. Beson-
ders die Variationsstatistik ist ein wichtiges Anwendungsgebiet.

Hier sollen uns aber die biologischen Massenerscheinungen
interessieren, und wir wollen vier Beispiele von ihnen betrach-
ten: Die Sterblichkeitstafeln, das Geschlechtsver-
haltnis der Neugeborenen, einiges aus dem Problemkreis des
Kampfes ums Dasein und etwas aus der Vererbungs-
lehre.

L.

Hat man eine Gruppe von, sagen wir 1000 neugeborenen
Kindern, willkiirlich herausgegriffen; stellt man dann jedes Jahr
fest, wieviele von diesen urspriinglich Tausend gestorben sind,
und trigt diese Resultate in bekannter Weise graphisch ein, so
erhilt man eine sogen. ,Sterblichkeitskurve”. Dabei hat
man keinen Unterschied zwischen den verschiedenen Todes-
ursachen gemacht. Vielmehr haben alle Einfliisse, die das Le-
ben beendigen, ihren Niederschlag gefunden. Fiir eine Versiche-
rungsgesellschaft, die sich ja meistens nur fiir den Eintritt des
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Todes, nicht fiir dessen Ursache interessiert, sicherlich das
einzig Richtige. Aber der Biologe interessiert sich umgekehrt
gerade fiir gewisse Todesursachen, insbesondere fiir den Tod
infolge Organabniitzung: den biologischen Tod.

Ueber diese tiefer liegenden Verhidltnisse in der Absterbe-
ordnung kénnen aber die rohen Sterbetafeln und Kurven nichts
aussagen. Aus ihnen etwa ein ,mittleres Lebensalter” berechnen
zu wollen, ist nur eine formale Spielerei, hat aber keine biolo-
gische Bedeutung. Fiir die Berechnung des biologischen mitt-
leren Lebensalters hat man vielmehr alle Fille auszuscheiden,
bei denen das Leben aus nichtbiologischen Griinden plétzlich
beendet wird.

Genau so wie man nun zur Feststellung der mittleren Korper-
grosse nur die vollig Ausgewachsenen beriicksichtigt, so hat
man bei uns nur die biologisch reifern Individuen zu unter-
suchen. Alle Todesfille in der Kindheit scheiden daher sofort
aus. Sie sind nicht biologisch typisch in unserem Sinne. Das
geht schon daraus hervor, dass die Sterbehiufigkeit ein deut-
liches Minimum im Alter von 11 Jahren zeigt. Aber auch die
Todesfille bis weiterhin zum 40. Jahre etwa sind meist nicht
durch Abniitzung der Organe, sondern von aussen her bedingt.
Erst der jetzt iibrig bleibende Teil der Kurve kann wahrschein-
lichkeitstheoretisch untersucht werden. Alles andere ist blosse
mathematische Spielerei, mit der man wohl einige Gréssen for-
mal definieren kann, in der einen biologisch aufklirenden Kern
zu sehen jedoch verfehlt wire.

Meist stammen solche Spielereien iibrigens nicht von Mathe-
matikern, sondern etwa von Volkswirtschaftlern. Wie z. B. die
mit grosser Geschiftigkeit verbreiteten Angaben Burgdor-
fer's, der die Vergreisung und den spateren Untergang des
deutschen Volkes prophezeit, wenn nicht irgendwie Einhalt ge-
boten werde. In Wirklichkeit liegt diese angebliche Vergreisung
zum grossen Teil daran, dass es der arztlichen Wissenschaft ge-
lungen ist, eine frither gar nicht fir méglich gehaltene Anzahl
von Menschen vor dem nicht biologischen Tode zu bewahren.
Ein Erfolg, fiir den man nur dankbar sein kann. Ist doch z. B.
die Sterblichkeit der Siuglinge unter einem Jahr in den letzten
50 Jahren auf den dritten Teil gesunken. Wollte man die angeb-
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liche Vergreisung des Volkes verhindern, so miisste man vor al-
lem die irztlichen Fortschritte der letzten Jahrzehnte kiinstlich
wieder riickgdngig machen.

40 Sterblichkeitscurve,
Die Zahlen links geben
3+ an wie viele von den ur-
spriinglich 1000 Menschen
20-] im laufenden Jahre ge-

storben sind.

]
1
t
1
T

+ + ey }
C 20 40 60 60 100 Jahre

Das mittlere biologische Lebensalter liegt vielmehr bei etwa
70 Jahren. Und das Ziel der Wissenschaft sollte umge-
kehrt gerade darin bestehen, dieses Alter auch praktisch bei
jedem Einzelmenschen zu erreichen.

Ganz ahnlicher Art wie diese rohen Sterbetafeln sind iibri-
gens die 7afeln der ,empirischen Erbprognose” von Prof.
Riidin-Miinchen. Auch in ihnen steckt nach Riidin’s eige-
nem Ausspruch ,,alles drin”. D. h. alle Ursachen fiir das Zu-
standekommen einer bestimmten korperlichen Erscheinung. Sie
sind daher in ihrer Rohgestalt fiir biologische Zwecke ziemlich
wertlos und miissten erst bearbeitet werden. Umso bedenklicher
ist es, wenn dieses Rohmaterial dazu benutzt wird, um Ein-
griffen in die persénliche Freiheit eine angeblich wissenschaft-
liche Grundlage zu geben.

Il

Wir kommen zum zweiten Beispiel und bleiben dazu bei
unseren Neugeborenen. Unter ihnen befinden sich mehr Knaben
als Miadchen, und zwar etwa im Verhaltnis 106:100. Man sagt:
Die Knabenziffer ist 100. Gewiss schwankt diese Zahl,
u. a. weil die Statistik iiber Totgeburten oder Fehlgeburten in
den verschiedenen Lidndern verschieden gehandhabt wird.
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Aber trotz dieser Fehlerquellen bleibt die Knabenziffer in den
einzelnen Staaten innerhalb ganz enger Schranken. Man sagt:
Die Dispersion ist normal. Das bedeutet: Die Aussichten
fiir eine Knaben- oder Miadchengeburt sind dieselben wie die
bei einem reellen Gliicksspiel mit 106 Treffern und 100 Nieten.
Jeder Einzelfall hat die gleiche Chance. Jeder Fall ist unab-
hingig vom andern.

Freilich hat es genau wie beim Roulettespiel seit jeher Leute
gegeben, deren Bestreben es war, aus dem Gliicksspiel ein Ge-
schicklichkeitsspiel zu machen. Auf die verschiedenen Theo-
rien der Geschlechtsbestimmung einzugehen, ist hier nicht der
Ort.

Trotz dieser Theorien ist es jedenfalls so, dass bisher die
Knabenziffer der Lebendgeborenen bewusst nicht beeinflusst
werden kann, sondern innerhalb jeder Nation eine massen-
physiologische Konstanz ist.

Nun waren aber schon die Statistiker des 19. Jahrhunderts
dariiber beunruhigt, dass die Knabenziffer in den meisten Lin-
dern sank. Es setzte eine Flut von Erklarungsversuchen ein. Im
Jahre 1841 wies Christof Bernouilli, der grésste National-
okonom der Schweiz, darauf hin, dass viel mehr minnliche Em-
bryos sterben als weibliche, dass also die Empfingnisziffer
weit hoher als 106 sein muss.

Seltsamerweise ist dieser grundlegende Gedanke damals nicht
durchgedrungen, ja nicht einmal bekannt geworden. Erst heute
ist auf Grund eines iiberwiltigenden Beweismaterials die Ber-
houillische Theorie allgemein angenommen: dass namlich die
Knabenziffer wesentlich beeinflusst wird von der vorgeburtli-
chen Sterblichkeit. Und da die Vitalitit des weiblichen Ge-
schlechtes grosser ist als die des Mannes — eine Erscheinung,
die sich z. B. auch darin dussert, dass es viel mehr alte Frauen
als Minner gibt und dass das biologische mittlere Alter der
Frau um etwa 2 Jahre grosser ist als das des Mannes — so
betrigt die Knabenziffer der Fehlgeburten 130—400 (je nach
dem Monat), die der Tofgeburten 120—150.

Man kann nun mathematisch aus der statistisch gefundenen
Knabenziffer der Lebendgeborenen, der Knabenziffer der Fehl-
geburten, der Fehlgeburtenquote: die Empfingnisziffer berech-
Nen. Man erhidlt dann etwa 120—150.
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Geht man umgekehrt von letzterer Ziffer aus, so kann man
alle Schwankungen der Knabenziffer durch die Aenderung der
Fehlgeburtenquote erkliren. So z. B. dass bei unehelichen Ge-
burten die Knabenziffer etwas geringer ist, nidmlich 105,3, was
schon Chr. Bernouilli erkliart hat. Bei den Erstgeburten
hingegen 116. Bei Mehrgeburten umso kleiner, je grosser die
bisherige Kinderzahl ist. Oder auf eine ganze Population ange-
wandt: Dass in Liandern mit hoher Geburtenquote (besonders
also im 19. Jahrhundert, vgl. oben!) die Knabenziffer niedrig
ist, und umgekehrt.

Andererseits ist in neuerer Zeit die Knabenziffer infolge der
vielen Abtreibungen gesunken, so dass sich heute zwei Ursachen
(niedrige Geburtenquote und Abtreibungen) mit entgegengesetz-
ten Wirkungen iiberlagern und wir so niedrige Geburtenzahl
und zugleich niedrige Knabenziffern haben.

Schliesslich ergab sich, wie ich 1921 anhand der Geburten-
statistik des Woeltkrieges zeigte, eine Bestidtigung der schon

Knabenziffer in
Kriegszeiten.
Ch | Maximum 1919
mit 108,5.

108 —

107 —

i
L}
I i g 4y ar

Ofter ausgesprochenen Ansicht, dass nach Kriegen die Knaben-
ziffer wirklich erhoht ist und dies nicht auf zufilligen Schwan-
kungen beruht, sondern dass hier eine der Ursachen der Ge-
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schlechtsbestimmung sich gedndert hat. Und zwar war diese
Aenderung umso stirker, je mehr das Land unter dem Kriege
zu leiden hatte, d. h. — um auf unser obiges Kennzeichen zu-
riackzukommen — je stirker der Riickgang der Geburtenquote
war. Und zwar lag in fast allen Landern der Hohepunkt der
Ziffer im Jahre 1919, also als die Geburten wieder zu steigen
begannen. In Deutschland, besonders in Preussen und
Bayern, fiel der Hohepunkt genau auf das Vierteljahr, ja so-
gar auf den Monat mit dem Wiederanstieg der Geburten zu-
Sammen.

Wohl gemerkt: Die Dispersion des Geschlechtsverhiltnisses
ist auch in Zeiten einer hohen Knabenziffer annihernd normal.
Es handelt sich also wieder um ein Gliicksspiel, aber die Bedin-
gungen des Spieles sind eben andere geworden.

Hingegen besteht keine Korrelation zwischen der Knaben-
ziffer und dem Alter der Eltern oder der Rassenzugehérigkeit.

I11.

Einem ganz anderen Problemkreis und zugleich andern
Methoden hat sich der italienische Mathematiker Volterra zu-
gewandt.

Ein biologischer Kollege hatte namlich gefunden, dass beson-
ders gefrissige Fische des Adriatischen Meeres sich im Kriege
stark vermehrt hatten, was offenbar mit dem vernachlissigten
Fischfang zusammenhing. Er fragte daher Volterra, ob man
ein solches Ergebnis auch mathematisch hitte voraussagen kén-
den. Er hatte sich dabei gerade an den Richtigen gewandt;
denn dieses Problem und die sich anschliessenden fiihrten z. T.
Zu Integro-Differentialgleichungen, einem Gebiet, auf dem Vol-
terra unbestrittener Meister war.

Angenommen also, in einem abgeschlossenen Milieu leben
verschiedene Arten von Lebewesen, etwa von Tieren, zusammen.
Wobei das Zusammenleben vor allem darin besteht, dass die ver-
Schiedenen Arten einander auffressen oder zum mindesten ein-
ander die Nahrung wegnehmen. Dann handelt es sich darum:
Unter gewissen Voraussetzungen die Aenderung der Bevilke-
Mungszahlen der verschiedenen Arten zu studieren.

Seine umfangreichen Untersuchungen fasste Volterra zu-
Sammen unter dem Titel: ,Mathematische Theorie des
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Kampfes ums Dasein”. Einige dieser Ergebnisse sollen
kurz angegeben werden.

Es handelt sich zunichst um solche Arten, die sich gegensei-
tig die Nahrung streitig machen. Infolge der natiirlichen Ver-
mehrung wird nun der Nahrungsraum kleiner. Das beeinflusst
natiirlich die Fortpflanzungsfreudigkeit. Und damit sieht man
schon einige bedrohliche Komplikationen am Horizont auftau-
chen. In der Tat kann man zeigen, dass nach einiger Zeit alle
Rassen verhungert sind bis auf eine einzige, und das ist die-
jenige, die sich am stirksten vermehrt und zugleich am be-
scheidensten lebt. Kurz: diejenige, von der kleinsten relativen
Gefrissigkeit. Ein Ergebnis, zu dem man als Humanist und
gleichzeitiger Europder keine rechte Stellung zu nehmen weiss.

Wir gehen daher gleich zum zweifen Falle iiber, in welchem
einige Tierarten die anderen Tierarten auffressen. Wir be-
schrinken uns auf zwei Arten, von denen die erste von der
zweiten gefressen wird. Der Zustand wird dann abgesehen von
den relativen Gefrassigkeiten davon abhidngen, wie haufig sich
die beiden Rassen begegnen. Denn jede Begegnung vermehrt die
Bevolkerungszahl der zweiten Rasse, wihrend sie sich auf die
Zahl der ersten Rasse, die also von der zweiten gefressen wird
— sagen wir — in negativem Sinne &dussert.

Bezeichnet man die Bevélkerungen der beiden Rassen mit
N, bzw. N; und den prozentualen Bevolkerungszuwachs mit
N’y bzw. N’,, so kann man die sich jetzt ergebende Verschiebung
mathematisch durch die Differentialgleichungen darstellen:

N' =+ E — Yy N; , Ny = — Ey 4+ Y2 N

Das E ist bei jeder Rasse die Bevélkerungszunahme, die vor-
handen wire, wenn die andere Rasse nicht existierte. Und das
v bezieht sich bei jeder Rasse auf die Wirkung der Karambo-
lagen. Die verschiedenen Rollen, die das Schicksal den beiden
Rassen zugedacht hat, hat iibrigens in den + Zeichen seinen
niichternen mathematischen Ausdruck gefunden.

Verfolgt man die obigen Gleichungen weiter, so ergibt sich
folgendes Ergebnis: Angenommen, im Anfang nihme die ge-
fressene Rasse zu und ebenso die Raubtierrasse. Dann wird
letztere so viel fressen, dass die Bevolkerung der ersten Rass€
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allmihlich abnimmt. Dadurch aber wird der Nahrungsspielraum
fiir dje zweite Rasse kleiner, und die Fortpflanzungsfreudig-
keit sinkt. Dadurch wird die erste Rasse mehr geschont und
kann sich wieder vermehren. Infolgedessen kommt die zweite
Rasse wieder hoch. Ihre Gesamtgefrissigkeit nimmt also wie-
der zu. Dadurch wird die erste Rasse zu stark dezimiert usw.

Verteilungscurven fiir die
Bevélkerungszahlen,
Q = stabiler Zustand.

Ein Ergebnis, das man mehr oder weniger ahnen konnte.
Was man aber nicht vorausfithlen konnte, ist, dass es sich um
einen genauen Kreislauf handelt. D. h. es gibt bei jeder Rasse
eine minimale und eine maximale Bevolkerungszahl, die fiir alle
Zeiten fest bleiben. Und jede Rasse pendelt bis in alle Ewig-
keit zwischen diesen beiden Extremen periodisch hin und her.
Die Dauer der Periode ist dabei fiir ein und dieselben Anfangs-
zahlen fiir alle Zeiten unverdnderlich (Natiirlich, wenn es sich
stets um dieselben beiden Rassen handelt). Die Figur gibt
an, wie die Anzahlen N; N, sich im Laufe der Zeit indern.

Man ist versucht, solche Verhiltnisse bei der Entstehung von
Seuchen vorauszusetzen. Denn bekanntlich glaubt man bei man-
chen Seuchen ein periodisches Ab- und Anschwellen feststellen
Zu koénnen. So bei der Diphtherie eine Periode von etwa 30
Jahren. Es wire denkbar, dass es sich hier um einen rein in-
ternen Kampf zweier Mikroorganismen handelt. (Natiirlich sind
auch andere Erkldrungen moglich).

Es ist also bei diesen Verhiltnissen ein ihnliches Spiel, wie
Wenn zwei teilweise gefiillte Kriige zusammen eine Wasser-
Menge enthalten, die grosser ist als jeder Krug allein fassen
}(ann, und wie wenn man jetzt das Wasser aus dem einen Krug
I den andern schiittet, bis dieser voll ist, und dann aus dem
Vollen Krug wieder in den ersten schiittet, bis jener voll ist,
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und dieses Spiel immer wiederholt. Und zwar ohne einen ein-
zigen Tropfen Wasser zu verschiitten.

Die Lebewesen werden also gewissermassen bloss ineinander
umgeschiittet, was einen besonders tiefen Einblick in das Wal-
ten der giitigen Mutter Natur gestattet. —

Interessant ist auch, dass es bei jedem Paar von feindlichen
Rassen, wenn der Koeffizient der Gefriassigkeit, der Koeffi-
zient der Fortpflanzungsfreudigkeit und die Zahl der Zusam-
menkiinfte der beiden Rassen festliegen, es genau einen einzigen
Zustand gibt, der sich iiberhaupt nicht dndert. Die Anzahlen der
beiden Rassen sind dann gerade so gross, dass die eine genau
so viel frisst, wie die andere produziert. Eine Art paradiesischer
Zustand.

Und um diesen ganz genau bestimmten stabilen Zustand
kreisen im allgemeinen Falle unsere Verteilungen herum. Alle
Verteilungskurven haben diesen Punkt in ihrem Innern. Und
je mehr der Anfangszustand sich von dem stabilen Zustand un-
terscheidet, d. h. je grosser die Entfernung des Ausgangspunktes
N von @ ist, umso grosser ist die zugehorige Bevolkerungs-
kurve. Und es leuchtet ein, wenn ich als Resultat angebe: dass
auch die Periode, also die Zeit fiir die Rundfahrt, in diesem
Falle grosser ist.

Ferner wird es einleuchten, dass im allgemeinen Falle die
durchschnittliche Bevdilkerung bei jeder der beiden Rassen stets
dieselbe ist bei jeder Verteilungskurve, und zwar gerade gleich
den beiden Zahlen im stabilen Zustand. D. h. die durchschnitt-
liche Bevolkerung der ersten Rasse ist gleich der Abszisse OA
von Q, die der zweiten Rasse gleich der Ordinate GB von Q.

Das Bisherige galt fiir den Fall, dass die beiden Rassen un-
ter sich gelassen werden. Dezimiert man aber jede der beiden
Rassen dauernd und zwar jede fiir sich dauernd gleich stark,
jedoch die eine Rasse anders als die andere, so dndern sich die¢
durchschnittlichen Bevilkerungszahlen der beiden und bleiben
also nicht konstant wie bisher. Aber die Aenderung 4ussert
sich bei beiden verschieden: Die gefressene Rasse nimmt zu,
die Raubtierrasse aber ab!

Damit war die Frage des biologischen Kollegen Volterras
betr. der adriatischen Fische beantwortet, und die Antwort
stimmte mit der Wirklichkeit iiberein.
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Vernichtet man iibrigens nur eine der beiden Rassen, so wird
bloss die durchschnittliche Bevolkerung der anderen Rasse ver-
andert!

Man wird dies, ebenso wie das vorherige Resultat anzuwen-
den haben auf gewisse Probleme der Fygiene, etwa der Des-
infektion: Vernichtet man zwei Bakterienarten, von denen die
erste von der zweiten lebt, und fithrt man diese Vernichtung
dauernd durch — so erlangt die gefressene Rasse relativ das
Uebergewicht. Was oft sehr bedenklich ist. Denn sie ist oft die
gefihrlichere Art, wihrend die andere jedenfalls fiir den Men-
schen weniger schadlich ist, da sie ja von den anderen Bakte-
rien lebt, ja sich vielleicht fiir den Menschen iiberhaupt nicht
interessiert.

Auch andere Probleme fallen vielleicht unter diesen Gesichts-
punkt. Z. B. hat man in Amerika eine Raubvogelart stark dezi-
miert, weil sie schddlich war. Mit dem Erfolg, dass hinterher
Heuschreckenschwirme ganze Linder kahl frassen. Auch hier
scheint ein Beispiel dafiir vorzuliegen, dass die gefressene Rasse
sich vermehrt, auch wenn sie selbst ebenfalls geschidigt wird.

So ergibt sich aus einem einzigen Beispiel der mathematischen
Analyse eine Fiille von Anregungen und neuen Gesichtspunk-
ten fiir den Biologen.

Daneben hat Volterra noch viele andere biologische Mdog-
lichkeiten untersucht. Wie das Zusammenleben von beliebig
vielen Tierarten, den Einfluss dusserer Storungen, den Parasitis-
mus und vieles andere.

Von einem Bekanntwerden dieser Untersuchungen in biologi-
schen Kreisen kann man sich nur das Beste fiir beide Teile
versprechen.

IV.

Unser letztes Beispiel sei der Vererbungslehre entnommen:

Bekanntlich hat Mendel entdeckt, dass in einem Lebe-
wesen, also einer Pflanze, einem Menschen oder einem Tier,
sich gewisse dussere Eigenschaften erst zeigen, wenn ihnen eine
Erbanlage, ein Gen, zugrunde liegt, welche in dem betreffen-
den Wesen doppelt vorhanden ist, wihrend die einzelne Erban-
lage nach aussen hin wirkungslos ist. Man spricht von einem

695



rezessiven Uen. — Hingegen gibt es andere Gene, die schon
dann eine bestimmte &dussere Erscheinung bedingen, wenn sie
nur einzeln vorkommen: ,,Dominante Gene”.

Nun findet sich aber nie ein Gen allein, sondern ist immer
mit einem von zwei bestimmten anderen Genen gekoppelt. Man
nennt solche, stets zusammen auftretenden Gene ,allelomorphe
Gene””. Das zu einem Gen allelomorphe kann nun von der-
selben Art wie das erstere sein oder von entgegengesetzter Art.
Bezeichnet man also ein bestimmtes rezessives Gen mit », das
zugehdrige dominante Gen mit d, so hat das betreffende We-
sen eine der drei Qenstrukturen: rr, rd, dd.

Hingegen gibt es infolge der Eigenschaften der Dominanz
und Rezessivitat nur zwei Erscheinungsformen: rr (oder r) und
rd+-dd (oder d).

Fiir die Kreuzung zweier Genotypen hat Mendel nun das
Gesetz angegeben, das seit dieser Zeit seinen Namen triagt.

Was Mendel als Biologe nicht durchfithrte, war die Unter-
suchung, wie sich die Verteilung der drei Genstrukturen inner-
halb einer ganzen Population im Laufe der Generationen an-
dert. Es handelt sich dabei um eine rein mathematische Frage-
stellung: Gegeben ist eine Population, in der die Typen r7, rd,
dd mit den relativen Haufigkeiten a, b, ¢, wo a & ¢=1000), vor-
kommen. Wie gross sind diese relativen Haufigkeiten in der
nichsten Generation? (Wenn man annimmt, dass ,,gleichmissige
Panmixie’”” stattfindet, d. h. die einzelnen Typen bei der Be-
fruchtung keine bestimmten Partner bevorzugen, vielmehr die
Befruchtung regellos vor sich geht).

Um das Resultat moglichst anschaulich darzustellen, wollen
wir so vorgehen: Fiir jeden Verteilungszustand der «, &, ¢ ist
ja die Summe konstant gleich 1009 oder etwa gleich 1. Nun
hat ein gleichseitiges Dreieck die Eigenschaft, dass fiir jeden
Innenpunkt die Summe der Abstinde von den drei Seiten kon-
stant, und natiirlich gleich der Hohe des Dreieckes ist. Nimmt
man also ein gleichseitiges Dreieck mit der Hohe 1, so ent-
spricht jedem Punkt im Innern ein mégliches Tripel (a ,b, ).
Die moglichen Verteilungszustinde werden also abgebildet auf
die Innenpunkte dieses Dreiecks. Die Seiten des Dreiecks ent-
sprechen den Zustanden a=O0 bzw. b=0 bzw. ¢=0.
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Jeder Punkt im Dreiecks-
innern entspricht einer
mdglichen Verteilung der
drei Erscheinungstypen.

Es gibt nun gewisse ausgezeichnete Zustinde (in welcher
Weise sie ausgezeichnet sind, werden wir nachher sehen). Sie
liegen auf einer Parabel, welche die Seiten @ und ¢ in ihren
Schnittpunkten mit & berithrt und durch den Mittelpunkt der zu
b gehorigen Hohe lauft. Ihre Axe ist letztere Hohe.

Herrscht nun in der Population der Zustand g, b, ¢, so erhilt
man den Zustand in der nichsten Generation, indem man den
entsprechenden Punkt parallel zur Parabelaxe verschiebt, bis
er auf die Parabel fillt. Von da an bleibt er jetzt unveriandert
liegen, denn die Parabelpunkte selbst kénnen sich ja nicht mehr
verschieben. IThnen entsprechen also Zustinde, die sich iiber-
haupt nicht dndern. Man nennt sie ,Sfabile’’ oder ,Natirliche
Zustinde” .

In der ndchsten Generation
ist jede Verteilung auf die
Parabel geriickt und da-
durch stabil geworden,

A=g

Damit wire der Einfluss der Panmixie auf den Verteilungs-
Zustand geklart.

Ein anderes Problem betrifft die Ausschaltung einer bestimm-
ten Erscheinungsform, also r oder d, und ijhren Einfluss auf
die Verteilung.

Werden die d ausgeschaltet, so ist alles klar: Die Population
hat von jetzt an den reinrassigen Genotypus r7.

Anders ist es bei Ausschaltung der r. Etwa wenn bei einer
p‘flanzs'anpopula’cion, die aus weissen und roten Exemplaren be-
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steht, wobei rot dominant gegen weiss sein soll, die weissen
Pflanzen bestindig vernichtet werden. Dann werden sie trotz-
dem in jeder Generation noch zum Vorschein kommen, weil sie
sich ja aus der Kreuzung der rd untereinander ergeben. Und
die Frage ist, wie man ihre Hdufigkeit bestimmt.

Wir gehen von einem natiirlichen Zustand 0 aus. Werden
jetzt die rr oder a eliminiert, so bleiben die 4 und ¢ in ihrem
Verhiltnis ungeindert. Alle solchen Verteilungen mit konstan-
bem b/c liegen aber auf der Ecklinie durch den Ausgangspunkt
0. So kommt in der Figur die Verteilung in den Punkt 0’ zu
liegen. In der nichsten Generation wird durch Panmixie die
Verteilung 1 entstehen. Durch darauf folgende Vernichtung

Wirkung der Auslese auf
die Verteilungszahlen,

der rr die Verteilung 1’, und durch Panmixie daraus die Ver-
teilung 2. Usw. So nehmen natiirlich die r» an Haufigkeit
stets ab; aber offenbar ist, wie man schon anschaulich sieht,
nur bei grossen a diese Abnahme stark. Bei kleinen «, d. h. sol-
chen, die fast in der Dreiecksecke ab liegen, ist die Abnahme
weder absolut noch relativ irgendwie von Belang. Und zwar
ist dies schon fiir a=1/,0 der Fall. (Erst fiir den Punkt 19
in der Figur wire a=1/,0p).

Dass diese Verhiltnisse betr. der Abnahme der rr tatsichlich
vorliegen, wird nicht nur durch Experimente an Pflanzen und
Tieren bewiesen, sondern auch beim Menschen, und zwar durch
die todlichen, sogen. ,lethalen”, Erbanlagen, die also den Tod
der Kindes vor der Geburt, wihrend der Geburt oder einig€
Tage danach zur Folge haben. Hier nimmt ja die Natur schon
die Ausschaltung der rr oder a vor. Nun treten solche Krank-
heiten aber sehr selten auf. Die Ausschaltung der Merkmals-
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triger hat also praktisch gar keinen Erfolg, sie vermindert ihre
Hiufigkeit praktisch gar nicht. Und dieses Ergebnis unserer
Betrachtungen wird durch die Erfahrung durchaus bestitigt.
Denn im Gegenfalle miissten ja umgekehrt die Merkmalstriger
in fritheren Generationen viel zahlreicher gewesen sein als heute,
wofiir sich aber keinerlei Anhaltspunkte ergeben.

Auch auf andere vererbungswissenschaftliche Fragen Ilasst
sich die mathematische Analyse anwenden. So z. B. wurden von
Felix Bernstein die sechs Konstitutionen der vier
menschlichen Blutgruppen, nach denen die Biologen
schon lange vergeblich gesucht hatten, auf rein mathematischem
Wege gefunden. Ebenso konnten von mir selbst die sogen. ge-
schlechtsgebundenen Erbanlagen, ihre Verteilung
und die Wirkung der Sterilisation auf sie untersucht werden und
dabei z. B. eine schon mehrmals in der medizinischen Literatur
aufgestellte Behauptung, die Bluterkrankheit beruhe nicht nur
auf einem geschlechtsgebundenen rezessiven Gen, sondern sei
noch zu anderen (vielleicht sogar nichterblichen) Faktoren ab-
hiangig, fast zur Gewissheit erhirtet werden.

So liess sich an einigen Beispielen zeigen, wie eine mathema-
tische Behandlung sehr wohl in der Lage ist, auch in biologi-
schen Fragen aufklirend oder bestitigend zu wirken.
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