Zeitschrift: Agrarwirtschaft und Agrarsoziologie = Économie et sociologie rurales

[1980-2007]

Herausgeber: Schweizerische Gesellschaft für Agrarwirtschaft und Agrarsoziologie

Band: - (1985)

Heft: 2

Artikel: Gesunderhaltung des Bodens

Autor: Furrer, Otto J.

DOI: https://doi.org/10.5169/seals-966350

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

GESUNDERHALTUNG DES BODENS

Otto J. Furrer

Jährlich werden in der Schweiz rund 3000 ha Land überbaut. Der Landwirtschaft steht für die Lebensmittelproduktion immer weniger Fläche zur Verfügung. Es gilt daher, zum verbleibenden Boden besonders Sorge zu tragen, um ihn gesund und fruchtbar zu erhalten.

Die Fruchtbarkeit des Bodens ist bedroht durch Bodenverdichtungen, humuszehrende Fruchtfolgen, saure Niederschläge und eine Flut von Schadstoffen. Bedrohlich ist nicht nur die enorme Menge, sondern auch die Vielfalt der Schadstoffe. Nach Schätzungen der OECD sind gegenwärtig um die 60'000 Chemikalien im täglichen Gebrauch. Diese Zahl steigt jedes Jahr um 1000 bis 2000 neue Substanzen weiter an.

Quellen für Schadstoffe gibt es viele. Die wichtigsten lassen sich in drei Gruppen zusammenfassen:

- Die Atmosphäre. Luft und Regen sind zunehmend belastet durch eine Vielzahl von Schadstoffen: Säuren, Schwermetalle, organische Verbindungen. Sie stammen vor allem aus Industrie, Autoabgasen, Heizung, Kehrichtverbrennung.
- Abfallstoffe, wie Klärschlamm, Müllkompost: unvernünftigerweise werden Giftstoffe aus Haushalt und Industrie ins Abwasser und in den Kehricht geworfen.
- In zunehmendem Masse verwendet auch die Landwirtschaft Chemikalien: Pestizide, Futterzusätze, Dünger, Güllezusätze usw.

SCHADSTOFFE IM BODEN

Im Zusammenhang mit den Schadstoffen spielt der Boden eine besondere Rolle. Die meisten Schadstoffe, wo immer sie in die natürlichen Stoffkreisläufe eintreten, gelangen irgendwann in den Boden. Die abbaubaren organischen Stoffe werden dort mehr oder weniger rasch durch die enorme Zahl der Organinismen mineralisiert. Langsam oder nicht abbaubare Stoffe (Schwermetalle:) werden im Boden zurückgehalten und können sich dort anreichern. Der Boden wirkt so puffernd und reinigend, er kann dabei aber selber kontaminiert und nachhaltig geschädigt werden.

Wenn Schadstoffe in den Boden gelangen, können negative Auswirkungen auftreten bezüglich:

- Boden: Eine Beeinträchtigung der biologischen Prozesse im Boden kann zu einer verzögerten Humifizierung (Folge = Rohhumusauflage), zur Bildung ungünstiger Abbauprodukte, zu einer Verschlechterung der Bodenstruktur und zu einer Hemmung des Abbaues organischer Pestizide führen.
- Wasser: Unerwünschte Stoffe gelangen aus dem Boden ins Wasser.
- Pflanzen: Sowohl direkte toxische Wirkung auf das Wachstum als auch Verschlechterung der Pflanzenqualität durch Anreicherung unerwünschter Stoffe,
- Konsumenten (Tiere, Mensch) von belasteten Pflanzenprodukten.

Kurzfristig ist der Boden ein sehr stabiles System mit hoher Pufferkapazität und aktiver, mikrobiologischer Selbstreinigung. Kurzfristig sind daher wenig Schäden sichtbar, was der Grund dafür sein mag, dass bisher dem Schutz des Bodens viel zu wenig Aufmerksamkeit geschenkt worden ist.

Langfristig jedoch besteht eine ausgeprägte Gefährdung des Bodens vor allem durch jene Schadstoffe, die nur langsam oder überhaupt nicht abbaubar sind, aber vom Boden festgehalten werden. Schwermetalle z.B. werden nicht abgebaut: Sie werden auch kaum ausgewaschen, die Pflanzen können nur sehr geringe Mengen aufnehmen. So ist die Gefahr der Anreicherung, der Akkumulation im Boden, besonders auf lange Sicht, sehr gross.

Verschmutzte Luft wird rasch wieder rein, wenn die Verschmutzungsquellen beseitigt werden. Aehnlich ist es bei Fliessgewässern. Bei Seen und beim Grundwasser dauert es schon länger, bis eine Verschmutzung wieder saniert ist. Beim Boden aber kann eine Kontamination irreversibel sein und zu Schäden führen, die nicht mehr zu beheben sind. Deshalb ist hier ein Vorbeugen so besonders wichtig.

ORGANISCHE CHEMIKALIEN

Organische chemische Verbindungen bilden eine sehr umfangreiche Gruppe von Schadstoffen. Die meisten Pflanzenschutzmittel (Herbizide, Fungizide, Insektizide) fallen darunter, ebensosehr schlimme Gifte wie Dioxine (= Seveso-Gift). Da in einem gesunden Boden sehr viele Mikroorganismen (je g etwa 108 Bakterien, 105 Aktinomyceten, Tausende von Arten) vorhanden sind, werden organische Substanzen mehr oder weniger rasch abgebaut. Je leichter abbaubar sie sind, um so schneller verschwinden sie wieder, je stabilier sie sind, um so grösser ist die Gefahr, dass sie im Boden angereichert werden. Ein grosses Problem sind Metaboliten, die als Zwischenprodukte beim Abbau entstehen und unter Umständen toxischer sind als die Ausgangssubstanz. Zur Beurteilung eines Produktes sind genaue Kenntnisse über den Abbau dringend notwendig. Ein weiteres Problem sind die Begleitstoffe, Verunreinigungen, die bei der Synthese einer chemischen Verbindung gebildet werden können und zum Teil sehr toxisch sind.

SCHWERMETALLE

Schwermetalle sind eine sehr wichtige Gruppe von Schadstoffen. Man zählt zu ihnen die Metalle mit einer Dichte von wenigstens 4 g/cm³. Vom biologischen Standpunkt aus werden sie in zwei Hauptgruppen unterteilt (Abb. 1):

A) Lebensnotwendige Elemente, auch Spurenelemente oder Mikronährstoffe genannt. Sie sind in kleinen (mikro) Mengen (Spuren) lebensnotwendig. Wenn sie in zu knapper Konzentration vorhanden sind, treten Mangelerscheinungen auf: Mangelbereich (A1). Anderseits wirken sie toxisch (giftig), wenn sie in zu grossen Mengen, in zu hohen Konzentrationen auftreten: Toxischer Bereich (A3).

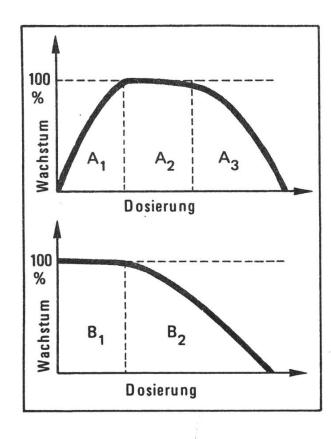


Abb. Einfluss der Schwermetalle auf Pflanzenwachstum

A: biologisch essentielle Metalle: Fe, Mn, Zn, Cu, Mo...

A₁ = Mangelbereich, Spurenelementmangel

 A_2 = Bereich optimaler Spurenelementversorgung

 A_3 = toxischer Bereich, zu hohe Metall-konzentration.

B: biologisch *nicht essentielle* Metalle: Cd, Pb. Ha

B₁ = indifferenter Bereich, noch keine Schädigung

 B_2 = toxischer Bereich, zu hohe Metall-konzentration.

Zwischen diesen beiden unerwünschten Bereichen liegt die Zone einer günstigen Spurenelement-Versorgung, die gewünschte, für die Lebewesen optimale Konzentration (A_2) .

B) Nicht lebensnotwendige, ab einer gewissen Konzentration toxisch wirkende Metalle, wie Cadmium (Cd), Blei (Pb) und Quecksilber (Hg). Hier werden zwei Bereiche unterschieden: ein indifferenter Konzentrationsbereich (B_1), wo die Anwesenheit dieser Elemente von den Lebewesen ertragen wird, wo noch keine Schädigung auftritt, und ein toxischer Bereich (B_2), wo Schäden auftreten, das Wachstum mehr oder weniger gestört wird oder die Lebewesen absterben.

Im Boden werden die Schwermetalle in weitgehend unlösliche Formen übergeführt. An den negativen Ueberschussladungen der Tonmineralien findet eine nicht selektive Bindung von Schwermetallen statt, die durch Salzlösungen austauschbar sind. Dagegen vermögen Oxide und organische Bodensubstanz (Humus) mit ihren pH-abhängigen Oberflächenladungen die Schwermetalle selektiv und damit nicht austauschbar festzulegen. Neben dieser Fixierung an den verschiedenen Adsorptions-

plätzen kann bei pH-Werten über 7 zusätzlich eine Schwermetallfällung in Form von schwerlöslichen Verbindungen (Hydroxide, Karbonate, Phosphate usw.) erfolgen.

Diese Betrachtungen zeigen, dass in Böden mit tiefen pH-Werten und niedrigem Gehalt an Bodenkolloiden schon nach geringer Schwermetallbelastung erhöhte Konzentrationen in der Bodenlösung auftreten können. Bei der Beurteilung des Schwermetall-Problems ist zu berücksichtigen, dass der Humusabbau und die Versauerung der Böden unter dem Einfluss von Düngung, Bewirtschaftung und natürlicher Entwicklung relativ rasch verlaufen kann. Dadurch kann die Mobilität und damit die Toxizität der schon im Boden vorhandenen Schwermetalle stark erhöht werden.

MASSNAHMEN

39t

Um zu verhüten, dass der Boden durch die gegenwärtige Schadstoffflut zunehmend belastet wird und schliesslich stirbt, sind wirksame Massnahmen zu einer drastischen Eindämmung dieser Schadstoffflut dringend erforderlich. Um zweckmässige Massnahmen ergreifen zu können, sind genügend Kenntnisse über die Quellen der Schadstoffe und ihr Verhalten in den Stoffkreisläufen erforderlich.

Die Vielzahl der Schadstoffquellen, die den landwirtschaftlich genutzten Boden belasten, sei hier in drei Hauptgruppen zusammengefasst:

- Atmosphäre: Gase, Niederschläge, Stäube
- Landwirtschaftliche Hilfsstoffe: Pestizide usw.
- Abfallverwertung: Klärschlamm, Müllkompost usw.

Die Luftverschmutzung ist eine perfide, unheimliche Gefahr für den Boden. Die eigentliche Schadstoffquelle kann sehr weit entfernt, auch jenseits der Grenze sein und ist in vielen Fällen überhaupt nicht bekannt. Wichtige Luftverschmutzer sind das Auto, die Industrie, die Müllverbrennung und die Verbrennung überhaupt (Heizung, Strohverbrennung).

Vom Auto kommen Blei, Stickoxide, Pneuabtrieb (Cd:), Oel, Russ, usw. Wichtige Massnahmen sind: weniger, vernünftiger, sparsamer, langsamer fahren; Verwendung von bleifreiem Brennstoff, Katalysatoren und Cadmium-freien Reifen.

Die Industrie produziert sehr viele verschiedene Luftschadstoffe in grossen Mengen. In vielen Fällen ist noch viel zu tun für eine ausreichende Abgasreinigung. Aber auch hier soll vermehrt versucht werden, Produktionsmethoden zu entwickeln, bei denen möglichst wenig Abfall, Abwasser, Rauch und Staub entsteht.

Die Müllverbrennung produziert riesige Mengen an Schadstoffen, die nur mit sehr grossem Aufwand aus den Rauchgasen entfernt werden können. Eine echte Lösung dieser Probleme wird nur dann erreicht, wenn nicht mehr nur Abfallbeseitigung, sondern Abfallverwertung betrieben wird. Dann ist der Zweck der Verbrennung nicht mehr in erster Linie eine Volumenverminderung beim Abfall, sondern eine Energienutzung jener Komponenten des Mülls, die sich dazu eigenen und wofür keine andere, bessere Verwertung möglich ist. Voraussetzung dafür sind neue Wege beim Einsammeln der Abfälle. Vor allem dürfen problematische Stoffe nicht in den normalen Hausmüll gelangen.

Landwirtschaftliche Hilfsstoffe stellen ebenfalls vielfältige Probleme für den Boden dar. Fungizide, Insektizide und Akarizide werden zwar auf die Pflanzen gespritzt, ein Teil des Spritznebels fällt jedoch direkt auf den Boden, ein weiterer Teil wird von den Pflanzen abgewaschen und gelangt so in den Boden. Ausserdem kann ein Teil via Wurzeln und Ernterückstände oder via Tier und Hofdünger oder via Mensch und Klärschlamm auch noch in den Boden gelangen. Es ist wichtig, die Applikationsmethoden zu verbessern, damit die ganze Wirkstoffmenge den gewünschten Wirkungsort erreicht und somit die Aufwandmengen reduziert werden können. Bodenherbizide, die direkt auf den Boden ausgebracht werden, sollten möglichst durch mechanische Unkrautbekämpfung und angepasste Fruchtfolgen ersetzt werden. Ueberhaupt sind beim Pflanzenschutz soweit möglich alternative Methoden mit geringerer Umweltbelastung einzusetzen.

Futterzusätze tragen Stoffe in den natürlichen Kreislauf ein, die den Boden belasten können. Grosszügig bemessene Zugaben von Spurenelementen (Cu, Zn, Mn, Co, Fe) führen zu erhöhten Schwermetallgehalten in Hofdüngern. Zusätze von Medikamenten, Antibiotika und Hormonen dürfen nicht via Gülle zu Störungen des Bodenlebens führen. Die Mentalität, bei Unsicherheit einen kräftigen Sicherheitszuschlag zu machen und reichlich zu dosieren, ist oft umweltbelastend.

Düngemittel können ebenfalls Stoffe enthalten, die im Boden mit der Zeit Probleme bereiten. Rohphosphat z.B. enthält je nach Herkunft beträchtliche Cadmiummengen. Hier sind Anstrengungen notwendig, Cd-arme P-Dünger herzustellen, sei es durch die Wahl von Cd-armen Herkünften oder durch Fabrikationsmethoden, die das Cadmium eliminieren. In der Stoffverordnung sind Höchstgehalte von 50 g Cd/t P in Düngern vorgesehen.

Die Abfallverwertung, genauer gesagt, die Verwertung von Kommunalabfällen wie Klärschlamm und Müllkompost ist mit besonderen Risiken verbunden. Die Probleme werden verursacht durch Mängel der Entsorungskonzepte. In kommungles Abwasser dürfen neben den Ausscheidungen der Bevölkerung nicht auch noch Giftstoffe irgendwelcher Herkunft eingeleitet werden, sonst wird der Klärschlamm unbrauchbar für die landwirtschaftliche Verwertung. Wenn das Problem der festen Abfallstoffe gelöst werden soll, muss eine möglichst weitgehende Verwertung angestrebt werden. Eine sehr wichtige Voraussetzung für eine erfolgreiche Verwertung ist ein geeignetes Einsammelsystem, das vermeidet, dass Geeignetes mit Ungeeignetem und Schädlichem vermischt wird. Ein Viertel des Hausmülls besteht aus Rüst- und Lebensmittelabfällen und aus pflanzlichen Abfällen aus dem Garten. Dieser Viertel ist wasserreich und verschlechtert die Wärmenutzung der übrigen Abfälle, ist aber ein guter Rohstoff zur Kompostherstellung. Er ergibt einen Kompost, dessen Schwermetallgehalt um einen Faktor 10-100 unter dem des bisher üblichen Müllkompostes liegt. Es ist eine Illusion zu erwarten, dass mit einer technischen Aufbereitung von üblichem Mischsammelgut ein annähernd gleichwertiger Kompost erzielt werden kann. Auch die Schadstoffprobleme bei der Verbrennung dürfen nicht allein nur durch technische Massnahmen bei der Rauchgasreinigung, sondern vor allem auch durch geeignetes Einsammeln angestrebt werden, das einen Brennstoff ohne Batterien, ohne Cadmium, Quecksilber und Blei ergibt.

KONZEPT FUER DAUERNDEN SCHUTZ

Zur Festlegung von Grenzwerten für die Schadstoffbelastung des Bodens wurde bisher meist von einem tolerierbaren Gesamtgehalt des Bodens ausgegangen und dazu die Vorgabe gemacht, dass dieser Gehalt im Boden über einen langen Zeitraum (z.B. 100 Jahre) nicht erreicht wird. Meist wurde auch nicht die gesamte Schadstoffbelastung aus allen Immissionsquellen berücksichtigt, sondern Grenzwerte für bestimmte Quellen, z.B. Luft, Klärschlamm, Wasser, festgelegt.

Dieses Vorgehen weist drei wesentliche schwache Stellen auf:

- 1. Da unsere Böden sehr unterschiedliche Kapazitäten zum Festlegen und dadurch zum Immobilisieren der Schadstoffe, insbesondere der Schwermetalle, aufweisen, ist es problematisch, von einem bestimmten, maximalen Totalgehalt im Boden auszugehen. Bei gleichem Totalgehalt kann in unterschiedlichen Böden der Gehalt an löslichen, daher aktiven Schwermetallen durchaus um einen Faktor 1000 variieren. Zudem besteht die Gefahr, dass die Böden gedankenlos "aufgefüllt" werden.
- 2. Die bedeutendste Schwäche ist die Vorgabe, dass der Boden innerhalb einer bestimmten, also beschränkten Zeit einen kritischen Wert nicht erreichen soll. Der Boden darf nicht nur für eine gewisse Zeit, sondern er muss für immer geschützt werden. Eine stete Akkumulation von Schwermetallen kann also nicht akzeptiert werden.
- 3. Das sektorielle Denken ist die dritte Schwäche. Zum Schutze der Böden müssen unbedingt alle Quellen gleichzeitig beachtet werden. Ein dauernder Schutz der Böden kann nur erreicht werden, wenn

auf lange Sicht die Akkumulation gestoppt werden kann. Es muss für den Boden, präziser ausgedrückt für die durchwurzelte Bodenschicht als "Träger" des Pflanzenwachstums, ein Gleichgewicht zwischen "Import" und "Export" von Metallen erreicht werden, und dies auf einem Niveau, wo keine Probleme zu befürchten sind. Es geht nicht an, dass dauernd mehr Schadstoffe in den Kreislauf eingebracht werden, als darin abgebaut werden können oder als den Kreislauf wieder verlassen.

Beim Schadstoffeintrag in den Kreislauf sind alle Quellen, wie

Regen, Luft, Handelsdünger, Spritzmittel, Klärschlamm, Müllkompost, Staub usw. zu berücksichtigen. Ein Austrag aus dem Kreislauf erfolgt im wesentlichen nur durch Auswaschung aus dem Boden. Unter Auswaschung ist all das zu verstehen, was mit dem Wasser in Tiefen, die unterhalb der Wurzelzone liegen, hinab transportiert wird. Wenn dieser Kreislauf im Bereich der schweizerischen Landwirtschaft (10⁶ ha landwirtschaftliche Nutzfläche im engeren Sinn) betrachtet wird, muss festgestellt werden, dass alle Mineralstoffe, die dem Boden durch die Pflanzen entzogen werden, mit den Hofdüngern und dem Klärschlamm wieder dem Boden zugeführt werden. Was mit Lebensmitteln aus dem Kreislauf "exportiert" wird, wird durch Futtermittelimport mehr als kompensiert.

Bei den Schwermetallen sind zwei Gruppen zu unterscheiden: Metalle, die für das Leben notwendig, essentiell sind (Spurenelemente: Cu, Zn, Co...), und Metalle, die nicht essentiell sind, wie Cd, Hg, Pb. Erstere müssen wie Düngemittel in der richtigen Dosierung zugeführt werden: zuwenig und zuviel ist falsch. Letztere sollen in möglichst geringen Mengen zugeführt werden. Entsprechend lautet der Ansatz:

Essentielle Elemente: Import = Export
Nicht essentielle: Import ≦ Export

Unter Export fällt praktisch nur, was ausgewaschen wird unter Bedingungen, wo sowohl das Bodenleben als auch das Pflanzenwachstum und die Pflanzenqualität noch nicht beeinträchtigt sind.

BEISPIEL CADMIUM

Cadmium (Cd) ist ein Metall mit grosser Toxizität. Nach einer FAO/WHO-Expertengruppe soll ein erwachsener Mensch pro Woche nicht mehr als 0,5 mg Cd aufnehmen. Das macht für die ganze Bevölkerung der Schweiz im Jahr eine Menge von maximal 165 kg Cd. Der Verbrauch an Cadmium in der Schweiz beträgt über 100 t pro Jahr, und etwa 20'000 kg Cd kommen aus der Atmosphäre in Form von Niederschlägen auf unser Land.

Die landwirtschaftliche Nutzfläche (LN) der Schweiz beträgt ohne Alpweiden rund eine Million Hektaren. Der mittlere Cd-Gehalt im Boden beträgt etwa 0.2 g/t Boden. Die obersten 20 cm der 10⁶ ha LN enthalten somit rund 500 t Cd.

Der zulässige Cd-Export ist schwer festzulegen. Primär sind dazu Grenzwerte für Lebensmittel bestimmend. In der Schweiz gelten gegenwärtig folgende Richtwerte je kg Frischgewicht:

-	Blatt-, Spross- und Fruchtgemüse	0.1	mg	Cd
-	Kartoffeln, Getreide	0.1	mg	Cd
-	Wurzelgemüse, Obst	0.05	mg	Cd
-	Fleisch von Rind, Kalb, Schwein	0.1	mg	Cd
-	Käse, Eier, Süsswasserfische	0.05	mg	Cd
-	Schweineleber	0.8	mg	Cd

Die zulässigen jährlichen Entzüge durch die Pflanzen betragen je ha somit etwa:

50	t	Kartoffeln	à	0.1	g	Cd	=	5	g	Cd
70	t	Einschneidekabis	à	0.1	g	Cd	=	7	g	Cd
5	t	Weizen	à	0.1	g	Cd	=	0,5	g	Cd
10	t	Rauhfutter	à	l	g	Cd	=	10	g	Cd

Für Rauhfutter gelten Richtwerte von 1-2 g Cd/t TM (o.l-0.3 g Cd/t Frischsubstanz) im Hinblick auf Tiergesundheit und Cd-Gehalt in Fleisch, Milch und Innereien.

Als zulässige Entzüge sind langjährige Mittelwerte (Fruchtfolge) zu verwenden. Da der Grundanteil hoch ist, dürfte ein Wert von gut 5 g Cd/ha pro Jahr als zulässigen Cd-Entzug durch die Pflanzen diskutabel sein. Dies ist der "Export nach oben" ohne die in den Ernterückständen und Wurzeln eingelagerten Cd-Mengen.

Da bei unseren Klimabedingungen fast die Hälfte des Niederschlags-wassers versickert, kann angenommen werden, dass eine ähnliche Cd-Menge unter die Wurzelzone ausgewaschen wird. 5 g Cd/ha in 500 mm Sickerwasser ergeben einen Gehalt von 1 mg/m³ Wasser. Zulässig im Wasser sind etwa 5 mg Cd/m³. Beim gegenwärtigen Stand der Cd-Belastung des Bodens wird der Cd-Entzug durch die Pflanzen auf rund 2 g/ha 'a geschätzt. In gleicher Höhe dürfte die Auswaschung liegen.

Der gegenwärtige jährliche Cd-Import auf die landwirtschaftliche Nutzfläche der Schweiz kann wie folgt geschätzt werden (t/10⁶ ha):

aus	Atmosphäre	5
aus	Abfalldüngern	2
aus	Handelsdüngern	2
aus	Hofdüngern	2
Toto	10	

Die Cd-Fracht in Hofdüngern wird in dem Masse zunehmen, als der Cd-Entzug durch Pflanzen zunimmt. Ueber 80 % der in der Schweiz produzierten Menge an Pflanzentrockenmasse wird Tieren verfüttert. Ueber 95 % der verfütterten Cd-Menge erscheint wieder in den Hofdüngern. Da zudem beträchtliche Futtermengen importiert werden, ist die Cd-Menge in den Hofdüngern etwa gleich hoch wie der gesamte Cd-Export durch die Pflanzen. Daraus folgt, dass die Summe der Importe aus allen andern Quellen (Atmosphäre, Handelsdünger, Abfalldünger) nicht grösser sein darf als die Exporte durch Versicherung. Diese Bedingung wird aber heute nicht eingehalten.

LITERATUR

FURRER, O.J.: Konzept zur Festlegung von Grenzwerten für Schwermetallimmissionen in den Boden. Schweiz. Landwirtschaftliche Forschung 23 (3), 195-199, 1984.

FURRER, O.J.: Schadstoffe bedrohen die Landwirtschaft. Schweiz. Landwirtschaftliche Monatshefte 62, 35-52, 1984.

Adresse des Verfassers: Dr. Otto J. Furrer

Eidg. Forschungsanstalt für

Agrikulturchemie und Umwelthygiene

3097 Liebefeld-Bern