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I Abstract

Eco-Exergy, an indicator reflecting the state of an ecosystem and the degree of disturbance acting on it is described and a
method of calculation is given. The possible changes in lake ecosystems due to Global Change according to the widely
accepted “new paradigm” in limnology are listed and discussed. The expected changes of exergy caused by changes in
ecosystems are the following: the total pelagic Eco-Exergy content in large lakes must have the tendency to increase, while
structural Eco-Exergy of pelagic community of such lakes is to has a demonstrated trend to decrease. While in case of two
large lakes (Geneva and Baikal), for which the long-term dynamics of exergy is preliminary analysed, these effects are not

observed, the question needs further investigation.
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IIntroduction

At present, a so called “new paradigm” (Livingstone
2008; Gerten 2008) of limnology, denies the individ-
uality of lake ecosystems and relative constancy of
limits, within which parameters of every lake ecosys-
tem fluctuate. This new paradigm proclaims that
lake ecosystems respond in concordance, being
united by common hydrological cycles and climate,
and the unidirectional trend caused by global
changes in the environment (climate change and
pollution). If this is so, comparable changes in the
pelagic community will cause similar trends in such
ecosystem state goal functions as exergy and struc-
tural exergy (see next paragraph). Taking into
account that these goal functions are used for the
assessment of the degree of ecosystem perturbation,
it is necessary to know which

changes of exergy can be caused by

(Wilhelm and Adrian 2008; Thackeray et al. 2008;
Johnk et al. 2008 and many others), if not by every-
body among them, believing in Global Change.

1Eco-Exergy

The term “exergy” denotes a measure of the quality
of energy; as energy is used in any process, it loses
quality and decreases in exergy. Basically, the exergy
is a measure of the thermodynamic distance of a sys-
tem from equilibrium with the surrounding environ-
ment, and therefore, it is both a quantitative and
qualitative measure of the energy (mostly free
energy in the context of ecological systems) incorpo-
rated into a system. It represents the maximum
capacity of energy available to perform useful work as

general tendencies for lakes accord-
ing to the “new paradigm”, now
accepted by many limnologists
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Fig. 1. Exergy is calculated for the system
relatively to the reference environment,
Eco-Exergy relatively to the same system
at the same temperature and pressure,
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and even organic molecules. (after
Jorgensen 2011).
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the system proceeds towards equilibrium, with irre-
versibly increasing its entropy at the expense of
exergy (Ludovisi 2009). Taken by itself, the total
exergy of an ecosystem is a measure of the difference
in entropy between the equilibrium and the actual
state (Svirezhev 2000). The exergy of a system in
equilibrium with its environment is zero.

We may distinguish between technological exergy
and Eco-Exergy: technological exergy uses the envi-
ronment as reference state and is useful to find the
first class energy (work) that a power plant can pro-
duce, Eco-Exergy uses as reference state the same
ecosystem with the same temperature and pressure
but at thermodynamic - chemical equilibrium (Fig.
1). Below, we use the terms exergy and Eco-Exergy
as synonyms

The equation for exergy calculation was proposed by
S.E. Jgrgensen in 1977:

N
Ex=R-T E [6; :In(e; /&) ~{&~€., M, I (D
i=0

where Ex - exergy, J; R - gas constant, J Mol *K-1; T -
temperature, K; ¢, - concentration of component i,
Mol; ¢;,, - concentration of the same component in
the state of thermodynamic equilibrium with envi-
ronment. Mol; n - number of components. This equa-
tion is transformed into the following working for-
mula (look for details Silow et al. 2011a, b): total
exergy of ecosystem, based on chemical energy of
organic matter (biomass) and information, stored in
living organisms (recalculating coefficient 8), can be
calculated as

N
Ex/RT = Y c; - B;. [g detritus equivalent m?] (2)
=1

where Ex — exergy, J; R - gas constant, J Mol K-1; T -
temperature, K; ¢, - biomass concentration, g-m?; and
B; - recalculating coefficient, reflecting quantity of
information, stored in organism. This exergy now is
often called Eco-Exergy (sometimes - exergy index)
to distinguish it from physical or technological exergy
(Jgrgensen 2011).

Another indicator of ecosystem state, based on Eco-
Exergy, was proposed — structural or specific exergy
(structural or specific Eco-Exergy). Structural
exergy is the exergy related to total biomass (Silow
1998; Xu et al. 1999). Unlike total exergy it does not
depend on biomass and it reflects the ability of an
ecosystem to accept and utilize the flow of energy
from external sources, serving simultaneously as an
indicator of ecosystem development, its complexity
and the level of evolutionaty development of biologi-
cal species composed in it.

N N
Exstr = (E Sk ﬁz) : (E C,')—l 1 (3)
i=1 i=1
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We can measure the following aspects of an ecosys-
tem state with Eco-Exergy: 1) the distance from
thermodynamic equilibrium, i.e.a general measure of
total complexity of ecosystem; 2) structure (biomass
and network size) and functions (available informa-
tion) of ecosystem; 3) ability of ecosystem to survive
(expressed via biomass and information of system).
Structural exergy reflects: 1) efficiency of energy use
by organisms; 2) relative information content of
ecosystem and, consequently, the ability of ecosys-
tem to regulate interactions between organisms or
groups of organisms.

Corresponding B coefficients (recalculating coeffi-
cients, reflecting quantity of information, stored in
organism and depending on the number of informa-
tive genes and number of cell types in the organism)
were calculated for many systematic groups and are
published regularly (Jgrgensen et al. 2005; Jgrgensen
2006; Jgrgensen and Faith 2011; Jgrgensen 2011).
These coefficients reflect relative complexity of
organisms (simpler organisms have lower 3 values).
New f values are added every year (Table 1).

IChanges in Lakes Caused by Global
Warming

Let’s observe the possible consequences of climate
change for lake ecosystems basing on the modern
limnology paradigm on structure and functioning of
aquatic ecosystems (Hutchinson 1957, 1967; Wetzel
2001; Kalff 2002; Schwoerbel and Brendelberger
2005).

If the surface temperature of the air rises, so the tem-
perature of the surface water increases too. Long-
term increases of air temperature will cause an
increase in water temperature of the surface layer of
a lake. If persistent the temperature of the whole
epilimnion will increase. There are three phenomena
connected with these processes: (i) strengthening of
water column stability, (ii) prolongation of stratifica-
tion, and (iii) increase of epilimnion volume. These
phenomena were observed in Scandinavian lakes
(Pettersson et al. 2003; Jackson et al. 2007), Lake
Zirich, Switzerland (Livingstone 2003), Lake Con-
stance, Switzerland and Germany (Straile et al.
2003),other European lakes (George et al. 2000; Liv-
ingstone Dokulil 2001; Elliott et al. 2005; Blenckner
et al. 2007), in Great African Lakes (O'Reilly et al.
2003), in Great Laurentian Lakes (King et al. 1997),
and in Experimental Lake Area in Ontario, Canada
(Schindler et al. 1996; Schindler 2001; Findlay et al.
2004), lake Washington (Arhonditsis et al. 2004),
lakes of Wisconsin, USA (Magnuson et al. 1990),
South America (Baiguin and Marinone 1995; Solo
2002), Antarctics (Quayle et al. 2002).

Climatic changes must be reflected by hydrochemical
parameters also, as climate influences both processes

Arch.Sci. (2012) 65:209-214 |
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Table 1. Exergy/Biomass Conversion factors for different groups of organisms

(after Silow & Mokry 2010).

Group Exergy conversion Group

factor, B

Minimal cell 5.8 Brachiopoda

Archaea 13.8 Rotifera 163

Alga 15-298 Chironomida

Crustaceans

Dynophyta 18

Diatoms 66 Copepoda 240
Rhodophyta 92 Mollusca 297-450
Amoeba 38 Gastropoda 312-450

Fungi 61 Macrophytes (Phanerogam)

Worms 91-133 Fish

Plathelminthes 120 Reptilia 833

Nematoda 133 Mammalia

in the waterbody and watershed. So, we can expect a
decrease of oxygen content and an increase of the
nutrients concentration in the hypolimnion, due to
strengthening and lengthening of lake stratification.
Actually lowering of oxygen content is already
observed in some lakes (Straile et al. 2003;
Livingstone 2003; Jankowski et al. 2006; Peeters et
al. 2007; Wilhelm and Adrian 2008). An increase in
nutrients, in particularly phosphorus also has been
observed in the hypolimnion of many lakes, due to
internal processes (Pettersson et al. 2003; Wilhelm
and Adrian, 2008), and an increase of nutrientloading
from the watershed (Yoshioka et al. 2002; Prowse et
al. 2006).

These serious changes in hydrology and hydrochem-
istry of water body must unavoidably be reflected in
the biota. We can expect an intensive development of
phytoplankton, changes in its composition, an
increase of microbial activity, and consequently
changes in zooplankton composition and fish popula-
tion.

In deep oligo- and monomictic lakes the decrease of
spring mixing causes lowering of silicates and phos-
phates concentration prior to phytoplankton devel-
opment (Goldmann et al. 1989; Straile et al. 2003;
Salmaso 2005). The consumption of nutrients by
phytoplankton further decreases the concentration
of dissolved nutrients. Consequently, earlier phyto-
plankton development due to warming (Adrian et al.

I ARcHives Des SCIENCESI
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1999; Peeters et al. 2007) leads to
earlier lowering of silicates, nitrates
and phosphates (Anneville et al.
2002; Weyhenmeyer et al. 2007,
Thackeray et al. 2008).

From the other hand, long and stable
summer stratification causes the
growth of cyanobacteria (Johnk et
al. 2008) and, consequently / poten-
tially (depending on the cyanobacte-
rial taxa) nitrogen fixation. High
temperatures can stimulate the
growth of other algae (Elliott et al.
2005; Huber et al. 2008). So, signifi-
cant increase of primary production
in Arctic lakes is demonstrated for
XX century (Michelutti et al
2005). The rise of temperature was
shown experimentally (Rae and
Vincent, 1998) to stimulate first the
smallest algae (0,2-2,0 pm), than
intermediate sized ones (2,0-20
pm), and then large ones (20-200
pm). The earlier ice-off and rein-
forced input of nutrients from the
watershed favours the mass devel-
opment of small forms of diatoms
(Bradbury et al. 1994; Mackay
2007).

The growth of small-sized rapidly reproducing algae
causes on the one hand, better feeding conditions for
infusoria, flagellates, rotifers and cladocerans(filter
feeding zooplankton), and on the another hand,
worse feeding conditions for copepods and other
catchers. The transfer of energy to higher trophic lev-
els can be decreased by 40-65% (Moline et al., 2004).
Both, direct influences of higher temperatures as
well as changes in feeding conditions affect the shifts
in zooplankton composition (Patalas 1990; Patalas
and Salki, 1992). Warming causes ta shift in the
cladocerans: copepods ratio, as cladocerans react
faster to an increase in food availability and to tem-
perature (Straile et al. 2005). With an increase in
temperature, the development of cladocerans influ-
ences greatly the whole ecosystem (Mayer 1997;
Elser and Urabe 1999; Gillooly and Dodson 2000;
Carpenter et al. 2001; Sommer and Sommer 2006).
The whole structure of the ecosystem changes due to
trophic chains restructuring (Winder and Schindler
2004, Yoshioka et al. 2002).

factor, B
109

300

230-300

356-520

499-800

2127

IExpected and Observed Changes of
Eco-Exergy in Lakes

Now we can transform the changes in lake ecosys-
tems discussed above into changes of Eco-Exergy we

may expect, using Table 1. We can predict the

Arch.Sci. (2012) 65:209-214 1
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increase of total Eco-Exergy, as the primary produc-
tion is predicted to increase with warming, and total
biomass will be increasing, in a way similar to
eutrophication.

Structural Eco-Exergy, vice versa, must decline if
there are changes as listed above. Actually, for phyto-
plankton the preferential development of cyanobac-
teria and other small sized fast reproducing forms
algae is shown under global warming. They have
lower conversion factors, than large-sized slowly
growing phytoplankton species. It is the first driver of
structural Eco-Exergy decrease. An increase of bac-
terial biomass is expected. This is a second driver of
structural Eco-Exergy decrease. Changes in zoo-
plankton composition can be the third driver of struc-
tural Eco-Exergy decrease, as the coefficient for
cladocerans is lower than that for copepods. In the
case of extreme events with hypolimnion isolation
and anoxic conditions, fish kills will be followed by
dramatic decrease of structural Eco-Exergy.
Nevertheless, if we take lakes with calculated long-
term dynamics of exergy and eco-exergy for their
pelagic ecosystems (Silow et al. 2011c), e.g. lake
Geneva (1974-2005) and lake Baikal (1950-1999), we
see that Eco-Exergy in these lakes does not (yet?)
behave in complete accordance with our predictions.
The total Eco-Exergy in lake Baikal tends to increase,
while in Geneva lake it remains approximately the
same. Structural Eco-Exergy in Geneva lake is
decreasing, while in lake Baikal it has no trend, nei-
ther a decrease nor an increase. Long-term dynamics
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of the lake Geneva is more determined by the pro-
gram of lake restoration, including re-oligotrophica-
tion and pollution prevention, which caused a more
intensive grazing of fishes on zooplankton and conse-
quent phytoplankton development, resulted in a
structural Eco-Exergy decrease. As for lake Baikal,
though some trends in its ecosystem can be
explained by climate changes, this giant lake remains
too conservative and too inert to follow general ten-
dencies rapidly.

IConclusion

So, if the hypothesis proposed in the “new para-
digm” in limnology is true, the total pelagic Eco-
Exergy content in large lakes must have a tendency
to increase, while structural Eco-Exergy of pelagic
community of such lakes would tend to decrease.
Yet, in the case of two big lakes (Geneva and Baikal),
for which the long-term dynamics of exergy are pre-
liminary analysed, these effects are not observed,
hence the question needs further investigation.
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