Zeitschrift: Am häuslichen Herd : schweizerische illustrierte Monatsschrift

Herausgeber: Pestalozzigesellschaft Zürich

Band: 1 (1897-1898)

Heft: 8

Artikel: Marconi's Telegraphie mit elektrischen Strahlen

Autor: Weilenmann, A.

DOI: https://doi.org/10.5169/seals-662697

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

warf den andern drei Kindern Vermächtnisse aus, die Lulu auszuzahlen hatte, wodurch sie Lulu zwar näher kamen, aber sie doch nicht erreichten. Als er das getan hatte, ging er mit einem glänzenden Angesichte in den Garten, als hätte er einen Schabernak verübt und freute sich auf dessen Bekanntwerden. Um gar kein Aushebens zu machen und keine Vermutungen und kein Gerede zu veranlassen, ließ er keine Zeugen untersertigen, sondern tat unserm Gesetze, das er gut kannte, damit Genüge, daß er am Gingange schrieb: "Wit meiner eigenhändigen Schrift und Unterschrift."

Dennoch hätte Lulu einmal seine Gunst und wahrscheinlich auch die Erbschaft, von der sie nichts wußte, vom Grunde aus verscherzt, hätte sie ihn nicht ohne ihr Wissen bereits so unterjocht gehabt, daß er sich nicht mehr aus der Stlaverei zu befreien vermochte.

Es waren jene traurigen Tage eingetreten, in denen ein auswärtiger Feind den Boden unseres Vaterlandes betrat, lange und wiederholt da verweilte und durch Schlachten ihn verwüstete, bis er durch jene ruhmswürdigen Anstrengungen großer Männer, an denen unser Vaterland einen glänzenden Anteil nahm, aus allen Fluren, wo man die deutsche Sprache spricht, wieder verjagt wurde.

Marconi's Telegraphie mit elektrischen Straften.

Nachdruck verboten.

Bon Prof. A. Beilenmann.

Direkte Uebertragung von Nachrichten auf größere Entfernungen sand schon im Altertum statt durch Fenersignale auf erhöhten, weithin im Land sichtbaren Punkten. In den napoleonischen Kriegen am Ansange dieses Jahrhunderts leistete der optische Telegraph von Chappe vorzügliche Dienste. Derselbe bestand aus einem Maste, an welchem eine größere Anzahl beweglicher Arme durch ihre verschiedenen Stellungen Nachrichten zu übermitteln erlaubte. Auch auf den Meerschiffen werden ähnliche Signale ausgetauscht.

Alle diese Uebertragungsmittel sind aber selbstverständlich sehr von der Witterung abhängig, und im Nebel gänzlich unbrauchbar.

Als daher gegen Ende des vorigen Jahrhunderts die Kenntnis der elektrischen Erscheinungen sich immer mehr erweiterte, wurden in versschiedenster Weise mehr oder weniger gelungene Versuche ausgeführt, um die Elektrizität im beschlennigten Nachrichtendienst zu verwerten, dis sich von den dreißiger Jahren weg dann diesenige Telegraphie zu entwickeln begann, welche gegenwärtig mit ihrem Leitungsnetze den ganzen Erdball spinnewebeartig überzieht und seine Hindernisse, weder Verge noch Meer, scheut. Dazu gesellte sich von 1877 weg die Telephonie, mit raschem

Aufschwunge in die einsamsten Bergtäler dringend, und ihre Nervenfäden auf fahle Hochgipfel sendend.

Die Leitungsdrähte bilden aber immer einen kostbaren Teil der Einrichtungen, namentlich, wenn es gilt, größere oder kleinere Strecken des Meeres zu überbrücken, und sind die Schiffe zudem von der Benutzung des neuen Korrespondenzmittels gänzlich ausgeschlossen. Daher tauchten in den letzten Jahren verschiedene Ideen auf, um ohne Drahtverbindungen mit Hülfe der Elektrizität zwischen zwei Stationen telegraphische und telephonische Nachrichtenvermittlungen ausführen zu können.

Die ersten gelungenen Versuche dieser Art führte Preece von 1892 bis 1894 am Bristolkanal bei England aus, zwischen Wales und den zwei Inseln Flat Holm und Steep Holm. Die erstere Distanz war 5 Kilometer, die zweite $8^{1/2}$ Kilometer.

An der Küste von Wales wurde eine 1160 Meter lange Luftdoppelsteitung errichtet, auf der Insel ein Kabel mit Guttaperchaumhüllung von 548 Meter Länge verlegt. Die Erde diente als Rückleitung. Mittelst einer zweipferdigen Dampfmaschine und einer entsprechend großen Dynamosmaschine wurde ein ziemlich starker, in der Sekunde 192 Mal die Richtung wechselnder Strom erzeugt, welcher dann durch die sogenannte Induktion einen ähnlichen, wenn auch schwächern Strom in dem Drahte auf der Insel erzeugte. Durch zwei eingeschaltete Telephonapparate gelang die Korrespondenz mit Flat Holm vollständig, nicht aber mit Steep Holm. Auch in Schottland ausgesührte Proben führten zu gutem Resultate, und kounte man nicht nur telephoniren, sondern auch telegraphiren.

W. und E. Rathenau stellten 1894 in Verbindung mit H. Rubens auf dem Wannsee bei Potsdam auf zwei Schiffen im gleichen Sinne neue Versuche au, und bis $4^{1/2}$ Kilometer fonnte telegraphische Verständigung erzielt werden. Große, in den See versenkte und mit Telephonen versbundene Zinkplatten mit entsprechender Batterie und Stromunterbrecher, vermittelten durch das Wasser die Leitung.

Wenn auch die Erfolge dieser Experimente ziemlich befriedigten, so waren die erforderlichen Einrichtungen umständlich, namentlich die Verswendung der großen in die Erde oder in das Wasser versenkten Platten.

Viel einfacher und mehr praktischen Erfolg versprechend ist nun das fürzlich von dem Italiener Marconi angewandte Mittel, das die von einem elektrischen Funken ausgesandten Strahlen und deren Wirkungen benutzt.

Nachdem schon lange vorher Maxwell seine elektromagnetische Lichttheorie aufgestellt, in welcher er einen engen Zusammenhang zwischen Licht, Elektrizität und Magnetismus klar zu legen versuchte, ist es dem leider zu früh (1894) verstorbenen jungen deutschen Forscher Hertz im Jahre 1888 gelungen, durch Versuche nachzuweisen, daß wirklich elektrische, für das Auge nicht wahrnehmbare Strahlen existiren, welche in ihren sonstigen Eigenschaften vollständig mit den Lichtstrahlen übereinstimmen.

Wenn uns von der Sonne Licht und Wärme zugefandt werden, fo ist notwendigerweise vorauszusetzen, daß zwischen der Sonne und der Erde ein Stoff vorhanden seine müffe, welcher diese Uebertragung vermittelt: denn wir fönnen uns nicht vorstellen, wie dies durch ein Nichts hindurch geschehen könnte. Luft kann es nicht sein, denn diese ist nur an die nächste Umgebung der Erde und der Himmelskörper gebunden. Der Stoff muß ben ganzen Weltraum ausfüllen, weil wir noch aus den weitesten Fernen Sternenlicht erhalten. Außerdem fann er nur von äußerster Feinheit fein; da sonst die Planeten in ihrem Laufe um die Sonne gehemmt würden und allmählig stehen blieben. Dieser Stoff, den noch kein Sterblicher geschen, noch überhaupt wahrgenommen, von dessen Existenz wir aber durch die angeführten Erscheinungen überzeugt sind, wird der Weltäther oder furzweg Aether genannt. Man hat sich denselben so fein zu denken, daß er alle Körper mit Leichtigkeit durchdringt, d. h. zwischen den kleinsten Teilchen derfelben, den Molekulen, hindurchgeht und alles sonft Leere aus-Frgend welche Erregungen setzen die nächsten Teilchen desselben in eine schwingende Bewegung, welche sich auf die folgenden, von diesen auf weitere und so immer größere Entfernungen fortpflanzt, ähnlich wie um einen ins Waffer geworfenen Stein sich Wellen bilden, die in immer größern Kreisen sich ausbreitend an einen weitabstehenden Bunkt die Kunde von dem fallenden Stein übertragen, oder wie ein erzeugter Ton die nächsten Luftteilchen in schwingende Bewegung versetzt, die sich ringsherum auf die folgenden überträgt, um schließlich an einem entfernten Standorte unser Ohr zu treffen. Wenn aber derartige Schwingungen für uns wahrnehmbar werden follen, muffen wir Organe besitzen, welche uns dieselben gum Be= wußtsein zu bringen vermögen. Diese Organe sind die Nervenenden, die Die mit dem Hirn durch Nervenfäden in Berbindung ftehen. Jene nehmen die Nachricht von der Außenwelt auf, diese übermitteln dieselben wie Telegraphendrähte unferm geistigen Zentrum.

Wir besitzen nun verschiedene Nervenenden zur Aufnahme der Außensvorgänge. Für den Schall die Gehörnerven, für Luftschwingungen die Sehnerven des Auges. Mit den Lichtstrahlen empfangen wir aber von der Sonne gleichzeitig auch Wärmestrahlen durch die Schwingungen desselben Aethers, und ihre Empfindung wird durch die auf der Haut endigenden Wärmenerven vermittelt. Jedes Nervenende paßt aber nur für eine bestimmte Art von Schwingungen. Die Gehörnerven haben verschiedene

Länge, wie die Saiten eines Klaviers. Die längsten sind den tiefften Tönen, oder den langfamften Schwingungen, die fürzeften den höchften, oder den schnellsten Schwingungen angepaßt. Es vermag das Ohr Tone mahrzunehmen, welchen in der Sckunde 16 bis 7000 Schwingungen der Luftteilchen entsprechen. Der erfte wird hervorgebracht durch eine offene Orgel= pfeife von 10 Meter Länge, für die letztere haben wir als Beispiel die hohen Tone, welche 3. B. Heuschrecken und ähnliche Inseften an warmen Commertagen in den Wiesen durch Reiben ihrer Beine an den Flügeln hervorbringen. Bielfach fehlen aber die Gehörnerven, welche diesen höchsten Tönen entsprechen, und für solche Personen ift eine Wiese, welche andern voll Geräusch erscheint, eine stumme Fläche, obschon sie sonst gang normal hören.

Aehnlich verhält es sich mit dem Sehen. Diejenigen Schwingungen der Aetherteilchen, die sich zwischen 400 Billionen bis 760 Billionen in der Sekunde halten, rufen durch das Auge die Lichtempfindungen hervor: Was beim Schall die Tone, sind hier die Farben. Die langsamften Schwingungen geben rot, dann folgen als Hauptfarben orange, gelb, grün, hellblau, dunkelblau und zuletzt violett mit den schnellsten.

Fehlen auch hier im Ange die einer Farbe entsprechenden Schnerven, so kann es die betreffende Farbe nicht mahrnehmen, es ist für diese Farbe

blind. So gibt es 3. B. viele Rothlinde.

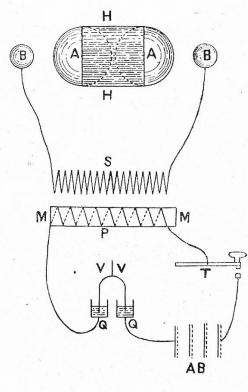
Ein wesentlicher Unterschied zwischen den Schallschwingungen in der Luft und den Aetherschwingungen liegt darin, daß bei jenen die Luftteilchen in der Fortpflanzungsrichtung vor= und rückwärts, diese dagegen quer zur Fortpflanzungsrichtung hin= und herschwingen.

Nun kann man sich aber wohl vorstellen, daß es noch sowohl schnellere als langsamere Bewegungen des Acthers geben müffe, als die mit dem Auge wahrnehmbaren und es ist die Frage zu beantworten, ob und in welcher Art diese sich uns bemerkbar machen. Die Antworten hierauf sind zu

einem guten Teile gegeben.

Die schnellern Schwingungen als 760 Billionen in der Sefunde wirken noch ziemlich intensiv auf die photographische Platte und können also durch diese wieder unserm Sehorgan zugänglich gemacht werden. wird aber auch erreicht, wenn die betreffenden uns zugänglich unsichtbaren Strahlen auf gewiffe Stoffe fallen, dann leuchten diese plötzlich auf, die Hieher gehören 3. B. einen grün, die andern blau, weitere gelblich. Petroleum, schwefelsaures Chinin, ein mit Larium-Platin-Chanur überzogener Papierschirm u. s. f. Diese Erscheinung ist bekannt unter dem Namen der "Fluoreszenz". Die gegenwärtig sozusagen Jedermann, wenigstens dem Namen nach bekannten Röntgenstrahlen, die nicht blos Glas und der= gleichen, sondern eben so leicht auch Holz, Karton, Aluminiumblech u. s. f. burchdringen, gehören jedenfalls auch hieher.

Actherschwingungen von weniger als 400 Billionen in der Sekunde, d. h. unterhalb der untern vom Auge wahrnehmbaren Grenze, äußern sich zunächst als sogenannte dunkle Wärmestrahlen, wie sie etwa von einem geheizten Ofen, insbesondere von einem gußeisernen mit rauher Oberfläche ausgehen. Dabei ist freilich zu bemerken, daß auch mit den gewöhnlichen Lichtstrahlen, wie sie z. B. von der Sonne zu uns gelangen, gleichzeitig Wärme und chemisch, d. h. photographisch wirksame Strahlen verbunden sind; nur reichen jene nach unten, diese nach oben über das Empfindungssfeld des Auges hinaus.


Mit der weitern Abnahme der Geschwindigkeit der Aetherschwingungen verblaffen aber allmählig auch die Wärmewirkungen und nun treten die cleftrischen Strahlen auf, deren Existenz vor den Bertz'schen Bersuchen mir dunkel geahnt wurde, da sie sich in keiner Weise auffällig bemerkbar Bert hat in dem Brennpunkte eines großen Hohlspiegels mit machten. einem Induktionsapparate (Erschütterungsapparat) größerer Dimension zwischen zwei Metallkugeln starke elektrische Funken erzeugt, von denen neben den Lichtstrahlen auch dunkle elektrische Strahlen ausgingen, welche in einer Entfernung von einigen Metern auf einen zweiten gleichen Hohl= spiegel fielen, sich wieder in deffen Brennpunkt vereinigten und zwischen zwei Rugeln einen neuen, wenn auch viel fchwächern Funken erzeugten. Hert wies dann nach, wie diese Strahlen alle Eigenschaften der Licht= strahlen hatten, wie sie von einem Metallspiegel zurückgeworfen, durch ein Prisma gebrochen, von einzelnen Stoffen durchgelassen, von andern daran verhindert wurden; wie die elektrischen Schwingungen sich mit derselben Geschwindigkeit fortpflanzen wie das Licht, nämlich mit 300,000 Kilo= meter in der Sekunde.

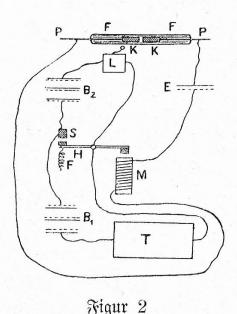
Durch diese epochemachenden Entdeckungen hatte man eigentlich schon eine telegraphische Zeichengabe in die Ferne, mittelst direkter elektrischer Strahlen ohne Drahtvermittlung, wenn auch nur auf kurze Distanz. Es folgten bald wesentliche Verbesserungen zur Erhöhung der Empfindlichkeit und Tragweite.

Die Schweizer Sarasin und De la Rive zeigten 1892, daß die in Flüssigkeit übergehenden Funken viel intensiver wirken, als die in die Luft übergehenden.

Der Italiener Righi hat darauf hin 1893 einen Wellenerreger konstruirt, der viel weittragender war, als der von Hertz benutzte, und nach einer leichten Abänderung durch Marconi die in nebenstehender Figur stizirte Form hat: Zwei größere massive Messing= oder Kupferkugeln A

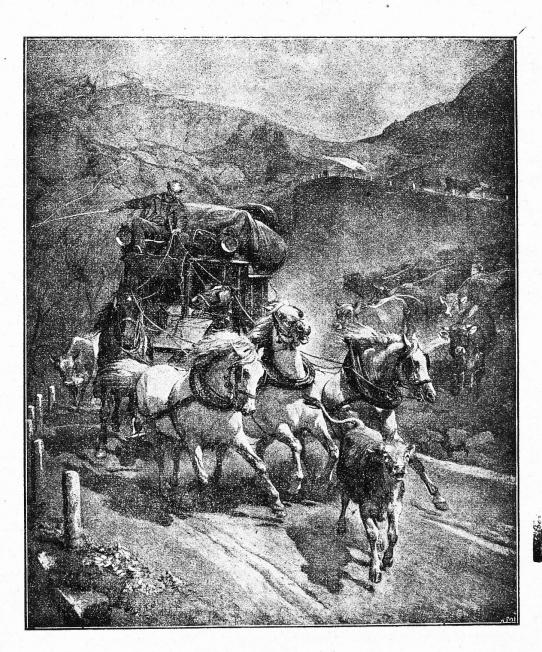
bis zu 10 Centimeter Durchmesser, stehen etwa 1 Millimeter von einander ab und stecken in einem mit Ba= selinöl ausgefüllten Zylinder H aus Den größern Rugeln Hartgummi. A stehen zwei kleinere B gegenüber größerm Abstande. beträchtlich Lettere werden durch Drähte mit der sekundären Spule S eines größern Induftionsapparates in Verbindung gebracht, während die primare Spule P mit einer Affumulatoren=Batterie verbunden, und in diese Leitung noch ein Telegraphenschlüssel T zur beliebigen Schließung und Deffnung des Stromes eingeschaltet ift. Der Indukktionsapparat besteht aus einem ziemlich dicken Bündel M von Eisendrähten, das mit verhältnismäßig wenigen Win=

Figur 1


dungen eines dicken Rupferdrahtes umwickelt ift, welche die primäre Spule P bilben. Letztere ift nun weiter umwickelt mit einer Spule bunnen gut ifolirten Es ist dies die sekundare Spule S (in Drahtes in vielen Windungen. der Figur der bessern Uebersicht wegen nebenan gezeichnet.) Die Enden von P stehen, auf der einen Seite durch Schlüssel T und Affumulatoren= Batterie AB hindurch, mit zwei Quecksilber enthaltenden Räpfen Q in Verbindung, in welche beide ein gabelförmiger dicker Draht V eintaucht. Letzterer wird beim Gebrauche des Apparates durch irgend welche maschinelle Einrichtung wie der Kolben einer Pumpe in sehr raschem Tempo auf= und abwärts geschoben, so daß er abwechselnd aus dem Quecksilber heraus= fommt und wieder eindringt. Wenn dann der Schlüffel T himuntergedrückt wird, so schließt und öffnet der Draht V schnell hintereinander den durch P gehenden Stromfreis. Das Gisenbündel M wird abwechselnd mit gleicher Geschwindigkeit magnetisch und wieder unmagnetisch. Dieser Vorgang erzeugt in S einen ebenfo rasch wechselnden, sogenannten Induktionsstrom, und es springen auf beiden Seiten zwischen B und A, als auch zwischen den großen Augeln A in Baselinöl Funken über. Die letztern zwischen den beiden A sind es nun, welche die auf große Entfernung wirksamen eleftrischen Strahlen aussenden, und diese können durch einen geeigneten Hohlspiegel nach einer bestimmten Richtung geworfen werden, wie dies ja auch etwa mit den Strahlen des eleftrischen Bogenlichtes geschicht.

längeres oder fürzeres Herunterdrücken des Schlüssels T ist es möglich, die Strahlen auf längere oder kürzere Zeit auszusenden. Die soeben beschriebene Vorrichtung ist der Marconische Sender.

Die zweite Apparatenzusammensetzung, der Empfänger, ist nun dazu bestimmt, die von jenen ausgehenden elektrischen Strahlen aufzunehmen und in für uns leicht wahrnehmbare Zeichen umzusetzen. Den Hauptbestandteil bildet der Erreger, ein im Grunde genommen sehr einfaches Ding.


Schon 1884 hat der Italiener Calzecchi gefunden, daß mit Kupferspähnen gefüllte Glasröhrchen für gewöhnlich den elektrischen Strom nicht durchlassen, dagegen wohl, wenn sie der Wirkung elektrischer Funken ausgesetzt sind. Der Franzose Branly hat 1890 diese Versuche in etwas anderer Art wieder aufgefrischt und erst Lodge hat sie 1894 zum eigentlichen Nachweis der Gesetze elektrischer Strahlung benutzt. Er gab einem solchen mit Metallspähnen gefüllten Röhrchen den englischen Namen Cohörer, d. h. Zusammenhänger, weil durch die elektrischen Strahlen die einzelnen Metallteilchen aus noch nicht sicher bekannter Ursache in leitenden Zusammenhang kommen.

Im Deutschen ist die Bezeichnung Frittröhre angenommen worden. Marconi hat dieser nun höchste Empfindlichkeit zu geben versucht. Er stellte mit ziemlich grober Feile Nickelspähne her, die er mit 4% eben solcher Silberspähne vermischte. Dann brachte er in ein Glasröhrchen

von 2½ bis 3 Millimeter lichter Weite und 4 bis 5 Centimeter Länge (F Figur 2) zwei möglichst gut passende zirka 1 Centimeter lange Klötzchen K aus Silber bis auf einen Abstand von ½ bis 1 Millimeter und füllte den Zwischenraum mit oben erwähntem Spähnchengemisch. Von den Klötzchen führen Platindrähte P aus dem Köhrchen heraus und wird letzteres zugeschmolzen. Marconihat noch, um die Empfindlichkeit zu vermehren, die Luft herausgepumpt. Dies ist der eigentliche Empfängerteil. Seine Platindrähte stehen mit einem sehr empfindlichen Relais in Verbindung. Ueber einem mit einer Drahtspuhle umgebenen Eisenkerne bes

findet sich ein sehr leicht beweglicher Hebel H, welcher durch eine schwache Feder F in schwebender Lage erhalten wird. Ueber dem andern Ende ist ein Stück Metall S angebracht. In die genannte Verbindung ist zus dem ein nicht zu starkes galvanisches Element E eingeschaltet.

Die Gotthardpost. Nach einem Gemälde von Koller.

Der Widerstand der Spähne zwischen den Klötzchen K ist im normalen Zuftande fo groß, daß E keinen Strom durchsenden kann. aber die vom Sender ausgehenden Strahlen die Frittröhre treffen, ift die Leitung hergestellt, burch den Strom wird der Gisenkern M magnetisch, bas kleine, rechts am Hebel H über jenem befindliche Gifenftück wird angezogen, H hebt sich links und legt sich an S an. Dadurch werden zwei neue Stromfreise geschlossen mit stärkern Batterien. Im einen mit der Batterie Be ist ein gewöhnlicher Telegraphenschreibapparat T eingeschaltet, der sofort in Bewegung kommt, wie wenn der Hebel H ein gewöhnlicher Telegraphenschlüffel wäre. Da aber nun die Frittröhre ihre Leitungs= fähigkeit beibehielte, wenn sie nicht erschüttert würde, um die Spähne wieder locker zu machen, so würde das Farbrädchen auf dem Papierstreifen einfach eine fortlaufende gerade Linie ziehen. Dieses Schütteln besorgt ber in einem zweiten, mit der Batterie Be versehenen, gleichfalls bei S und H ausetzenden Stromfreise eingeschaltete Klopfer L. Es genügt hiezu eine gewöhnliche elektrische Hausklingel, von der man die Glocke entfernt und an deren Stelle die Frittröhre hingesetzt hat. Sowie die Strahlen die Frittröhre treffen, spielt deshalb nicht bloß der Telegraph, sondern auch der Klopfer, welcher nicht zu ftark an jene schlägt. So lange man durch Herunterdrücken des Telegraphenschlüssels die Strahlung unterhält. nützt das Klopfen nichts, indem die Spähne augenblicklich wieder leitend Wie aber auf der Senderstation bei T (Fig. 1) die Leitung unterbrochen wird, hört durch den letten Schlag des Hammers auf die Röhre die Leitung auf, der Hebel H (Fig. 2) fällt durch die Wirkung der Feder F von S ab, Klopfer sowohl als Telegraph schweigen. hat es so durch längeres oder kürzeres Drücken in der Hand, nach Belieben lange und kurze Zeichen zu geben und derart die gewöhnliche telegraphische Schrift hervorzubringen. Einzelne Nebenteile, die zur Sicherung eines richtigen Ganges dienen, find, um die Uebersichtlichkeit besser zu wahren, nicht aufgeführt. Auch kann man bei richtiger Anordnung statt mit zwei Batterien B1 und B2 (Fig. 2) mit einer einzigen auskommen.

Alle Einzelteile, die aufgeführt wurden, waren schon vor Marconi bekannt, aber es ist immerhin sein bleibendes Verdienst, dieselben in sinn-reicher Weise zu einem Ganzen im Jahre 1896 derart zusammengestellt zu haben, daß eine telegraphische Mitteilung möglich war. Um das System praktisch zu erproben, wurden seit 1897 verschiedene meist wohl gelungene Versuche angestellt. So geschah dies in Anwesenheit Marconis selbst zwischen der Küste Spezia und einem Schiffe, ebenso durch Professor Slaby bei Charlottenburg. Die Korrespondenz gelang bis auf eine Distanz von über 20 Kilometer. Allerdings müssen in diesem Falle von dem Sender

und Empfänger aus Leitungsdrähte an Masten ober mittelst Papierdrachen hoch in die Luft hinaufgeführt werden, um die Strahlen auffangen zu können. Ferner hat sich ergeben, daß Bodenerhebungen, die höher als die in der Luft geführten Drähte waren und in der Korrespondenzrichtung sich befanden, die Zeichengabe beeinträchtigten, ja völlig hinderten.

Wie steht es nun wohl mit der zukünftigen Verwendung dieser Strahlensoder Funkentelegraphie?

Das System, dem noch einige, wenn auch unbedeutende Mängel anshaften, ist sicher noch verbesserungsfähig. Insbesondere ist die Wirkung des Klopfers auf die Köhre nicht immer ganz zuverlässig, und es hat ganz kürzlich Dr. Kupp in Stuttgart statt desselben eine gleichmäßige Drehung der Frittröhre durch den Papierstreisen des Telegraphen selbst eingeführt und will damit ganz sichere Kesultate erhalten haben, was auch die veröffentlichten Lichtdruckabbildungen von Streisenproben bestätigen.

Dann ist noch ein Umstand etwas bedenklich. Man kann ja allersdings mittelst eines Hohlspiegels die elektrischen Strahlen wesentlich nach einer Richtung wersen. Aber nur alle von diesen bestrichenen Empfängersapparate werden nun die Zeichen aufzunehmen im Stande sein. Man hat nun freilich durch Andringung kleiner passender Metallplatten den Empfänger mit einem bestimmten Sender abgestimmt, daß sie am besten zusammen harmoniren; aber es ist das Depeschengeheimnis doch nicht vollständig gewahrt.

Absolut verdrängen wird Marconis Telegraph die gegenwärtig im Gebrauche stehenden kaum, dagegen in verschiedenen Fällen, z. B. im Küstendienst, zur Korrespondenz zwischen dem Festlande und den Schiffen, oder zwischen Schiffen auf offenem Meere unter sich, bedeutende Dienste leisten können.

Reisebriefe aus dem fernen Osten.

Von einer Zürcher Aerztin. *)

Triefft, 25. Mai 1897.

Lieber Max!

Der Abschied wäre glücklich überstanden. Mama selbst hielt sich sehr tapfer. Als sie aber auf dem Bahnhof-Perron von Davos-Dörfli doch mit Abschiedstränen kämpfte, da meinte Edi in seiner trockenen Weise:

^{*)} Mit diesem Brief beginnt die Schilderung der Reise, die eine junge, tatkräftige Zürcher-Aerztin nach dem sernen Often unternommen, um an den übrig gebliebenen Opfern der türkischen Greueltaten ihre ärztliche Kunst und ihr Liebeswerk zu üben. Wir zweiseln nicht, daß unsere geehrten Leser die Wanderungen und Schicksale unserer abentenerlustigen Landsmännin mit Interesse und Anteilnahme versolgen werden.