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Mettre les sciences
humaines en équations:
une méthode simple et robuste

Florent DIETERLEN'

Ms. recu le 8 février 2006, accepté le 20 mai 2008

§ Abstract

Bringing equations into humans sciences: a simple and robust method. - A system of n nonlinear coupled differen-
tial equations is constructed out of a set of n time series. The method is based on a nonlinear fit of n time derivatives, each
function of n variables, which can be enhanced by the Newton-Gauss method. Verification of the validity of the method is
done with data constructed using the Lotka-Volterra and Lorenz systems. The method is also applied to psychology (addic-
tions), giving clues for therapy, an explanation of the phenomenon and classification of various types of addictions. A set
of two differential equations is constructed out of data for competition between two bacteria types, and obtains a good
similarity with data. Additionally, this method is applied to macroeconomics (growth prediction) and finance (exchange
rates). The method also applies to n times series and n series over m regions, for at least two different moments: two dif-
ferential equations are constructed, using data for birth rate and alphabetisation, for four different years and 137 coun-
tries. Two solutions are obtained, the first giving a low birth rate and high alphabetisation, corresponding to post-industri-
alised countries, the second (unstable) giving a high birth rate and low alphabetisation, corresponding to peoples in a
pre-industrialised status.

Keywords: time series, differential equations, non linear dynamical system, demography, chaos, psychology.

IRésumé

On construit un systeme de n équations différentielles non linéaires couplées, a partir de données évoluant dans le
temps. La méthode est basée sur un fit non linéaire de n dérivées par rapport au temps, en fonction de n variables, qui
peut étre amélioré par la méthode de Newton-Gauss. Nous vérifions la validité de la méthode avec des données issues de
systémes d'équations différentielles de Lotka-Volterra (oscillations) et de Lorenz (chaos et état stationnaire stable). Nous
avons appliqué la méthode en psychologie, en testant des personnes dépendantes a I'alcool, ce qui permet de donner
des indications thérapeutiques ciblées, d’expliquer mathématiquement le phénoméne et de classifier les types de dépen-
dances. Nous avons construit deux équations différentielles a partir des données de bactéries en compétition, et obtenu
une bonne similarité avec les données. Nous avons appliqué la méthode en économie a la prédiction de la croissance, et
en finance a la recherche d'instabilités. La méthode s’applique aussi a des ensembles de n séries chronologiques ou a n
données sur m régions, a au moins deux dates différentes: nous avons construit deux équations différentielles a partir de
données sur la natalité et I'alphabétisation, pour 4 dates différentes et 137 pays. Nous avons obtenu deux solutions prin-
cipales, la premiere donnant une natalité basse et une grande alphabétisation, correspondant au cas des pays post-indus-
trialisés, et une deuxieéme (instable) donnant une natalité élevée et une alphabétisation basse, pouvant correspondre & un
état pré-industriel.

Mots-clefs: séries chronologiques, équations différentielles, systémes dynamiques non-linéaires, démographie, chaos,
psychologie.

Il. Introduction relles en général, de par son domaine d’analyse (de

«linfiniment» petit a «l'infiniment» grand), mais
Les mathématiques sont le langage des sciences phy-  aussi de par ses méthodes, expérimentales et mathé-
siques, elles le deviennent dans les sciences natu- matiques. Si la physique théorique utilise presque
relles, mais sont encore peu utilisées en sciences hu-  tous les domaines des mathématiques, beaucoup de
maines. La physique est la base des sciences natu-  ses grandes théories sont exprimées avec des équa-
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tions différentielles. On peut ainsi dire que les équa-
tions différentielles forment la base principale de la
représentation scientifique actuelle.

Loutil mathématique principal des sciences hu-
maines sont les statistiques, qui sont en marge du
corps des mathématiques. On a assisté depuis les an-
nées 70 a des essais d’introduire les équations diffé-
rentielles en psychologie et en économie (systemes
dynamiques). En sociologie et sciences politiques
cela semble moins fréquent. On peut lire depuis, de
nombreux articles de psychologie décrivant les sys-
temes dynamiques, d’'une facon ou d'une autre, mais
on en reste, en général, a des voeux pieux, avec de
temps en temps une équation type, a laquelle on
adapte le systeme a décrire, plutdt que de trouver les
équations différentielles qui lui correspondent.

Les économistes et les financiers ont vraiment com-
mencé a explorer ce domaine lors de la mode du
«chaos», a la fin des années 80. La théorie des cata-
strophes a fourni quelques modeles simples
(Zeeman 1974; Ho et Saunders 1980; Rand 1977).
On a réalisé aussi des modeles non linéaires simples
et souvent seulement qualitatifs (Zhang 1999;
Greiner 2007; Stutzer 1980; Zellner et Israelevich
2005). Plus nombreux sont les articles qui portent
sur la nécessité des systémes dynamiques et au fait
que I'économie et la finance sont non linéaires par
essence (Nichols 1993; Grandmont et Malgrange
1986; LeBaron 1994; Rosser 1991) et sur la re-
cherche de non linéarités, de chaos ou de structures
fractales, en économie (Frank et al. 1988; Frank et
Stengos 1988) ou en finance (Hsieh 1991; DeCoster
et al. 1992; Varson et Jalilvand 1994; Peters 1989;
Ambrose et al. 1992).

Je vais montrer ici qu’il est facile de construire des
systemes dynamiques hors équilibre originaux, spé-
cifiques au probleme étudié, a partir de données ou
de tests. Les différentes méthodes permettant de
construire des équations différentielles a partir de
données temporelles sont nombreuses et en général
assez compliquées: intégration par prédicteur-cor-
recteur d’Adams (Brown et al. 1994), analyse fonc-
tionnelle de données (Ramsay et Silverman 2002),
méthodes non paramétriques (Jost et Ellner 2000;
Peifer et al. 2002), méthode des «splines» (Bellman
et Roth 1986), addition de constantes et résolution
de systemes d’équations algébriques non linéaires
(Palaniyandi et Laksgmanan 2004), programmation
génétique (Ahalpara et Parikh 2006a), itérations dis-
cretes (Gouesbet et Maquet 1992), ondelettes
(Ahalpara et Parikh 2006), et presque toujours sur
des données incompletes (Eisenhammer et al. 1991;
Cremers et Hiibler 1987; Crutchfield et Mcnamara
1987; Varah 1996; Boggs et al. 1987). Ces méthodes
sont complémentaires de celle présentée ici, pour
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des données incomplétes, en sciences humaines.
Elle est tellement simple que personne ne semble
avoir pris la peine de la publier. Nous partirons de
I'hypothése qu’elle est connue, mais qu’elle n’a pas
été exploitée en sciences humaines, ni validée.

Cette méthode permet de construire des équations
différentielles ordinaires de facon simple, mais
quand méme robuste, quand on a des données com-
pletes et contenant du bruit de facon raisonnable, ce
qui est souvent le cas en sciences humaines. Elle
permet non seulement de dire si un systeme dyna-
mique est chaotique, oscillant, ou stable, mais aussi
de fournir les équations différentielles du systeme,
et de ce fait, de prévoir son évolution dans les cas
non chaotiques, d’analyser ses états stationnaires et
leur stabilité, et de les simuler pour prédire son
futur. Un autre avantage est que la connaissance des
équations différentielles donne le graphe des in-
fluences mutuelles entre les variables, c’est a dire la
connaissance de la structure du systeme étudié.

Cette méthode est basée sur un fit non linéaire des
dérivées par rapport au temps. La plupart des re-
cherches en sciences humaines ont des données qui
évoluent plutot lentement dans le temps, et sont
assez lisses, ce qui rend cette méthode facile a uti-
liser. Une exception notable est celle des change-
ments brusques de dynamique (il y en a beaucoup en
sciences politiques, par exemple) la chute d'un em-
pire, les révolutions économiques ou politiques, un
changement de majorité, le déclenchement et la fin
d’une guerre, le passage a I'indépendance, la transi-
tion vers la démocratie, les changements d’opinion,
etc.

B1l. Description de la méthode
et validation

11.1. Choix du systéme et des variables

Les premiers chercheurs appliquant les systemes dy-
namiques utilisaient les influences mutuelles entre
les composants du systeme (un «graphe») pour cons-
truire des équations différentielles, ou bien ils pre-
naient des équations différentielles connues et es-
sayaient d’adapter leur modele a ces équations
(Haken et Stadler 1990; Tschacher et Dauwalder
2003). Nous verrons que le choix des approches est
plus large, et qu'on peut utiliser le graphe des in-
fluences, les données temporelles (la dynamique obs-
ervée, deux époques ou une estimation de I'évolution
du systeme dans différentes configurations peuvent
suffire) ou une combinaison de ces approches (voir
graphe 1).

Arch.Sci. (2008) 61: 49-64 |
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Quelle que soit I'approche, T'utilisateur choisit d’a-
bord un systeme qui évolue dans le temps: un organe,
un étre vivant, un groupe d’humains, un marché fi-
nancier, une banque, une économie, un pays, la
Terre, etc., et un phénomene a décrire: dysfonction-
nement de I'organe, dépendance a une drogue chez
une personne, chute d'un empire, démographie de la
Terre, risque de crash financier, évolution du taux de
change ou de matieres premieres, relation entre em-
ploi et facteurs économiques d’un pays, lien entre
économie et taux moyen de CO, (et donc tempéra-
ture moyenne de la terre), etc.

I choisit ensuite une ou plusieurs variables (il vaut
mieux commencer par peu de variables) dont on
pense qu’elles s’influencent peut-étre mutuellement,
et qui sont caractéristiques du systeme et du phéno-
mene a étudier.

Pour le nombre de variables, idéalement, on doit faire
un compromis entre un nombre suffisant (pour que le
systeme décrit soit assez complet), et pas trop (pour
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qu’elles participent a la description du systéme, c’est
a dire que leur apport au pourcentage de la variance
soit suffisamment élevé).

Il. 2. Présentation des données

Les valeurs en question, c’est a dire les données, doi-
vent étre soit:

0 a) Représentées dans plusieurs endroits a deux mémes dates
suffisamment rapprochées (deux est un chiffre minimum, mais
plusieurs dates valent mieux, voir la démographie plus loin)

i b) Soit en un méme lieu mais a de nombreuses dates
simultanées (voir compétition entre bactéries, économie et
finance plus loin).

B ¢) Une troisieme possibilité est de connaitre I'évolution (qui
correspond a la dérivée par rapport au temps) des variables
pour une partie importante des configurations du systeme
(voir psychologie plus loin).

On calcule pour chaque valeur des variables la dé-
rivée par rapport au temps. On utilisera la méthode
des différences finies a trois ou cinq valeurs ou, dans

Graphe 1: Graphique des relations entre les différents aspects de la modélisation dynamique en sciences humaines.Le systéme

dynamique, c'est-a-dire les équations différentielles, est construit a partir de données historiques directement (ici l'exemple en

économie), ou a partir du champ de vecteurs (ici l'exemple en psychologie). Ces deux méthodes peuvent étre aidées par la
connaissance partielle du graphe des relations et par celle de la trajectoire du systeme. Les équations différentielles permettent

de retrouver le graphe des influences.

24 -561

Surfaces (membre de droite
des équations différentielles)

Trajectoire dans I'’espace de phase

Données historiques (tableau de chiffres)

36 094 \, Equations dynamiques

Graphes des relations d'influence

Grilles des champs de vecteurs de I'évolution

(Equations différentielles)

7,

Graphique de I'évolution
O dans le temps
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le pire des cas, a deux valeurs. Méme des variables
variant rapidement (cours des changes en finance)
peuvent étre modélisées ainsi.

On obtient ainsi, pour 7 variables, 2n colonnes: 7 co-
lonnes de variables, et 7 colonnes de dérivées par
rapport au temps de ces variables.

Il. 3. Traitement des données, construction des
équations différentielles

L'étape suivante consiste a faire une régression non
linéaire avec ces 2n colonnes: on doit trouver pour
chaque colonne de dérivées, une fonction non li-
néaire, en général polynomiale, dépendant des 7 va-
riables. Pour cela, on peut rentrer suffisamment de
non linéarités dans un logiciel faisant une régression
linéaire (SPSS, Splus, etc.). Suivant les cas, on gar-
dera les termes donnant le meilleur fit, on peut aussi
utiliser les méthodes «forward» et «backward», qui
donnent directement ces termes. Le pourcentage de
variance expliquée R? est important, il peut per-
mettre de savoir si le nombre de variables est suffi-
sant ou non.

On trouve alors les termes de droite des équations
différentielles, il suffit alors de rajouter les da;/di a
gauche et I'on a les n équations différentielles:

dx;/dt = fi(x,),avec 7 et j allant de 1 a 7.

1. 4. Analyse des équations différentielles

La connaissance des 7 équations différentielles nous
permet de connaitre beaucoup de caractéristiques
sur le systéeme considéré:

B Son évolution (solution du systeme), simulée par un logiciel
adéquat (Mapple, Matlab, etc.), sur la durée des données et
sur |'avenir. L'obtention d'équations différentielles permet na-
turellement de la simuler avec un logiciel (Mapple, Matlab,
etc.). Cela permet d’une part de prédire |'évolution, d'autre
part de comparer cette évolution prédite avec la réalité. L'ap-
plication de la méthode Newton-Gauss permet d'affiner les
coefficients et exposants des équations différentielles en fittant
au plus prés la courbe prédite et la courbe d'évolution réelle.

B Ses états stationnaires (équilibres dynamiques vers lesquels il
tend). Cet état «final» ne I'est pas vraiment, car le systéeme
peut dépendre d'une ou plusieurs variables supplémentaires
a partir d'un certain moment, et donc changer d’évolution
(Nottale et al. 2000).

B La stabilité des états stationnaires (Glansdorff et Prigogine
1971).

 L'existence éventuelle d'oscillations (obtenue grace au calcul
de stabilité) ou de chaos.

H Les bifurcations vers d'autres états stationnaires, liées a une
perte de stabilité.

I ARcHIVES DES SCIENCESI
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Il. 5. Prédictions

Les prédictions temporelles se manifestent de plu-
sieurs facons:

B La forme explicite de la solution donne I'évolution du syste-
me dans le temps (toujours en fonction de la précision des
données).

B Le calcul de stabilité, dans le cas stable, donne une indication
sur le temps que le systeme mettra pour atteindre |'état sta-
tionnaire.

 De méme, dans le cas oscillant, le calcul de stabilité donne la
période du cycle.

0 Description géométrique (Abraham et Shaw 1983): Les
termes de droite des équations différentielles, trouvés grace
a cette méthode, sont des surfaces (ou hypersurfaces) dans
I'espace des dérivées temporelles en fonction des variables.
Chaque point des données se trouve idéalement sur cette
surface. Dans la réalité, ces points se trouvent prés de ces
surfaces, et ce sont eux qui permettent de trouver ces
surfaces par régression non linéaire. Quand le systéme part
d’un point éloigné de I'état stationnaire, les points seront au
début éloignés des surfaces en question, et ces points
particuliers sont de peu d'utilité pour appliquer la présente
méthode.

I11l. Validation et robustesse du modéle

1Il.1. Modéle de Lorenz
II1.1.a. Cas chaotique

Nous avons pris le cas classique du modele de
Lorenz (Lorenz 1963):

dx/dt =s (y—x)
dy/dt =rx —xz -y
dz/dt = xy — bz

Les parametres valent, pour le cas chaotique: s = 10,
r=28,b=8/3

On retrouve les équations de Lorenz a partir de peu
de données si les dérivées sont bonnes et les données
réparties sur un grand intervalle, avec plus de don-
nées siles dérivées sont moins précises. J'ai utilisé la
méthode des différences finies a 5 points pour cal-
culer les dérivées.

Les points de la courbe de I'erreur en fonction du
bruit ne sont pas sur une droite mais sur une para-
bole. Pour trouver son équation, on a pris les loga-
rithmes des valeurs (en omettant 'origine, Fig. 1), ce
qui nous donne I'’équation suivante, qui est une loi en
puissance:

Erreur = 0,3116 (bruwit)!-2%

Arch.Sci. (2008) 61: 49-64 1
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Erreur due au bruit

'
o
o

L erreur

B régression linéaire

Erreur absolue totale

Bruit

Fig. 1: Logarithme de la somme des erreurs absolues en
foriction du logarithme du bruit (losanges bleus), comparées
a la régression linéaire (carrés roses), aussi sur les
logarithmes. Cette derniére définit une loi en puissance,
d’exposant 1.295. Unités: bruil: logarithme du pourcentage
de bruit ajouté (0.1=10% de bruit); erreur: logarithme des
unités arbitraires des parametres des équations.

On a fait directement le graphe des logarithmes des
erreurs en fonction du logarithme du nombre de
points utilisés, toujours tous les 0.01 unités de temps
(arbitraire, dépend des unités des parametres de I'é-
quation, eux aussi arbitraires ici), a partir du temps 1.
On a aussi une loi en puissance (Fig. 2):

Erreur = 238097 (nombre de points) 4157

Fig. 2: Logarithme de la somme des erreurs absolues
(losanges bleus) due au manque de point ('erreur diminue
avec le nombre de points) en fonction du logarithme du
nombre de points (carrés roses), comparées a la régression
linéaire, aussi sur les logarithmes. Cette derniere définit une
lot en puissance, d’exposant —4.137. Unités: Nombre de
points: logarithme du nombre de points: erreur: logarithme

des unités des parametres des équations

Erreur due au manque de points
-0.5
-

1.5 4 - . log (erreur)
K<) B régression linéaire
8254
L B
S .35+ .
2 =
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-6.5 b
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1 1.5 2 2.5 3
Log (nombre de points)

I ARcHIvEs DEs SCIENCES

Florent DIETERLEN | 53 |

Remarquons que nous avons pris des points équidis-
tants, ne couvrant pas tout I'espace de phase, mais
seulement une petite partie, en particulier lorsque
nous avons pris peu de points.

II1.1.b. Cas stable

La derniere remarque est encore plus vraie lorsque
I'on veut retrouver les équations dans le cas non chao-
tique, avec des états stationnaires (par exemple en
prenant les 3 parametres s =b =7 = 1. Le cas stable est,
de facon étonnante de prime abord, plus difficile a ré-
soudre pour un modele comme celui de Lorenz que
pour une application quelconque. En effet, on doit si-
muler les équations a divers moments, a partir de va-
leurs initiales. Or des valeurs initiales quelconques
donneront des points qui seront, pour des petits ¢, loin
des hypersurfaces des équations, et pour des ¢ grands,
seront trop pres de I'état stationnaire, et les &, y et 2
obtenus seront trop proches les uns des autres. Cela
n’arrive pas dans la grande majorité des applications,
sauf lorsque le systeme a été perturbé et est dans la
phase de rapprochement des surfaces des équations,
comme pour un point initial pris au hasard.

Ainsi, pour 10 points pris aux temps 1 a 10 avec la
condition initiale (5, 5, 5), avec les dérivées calculées
a partir des équations, on obtient une équation pour
dz/dt trées proche de Lorenz (a4 un millieme pres),
mais les 2 autres équations sont mauvaises. Comme
on calcule les dérivées par la méthode des diffé-
rences finies, le fait que les valeurs varient beaucoup
moins que dans le cas chaotique, entraine que le
calcul des dérivées par la méthode des différences fi-
nies est bien meilleur, cela donne des valeurs tres
proches des valeurs «réelles», et ne nécessite pas
beaucoup plus de données pour une méme précision
dans les résultats.

1ll.2. Cas oscillant: Lotka-Volterra

Considérons le modele de Lotka-Volterra pour le cas
oscillant:

dx/dt = x -2y
dy/dt = -y + 2y

Le point initial n’est pas trés important, comme dans le
cas chaotique, pour autant que 'on n’ait pas des valeurs
pour des tres petits ¢, car le systéme varie assez vite.

a) 12 points entre t = 6 et t = 13, avec 3 chiffres significatifs
donnent I'équation exacte, a moins d'un milliéme pres.

b) Les résultats avec plus de points sont proches de ceux
obtenus avec Lorenz: le premier critére pour avoir de bons
résultats est la répartition des points, puis le nombre de
points et la précision des données.

Arch.Sci. 2008) 61: 49-64
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On ne s’approche pas d’un état stationnaire qui en-
leve de linformation pour la méthode, en rappro-
chant les points. Pour les applications, le cas oscillant
est comme les autres cas, il faut seulement que les va-
leurs des variables soient suffisamment différentes
entre elles pour que 'on puisse construire les hyper-
surfaces (dans un espace a n dimensions, ou 7 est le
nombre de variables) correspondant aux équations
différentielles.

IIV. Applications

IV.A. Données uniquement temporelles ou connaissance
de I'évolution de chaque état:

Ce type de données intervient dans les domaines sui-
vants:
H Finance: Dow Jones, change, etc.
B Climat: température moyenne de la terre, CO2 moyen, etc.
B Médecine, biologie, chimie
§ Psychologie, sociologie

IV.A.1. Test sur I’évolution du systéme
(connaissance des dérivées approximatives
pour chaque état): exemple en psychologie -
psychiatrie

Les psychologues savent que les statistiques ne peu-
vent pas résoudre tous leurs problemes, surtout ceux
ou apparait le temps. Ils parlent depuis longtemps
d'utiliser les systemes dynamiques (Guntern 1982;
Haken et Stadler 1990; Robertson et Combs 1995;
Van Gelder 1998; Smith et Thelen 1993; Biitz 1992;
Pezard et al. 1996; Barton 1994; Priel et Schreiber
1994; Paulus 2003). En 1976, lors du 80° anniversaire
de Piaget, Prigogine avait été invité. Mais le dialogue
n'est pas passé, et I'école de Prigogine, prolifique
dans d’autres applications des systemes dynamiques,
n’a pas percé.

IIs pourraient pourtant utiliser un systeme d’équations
différent pour chaque application, mais n’ont pas les
instruments pour construire ces systeémes, contraire-
ment aux biologistes et certains chercheurs en méde-
cine quiont trouvé des équations originales, correspon-
dant a leur problemes respectifs, avec souvent des cal-
culs de bifurcations (Goldberger et al. 1988; Kahn et
Hobson 1993; Stam et al. 1999; Erdi et al. 1993; Vaidya
etal. 1991; Fussmann et al. 2000; Eyal et Akselrod 2000;
Cavalcanti 2000; Sturis et Brons 1997; Porcher et Gat-
to 2000; Goushcha et al. 2000; Abbiw-Jackson et Lang-
ford 1998).

D’autres chercheurs en psychologie ont mis leurs théo-
ries dans un autre cadre, celui de la théorie des cata-
strophes. La aussi, on a affaire en général & une sorte
d’équation-type (celle delafronce), alaquelle les psycho-
logues ont essayé de restreindre leurs modeles, en res-
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tant en général dans le qualitatif, et ou sans mettre d’é-
quations (Lange et Houran 2000; Juhel 1996; Byrne et
al. 2001; Clair 1998; Craigie 1980; Zeeman 1973).

Par contre, des résultats intéressants pour la modéli-
sation, la dimension des attracteurs, ont été obtenus
par certains auteurs (Hornero et al. 1999; Guastello et
al. 1999). D’autres ont utilisé des systemes simples d’é-
quations différentielles (par ex. Partridge 2000), ou
des systemes dynamiques a temps discret (Gregson
1999; Warren et al. 2003).

Je présente ici une méthode appliquée a des person-
nes atteintes d’alcoolisme. Lapproche présente tran-
che avec l'approche traditionnelle des médecins et
psychologues: au lieu de faire des statistiques (par ex.
Jost et Ellner 2000; Daeppen et al. 1996; Rosenberg et
al. 1992) sur une population, et de comparer les pa-
tients ala moyenne, nous étudions les comportements
individuels des patients.

La plupart des modeles explicatifs ou thérapeutiques
del'alcoolisme sont ou bien seulement quantitatifs (sta-
tistiques, par ex. Ellis et McClure 1992), ou bien qua-
litatifs (par ex. Galanter 1993). Il en va de méme pour
lesmodeles classifiant les types d’alcoolisme (Reynolds
et al. 1992; Babor et al. 1992). Mohan et al. (1992) dis-
cutent des choix de variables liées a I'alcoolisme.

Deuxmodeles ont abordé I'alcoolisme par la dynamique:
un modele discret non linéaire (Warren 2002, 2003)
qui n’'utilise qu’'une seule variable, la consommation,
et est donc trop simple pour expliquer, guérir ou clas-
sifier. autre modele est plus proche du notre (An der
Heiden et al. 1998): il construit deux équations diffé-
rentielles, proches des modeles de la théorie des cata-
strophes, mais il n’est que qualitatif, avec deux varia-
bles, la consommation et la variable psychologique «frus-
tration». Aucune donnée expérimentale n’est utilisée.
Il donne cependant des comportements intéressants,
et présente un début de classification des comporte-
ments alcooliques.

Lemodele décritici est explicatif et thérapeutique, qua-
litatif et quantitatif, et basé sur la méthode présentée
dans cet article. J’ai réalisé cette étude pour plusieurs
alcooliques, et pour différentes situations: chute vers
l'alcoolisme, arrét del'alcoolisme, et rechute, chaque fois
avec seulement deux variables et donc deux équations.

Lapremiere variable est évidemmentla consommation
d’alcool, en unités standard. L'unité n’est pas impor-
tante, car on compte les proportions par rapport a la
consommation maximale.

Pour chaque personne testée, j’ai cherché, en discu-
tant, a trouver la deuxieme variable, psychologique,

liée a la consommation par des influences mutuelles,
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Exemple de résultat de test:

variation de la consommation d'alcool:
0 0.25 0.5

consommation

variation de la conscience du probleme:
0 0.25 0.5

0.75

consommation

4= augmentation maximum, -4=diminution maximum

1 du probleme

1 du probleme

J’ai montré ici un exemple simple de
test sur un ancien alcoolique, décri-
vant sa dynamique avant l'arrét. Sa
variable psychologique est la cons-
cience du probleme, qui a été a I'ori-
gine de son arrét de l'alcool. Le ta-
bleau 1 montre le résultat du test.
Chacun des chiffres représente la dé-
rivée par rapport au temps, c’est-a-
dire le degré d’augmentation ou de
diminution, de la consommation sur
le tableau supérieur, et de la cons-
cience du probleme sur le tableau in-
férieur.

conscience

conscience

La Fig. 3 montre la superposition de
ces deux tableaux, qui donne le
champ de vecteurs sur le systeme.

Tableaw 1: Tableaw des résultats des questions posées a la personne testée. Le ta-
bleau du haut correspond aux chiffres d’augmentation ou diminution de la con-
sommation d’alcool. Le tableaw du bas donne les variations de conscience du pro-
bleme. En abscisse, la variable psychologique (conscience du probléme dans ce
cas), en ordonnées, du haut vers le bas, la consommation d’alcool. Les unités de ces
deux variables sont les proportions par rapport a la valeur maximum (consomma-
tion maximum par jour, et conscience aigué du probléme). Les unités des valeurs
du tableau, c’est a dire des variations de consommation et de conscience, sont
notées de —4 (diminution maximum) a +4 (augmentation maximum,). Elles sont

approximatives puisque subjectives, mazis la méthode est suffisamment robuste

pour accepter ces incertitudes.

c’est a dire par feedbacks positifs et négatifs. Les va-
riables trouvées pour ces quelques sujets ont été:
- avant la chute: I'anxiété, la dépression, trop de confiance en
SOi;
- avant I'arrét: la conscience du probléme, le bien-étre du a la
gratification, la pression pour arréter;
- avant la rechute: I'anxiété, le stress, les problémes socio-
économiques.

Chacune de ces variables influencait et était influen-
cée par la consommation.

Puis j'ai demandé a la personne si elle avait tendance
a plus ou moins boire (et de quantifier approximati-
vement cette augmentation ou diminution), sur une
durée de quelques jours (plutdt que dans la journée,
ce qui donnerait un tout autre modele) selon son
«état». Par exemple: «lorsque vous buviez moyenne-
ment et que vous étiez tres conscient du probleme,
aviez-vous tendance a boire plus ou moins, et de com-
bien?». Ce genre de question était répété pour 25
états (consommation égale a 0, 0.25, 0.5, 0.75 et une
fois la consommation maximum, idem pour les états
psychologiques) et pour chacune des deux variables
(variation de la consommation et variation de la va-
riable psychologique, voir tableau 1).
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Les fleches rouges ont une longueur
proportionnelle aux chiffres du ta-
bleau supérieur (consommation
d’alcool) et les fleches vertes ont
une longueur proportionnelle aux
chiffres du tableau inférieur, la cons-
cience du probleme. Les fleches
noires sont la somme des vecteurs
rouges et verts pour chaque point de
l'espace de phase. Chaque état est
représenté par 2 coordonnées, la
consommation et la conscience du

Fug. 3: Graphique du champ de
vecteurs construit grace au
< tableau 1. Axe horizontal:

«Conscience du

N probleme» (unités. Proportions
| par rapport au maximum); Axe

> vertical: Consommation d’alcool
(du haut vers le bas, comme

pour le tableau, unités

identiques au tableau 1). Les
vecteurs rouges (proportionnels aux chiffres du tableau
supérieur, variations de la consommation d’alcool) et verts
(proportionnels aux chiffres du tableaw inférieur, conscience
du probleme) ont une longuewr proportionnelle aux chiffres
du tableaw 1 (unités du tableaw 1). Les vecteurs noirs
représentent le champ de vecteurs, et sont égaux a la somme
des vecteurs rouges et verts. Les lignes rouges et vertes en
gras sont les états du systeme pour lesquels la consommation
d’alcool (rouge) et la conscience du probleme (vert) sont
constantes. Le point noir au milieu, leur intersection, est
l'état stationnaire du systeme, c’est a dire l'état vers lequel
tend la personne testée. Dans les équations qui suivent, la
ligne sinueuse (non linéaire) rouge a été approximeée en une
ligne droite (linéaire) par soucis de simplicité. Cette
approximation ne change pas le probleme dans ce cas précis.
Les non linéarités doivent étre prises en compte en général.
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probleme. La figure montre donc tous les états possi-
bles de cette personne pour ce qui est de sa situation
par rapport a ces 2 variables ou coordonnées. On a
ainsi le champ de vecteur du systeme. Un modele
plus sophistiqué aurait plus de variables, et le champ
de vecteurs aurait plus que 2 dimensions, mais serait
difficile a interpréter visuellement.

Les deux lignes (rouge pour le tableau des variations
de consommation et verte pour le tableau des varia-
tions de conscience du probleme) représentent les
états stationnaires pour chacune des variables: elles
montrent les états (psychique et consommation) pour
lesquels les dérivées par rapport au temps sont nulles
(consommation et état psychique). Ici les formes de
ces 2 courbes donnent le terme de droite des équa-
tions différentielles du systeme. Liétat stationnaire du
systeme (en I'occurrence la personne testée) est 'in-
tersection entre les deux courbes (voir Fig. 3). Il peut
y avoir en général plusieurs intersections et donc plu-
sieurs états stationnaires.

Dans ce cas précis, on a un seul état stationnaire, vers
le milieu du graphe: avant l'arrét de l'alcool, cette
personne tendait a4 boire en moyenne la moitié de sa
dose maximale, et a avoir une conscience du pro-
bleme réduite de moitié. Pour cette variable psycho-
logique, il s’agit évidemment d’une quantification
subjective. Le fait que la réalisation de modeles sur
plusieurs personnes ait donné des résultats chaque
fois correspondant a la réalité montre que I'on peut
utiliser de telles variables, avec une marge d’erreur
assez grande, sans que le résultat soit faussé. La mé-
thode montre donc une certaine robustesse.

Un examen visuel du champ de vecteur montre que le
systeme va vers cet état stationnaire en un mouve-
ment tournant, effectuant une spirale. Ce résultat,
comme toutes les informations réunies sur ce gra-
phique, se retrouvent dans 'analyse des équations ob-
tenues: le calcul de stabilité donnera des valeurs pro-
pres complexes,; ce qui signifie que le systeme oscille.

Les équations différentielles sont données par la forme
des courbes rouges et vertes du graphique. Nous al-
lons les approximer ici par des droites, par souci de
simplification. Dans ces modeles appliqués a la
psychologie, on a en général a faire a des courbes non
linéaires, ce qui donne des équations différentielles
non linéaires. Leur étude n’est pas beaucoup plus com-
pliquée que pour des équations linéaires, car les non li-
néarités sont en général des carrés ou des cubes. Le
cas linéaire permet des oscillations mais exclut une bi-
furcation, qui nécessite des non linéarités.

Pour étre précis, on aurait du prendre ici une courbe
de degré 3 pour l'alcool. Cela ne change pas beau-
coup I'étude du cas, car il aurait fallu que les courbes
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soient assez différentes (comportement différent
pour la personne testée) pour qu'on ait 3 intersec-
tions au lieu d’une. Certains des alcooliques testés
étaient dans ce dernier cas, avec 3 états station-
naires, les 2 extrémes stables et celui du milieu in-
stable. On peut alors avoir un saut d’'un état alcoo-
lique extréme a un état sobre (les 2 états extrémes
stables), ou réciproquement, lorsqu’'on change un
des parametres (un des aspects du comportement).

Ici, les droites ont approximativement pour équa-
tions:

Yy=-3x/2+ 12
r=y

On en déduit facilement les équations différentielles:

dx/dt = -8x - 2y + 24
dy/dt =x -y

Notons que ces équations ressemblent aux célebres
équations de Lotka-Volterra, et ont un comportement
similaire. La différence essentielle est que les oscilla-
tions sont ici atténuées (comme dans les exemples
du paragraphe suivant sur la compétition entre bac-
téries), d’ou une trajectoire en spirale, au lieu d'une
trajectoire constituée de cercles concentriques dans
le cas des oscillations pures.

Lanalyse des équations donne un état stationnaire a
x =y = 4.8, comme trouvé approximativement sur le
graphique. Le calcul de stabilité donne des valeurs
propres complexes a partie réelle négative, caracté-
ristiques d’'un systéme stable oscillant atténué et se
dirigeant en spirale vers un attracteur. La valeur des
parties imaginaires est liée a la période des oscilla-
tions (que I'on peut retrouver dans le comportement
de la personne en question) et les parties réelles sont
liées au temps moyen de ces oscillations, jusqu’'a
I'état stable. Toute fluctuation du systéeme (petites
perturbations qui affectent la personne) va perturber
le systeme (la personne est «déstabilisée»), qui re-
viendra ensuite vers son état stable en oscillant.

A tout systéme d’équations différentielles comme
celui décrit ici, correspond un graphe des influences
mutuelles entre les variables. Ici, ce graphe est repré-
senté dans le graphe 2. Chacun des parameétres (chif-
fres) correspond a une fleche.

On peut aussi voir avec ces équations, le graphe des
influences et le graphe du champ de vecteurs, com-
ment on peut aider le patient (si on avait réalisé
ce modele avant sa guérison, et donc trouvé la bonne
variable psychologique). Voyons-en un exemple.
Remplacons chacun des coefficients des équations
par des lettres:
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dx/dt = -ax — by + ¢
dy/dt =dx —ey +f

Létat stationnaire pour la consommation d’alcool est:
x=(c-bf)/db+a)

On voit que la consommation, dans ce modele sim-
plifié, sera diminuée si
¢, I'influence extérieure sur la boisson (situations favorisant la
prise de boisson par ex.), diminue
f, l'influence extérieure sur la prise de conscience (le conseil
de médecins par ex., augmente
b, la diminution de boisson due a la prise de conscience,
augmente
d, la prise de conscience due aux exces de boisson, augmente.

Ces conclusions peuvent paraitre évidentes, mais
pour des modeles plus complexes, on arrive a des
conseils plus sophistiqués, avec par exemple une bi-
furcation d'un état buveur excessif a un état non bu-
veur ou buveur modéré.

La comparaison des résultats pour plusieurs patients
permet de classer les types d’alcoolisme, et par la
méme les types de traitement.

IV.A.2 Compétition entre populations

Nous donnerons ici un apercu de la méthode appli-
quée aux oscillations dans la compétition entre 2
sortes de bactéries. Nous avons pris les données de
Gause (Jost et Ellner 2000). Ces données sont assez
courtes (18 valeurs, voir annexe), et donnent des os-
cillations qui sont loin d’étre parfaites. En consé-
quence, on ne peut espérer obtenir des équations
donnant des oscillations parfaites. Nous avons ob-
tenu des oscillations dont 'amplitude décroissait au
cours du temps, a partir d’amplitudes correctes. Pour
avoir un bon résultat, la qualité des données importe
plus que leur longueur.
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N Fig. 4: Modele de compétition
entre bactéries en xy, variable z,
comparaison des données (en
vert) avec la simulation (en
blew). Unités: ordonnées =

nombre de bactéries, abscisses =

temps (jours)

N Frig. 5: Modele de compétition
o/l entre bactéries en xy, variable y,

I comparaison des données (en
120

80 \‘; / \1

Yo\ N nombre de bactéries, abscisses =

Jaune) avec la simulation (en
rouge). Unités: ordonnées =

temps (jours)

Jai pris les termes en x, x% vy, y° 2y pour com-
mencer, puis ai rajouté les termes de degré supérieur.
Pour les valeurs des dérivées, nous avons pris les dé-
rivées sur 2 points pour la deuxieme et 'avant-der-
niere mesure, et les dérivées sur 5 points pour les me-
sures comprises entre ces 2 mesures.

Pour les termes jusqu’au deuxieme degré, on obtient
les équations suivantes:

da/dt = 1.108x — 0.00377x% — 0.0145xy
(R?=86%)
dy/dt =-0.812y + 0.0173xy (R*= 83%)

(R?est la variance expliquée)

On constate sur les Figs. 4 et 5 que la premiere os-
cillation est bien reproduite, que la période est assez
bonne, mais que les oscillations diminuent, ce qui
sera toujours le cas. La variance expliquée par le mo-
dele est élevée, au dessus de 80%. Nous verrons plus
loin qu'une variance élevée n’est pas toujours syno-
nyme de succes.

Graphe 2: Graphique des relations dinfluence mutuelles entre les deux
variables du modele simplifié d’un alcoolique. A chaque coefficient des
équations différentielles (a, b, c, d, e, f) correspond une fleche du graphique,
représentant un effet psychologique.

dx/dt = -ax — by + ¢
dy/dt = +dx — ey + f

b: augmentation de la conscience entraine une diminution de la consommation

— e:la

a: Limitation [~ x = Consommation E=======y = Conscience du co:;g;nce &

physiologique d'alcool <\__r_:§>robléme fi’rrnite e":-se
+ méme

d: consommationftrop grande entraine une augmentation de la\gonscience du probléme

c: influence extérieure sur la consommation  f: influence extérieure sur la consommation
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1) Termes jusqu’au troisieme deqgreé:
On obtient les équations suivantes:

dx/dt = 1.299x — 0.00599x% —
0.01705xy + 3.526 10°x%y
(R?=86%)

dy/dt =-1.84y + 0.0387xy — 1.508
10722y

(R?=93%)

On voit sur les Figs. 6 et 7 que I'ajus-
tement est encore meilleur que pour
les équations en xy: le deuxieme pic
coincide presque totalement, et les
amplitudes baissent moins, et cela
pour les 2 variables.
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. Fig. 6: Modele de compétition
entre bactéries en 2%y, variable
x, comparaison des données (en
vert) avec la simulation (en
blew). Unités: ordonnées =
nombre de bactéries, abscisses =

temps (jours)

S Fig. 7: Modele de compétition
entre bactéries en x°y, variable
I Yy, comparaison des données (en
o] | ‘.t‘\ ’ Jaune) avec la simulation (en

o | rouge). Unités: ordonnées =

“‘ o\ / nombre de bactéries, abscisses =
temps (jours)

1) Termes jusqu’au quatrieme degré:
On obtient les équations suivantes:

dx/dt = 1.3066x — 5.973 1022 — 0.01126xy +
1.478 107%%y + 1.0699 10%x%y (R?>=87%)
dy/dt =-5.166y + 0.04151xy — 2.089 10*%x%y +
2.99 107x%y (R%=92%)

Le fit est mauvais dans ce cas. On pouvait le deviner en
voyant que pour x l'alternance des signes n’est pas
respectée. On constate aussi que la variance expliquée
est toujours haute, et que ce fait n’est pas une condi-
tion suffisante pour un bon ajustement. Le fait que
celle-ci soit trop basse dans certaines applications en-
traine par contre un mauvais fit, et indique surtout
qu’on a besoin d’au moins une variable supplémentaire
et/ou d’appliquer la méthode de Newton-Gauss.

Le fit est aussi mauvais lorsqu’on ajoute un terme de
degré cinq.

En conclusion, bien que ces données étaient tres
courtes et avec beaucoup de bruit, la méthode a
donné quand méme des résultats satisfaisants.

IV.A.3. Macro-économie: prévision de la
croissance

Les modeles macro-économiques ne sont presque ja-
mais continus et endogenes (la méthode présente
peut cependant introduire des facteurs exogenes, en
faisant un systéeme ouvert). Je montre ici qu'un mo-
dele continu obtenu griace a la présente méthode
peut donner des prévisions comparables aux modeles
classiques. Je présente ici un modele de prévision de
la croissance.

Plusieurs choix de variables sont envisageables pour la
précision de la croissance: variables constitutives du
PIB (consommation, investissements, importations et
exportations, variations de stock), variables non consti-
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tutives, ou mélange des deux. Je présente ici un
exemple de prévision a bonne précision basé sur des va-
riables non constitutives, suggérées par Sollberger de
I'Office Fédéral de la Statistique (Berne) et basé sur un
rapport de cet office (Rais et Sollberger 2007). Ce choix
est doublement original, étant ni des variables constitu-
tives ni les variables habituellement les plus représenta-
tives de l'influence sur le PIB (salaires, taux d’intérét,
etc.), mais il représente une action désirée, c’est a dire
une influence sur le PIB. Nous ne prétendons pas qu'il
s'agisse des meilleures variables possible, mais dans ce
cas précis, elles ont donné une bonne prévision.

Les 6 variables annuelles sont le PIB (sa mesure du 4¢
trimestre ici), la productivité (PRO) horaire du travail,
la durée (DUR) moyenne du travail par actif occupé, le
chomage (CHO), le taux de participation (PAR) sur le
marché du travail et la démographie (DEM). On a
changé d'unités pour que toutes les variables soient au-
tour de I'unité. La méthode a été appliquée a ces varia-
bles sur les séries chronologiques fournies par 'OFS, en
incluant seulement les non linéarités d’ordre 3, avec le
méthode backward (jusqu’au quatrieme niveau chaque
fois) sur SPSS. Les équations différentielles ainsi obte-
nues ont été simulées sur matlab de 1992 a 2005, et don-
nent un mauvais fit (voir Fig. 8). On a ensuite appliqué
la méthode de Newton-Gauss sur ces équations pour les
fitter aux valeurs données par 'OFS (avec Matlab) et le
fit est devenu bon (voir Fig. 9). Les équations sont (on a
enlevé des décimales pour une question de place):

A(PIB)/dt = -1.47 + 0.43PRO*% + 0.43DUR"%
—0.13PIB397+ 0.86 DEM? 11

A(PRO)/dt =-0.18 + 0.091PRO%% +
0.11DUR'92— 0.836PAR?7 + 0.51DEM?348
d(DUR)/dt =-1.51 + 1.52PIB'! + 0.043DUR¢
—04PIB+ 1.15DEM?9

Fig. 8: Graphique de la simulation en économie, avant d’avoir
appliqué la méthode de Newton-Gauss. Unités: PIB (4° trimest-
re): 10""CHF; Productivité

4 RO horaire (PRO):
s e ; 10CHF/heure; Durée moy-
| S ’ . . par enne du travail (DUR):
55 $-8—68-88 0 o e ®
Wi geeggw 8 88 2 1000 heures/personne;
DEM 3 =
’ G N Chémage (CHO): 10° per-
: T sommes; Participation
? (PAR): rapport de nom-

992 1984 1996 1908 2000 2002 2004 2008

bres de personnes; effet

démographique: rapport

" de nombres de personnes.
DUR
A e ao .
18 oo O O
812 . . .
| - Fig. 9: Graphique de la si-
mulation en économie,
12 PIB
oo F_L,M?_ﬁ—c apres avoir appliqué la
i - b
,—/e’—‘V_/O o z
[ ) . méthode de Newton-Gauss
08
| SR DT . IS (mémes symboles et
Ofez e eee 199 2000 2007 2064 2006

unités que pour la fig. 13).
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d(CHO)/dt = 0.26 + 0.46PIB9! - 0.2PRO%
0.19DUR™?— 0. 1PIB?

d(PAR)/dt = -0.015 — 0.022PIB% + 0.025PRO
+ 0.033PAR?7— 0.077DEM>%

d(DEM)/dt = 0.049 + 0.017PIB%% -
0.016PRO™! - 0.01 7DUR™2 - 0.043DEM?53

Remarquons que dans cet exemple, 'équation diffé-
rentielle pour le chdmage n’est pas nécessaire pour la
prévision du PIB, mais elle peut permettre de prévoir
la valeur du chomage. Ces équations correspondent
comme toujours a un graphe des influences mu-
tuelles entre ces variables.

Ces équations ont été simulées pour prédire les va-
leurs futures. Comme le calcul des dérivées prenait en
compte les valeurs de 2006 (modele fitté de 1992 a
2005), on doit simuler le systeme sur deux ans, pour
prédire ainsi la valeur pour 2007. La valeur du PIB tri-
mestriel (quatrieme semestre) pour 2007 est 1.215,
proche de la valeur réelle 1.233 (erreur relative: 1.5 %)

Il est possible d’ajouter a ce genre de modele d’autres
variables, non seulement économiques et financieres,
mais aussi environnementales, énergétiques, clima-
tiques et sociales, pour en faire un modele global a
temps continu (Caetano et al. 2008; Meadows et al.
1972), complémentaire des modeles a temps discret,
réalisables aussi avec cette méthode (voir IV.A.4,
taux de change).

IV.A.4. Finance

La finance utilise des modeles complexes, mais beau-
coup s’accordent pour dire que des modeles plus sim-
ples peuvent étre aussi compétitifs. Je propose ci-
dessous, sans entrer dans trop de détails, une appli-
cation ol les systemes dynamiques continus peuvent
modéliser des instabilités en finance:

Cercle «vicieux» de la crise des subprimes

Le prix Nobel Stiglitz a cité en 2008, lors d’'une confé-
rence, le cercle vicieux a la base, selon lui, de la crise
de 'immobilier d’aotit 2007. Le feedback positif consis-
tait selon lui en une hausse des prix de 'immobilier, qui
a entrainé une hausse des taux d’'intérét, qui a entrainé
une hausse des dettes (des acheteurs puis des
banques), qui elle-méme entrainait la hausse des prix,
ainsi de suite. Ce cercle vicieux a fini par rompre, en-
trainant une baisse des prix et des taux d’intéréts et
une crise due au non remboursement des dettes.

J’al modélisé ce cercle vicieux en prenant les chiffres
de 2000 a 2007 pour I'immobilier américain, les taux a
5ans, et la dette des particuliers. Ce qui est intéressant
ici, c’est de comparer le calcul de stabilité effectué sur
les valeurs d’aotit 2007 et d’avant (par exemple au
début de la montée des cours de I'immobilier).
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Plusieurs modeles sont possibles avec ces données,
selon les feedbacks négatifs que I'on garde. En effet,
dans tout modele avec un feedback positif, il faut avoir
des feedback négatifs qui compensent et empéchent le
systeme de «diverger» (s’emballer, exploser).

Voici un exemple simplifié de calcul de stabilité, ou
on a enlevé la troisieme variable (dette) et on a gardé
le prix (p) de I'immobilier et le taux d’intérét (7).
Nous avons réalisé huit systemes, chacun avec des
non linéarités différentes. Les équations différen-
tielles sont, aprés approximation:

dp/dt = £, () + (1)
ar/dl = f,(p) + S (1)

Ou 1,,(p) est la dynamique interne (positive dans les
huit cas) de la poussée des prix de 'immobilier (la
demande augmente, ce qui fait augmenter les prix, ce
qui fait augmenter la demande, probablement par

contagion).

f,.(r) est le changement de prix di aux taux d’inté-
réts. La méthode donne dans six cas sur huit une va-
leur négative. On n'a donc pas de feedback positif
dans cette moitié du cycle du graphe d’influences
mutuelles, ce qui empéche de trouver une instabilité,
et montre la limite de ce modele trop simplifié. Les
taux ne font pas monter les prix directement, il fau-
drait inclure la dette.

f,(p) est le changement de taux d’intérét da au prix
de I'immobilier. On a ici des valeurs positives dans les
huit cas, cette deuxieme moitié du cycle du feedback
mutuel est donc positive. Les prix font augmenter les
taux, par décisions humaines.

1,(r) est la dynamique interne des taux d'intéréts. Elle
est positive dans les huit cas: cela veut dire que les dé-
cideurs (banque fédérale par exemple) ne laissent pas
trop monter les taux, ils les limitent, les stabilisent.

La stabilité est obtenue en résolvant I’équation pour
les exposants L (Glansdorff 1971):

(df,/dp—-L)(df,/dr-L)-(df,/dr)
(df,/dp) =0

Les solutions sont:

L = ((df,/dp +df,/dr) +/- N A)/2
ou:

A= (df,/dp + df,/dr)2 —4((df,,/dp

(df,/dr) - (d,,/dr)(d f,/dp)),

et ou les derivées sont calculées sur les valeurs de p
et » qui nous intéressent: nettement avant aotit 2007,

et en aott 2007. On s’attendrait, sile modele simplifié
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était suffisant, a ce que les L calculés pour «avant la
crise», disons en 2000, soient négatifs (solution
stable) et inférieurs au L calculés en aott 2007, qui
pourraient étre positif (instabilité). Nous avons ap-
pliqué laméthode pour trouver les quatre dérivées ci-
tées ci-dessus, puis calculé les deux L, pour les va-
leurs du taux d’'intérét a cing ans et le prix de I'immo-
bilier en 2000 et en aotit 2007 (sources: taux d'inté-
réts a cing ans: Federal Reserve statistical release;
prix de 'immobilier: economagic.com, economic time
series page, «median price of homes sold including
land price»).

Nous avons pris plusieurs possibilités de non linéa-
rités, et toutes, ou presque toutes, donnaient des L
légerement négatifs (systeme stable mais proche de
I'instabilité), mais donnaient un systeme plus stable
pour aotit 2007 que pour 2000, contrairement a la ré-
alité. Lexplication provient du fait que ces deux va-
riables ne sont pas suffisantes: c’est I'ajout de la troi-
sieme variable, une mesure de la dette des particu-
liers et/ou des banques, qui amene l'instabilité en
aott 2007. Sil'idée de Stiglitz est juste, on doit retro-
uver l'instabilité réelle par le calcul.

On peut changer la valeur des dérivées, et donc de la

stabilité, en tenant compte d’influences extérieures
(régulation étatique ou toute autre influence), ce qui
permet de voir comment mieux prévenir une instabi-
lité. Ainsi, si la banque fédérale ne stabilisait pas les
taux, on aurait f,(r) qui serait nul. Un calcul facile
montre que cela rend le systéme instable.

On peut aussi utiliser cette méthode pour quantifier
des modeles basés sur la théorie des catastrophes :
crash du marché (Zeeman 1974) et faillite d’une
banque (Ho et Saunders 1980) par exemple.

IV.B. Données a la fois spatiales et temporelles:
démographie

Dans ce cas, on connait les valeurs dans suffisam-
ment de lieux, pour au moins deux dates pas trop
éloignées: démographie (natalité, taux d’alphabétisa-
tion, etc.) sociologie, économie sur plusieurs régions
ou pays, etc.

a) Méthode

Je présente ici un modele simple de démographie, pour
I'interaction entre alphabétisation et natalité (voir Cour-
bage et Todd 2007, par ex.). J’ai pris les données des
Nations Unies pour I'alphabétisation («a») et la nata-
lité («n»), de 1970 2 2005. J’ai pu calculer les dérivées
par rapport au temps a partir de la formule pour 2 ou
3 valeurs, pour 1980, 1990, 1995 et 2000, pour 137 pays.
J’ai ensuite calculé les termes non linéaires pour a et
n: a?, n?, an pour le degré 2, auxquels on rajoute a?,
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n?, a’n et an?® pour les termes de degré 3. J'ai calcu-
1é I'état stationnaire pour chaque couple d’équations
différentielles obtenues. Comme il y a plusieurs ter-
mes non linéaires, on a plusieurs solutions, certaines
ne sont pas pertinentes (valeurs complexes ou néga-
tives par exemple), mais on obtient presque toujours
au moins une solution correspondant a la réalité. Ces
solutions se classent en 2 catégories principales: une
solution post-industrielle et une pré-industrielle.

b) Exemple concret
On donne ici un exemple de combinaison de termes
non linéaires (donc un couple d’équations différen-
tielles) correspondant a tous les termes de degré in-
férieur ou égal a deux:

an/dt = -0.0469 + 6.57 10%a - 0.0In + 2.43
10°n2-2.15 10*a.n

da/dt = -0.348 + 0.051a - 0.056n + 0.0136 n?
- 1.4 10%a.n

c) Etats stationnaires
On obtient deux types d’états stationnaires:

l Solution «modernex»: a = 101.048%, n = 0.993 enfants par
femme
C'est une des 2 solutions type trouvées pour différents
couples d'équations différentielles. Notons qu’ici, on a une
valeur supérieure a 100%, alors qu’on a en général des
valeurs comprises entre 96% et 100%. On peut mettre
cette petite erreur sur le compte des fluctuations dans les
valeurs de chaque pays. La valeur pour la natalité peut
sembler tres basse, elle est un peu plus basse que la
moyenne des valeurs obtenues. Est-ce 1a notre avenir, une
humanité ne se reproduisant plus assez pour le
renouvellement de la population, il est peut-étre trop tot
pour le dire, mais la tendance de certains pays occidentaux
montre que cela n'est pas impossible.

B Solution «ancienne»: a = 1.92%, n = 7.04 enfants par
femme
C'est I'autre solution type. Cette solution peut paraitre
bizarre, puisque le monde entier semble promis a
I'alphabétisation massive et a la baisse de la natalité.
Cependant, il y a peut-étre une explication: certains peuples
autochtones (qui comptent 300 millions d’habitants sur terre)
pourraient peut-étre garder leurs traditions, et pour cela
garder une alphabétisation minimum et une grande natalité.
Ce phénomene serait peu stable, comme nous le verrons.

d) Stabilité

Jai calculé la stabilité des 2 couples de solutions
trouvés pour le systeme précédent, de degré infé-
rieur ou égal a 2:

la solution «moderne» est stable pour des valeurs tres
proches de I'état stationnaire, pour une natalité de
1.02. La simulation (voir plus loin) montre qu’elle est
stable pendant au moins 200 ans, ce qui est suffisant
pour que le systeme calculé ne soit plus valable, et
qu’il faille changer de paradigme.
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La solution «ancienne» est instable.

Pour avoir une meilleure précision sur la stabilité et
sur les états stationnaires, il faudrait au moins une
équation supplémentaire.

V. Conclusion

Cette méthode d’analyse de données permet de re-
créer un systeme (ses équations différentielles et son
graphe de relations d’influences mutuelles) et son
évolution future a partir de données chronologiques,
dans les conditions réunies dans de nombreux cas
d’applications en sciences humaines. Nous n’avons
pas cité la possibilité de trouver les solutions analy-
tiques, car les systemes étudiés en sciences hu-
maines sont en général trop complexes pour que ce
soit faisable.

C’est pourquoi elle devrait pouvoir résoudre nombre
d’applications dans des domaines divers, y compris
en sciences politiques ol les exemples de systémes
dynamiques possibles ne manquent pas: chute dun
empire, révolutions économiques ou politiques,
changement de majorité, déclenchement et fin d'une
guerre, passage a l'indépendance, transition vers la
démocratie, changements d’opinion, etc.

De trés nombreux problemes peuvent étre modélisés
avec les équations différentielles en psychologie (le
nombre important d’articles dédiés a cette possibilité
le laissait supposer), mais aussi en sociologie, sans
citer les sciences économiques.

Notons que la plupart de ces applications potentielles
comportent une bifurcation, une transition brusque,
phénomene ou les systemes dynamiques sont parti-
culierement bien adaptés, et que ces modeles sont en
général (et en particulier en sciences humaines) dis-
sipatifs. On pourrait peut étre par contre calculer la
production d’entropie générée par le systéme en re-
définissant une nouvelle production d’entropie. Cela
a partir de la définition de la production d’entropie
pour une réaction chimique, donnée par exemple
dans la formule 14.39 de Glansdorff et Prigogine
(Glansdorff 1971) pour le systeme de Lotka-Volterra.
Les sciences humaines ont adhéré a deux paradigmes
au moins, le structuralisme et les statistiques, depuis
le milieu du 20¢ siecle. Nous pensons, comme beau-
coup d’autres, que les systemes dynamiques seront le
prochain paradigme, suite en partie aux travaux de
Prigogine. Ils tranchent avec les statistiques (tout en
leur étant complémentaires) en incluant ’évolution
temporelle et les graphes d’influences mutuelles.
Mais ils sont le prolongement du structuralisme:
celui-ci avait insisté sur les relations entre les varia-
bles (graphe), mais ne disposait pas encore des outils
pour modéliser ces graphes, leur évolution, et les re-

I ARcHIVES DES SCIENCESI

Florent DIETERLEN 1 61 |

«Gause3»
T X Y

0 15747753 89.2168

2 19.19536 121352

4 31.12625 10.4679
6 118.653 14.22626
8 40.9131 133.0811

11,5273 3218565

13 70.74032 16.93782

16 131.5424 76.15084

18 1:7:707:15 91.48695

Annexe: Données pour la compétition entre bactéries, selon
Gause (1935).

lations entre graphes, la dynamique (équations diffé-
rentielles), I'analyse et la simulation, cette derniere
nécessitant I'informatique.
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