Zeitschrift: Archäologie im Kanton Bern : Fundberichte und Aufsätze = Archéologie

dans le canton de Berne : chronique archéologique et textes

Herausgeber: Archäologischer Dienst des Kantons Bern

Band: 2A/2B (1992)

Artikel: Bargen-Chäseren 1990 : Profilschnitt durch die römische Strasse

Autor: Suter, Peter J. / Ramseyer, Karl

DOI: https://doi.org/10.5169/seals-726450

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bargen - Chäseren 1990. Profilschnitt durch die römische Strasse

Peter J. Suter und Karl Ramseyer

Die bisherigen Kenntnisse über den Verlauf der im Kanton Bern liegenden Abschnitte der römischen Mittelandtransversale (Aventicum–Kallnach–Petinesca–Arch/Leuzigen–Salodurum) hat kürzlich R. Zwahlen zusammengestellt.¹ In Zusammenhang mit der geplanten Sanierung (Teerbelag) des zwischen der Neuenburgerstrasse und dem Hagneckkanal gelegenen, Südwest-Nordost-verlaufenden Flurweges (Abb. 1) konnte der römische Strassenabschnitt im Bereich der Gemeinde Bargen erneut archäologisch untersucht werden. Die Dokumentation des 22 m langen Profilschnittes (Abb. 2–3) dauerte vom 22. Juli bis 28. August 1990 und bestätigt Zwahlens Vorstellungen über den Verlauf der römischen Strasse zwischen Kallnach und Petinesca.

Bargen-Chäseren 585.047/210.237 Profil 16

1. Das Profil

Das 22 m lange Profil Süd (Abb. 2–5) schneidet die römische Strasse und begleitenden Strassengräben ziemlich genau im rechten Winkel.

Der heutige Flurweg (10) ist deutlich schmaler als die römische Strasse (4a–g). Der antike, an der Basis etwa 6 m breite Strassenkörper liegt direkt auf der hellbraunen Siltschicht (3). Darunter folgt eine gräulich-gelbe Sandschicht (2), die gebänderte, unterschiedlich farbige (grau/gelb) tonig-siltige Sandschichten (1) überlagert.

Innerhalb des römischen Kieskörpers (4a–g) können wir sieben verschiedene Kiesschüttungen und verdichtete Fahrbeläge unterscheiden (Abb. 6).

Als Unterlage für die älteste Fahrbahn wurde eine etwa 15 cm mächtige, sandige Kiesschicht 4aK eingebracht. Der knapp 6 m (20 Fuss) breite, eigentliche Fahrbelag 4aF hebt sich deutlich vom Kieskoffer ab; er verdankt seine Kompaktheit einem höheren Anteil von Feinmaterialien (Ton/Silt; vgl. Kap. 3). Sowohl östlich als auch westlich grenzt ein helles Siltband (5) an die älteste Strassenanlage 4a an. Es handelt sich wohl um die seitliche Verfestigung der Strassenränder. Die Strassenerneuerungen 4b bis 4e beschränkten sich mehr oder weniger auf das Anbringen eines 5-10 cm mächtigen Belags. Erst für die Ausbesserungen 4f und 4g wurden erneut mächtigere Kies/Silt-Pakete eingebracht. Die eigentliche Fahrbahn der Erneuerung 4g fehlt. Die peripheren Zonen des Strassenkörpers sind erodiert (7) und im obersten Bereich durch die landwirtschaftliche Feldarbeit gestört (8). Auch in der kleinen Flächengrabung (2 m²) auf der gegenüberliegenden Profilgrabenseite erkannten wir insgesamt sieben Fahrbahnniveaus (vgl. Kap. 2 und Abb 6-7).

Abb. 1: Bargen-Chäseren 1990. Verlauf des heutigen Flurweges und der römischen Strasse. Im Vordergrund der überdeckte Profilschnitt 16. Blickrichtung Nordnordost.

Die Strasse wird beidseitig von einem Strassengraben (A/B) begleitet. Die Distanz von der äusseren Grabenkante zur Strassenmitte bzw. zum Fahrbahnrand beträgt je etwa 8.8 m (30 Fuss) bzw. 5.9 m (20 Fuss). Die beiden etwa 60 cm (A) bzw. 90 cm (B) eingetieften, schmalen Strassengräben zeichnen sich im Profil gegenüber dem Anstehenden (hellbrauner Silt 3) nur dadurch ab, dass sie mit kieselhaltigen Sedimenten (7) verfüllt sind. Sie sorgten für die Entwässerung. Zu einem späteren Zeitpunkt sind die Strassengräben (C/D) erneuert worden.

Nur auf der Ostseite begleitet eine zwischen Strassengraben und Strassenrand angelegte, silthaltige Kiesschüttung (6) die eigentliche Fahrbahn. Sie liegt auf dem sterilen, bräunlichen Silt (3) und wird von den Erosionsschichten (7) überdeckt. Von der Schichtabfolge her kann nicht entschieden werden, ob die Kiesschüttung (6) von Anfang an oder später angebracht worden ist. Der grosse Abstand zwischen der eigentlichen Fahrbahn und dem östlichen Strassengraben macht aber wahrscheinlich, dass sie von Anfang an geplant war. Wir interpretieren diese knapp 3 m breite (= 10 Fuss) und von

1 Zwahlen 1990, 197ff.



Abb. 2: Bargen-Chäseren 1990. Übersicht Profil 16. Rechts erkennen wir den linsenförmigen Strassenkörper; links davon liegt der die eigentliche Strasse begleitende Fuss- und/oder Viehweg. Die tieferliegenden Steine im linken Bildteil zeigen den östlichen Strassengraben. Blickrichtung Südwest.

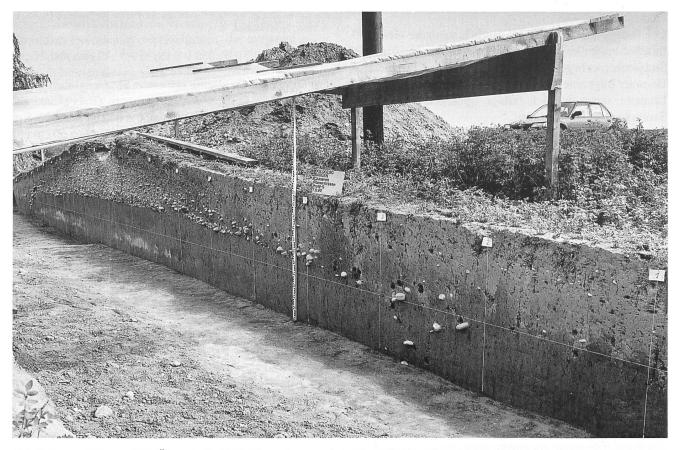


Abb. 3: Bargen-Chäseren 1990. Übersicht Profil 16. Links erkennen wir den linsenförmigen Strassenkörper. Die tieferliegenden Steine im rechten Bildteil zeigen den westlichen Strassengraben. Blickrichtung Südost.

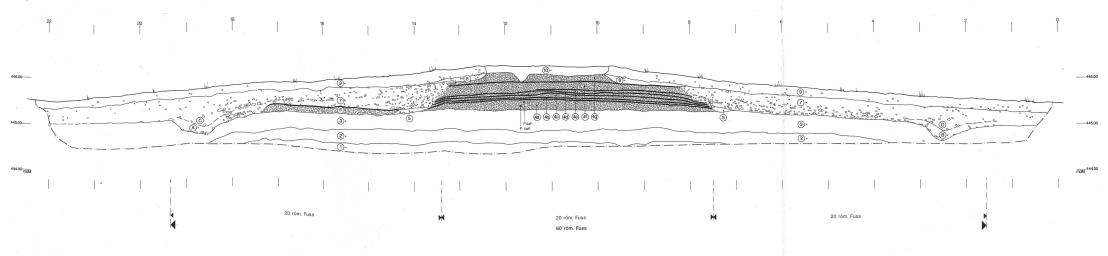


Abb. 4: Bargen-Chäseren 1990. Profil 16. Schichtenbeschrieb siehe Text. Blickrichtung Süd. M. 1:50.

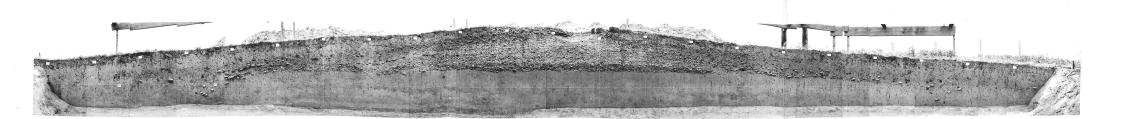


Abb. 5: Bargen-Chäseren 1990. Profil 16. Blickrichtung Süd. M. 1:50.

Abb. 6: Bargen-Chäseren 1990. Stufenprofil. Ansicht der jeweils auf einem schmalen Streifen freigelegten einzelnen Fahrbahnen. Vgl. auch Abb. 7. Blickrichtung Nordwest.

Abb. 7: Bargen-Chäseren 1990. Stufenprofil mit Schichtbezeichnungen Übersicht über die jeweils nur auf einem schmalen Streifen freigelegten einzelnen Fahrbahnoberflächen 4g–4aF sowie auf den Kieskoffer 4aK. Blickrichtung Ost.

Menschenhand eingebrachte Kiesschüttung als Fussweg und/oder Viehweg (iter/actus).

An den Rändern geht der römische Strassenkörper (4a bis 4g) ohne scharfe Grenze in die Erosionsschichten (7) über. Diese lässt sich über die Strassengräben (A, B) hinweg verfolgen und verfüllt letztere.

Die jüngste Strassenanlage 4g dürfte auch in nachrömischer Zeit genutzt worden sein (vgl. Kap. 2).

Der moderne Flurweg (10) ist gegenüber der römischen Strassenmitte leicht ostwärts verschoben und mit einer Breite von etwa 2.7 m deutlich schmaler. Seitlich des Flurweges überdeckt der 20–30 cm mächtige, aktuelle Humus (9) den römischen Strassenkörper (4a–4g) und die Erosionsschichten (7). Es verwundert daher kaum, dass bei der mit modernen Geräten vorgenommenen Feldbearbeitung auch die oberste antike Strassenlage (8) in Mitleidenschaft gezogen worden ist.

2. Die flächige Untersuchung der Fahrbahnen

Im zentralen Bereich des Profiles Nord haben wir versucht die einzelnen Fahrbahnen flächig freizulegen (Abb. 6–7).

Nach dem Abtrag des modernen Flurweges (10 = Abtrag A) zeigte sich die Oberfläche der Erneuerung 4g (Abb. 7,4g). Die deutlich weniger gut erhaltene Oberfläche der sonst gleich aufgebauten letzten Fahrbahnerneuerung (vgl. unten) spricht dafür, dass auch die Fahrbahn 4g bereits in römischer Zeit angelegt, jedoch dann über eine längere Zeitdauer ohne Unterhalt (weiter)benutzt worden ist.

Mit dem Abtrag der Strassenanlage 4g (Abtrag B) gelangten wir auf die Fahrbahn 4f (Abb. 7,4f). Ihre Oberfläche ist bedeutend besser erhalten. Auf der Fahrbahnoberfläche erkennen wir – wie auch auf den folgenden – einen Riss, der sich mit dunklerem Material verfüllt hat. Er ist auch im gegenüberliegenden Profil erkennbar (Abb. 5: zwischen Lfm. 11 und 12).

Das an der Basis der mächtigen Strassenanlage 4f (Abtrag C; Kiesschüttung und verdichteter Belag) gelegene Sandband erleichterte das saubere Freilegen der darunterliegenden Fahrbahn 4e (Abb. 7,4e).

Der Strassenbelag 4e (Abtrag D) war nur wenige Zentimeter mächtig. Auch hier ermöglichte ein Sandband das genaue Freilegen der recht gut erhaltenen Oberfläche der Fahrbahn 4d (Abb. 7.4d).

Im Gegensatz dazu zeigte sich beim Entfernen des wiederum nur wenige Zentimeter mächtigen Belags 4d (Abtrag E) kein Sandband über der Fahrbahn 4c (Abb. 7,4c). Hier wurde offensichtlich nur ein neuer Belag eingebracht.

Auch der Abtrag F war nur wenige Zentimeter mächtig, doch markierte erneut ein Sandband den Übergang zu der an dieser Stelle sehr gut erhaltenen Fahrbahn 4b (Abb. 7,4b).

Nach dem Abtrag G zeigte sich die Oberfläche der ältesten Fahrbahn 4aF (Abb. 7,4aF), über der wiederum ein feines Sandband lag. Mit der Entfernung des Belags 4aF (Abtrag H) legten wir die etwa 15 cm mächtige Kiesschüttung 4aK frei. Auf der Abbildung 6 zeigen sich die teilweise recht groben

Geröllbeimengungen, und auf der nur in einem schmalen Streifen freigelegten Oberfläche (Abb. 7,4aK) erkennen wir ihre etwas grobkörnerige Struktur.

Unter der Kiesschüttung 4aK (Abtrag I) zeigten sich auch in der Fläche keinerlei Anzeichen einer Subkonstruktion aus Stein oder Holz. Hingegen zeichneten sich auf der Siltoberfläche (3) Abdrücke der zuunterstliegenden Kieselsteine ab (Abb. 6).

3. Sedimentanalyse

Bereits im Profil (Abb. 4–5) fielen uns optische Unterschiede zwischen der Kiesschüttung 4aK und dem eigentlichen Fahrbelag 4aF auf. K. Ramseyer vom Geologischen Institut der Universität Bern versuchte die Unterschiede zwischen Kiesschüttung und Fahrbelag mittels granulometrischen und mineralogischen Analysen zu ergründen. Dazu wurden je eine Probe der Kiesschüttung 4aK und des Fahrbelags 4aF untersucht.

3.1 Korngrössenbestimmung (Granulometrie)

Aus der Tabelle 1 geht hervor, dass die Stein/Kies-Fraktion (>2 mm) in beiden Proben etwa 80% des Probenmaterials ausmacht. Der prozentuale Anteil des Grobmaterials ist in der Belagsprobe 4aF nur unwesentlich geringer (78%) als in der Kiesschüttung 4aK (81%). Auch bei der Sand-Fraktion (2 mm bis 63 μm) zeigt sich ein etwas geringerer Anteil in der oberen Probe 4aF (14% gegenüber 17%). Um so deutlicher sind die Unterschiede bei der Silt/Ton-Fraktion (<63μm). Der Silt/Ton-Anteil ist in der Probe 4aF viermal grösser (8% als in der Probe 4aK (2%). Betrachtet man nur das Verhältnis von Sand zu Silt/Ton, so macht die feinere Fraktion in der Probe 4aK nur gerade 8% aus, liegt aber bei der Probe 4aF bei 35%.

Tabelle 1: Bargen-Chäseren 1990. Korngrössen-Analyse.

	>2 mm %	$2 \text{ mm} - 63 \mu\text{m}$	<63 μm %	Probenmenge in g
Probe 4aF	78	14	8 2	3241
Probe 4aK	81	17		3613
Probe 4aF		65	35	706
Probe 4aK		92	8	673

3.2 Mineralogische Untersuchungen

Da unser Interesse insbesondere dem Unterschied zwischen Belagsschicht und darunterliegender Kiesschüttung galt, beschränkten wir uns für die weiterführenden mineralogischen Untersuchungen auf die Silt/Ton-Fraktion (<63µm).

Die coulometrische Bestimmung des Karbonatgehalts (Tab. 2) ergab für die Probe 4aF einen etwas höheren Karbonatgehalt (28% gegenüber 23%). Obwohl die gemessene Differenz gering ist, kann von einem signifikanten Unterschied gesprochen werden.

Tabelle 2: Bargen-Chäseren 1990. Gesamtkarbonat-Gehalt der Fraktion <63 µm (in % CaCo3, Coulometrisch bestimmt).

	%	
Probe 4aF	- 28	
Probe 4aK	23	

Auch die quantitative Analyse der mineralogischen Zusammensetzung (Tab. 3) weist auf gewisse Unterschiede zwischen den beiden Proben hin:

- Die Analyse zeigt einen erhöhten Kalzitgehalt für die obere Probe 4aF; dafür ist in der unteren Probe der Anteil der Tonmineralien (<2μm) deutlich grösser.
- Lässt man die Tonmineralien weg, so verändern sich die Anteile von Quarz (etwa 50%), Feldspat (etwa 12%) und Kalzit (37%) nicht.

Aufgrund dieser Gegenüberstellung kann geschlossen werden, dass der erhöhte Karbonat/Kalzit-Gehalt der Belagsprobe 4aF (Tab. 2 und 3 oben) kaum auf eine gewollte Beimengung von Kalk zurückzuführen ist.²

Tabelle 3: Bargen-Chäseren 1990. Mineralzusammensetzung der Fraktion <63 μ m (Röntgendiffraktometer-Analysen). Unten die Werte der relativen Anteile.

	Quarz %	Feldspäte %	Kalzit %	Tonmineralien %
Probe 4aF	40	10	30	20
Probe 4aK	33	7	23	37
Probe 4aF	50	13	37	
Probe 4aK	52	11	37	

Die Röntgendiffraktometer-Analysen der Tonmineralien der Fraktion $< 2 \,\mu m$ ergab in etwa gleiche Anteile der Tonmineralien Illit, Smectit und Chlorit in beiden Proben (Tab. 4).

Tabelle 4: Bargen-Chäseren 1990. Semiquantitative Zusammensetzung der Tonmineralien (Fraktion <2 μ m) mittels Röntgendiffraktometer-Analyse.

	Illit %	Smectit %	Chlorit %
Probe 4aF	78	10	12
Probe 4aK	75	10	15

3.3 Schlussfolgerungen

Aufgrund der verschiedenen Analysenergebnisse ist anzunehmen, dass die beiden Proben aus ähnlichem Material aufgebaut sind, wobei jedoch die Häufigkeit der verschiedenen Korngrössenfraktionen unterschiedlich ist. Dafür gibt es verschiedene Erklärungsmöglichkeiten. Entweder ist der erhöhte Anteil der Silt-Fraktion im Fahrbelag auf das absichtliche Einbringen von Feinmaterial zurückzuführen, das seiner Verfestigung dienen sollte. Oder der erhöhte Feinanteil im oberen Teil jeder Kiesschüttung ist auf einen Walzvorgang und/oder das Befahren der Strasse zurückzuführen (mechanische Zerkleinerung der mittleren Fraktion). In beiden Fällen dürfte das Material aus den nahegelegenen quartären Schottern, Sanden und Silten stammen.

4. Interpretation des Befundes

In diesem Strassenabschnitt verlangte der kompakte siltigsandige Untergrund (1 / 2 / 3) offenbar keine aufwendigen Subkonstruktionen wie Geröll- und/oder Bruchsteinkoffer³ oder (komplizierte) Holzkonstruktionen.

Der äusserst gut erhaltene Strassenkörper zeigt eine Abfolge von sieben römischen Fahrbahnen, die belegen, dass die damaligen Kies-Schotter-Strassen – oder zumindest Teile davon – im Laufe der Jahrhunderte immer wieder ausgebessert werden mussten (Abb 4–7).

Die älteste Fahrbahn (4a) war ziemlich genau 20 Fuss breit. Sie setzte sich aus der direkt auf den Untergrund eingebrachten, etwa 15 cm mächtigen Kiesschüttung 4aK und dem – einen grösseren Anteil an feinen (Ton/Silt) Materialien aufweisenden – verfestigten, etwa 5 cm dicken Fahrbelag 4aF zusammen. Das beidseitig beobachtete Siltband (5) diente der Verfestigung der Strassenränder. Die Kiesschüttung (6) interpretieren wir als seitlichen Fuss oder Viehweg. In einigem Abstand begleitete beidseitig ein kleiner Wassergraben die Strasse. Die Distanz zwischen den beiden Strassengräben (A/C bzw. B/D) beträgt etwa 18 m (Aussenseiten). Damit beanspruchte die – als Hauptstrasse zu bezeichnende – Strassenanlage eine Breite von 60 Fuss.⁴

Die späteren Ausbesserungen begnügten sich teilweise mit dem Auftrag einer nur dünnen Aufschotterung (neuer Fahrbelag). Zumindest im Falle der Fahrbahn 4f wurde aber eine mächtigere Kies/Silt-Schüttung eingebracht; möglicherweise insbesondere um wieder eine plane Fahrbahn zu erhalten. Die ursprüngliche Breite der jüngeren Fahrbahnen ist aufgrund der seitlichen Erosionserscheinungen (7) und der Störungen durch die landwirtschaftliche Nutzung (8) nicht mehr genau zu erkennen. Es ist nicht auszuschliessen, dass die

² Vermutlich ist der erhöhte Kalkgehalt der Probe 4aF auf den erhöhten Anteil der Tonmineralien in der Probe 4aK zurückzuführen.

³ Vgl. z.B. Zwahlen 1990, Abb. 8 (Kallnach-West) und Abb. 14–18 (Arch/Leuzigen).

⁴ Ziemlich genau die gleichen Masse konnten wir auch im Profil 1 von Leuzigen-Matte festellen (Zwahlen 1990, Abb. 15–16).

jüngsten Fahrbahnen etwas schmaler waren als die ursprünglichen 20 Fuss.

Die oberste Fahrbahn 4g dürfte in nachrömischer Zeit weiterbenutzt worden sein. Entsprechend schlecht ist auch ihr Erhaltungszustand; die eigentliche Fahrbahnoberfläche fehlt. Auf der Karte von Coulon aus dem Jahre 1834 wird die von Kallnach Richtung Studen/Petinesca führende Strasse als «Hochgsträtt" bezeichnet.⁵

Der heutige Flurweg ist nur mehr etwa halb so breit (etwa 2.7 m). Seine Mitte ist gegenüber derjenigen der Römerstrasse, deren Verlauf im Gelände noch heute deutlich sichtbar ist (Abb. 1), leicht gegen Osten versetzt.

Tabelle 5: Bargen-Chäseren 1990. Masse der römischen Strasse.

Breiten	
Gesamtbreite	
= westlicher bis östlicher Strassengrabenrand	17.00 m
Breite des Geröllkoffers (Basis)	6.40 m
Strassen-/Fahrbahnbreite, oben ca.	5.00 m
unten	5.90 m = 20 F
Distanz Strassenmitte zu Strassengrabenmitte je	8.00 m = 27 F
zu innerem Grabenrand je	7.60 m
Höhen	
OK erhaltene römische Strasse	446.15 müM
OK unterste Fahrbahn	445.60 müM
UK unterste Kieschüttung	445.38 müM
Grabensohle A (Ost)	444.72 müM
Grabensohle B (West)	444.60 müM

Die erneute Dokumentation eines römischen Strassenprofiles bestätigen den von R. Zwahlen aufgrund der Dokumentationen von 1972/73 postulierten Verlauf der römischen Strasse zwischen Kallnach und Studen/Petinesca.⁶

Zur Begehbarkeit und zum Verlauf der römischen Strasse ist u.E. noch anzumerken, dass die Strassenbasis hier auf etwa 445.40 müM, d.h. rund 2 m höher liegt als in den weiter südwestlich gelegenen Profilen von Bargen-Ingulsmoos/Strassachere, Profil 2 und Kallnach-Ändstrass/Brüel, Profil 157.

Wir haben keine archäologischen Indizien⁸ für die Datierung des ersten Strassenbaus (4a), doch dürfte die, wahrscheinlich vom Militär errichtete, Strasse im Laufe der ersten Hälfte des 1. Jahrhunderts n.Chr., spätestens unter Kaiser Claudius, d.h. um die Jahrhundertmitte errichtet worden sein.⁹ Die vermutete Mansio oder Mutatio von Kallnach, bei deren Teilausgrabung in den Jahren 1988/89¹⁰ Keramik und Münzen insbesondere des 4. Jahrhunderts n.Chr. zum Vorschein gekommen sind¹¹, sowie die spätrömischen Teile Petinescas¹² und die spätrömischen Befestigungsanlagen von Aegerten¹³ sprechen dafür, dass die Strasse mindestens bis zum Ende der römischen Herrschaft benutzt und wohl auch instand gehalten wurde.

5. Literatur

Bacher R. 1992

Siedlungsschichten und Töpfereiabfälle von Studen-Rebenweg/Petinesca. AKBE 2, 359ff.

Bacher R. und Suter P.J. 1989

Die spätrömischen Befestigungsanlagen von Aegerten BE. AS 12/4, 124ff.

Bacher R. und Suter P.J. 1990

Die spätrömischen Anlagen. In: Bacher R. Suter P.J. et al.: Die spätrömischen Anlagen und der Friedhof der Kirche Bürglen. Bern, 11ff.

Drack W. und Fellmann R. 1988

Die Römer in der Schweiz. Stuttgart/Jona, insbes. S. 89ff.

Kaenel H.-M. 1978

Archäologische Wanderung über den Jäissberg bei Biel (Petinesca) BE. AS 1/1, Beilage «archäologie im grünen».

Lechmann-McCallion J. und Koenig F.E. 1990

Kallnach BE: vestiges romains et nécropole du Haut Moyen Age. Rapport préliminaires des fouilles de 1988–1989. JbSGUF 73, 160ff.

Stähelin F. 1948

Die Schweiz in römischer Zeit. Basel, insbes. 337ff.

Zwahlen R. 1990

Römische Strassen im bernischen Seeland. AKBE 1, 197ff.

Fundberichte JbВНМ 35/36, 1955/56, 254. JbSGUF 74, 1991, 256. АКВЕ 2, 1992, 31ff.

- 5 Zwahlen 1990, 215 und Abb 23.
- 6 Zwahlen 1990, 216ff. mit Abb. 25. Dem Fundbericht im JbBHM (1955/56, 254) ist zu entnehmen, dass der gleiche Strassenabschnitt etwa 125 m nördlich unseres Profilschnittes im Bereich der Koordinaten 585.100/210.350 bereits am 22.8.1955 untersucht worden ist: «Der römische Strassenkörper erschien als elliptisches Steinbett aus relativ feinkörnigem Schotter, dessen grösste Tiefe 1,1 m unter der heutigen Strassenfläche liegt. Das Schotterbett ist einheitlich und lässt keinerlei Schichtung erkennen. Es hat eine Breite von etwa 6 m. [...] Anzeichen einer Steinsetzung oder Pfählung fanden sich nicht.»
- 7 Zwahlen 1990, Abb. 2–3. Die römischen Strassenprofile von Kallnach-West (Zwahlen 1990, Abb. 5–12) liegen ebenfalls tiefer, wobei wir hier noch mit Schichtsenkungen (darunterliegende Torfschichten) rechnen müssen.
- B Die zwei einzigen, kleinen Scherbenbruchstücke können weder einer bestimmten Fahrbahn zugewiesen noch datiert werden.
- 9 Der früheste römische Meilenstein der Schweiz stammt von St. Saphorin bei Vevey / Viviscus. Er datiert ins Jahr 47 n.Chr., als Kaiser Claudius I. die Route über den Grossen St. Berhard / Mons Poeninus ausbauen liess (z.B. Drack/Fellmann 1988, 93; Stähelin 1948, 340f. mit Abb. 71).
- 10 Grabung 1988/89. Lechmann-McCallion/Koenig 1990, 160f. Eine ausführliche Vorlage der Befunde und Funde ist geplant.
- 11 Lechmann-McCallion/Koenig 1990, 164ff. Die über 2000 antiken Fundmünzen sind noch nicht alle bestimmt worden. Nach den bisherigen Erkenntnissen stammt das Gros der Münzen aus den Jahren 330–350 n.Chr.; die bisher jüngste Münze dürfte im Jahre 355 n.Chr. geprägt worden sein.
- 12 von Kaenel 1978, Punkt 1: «Die bisher bekannten Funde [aus der sog. Militärstation (Grabung 1898–1904)] belegen eine Besiedlung vom 1. Jahrhundert n.Chr. bis gegen Ende des 4. Jahrhunderts.» Vgl. dazu auch Bacher 1992, Kap. 5.
- 13 Bacher/Suter 1989 und 1990. Bau der Anlagen in den Jahren 368 und 369 n.Chr.