Zeitschrift: Archives des sciences [2004-ff.]

Herausgeber: Société de Physique et d'histoire Naturelle de Genève

Band: 60 (2007)

Heft: 2-3

Artikel: La Molasse du bassin franco-genevois et son substratum

Autor: Charollais, Jean / Weidmann, Marc / Berger, Jean-Pierre

DOI: https://doi.org/10.5169/seals-738416

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La Molasse du bassin franco-genevois et son substratum

28. Jan. 2009 BIBLIOTHEK

Jean CHAROLLAIS¹, Marc WEIDMANN², Jean-Pierre BERGER³, Burkart ENGESSER⁴, Jean-François HOTELLIER⁵, Georges GORIN⁶, Bettina REICHENBACHER⁷, Peter SCHÄFER⁸

Ms reçu le 2 juin 2007, accepté le 4 octobre 2007

Abstract

The Molasse in the Greater Geneva area and its substratum. - New stratigraphic data on the Molasse in the Greater Geneva area are provided through the study of numerous samples from boreholes and civil engineering works carried out during the last thirty years. Most of the samples studied come from various boreholes in or around the Canton Geneva: Peissy-1 and geothermal borehole of Thônex in Canton Geneva; seven boreholes drilled by BP-France around the Canton Geneva; numerous boreholes drilled on behalf of the CERN (the Centre européen de recherche nucléaire); various other boreholes specially for the motorway tunnel of the Mont Sion in nearby France. Four units in the Molasse have been lithologically described and dated essentially by micromammals and charophytes, as well as by otoliths and ostracods:

- Ithe «Calcaires inférieurs»: MP 27 to MP 28 zones, or «middle» Chattian;
- the «Marnes et Grès bariolés»: MP 28 to MP 30 zones or upper Chattian;
- Ithe «Grès et marnes gris à gypse: MP 30 to MN 1 zones, or uppermost Chattian-lowermost Aquitanian;
- the lower part of the the «Aquitanian auct.», or «Molasse grise de Lausanne»: MN 1 zone or lower Aquitanian.

The «Gompholite» could not be precisely dated, it might belong to the MP24-25 zones.

Moreover, the Mesozoic substrate underlying the Tertiary deposits displays a more pronounced structuration than previously thought: the Molasse overlies different Lower and Upper Cretaceous formations (the lower member of the Chambotte, «Calcaires roux», «Complexe des Marnes d'Hauterive et de la Pierre jaune de Neuchâtel, Urgonian limestones). This structuration has probably generated a pronounced palaeogeomorphology. In particular, it is responsible for the lithological facies diversification at the base of the Molasse, especially that of the «Gompholite» and «Calcaires inférieurs».

Molasse deposits form the bedrock underlying Quaternary sediments in the Greater Geneva area. A better knowledge of the Molasse stratigraphy in this region provides highly valuable informations for future civil engineeringlarge projects. From this point of view, a lithological and palaeontological systematic study of cuttings from geothermal boreholes would be a plus...

Key words: charophytes, Geneva, mammals, Lower Freshwater Molasse (USM), Oligocene, ostracods, otoliths, stratigraphy

- Département de géologie et de paléontologie, Section Sciences de la Terre, 13, r. Maraîchers, CH 1211 Genève et Muséum d'Histoire naturelle de la Ville de Genève, 1, rte de Malagnou, CH -1211 Genève - jdcharollais@bluewin.ch
- ² Sentier du Molard 3, CH 1805 Jongny
- ³ Département Géosciences, Université de Fribourg, av. du Musée 6, CH 1700 Fribourg
- ⁴ Naturhistorisches Museum, Augustinergasse 2, CH 4001 Basel
- ⁵ Bureau de géotechnique appliquée P. & C. Dériaz S.A., ch. des Vignes 9, CH 1213 Petit-Lancy
- ⁶ Département de géologie et de paléontologie, Section Sciences de la Terre, 13, r. Maraîchers, CH 1211 Genève
- ⁷ Institut für Paläontologie und Historische Geologie, R.-Wagner-Straße 10, D 80333 München
- 8 Landesamt für Geologie und Bergbau Rheinland Pfalz, Emy-Roeder-Strasse 5, D 55129 Mainz

IRésumé

L'étude de nombreux échantillons de la Molasse provenant de forages et de travaux de génie civil effectués ces trente dernières années dans le bassin franco-genevois, permet d'apporter de nouvelles précisions d'ordre stratigraphique. Ces recherches portent principalement sur l'analyse d'échantillons prélevés dans le puits Peissy-1, dans 7 sondages implantés par la compagnie pétrolière BP-France, dans le forage géothermique de Thônex, dans de nombreux sondages commandités par le CERN (Centre européen de recherche nucléaire) et dans plusieurs autres sondages, notamment ceux du tunnel autoroutier du Mont Sion. Datées essentiellement par les micromammifères et les charophytes, en plus des ostracodes et des restes de poissons, quatre unités de la Molasse franco-genevoise font l'objet d'une description lithologique détaillée:

- les Calcaires inférieurs: zones MP 27 à MP 28, ou Chattien «moyen»;
- les Marnes et Grès bariolés: zones MP 28 (sommet) à MP 30 (base) ou Chattien supérieur;
- les Grès et Marnes gris à gypse: zones MP 30 (sommet) à MN 1 ou Chattien sommital Aquitanien basal;
- la partie inférieure de «l'Aquitanien auct.» ou Molasse grise de Lausanne: zone MN 1 ou Aquitanien inférieur.

La Gompholite n'a pas pu être datée avec certitude; elle pourrait appartenir aux zones MP 24-MP 25.

D'autre part, la structuration du substratum mésozoïque précédant les dépôts tertiaires s'est révélée beaucoup plus accentuée qu'il n'y paraît dans la littérature. En effet, la Molasse repose sur différentes formations du Crétacé supérieur et du Crétacé inférieur (Chambotte [membre inférieur], Calcaires roux, «Complexe des Marnes d'Hauterive et de la Pierre jaune de Neuchâtel», Calcaires urgoniens). Cette structuration est certainement à l'origine d'une paléomorphologie accentuée; elle est notamment responsable de la répartition et de la diversification des faciès de la base de la Molasse, spécialement la Gompholite et les Calcaires inférieurs.

Une meilleure connaissance de la stratigraphie de la Molasse du bassin franco-genevois, qui constitue son substratum rocheux sous les terrains quaternaires, apporte un lot d'informations indispensables pour les futurs grands travaux de génie civil. Dans cette optique, une étude systématique lithologique et paléontologique des cuttings issus des nombreux sondages géothermiques effectués actuellement serait souhaitable.

Mots clefs: charophytes, Genève, mammifères, Molasse, Oligocène, ostracodes, otolithes, stratigraphie, USM

Table des matières

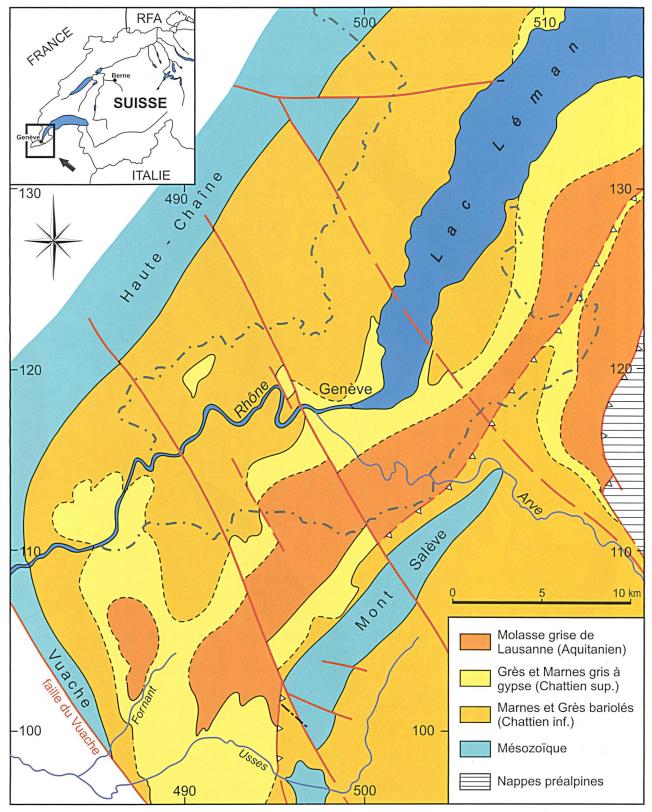
T DES CONNAISSANCES 1. Formations tertiaires 2. Substratum crétacé	
SCRIPTION DE QUELQUES AFFLEUREMENTS IMPORTANTS	
1. Affleurements de Marnes et Grès bariolés	
2. Affleurements de Grès et Marnes gris à gypse	
3. Affleurement d'«Aquitanien»	
4. Anciens affleurements disparus 5. Affleurements temporaires découverts par des travaux de génie civil	
NDAGES PÉTROLIERS	
1. Sondages du XIXº siècle	
2. Sondage de Challex-2	
3. Sondage de Peissy-1	
4. Sondage de Messery-1	
5. Sondage de Mont-de-Boisy-1	
6. Sondage de Humilly-1	
J	

Archives des SCIENCES Arch.Sci. (2007) 60: 59-174

NDAGES PÉTROLIERS DE BP-FRANCE		
1. Sondage Gex CD 01		
2. Sondage Gex CD 02		
3. Sondage Gex CD 03		
4. Sondage Gex CD 04		
5. Sondage Gex CD 05		
6. Sondage Gex CD 06		
7. Sondage Gex CD 07		
NDAGE GÉOTHERMIQUE DE THÔNEX	-	
1. Grès et Marnes gris à gypse		
2. Marnes et Grès bariolés		
ONDAGES DIVERS		
1. Sondage SCG 6481 de l'autoroute de contournement de Genève		
3		
2. Sondages du tunnel autoroutier du Mont Sion		
3. Sondages de la galerie d'assainissement de Choully		
4. Sondage de la ciblerie du stand de Veyrier		
5. Sondage de l'école d'Avully		
6. Sondage PAC à Vernier		
7. Sondage PAC à Founex		
ONDAGES DU CERN		
1. Sondages F et S		
2. Sondages SPL		
3. Sondages L		
4. Sondages SPM		
LÉONTOLOGIE ET BIOSTRATIGRAPHIE		
1. Mammifères		
2. Charophytes		
3. Otolithes de poissons		
4. Ostracodes		
NNÉES DIVERSES		
1. Hydrocarbures		
2. Hydrogéologie		
3. Karst		
4. Pétrographie sédimentaire		
5. Minéraux lourds		
5. Willeraux Tourds		
DUVELLES DONNÉES SUR LE SUBSTRATUM PRÉ-MOLASSIQUE		
1. Etat des connaissances		
2. Bord occidental du bassin franco-genevois		
3. Bord méridional du bassin franco-genevois		
4. Partie centrale du bassin franco-genevois		
5. Partie orientale du bassin franco-genevois		
6. Conclusions		

Archives des SCIENCES Arch.Sci. (2007) 60: 59-174

XII. ÂGE DE LA MOLASSE DU BASSIN FRANCO-GENEVOIS	149		
 Substratum mésozoïque Sidérolithique Gompholite Calcaires inférieurs Marnes et Grès bariolés Grès et Marnes gris à gypse 	150		
	150		
	150		
	150 151 152		
		7. «Aquitanien <i>auct.</i> .» ou Molasse grise de Lausanne	153
		XIV. CONCLUSIONS 1. Résultats biostratigraphiques 2. Résultats paléogéographiques et structuraux	154 154 155
REMERCIEMENTS	156		
BIBLIOGRAPHIE	157		
ANNEXE: Liste, profondeurs et coordonnées des sondages	164		
PLANCHES 1-8	166		


II. INTRODUCTION

Le bassin molassique franco-genevois représente une entité géologique qui, dans le cadre de cette synthèse, a été limitée arbitrairement (Fig. 1) au NW par le Jura (Haute-Chaîne), au SW par le Vuache, au S par la culmination du Mont Sion, au SE par le chaînon du Salève et à l'E par le front des Préalpes du Chablais. Au N, là où ce bassin s'ouvre sur le plateau molassique suisse, l'étude a été restreinte à la latitude de l'extrémité septentrionale du Petit Lac. Le territoire concerné par ce travail se trouve sur territoire suisse (cantons de Genève et de Vaud) et français (Ain et Haute-Savoie) et fait partie intégrante de la «région-type» où a été dénommée la Molasse. En effet comme l'a écrit Rutsch (1971), «...le terme molasse provient du parler populaire de la région linguistique franco-provençale, c'est-à-dire de la Savoie, du Dauphiné et de la Suisse occidentale; ses traces remontent au moins jusqu'au XIVe siècle ...». C'est H.-B. de Saussure qui, en 1779, l'a introduit dans la littérature scientifique.

Les recherches sur la géologie de la Molasse du bassin franco-genevois ont commencé au XVIII^e siècle et Voltaire (1768) fut le premier auteur qui a publié des observations sur les fossiles que l'on y trouve (Carozzi 1983, p. 71-80). Des synthèses des travaux plus récents furent successivement rédigées par Favre (1879), Heim (1922), Lagotala (1932, 1947), Paréjas (1938), Rigassi (1957), Schroeder (1958), Angelillo (1987), Morend (2000). Une très utile compilation des forages profonds implantés dans la région a été rassemblée par Wassall & Assoc. (1961). Les données sismiques disponibles ont été analysées et présentées par Gorin et al. (1993), Signer & Gorin (1995); elles ne livrent en général que des informations partielles sur la Molasse, sauf s'il s'agit de lignes acquises en très haute résolution (Morend 2000, GEO2X 2006).

La cartographie géologique du bassin molassique genevois et savoyard a été éditée dans sa totalité à 1/50 000 par le Service géologique national de France: feuilles St-Claude (Meurisse et al. 1971), Douvaine (Olive et al. 1987), St-Julien-en-Genevois (Donzeau et al. 1997) et Annemasse (Kerrien et al. 1998). En revanche, l'Atlas géologique suisse à 1/25 000 ne couvre que partiellement ce secteur avec les feuilles Dardagny-Chancy-Vernier-Bernex (Paréjas 1938), Coppet (Jayet 1964), Genève (Lombard & Paréjas 1965) et Nyon (Arn et al. 2004). En outre, il existe

des cartes géologiques plus anciennes et à diverses échelles, citées dans les bibliographies des notices explicatives des feuilles géologiques, comme par exemple la carte géologique d'une partie du chaînon du Salève (entre les vallées de l'Arve et des Usses) par Joukowsky & Favre (1913), qui ne bénéficiaient que d'un fond topographique en hachures très imprécis. Enfin des documents de diffusion plus réduite, telles que les cartes de diplômes et de thèses du Département de géologie et de paléontologie de l'Université de Genève et les cartes géologiques et géotechniques du Canton de Genève, sont consulta-

 $Fig.\ 1: Carte\ g\'eologique\ sch\'ematique\ (sans\ Quaternaire)\ du\ bassin\ franco-genevois\ et\ des\ r\'egions\ voisines,\ d'après\ Rigassi\ (1982).$

bles respectivement à la Section des Sciences de la Terre de l'Université de Genève et au Service cantonal de géologie de Genève.

Depuis une trentaine d'années, d'importants travaux d'exploration, notamment par sondages, ont été effectués dans le bassin molassique franco-genevois par le Centre européen de recherches nucléaires (CERN), par la filiale française de la Compagnie pétrolière British Petroleum (BP-France) et par le

Canton de Genève lors du percement du tunnel autoroutier de contournement de Genève et lors de l'implantation du forage géothermique de Thônex (Fig. 2). Enfin, plus récemment, les sociétés ADELAC et GIE A41 ont entrepris une campagne de forages précédant le percement d'un tunnel autoroutier sous le col du Mont Sion, afin d'assurer une liaison rapide entre Genève et Annecy. Tous ces travaux ont contribué à l'acquisition de nombreuses données nouvelles sur la géologie de subsurface.

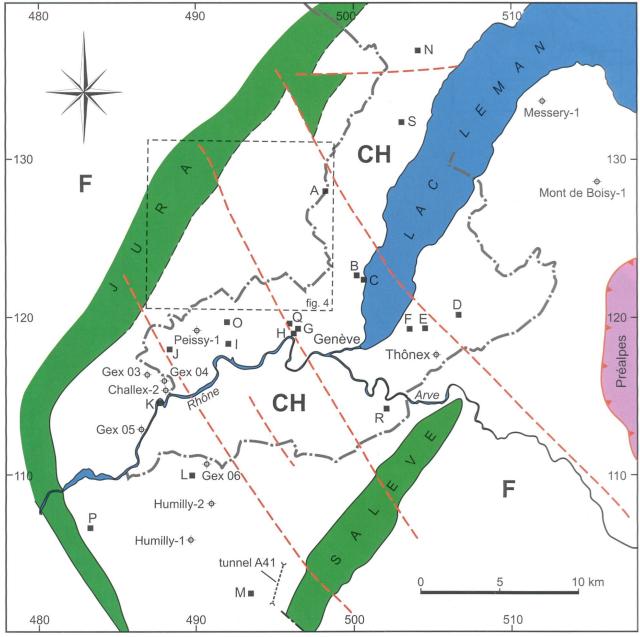


Fig. 2: Plan de situation

- Principales localités fossilifères: A-Vieille Bâtie, B-Vengeron amont, C-Vengeron Autoroute, D-Choulex, E-Vandoeuvres, F-Cologny, G-Nant d'Avanchet, H-Galerie et Portail d'Avanchet, I-Nant d'Avril, J-Roulavaz, K-Epeisses, L-Humilly, M-Nant Trouble Andilly, N-Nant de Riond et Boiron, O-Choully, P-Vulbens, Q-Vernier, R-Veyrier, S-Founex;
- Emplacement des sondages étudiés ou mentionnés dans le texte;
- Position du tunnel autoroutier du Mont Sion.

Le carré (en tireté) à cheval sur le Jura et le bassin franco-genevois correspond à la Fig. 4.

Fig. 3: Vue aérienne de la partie centrale du bassin franco-genevois, avec emplacement des deux anneaux souterrains du CERN: SPS (petit cercle: synchroton à protons) et LEP (grand cercle: Large Electron Positron Collider). Document CERN.

Au CERN (Figs. 1, 3), un premier anneau souterrain d'un peu plus de 2 km de diamètre (SPS: synchrotron à protons) fut creusé dans les années 1970 au NW de Meyrin, à cheval sur la frontière franco-suisse. L'excavation des galeries et des puits d'accès fut précédée par des sondages de reconnaissance carottés qui furent suivis par E. Lanterno et ses collaborateurs (rapports inédits, 1972, archives du CERN). Un aperçu de la géologie du site, telle que révélée par ces travaux, a été publié (Lanterno 1975). Nous avons repris l'étude micropaléontologique de quelques échantillons déposés au Muséum d'Histoire naturelle de la Ville de Genève et prélevés à l'époque par E. Lanterno et D. Kissling.

Le CERN décida en 1980 de creuser un tunnel de 26,7 km, quasi-circulaire, dans lequel les physiciens désiraient installer un collisionneur à électrons et positrons (LEP: Large Electron Positron Collider). Implanté principalement sur territoire français, dans le bassin molassique et au piémont de la Haute-Chaîne jurassienne, cet énorme chantier démarra en novembre 1980 et nécessita pour la reconnaissance géotechnique et hydrogéologique du sous-sol l'exécution de nombreux forages, souvent profonds et pour la plupart en carottage continu (Fig. 4). Ces sondages furent suivis et décrits tout d'abord par Lanterno et al. (1981), puis par le Bureau de Géotechnique appliquée Dériaz S.A. (Dériaz &

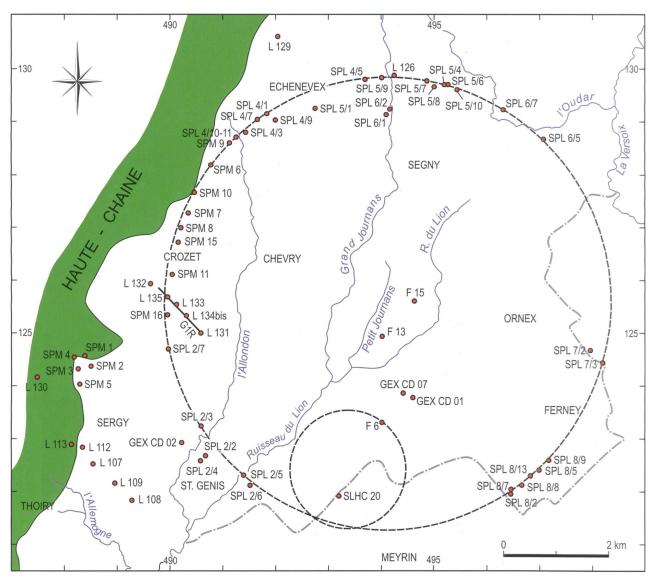


Fig. 4: Situation des ouvrages cités dans ce travail: sondages du CERN et trois sondages Gex CD (01, 02, 07) de BP-France; cette figure correspond au carré en tireté de la figure 2.

- Grand cercle en tiretés: tunnel du LEP; petit cercle en tiretés: tunnel du SPS;
- Carroyage kilométrique de la carte nationale suisse;
- Le contact entre le Mésozoïque de la Haute-Chaîne et la Molasse du bassin franco-genevois a été dessiné en fonction des observations de terrain et de sondages, sans prendre en compte la fracturation.

ARCHIVES DES SCIENCES

Hotellier, dès 1980); nous avons pu consulter leurs nombreux rapports inédits archivés au Bureau Dériaz, au CERN ou/et au Service cantonal de géologie de Genève grâce à la bienveillance de tous ces organismes privés ou étatiques.

L'autorisation accordée par le maître de l'œuvre avait permis à l'un de nous (J. C. en collaboration avec ses étudiants et les techniciens du Département de géologie et de paléontologie de l'Université de Genève) de décrire (Charollais et al. 1982, inédit), puis de conserver dans les sous-sols de la Faculté des sciences les carottes sciées en long d'un certain nombre de ces sondages. L'un d'eux, le SPM 5, fut étudié en détail et publié (Berger et al. 1987), les autres sondages ont attendu plus de vingt ans avant que le présent travail ne leur soit consacré.

La plus grande partie des travaux d'excavation commandités par le CERN a fait l'objet de relevés géotechniques et hydrogéologiques consignés dans divers rapports déposés dans les archives du CERN et dans des publications (Hotellier & Rebuffé 1988; Parkin 2000, etc). Ces données n'apportent pas d'éléments nouveaux quant à la stratigraphie molassique, mais elles sont fort importantes pour la connaissance de l'hydrogéologie régionale (Hugot 1983; Martinez 1986; Monjoie 1990; Fourneaux & Laporte 1990), notamment pour celle des terrains traversés par le LEP sous le Jura (Fourneaux s. d., Fourneaux 1988; Fourneaux et al. 1990). Il n'y a malheureusement pas eu de relevé géologique d'exécution dans la partie molassique des tunnels du SPS et du LEP, laquelle fut creusée par des tunneliers.

Les sondages et excavations du CERN avaient révélé de fréquents indices d'hydrocarbures: Fourneaux (1988) signale des «poches de pétrole» dans le sub-

Liste des abréviations CERN: Centre Européen de Recherche Nucléaire CI: Calcaires inférieurs G, Gomph.: Gompholite Grès et Marnes gris à gypse («Chattien» supérieur) LEP: Large Electron Positron Collider MGB: Marnes et Grès bariolés («Chattien» inférieur) MGL: Molasse grise de Lausanne MHNG: Muséum d'Histoire naturelle de la Ville de Genève mo., mor.: moraine NMB: Naturhistorisches Museum Basel PJN: Pierre jaune de Neuchâtel (Hauterivien) Qu: Quaternaire Sidérolithique (Eocène) SFEBP: Société Française d'Exploration British Petroleum U, Urg., Urgon.: Urgonien (Hauterivien supérieur-Barrémien inférieur) UMM: Molasse marine inférieure (Untere Meeres Molasse) Molasse d'eau douce inférieure (Untere Süsswasser Molasse) USM:

stratum mésozoïque, notamment dans les Calcaires roux et la Pierre jaune de Neuchâtel du Crétacé inférieur, ainsi que dans la Molasse tertiaire. Cette dernière était par place tellement imprégnée d'hydrocarbures, qui s'écoulaient dans le tunnel à raison de plusieurs litres par semaine, que la filiale française de la Compagnie pétrolière British Petroleum (BP-France), reprit dès 1982 l'étude du potentiel pétrolier de notre région. Ainsi se trouvait relancée une nouvelle tentative d'exploitation des hydrocarbures de la Molasse du bassin genevois, qui avait commencé vers 1770, notamment sous l'impulsion de H.-B. de Saussure (Carozzi 2005, p. 86-87), et dont l'histoire est relatée minutieusement par Lagotala (1932) dans son étude consacrée aux gîtes bitumineux de Dardagny. La Compagnie BP-France fora donc 7 puits, dénommés Gex CD 01 à 07, partiellement carottés, sur territoire français à proximité de la frontière genevoise, entre la région de Prévessin au N et les environs de Soral au S. L'étude sédimentologique des intervalles carottés de ces puits fut confiée à F. Olmari en collaboration avec E. Davaud et l'un de nous (J. C.); elle a fait l'objet d'un rapport inédit (Olmari 1983). Comme celles des sondages du CERN, ces carottes avaient été en grande partie conservées; et nous en avons repris l'étude micropaléontologique et stratigraphique. En outre, certains puits offrent des résultats particulièrement intéressants sur les relations entre la Molasse et son substratum mésozoïque.

Enfin, nous avons pu aussi échantillonner d'autres sondages implantés à Thônex, au Mont Sion, à Choully-Satigny, à Vernier et à Founex.

Lieux de dépôt du matériel

La plus grande partie des documents originaux ayant servi à l'élaboration de ce travail sont déposés à la bi-

bliothèque du Muséum d'Histoire naturelle de la Ville de Genève. Les carottes et/ou cuttings de quelquesuns des sondages que nous avons étudiés sont conservés, entièrement ou partiellement, par le Muséum d'Histoire naturelle de la Ville de Genève; il en est de même de la plus grande partie des résidus tamisés et triés de nos lavages de marnes. Le matériel des autres sondages a été détruit.

Les microfossiles isolés et déterminés sont en principe conservés dans les collections des auteurs des déterminations:

Charophytes: Jean-Pierre Berger (Département des Géosciences-Géologie, Université de Fribourg),

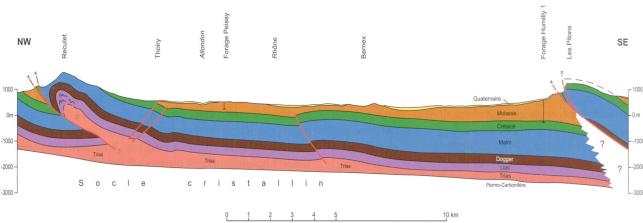


Fig. 5: Coupe schématique à travers le bassin franco-genevois d'après Amberger (1982), Signer & Gorin (1995), Morend (2000), Meyer (2000), modifié.

Mammifères: Burkart Engesser (Naturhistorisches Museum, Basel),

Poissons (otolithes): Bettina Reichenbacher (Bayerische Staatssammlung für Paläontologie und Geologie, München),

Ostracodes: Peter Schäfer (Landesamt für Geologie und Bergbau, Rheinland-Pfalz, Mainz).

Coordonnées et toponymes

Les coordonnées sont calculées soit dans le système suisse, soit dans le système français (voir Annexe).

III. ÉTAT DES CONNAISSANCES

1. Formations tertiaires

Le Tertiaire du bassin genevois et savoyard est caractérisé par plusieurs formations dont l'épaisseur et parfois le faciès varient beaucoup (Fig. 5). Une succession virtuelle, jamais représentée dans sa totalité sur une même verticale, en affleurement comme en forage, comprendrait de bas en haut:

- le Sidérolithique éocène [S],
- la Molasse d'eau douce inférieure oligo-miocène, composée
 - de la Gompholite [G, Gomph.],
 - des Calcaires d'eau douce inférieurs (ou Calcaires de Grilly) [CI],
 - des Marnes et Grès bariolés (ou Molasse rouge de Genève) [MGB],
 - des Grès et Marnes gris à gypse (ou Molasse grise) [GMGG],
 - de la «Molasse aquitanienne» ou Molasse grise de Lausanne [MGL].

Les formations plus jeunes (Molasse marine supérieure [OMM], Molasse d'eau douce supérieure [OSM]) n'existent plus dans le bassin franco-gene-

vois. Elles y ont pourtant été déposées avec une épaisseur d'environ 2000 m (Angelillo 1987, p. 93; Schegg & Moritz 1993; Schegg, *in* Jenny et al. 1995; Schegg & Leu 1996; Wildi & Pugin 1998, Fig. 2), mais elles ont été érodées ensuite, au cours du Miocène supérieur – Pliocène et du Quaternaire ancien, à la suite de changements climatiques (Cederbom et al. 2004; Schlunegger et al. 2007), de la crise messinienne (Willett et al. 2006), des soulèvements liés au plissement du Jura et aussi en raison de la très vigoureuse érosion qui caractérise les périodes glaciaires.

A ces formations autochtones, s'ajoutent sur la partie orientale du bassin, au front des Préalpes du Chablais (Fig. 1), des écailles chevauchantes de Molasse subalpine composée essentiellement de Molasse marine inférieure, de Marnes et Grès bariolés et de «Molasse aquitanienne».

1.1. Sidérolithique

D'une puissance de 0 à 40 m, le Sidérolithique est surtout représenté par des quartzarénites blancs ou jaunes, rougeâtres lorsqu'ils renferment des oxydes et hydroxydes de fer. Attribué au Bartonien - Priabonien, son âge est estimé par analogie avec celui du Sidérolithique du Jura vaudois (Hooker & Weidmann 2000, 2007). Des niveaux argileux verts ou rouges sont rares. Ces dépôts sont continentaux, issus du remaniement de sols tropicaux et de cuirasse latéritique. Ils reposent sur une importante surface d'érosion par karstification en milieu aérien ou colmatent un réseau karstique profond qui perfore toute la série crétacée et qui peut même atteindre les calcaires du Jurassique supérieur au Vuache et au Salève, par exemple.

Rappelons aussi l'existence de la croûte calcaire attribuée au Lutétien terminal, que Ducloz (1983) a décrite à Grilly et qui n'a jusqu'ici pas été identifiée dans d'autres affleurements ou dans des sondages.

1.2. Gompholite

La Gompholite, dénommée au Salève «Poudingue de Mornex», se trouve sporadiquement à la base de la Molasse d'eau douce inférieure: elle peut atteindre plusieurs dizaines de mètres d'épaisseur. Il s'agit d'un conglomérat dont les éléments polygéniques d'ordre décimétrique à centimétrique, proviennent du démantèlement d'une partie de la série locale crétacée, éventuellement tertiaire (galets pédogénisés). Le ciment argilo-gréseux, souvent rouge et variable en importance, pourrait provenir tout au moins en partie, du remaniement des dépôts sidérolithiques.

Le paléoenvironnement et l'âge de la Gompholite en général, et du Poudingue de Mornex en particulier, restent encore discutés malgré la découverte de nombreux fossiles marins ou terrestres (Collet & Paréjas 1934; Paréjas 1938; Martini 1962; Hantke 1984): «une omoplate de pachyderme» à la carrière de Mornex (Favre 1843, p. 112; pièce aujourd'hui perdue), pinces de crustacés (Callianassa sp.), huîtres, cérithes, natices, moules internes d'hélicidés (Cepaea rugulosa), feuilles de palmier, de lauracées et gousses de légumineuses. Pour Paréjas (1938), le Poudingue de Mornex comprend des faciès marins et continentaux d'âge oligocène probable, tandis que Rigassi (1957) l'attribue plus précisément au Rupélien supérieur et Martini (1962) à l'Oligocène l. s. Dans la Gompholite des sources de l'Allondon, Martini (1962) avait trouvé plusieurs moules internes d'Helix, qui ne permettent pas de préciser son âge; toutefois, Rigassi (1980a) avait postulé un âge pléistocène, ce qui s'est révélé infondé.

Quant aux milieux de dépôt, ils sont généralement considérés comme étant surtout continentaux: torrentiel, éolien et/ou lacustre (Ducloz 1980, 1983). Rigassi (1957) estime que «les minces niveaux marins s'intercalant à Mornex, entre «Chattien» et Crétacé sidérolithifié, sont probablement un témoin extrême occidental de l'UMM (= Molasse marine inférieure)». Enfin, pour Ducloz (1980, p.176), le Poudingue de Mornex représente «une formation de pente, un éboulis remanié par du ruissellement en nappe, un glacis d'accumulation en quelque sorte».

1.3. Calcaires inférieurs

En 1922, Heim signala pour la première fois des calcaires d'eau douce à la base de la Molasse du bassin de Genève (sondage de Challex-2, Ain). Michel (1965) présente une coupe et un historique de cette unité lithologique dont les faciès surtout carbonatés, parfois bréchiques, sont dénommés «Calcaires de Grilly» par Rigassi (1957) ou «Calcaires d'eau douce inférieurs» par Kissling (1974) et par Angelillo (1987) ou enfin «Calcaires inférieurs» par Morend (2000). Les critères d'iden-

tification de leur limite supérieure demeurant très flous, ils n'ont pas un statut formationnel clairement défini. Parfois absents, ils peuvent atteindre plusieurs dizaines de mètres d'épaisseur. Ils n'apparaissent qu'en certains points du bassin, à la base de la Molasse d'eau douce inférieure, soit sur les Gompholites, soit sur les Grès sidérolithiques, soit directement sur le substratum crétacé.

Attribués généralement au Chattien inférieur *l. s.*, ils sont en fait «strongly diachronic» (Rigassi 1996): selon leur position dans le bassin molassique, ils dateraient du Rupélien supérieur et du Chattien.

1.4. Marnes et Grès bariolés

La fréquente prédominance de la couleur lie-de-vin dans cette puissante série constituée essentiellement de marnes et de grès (de type «molasse», au sens pétrographique) a conduit à la dénommer classiquement «Molasse rouge», appellation toujours en vigueur dans le bassin savoyard du plateau des Bornes, où elle atteint plus d'un millier de mètres d'épaisseur. Par contre, ce terme remplacé dans le bassin genevois par celui de «Marnes bariolées» (Kissling 1974), a été supplanté ensuite par celui de «Marnes et Grès bariolés» proposé par Angelillo (1987). Ici, cette formation (MGB) qui oscille entre 250 et 955 m de puissance, renferme parfois vers la base des lits charbonneux d'ordre centimétrique. La lithologie, les structures sédimentaires, la faune et la flore correspondent à des dépôts de plaine d'inondation parcourue par un système fluviatile méandriforme.

De part et d'autre du Salève, la base de cette formation présente des associations de micromammifères plus jeunes dans le bassin genevois que dans le bassin savoyard, ce qui est en accord avec le sens de migration de la subsidence des bassins d'avant-pays. En effet, à l'E du chaînon du Salève, la base de la «Molasse rouge» du bassin savoyard (Plateau des Bornes) débute au sommet du Rupélien (MP 22-24), tandis que dans le bassin genevois, les Marnes et Grès bariolés commencent à se déposer au «Chattien» inférieur (MP 25-27); cette migration de subsidence se poursuit encore plus au NW, comme l'ont démontré récemment Charollais et al. (2006, p. 39-41).

1.5. Grès et Marnes gris à gypse

Cette formation définie par Kissling (1974) est absente (probablement érodée) dans le bassin savoyard du plateau des Bornes; elle est bien développée dans le bassin genevois, où elle atteint au moins 300 m dans le sondage de Thônex. Elle est caractérisée par une lithologie complexe: marnes grises, calcaires et grès déposés en milieux lacustre et palustre, dolomies et évaporites (gypse, anhydrite) d'origine continentale (playas), avec parfois de minces (< 5 cm) couches de charbon signalées surtout dans la région de Cologny

par Necker (1841, p. 394, 406) et par Favre (1879, t. I, p. 74). Le gypse est localement assez abondant pour avoir fait jadis l'objet d'une exploitation à Choully et à Bernex (Favre 1879, t. II, p. 120).

Les mammifères signalés dans les Grès et Marnes gris à gypse du bassin genevois, notamment par Angelillo (1987), à la base et au sommet de cette formation, permettent de la rattacher aux niveaux de Küttigen 1 (= MP 30, partie inférieure) et de Boudry 2 (= MN 1, partie inférieure).

Le membre des «Calcaires d'eau douce et dolomies», étudié notamment par Kissling (1974), souligne la base des Grès et Marnes gris à gypse dans le secteur vaudois du bassin molassique. La carte de Rigassi (1982) figure cette unité lithologique en quelques points isolés dans le bassin franco-genevois, une interprétation qui fut contestée par Angelillo (1987, p. 5).

1.6. Molasse grise de Lausanne ou «Aquitanien auct.»

Inconnu dans le bassin savoyard du plateau des Bornes, «l'Aquitanien» (ainsi dénommé jusqu'à présent dans le bassin franco-genevois en l'absence d'un nom de formation) est ici provisoirement attribué à la formation de la Molasse grise de Lausanne (MGL). Ruchat (in Charollais et al. 1998, Fig. 2, p. 32) a dessiné une carte géologique de la Molasse du bassin genevois. Malheureusement, les légendes de cette figure ont été inversées par l'éditeur: le symbole de «l'Aquitanien» autochtone correspond à celui de l'Oligocène supérieur. Cette erreur a été corrigée par Morend (2000, Fig. 4.12).

La MGL n'apparaît que rarement et temporairement en puits ou en fouilles; son épaisseur ne dépasse pas 30 m dans le secteur de Cologny-Vandoeuvres. Un banc gréso-micacé grossier gris verdâtre d'ordre métrique la sépare de la formation sous-jacente (C. Ruchat, communication orale, 1999). Il est surmonté par un complexe de grès et marnes bariolés, de calcaires marneux parfois silteux, dans lesquels s'intercalent des bancs gréseux avec délits crayeux argileux. Rigassi (1977a, p. 18) signale en outre que «l'Aquitanien» existe dans un sondage à Perly et sa carte interprétative de 1982, reprise à notre Fig. 1, situe son extension supposée sous la couverture quaternaire dans le bassin franco-genevois. La Molasse grise de Lausanne forme d'autre part les reliefs qui limitent vers le SW le bassin franco-genevois, reliefs que traverse le tunnel autoroutier du Mont Sion.

1.7. «Burdigalien» de Loisin - Ballavais

Cet affleurement (512,4/127,0) n'appartient pas au Burdigalien comme le supposait Jayet (feuille Coppet 1/25000 et notice explicative, 1964, p. 11-12), mais il

s'agit d'une molasse d'eau douce oligocène, ce qui fut déjà pressenti par Lombard (1965, p. 32), dessiné par Vial et al. (1987) sur la feuille Douvaine 1/50000 et à nouveau confirmé par Charollais et al. (2006).

2. Substratum crétacé

Dans le bassin franco-genevois, la formation crétacée la plus ancienne sur laquelle reposent les terrains tertiaires, a été décrite par Ducloz (1980) aux sources de l'Allondon (Ain), au N du forage SPM 9 (Fig. 4): il s'agit de la formation de la Chambotte (Berriasien sommital - Valanginien basal). Les épaisseurs des différentes formations crétacées rappelées ci-dessous, correspondent à celles qui ont été observées dans le bassin genevois et savoyard, soit à l'affleurement, soit en forages, et ne tiennent pas compte des érosions anté-tertiaires.

Les noms de certaines formations, qui n'ont pas encore été définies formellement ou qui sont utilisées dans un sens plus large que généralement admis dans la littérature, sont mis entre guillemets.

2.1. Formation de la Chambotte

Selon Steinhauser & Lombard (1969), Deville (1990, 1991), Blanc (1996), Strasser & Hillgartner (1998), la Formation de la Chambotte comprend: le membre de la Chambotte inférieure (Berriasien sommital: zone à Otopeta basale), le membre du Guiers, dont la partie supérieure représente l'équivalent latéral des Marnes d'Arzier (Berriasien sommital [zone à Otopeta] - Valanginien inférieur [zone à Pertransiens basale]) et le membre de la Chambotte supérieure, équivalent latéral de la partie inférieure des Calcaires roux *auct*. (Valanginien inférieur: zone à Pertransiens). Les âges de ces unités lithologiques varient suivant les auteurs; les datations données ici correspondent à celles de Charollais et al. (2007).

Dans le bassin genevois et savoyard, le membre de la Chambotte inférieure est clairement caractérisé (Donzeau et al. 1997). D'une épaisseur de 16 à 19 m, il présente quelques différences lithologiques entre la Haute-Chaîne et le Salève. Dans ce chaînon, il est constitué par des calcaires blancs, biomicrites à biocalcarénites, parfois à «keystone vugs», caractéristiques de la zone inter- à supratidale (Salvini-Bonnard et al. 1984). Par contre, dans la Haute-Chaîne et plus précisément dans la partie septentrionale du Grand Crêt d'Eau, les auteurs signalent un niveau plus marneux intercalé entre deux barres de calcaires bioclastiques grossiers, localement oolithiques ou à pelloïdes, interprétés par Boeker (1994) comme des dépôts tidaux à subtidaux. La partie supérieure du membre du Guiers et le membre de la Chambotte supérieure apparaissent dans le chaînon du Salève, sous un faciès proche de celui des Calcaires roux classiques.

2.2. Calcaires roux lato sensu

Le faciès prédominant des Calcaires roux lato sensu, dont la puissance varie entre 22 et 50 m, est une biocalcarénite souvent grossière («calcaire spathique»), parfois oolithique, peu quartzeuse, rarement glauconieuse, avec quelquefois des accidents siliceux, toujours très riche en oxydes et hydroxydes de fer. La présence de structures obliques témoigne d'un paléomilieu de haute énergie. Les ammonites, les dinokystes et les calpionelles permettent de corréler la formation des Calcaires roux lato sensu aux zones à Pertransiens et Campylotoxus pro parte du (Baumberger 1903-1910; Valanginien inférieur Deville 1990; E. Monteil, communication écrite 1996). Sur le plan séquentiel, une importante discontinuité reconnue sur l'ensemble de la plate-forme jurassienne, sépare les Calcaires roux l. s. des Calcaires dits à Alectryonia rectangularis, qui ont livré des ammonites caractéristiques de la partie supérieure de la biozone à Campylotoxus et de la zone à Verrucosum, c'est-à-dire du sommet du Valanginien inférieur et de la base du Valanginien supérieur (Clavel & Charollais 1989; Bulot & Thieuloy 1995; Charollais et al. 2007).

2.3. «Complexe des Marnes d'Hauterive et de la Pierre jaune de Neuchâtel»

Cette formation, d'une épaisseur variant entre 94 et 122 m, appelée plus succinctement dans ce travail «Marnes d'Hauterive / Pierre jaune», comprend essentiellement deux faciès: le premier, marneux (Marnes d'Hauterive), prédomine dans la partie inférieure, le second, carbonaté (Pierre jaune de Neuchâtel), prévaut dans la partie supérieure. Le faciès de type Marnes d'Hauterive correspond à des marnes gréso-glauconieuses qui se seraient déposées en milieu circalittoral selon l'hypothèse la plus généralement admise, tandis que le faciès de type Pierre jaune de Neuchâtel caractérisé par des biocalcarénites gréso-glauconieuses, rarement oolithiques, à stratifications obliques fréquentes, est interprété comme typique d'un milieu infralittoral. Cette formation présente de fortes variations latérales de faciès et d'épaisseur, comme l'ont démontré Charollais et al. (1989).

Se basant sur la présence de nombreuses ammonites et sur le découpage séquentiel régional, Clavel & Charollais (1989) attribuent la base du «Complexe des Marnes d'Hauterive et de la Pierre jaune de Neuchâtel» au Valanginien terminal (zone à Callidiscus) et son sommet à l'Hauterivien inférieur (zone à Nodosoplicatum).

2.4. Calcaires urgoniens

Cette formation, qui atteint 130 m dans le bassin franco-genevois, est datée grâce à la biozonation des orbitolines (Clavel et al. 1994; Becker 1999; Schroeder et al. 1999; Clavel et al. 2007; Charollais et al. 2007). Elle est subdivisée en trois unités lithostratigraphiques; de bas en haut:

- l'Urgonien jaune (Hauterivien supérieur basal [zone à Sayni - zone à Ligatus basale]). Il s'agit de calcaires jaunes roussâtres, parfois oolithiques à la base, pseudo-noduleux, d'une puissance voisine d'une dizaine de mètres et caractéristiques d'un milieu marin de plateforme externe.
- Barrémien inférieur pro parte [zones à Ligatus, Balearis, Angulicostata, Hugii et Nicklesi]). Cette unité, de loin la plus importante en puissance, comprend des calcaires blancs de lithologies très variées (biocalcarénites, oosparites, micrites, etc.), qui traduisent divers milieux de plate-forme interne. Elle atteindrait jusqu'à 200 m de puissance dans la partie méridionale du chaînon du Salève, entre Cruseilles et la Croisette, selon Conrad (1969) et Conrad & Ducloz (1977). Au sein de cette formation, apparaît le Membre des Calcaires marneux de la Rivière, qui semble limité à la partie méridionale du Jura et du bassin genevois.
- «l'Aptien inférieur» pro parte n'a jamais été signalé dans le bassin genevois par les auteurs, sauf par Favre (1843, p. 97-98) qui écrit: «J'ai retrouvé le calcaire à Pteroceras pelagi audessus du calcaire à Radiolites, à Allemogne dans le pays de Gex (...). J'y ai retrouvé le Pteroceras pelagi, un Cassis?, des Nucleolites et d'autres oursins mal conservés». Dans la région de Bellegarde (vallée de la Valserine), ces niveaux, qui sont séparés de l'Urgonien blanc sous-jacent par une importante discontinuité émersive, ont été datés par ammonites; ils se situent du point de vue chronologique au passage de la zone à Oglanlensis à la zone à Weissi (Clavel et al. 2007).

2.5. «Grès verts jurassiens»

Cette formation, appelée «Grès verts jurassiens» par analogie aux Grès verts helvétiques (Delamette et al. 1997), regroupe une lithologie complexe où prédominent des sables verts glauconieux. Attribuée à l'Aptien inférieur sommital et à l'Albien *l. s.* (Delamette, *in* Donzeau et al. 1997, p. 55), cette formation n'a jamais été observée à l'affleurement dans le bassin franco-genevois; elle n'apparaît en place que sur le versant occidental de la Haute-Chaîne du Jura.

2.6. Calcaires crayeux à silex

Absente à l'affleurement dans le bassin franco-genevois, cette formation autrefois dénommée «Crétacé supérieur» a été appelée Calcaires crayeux à silex par Donzeau et al. (1997), sans qu'une définition formelle ait été proposée jusqu'ici. Visible dans la vallée de la

Valserine, où elle est représentée par de rares affleurements, elle est constituée par des biomicrites crayeuses blanc-crème à jaunâtres à microfaune planctonique qui date cette formation du Turonien *l. s.* (Donzeau et al. 1997). Des calcaires crayeux à silex de même âge ont également été signalés dans les forages pétroliers de Mont de Boisy-1 et Massongy-1.

Les Calcaires crayeux à silex et, plus rarement, les Grès verts jurassiens, ont été fréquemment reconnus à l'état de galets dans les Gompholites tertiaires de la base de la Molasse du bassin franco-genevois, ce qui démontre l'existence de ces deux formations avant l'érosion fini-Crétacé - début Tertiaire.

III. DESCRIPTION DE QUELQUES AFFLEUREMENTS IMPORTANTS

Pour alléger les descriptions pétrographiques de la Molasse (à l'affleurement ou en sondage), nous utiliserons le terme de «grès» pour les faciès à prédominance quartzeuse, plus ou moins feldspathiques, micacés, argileux, chloriteux et à ciment carbonaté, et le terme de «marnes» pour des faciès calcaréo-argileux, parfois silteux et/ou finement quartzo-micacés (voir X. 4.).

1. Affleurements de Marnes et Grès bariolés

1.1. La Roulavaz

Les affleurements des Marnes et Grès bariolés du vallon de la Roulavaz (Fig. 2, lettre J) et des environs de Dardagny ont fait l'objet de nombreuses publications, vu leur teneur en hydrocarbures (3 à 8%) en certains points. En outre, un banc de lignite de 1,2 m d'épaisseur aurait été mis au jour en 1842 dans les fondations du pont des Granges qui franchit l'Allondon 2 km en amont de la confluence de la Roulavaz; une telle épaisseur nous paraît peu probable, à moins qu'il y ait eu confusion avec des marnes charbonneuses noires. Les tentatives d'exploitation d'hydrocarbures remontent à la fin du XVIIIe siècle, dès 1769 selon Favre (1879, t. II, p. 124-126), et se sont poursuivies durant le XIX^e et le début du XXe siècle, avant d'être définitivement abandonnées en 1922. Se basant sur les résultats des deux sondages pétroliers Challex-2 (1918-1920; 273,50 m) et Peissy-1 (1944-1945; 261 m), Ducloz (in Jaquet et al. 1990) évalue à 300 m, l'épaisseur des Marnes et Grès bariolés dans la région du vallon de la Roulavaz.

Mojon (1987) a relevé 3 coupes de quelques mètres dans les Marnes et Grès bariolés, sur rive droite de la Roulavaz; un niveau marneux prélevé en base de coupe (coord. suisses: 488,37/117,87) lui a fourni, outre quelques fragments de gastéropodes et de reptiles (mâchoires de Scincomorphes, ostéodermes

d'Ophisaurus), des charophytes (Hornichara lagenalis) et des dents de micromammifères (Eomys major, Plesiosminthus promyarion, Archaeomys sp., Issiodoromys sp.). Cette association, et particulièrement la présence de Eomys major (Engesser 1990, p. 141; Engesser & Mödden 1997, p. 488), permet de rattacher les affleurements des Marnes et Grès bariolés de la Roulavaz au niveau de Fornant 6 (= MP 28, partie supérieure), ce qui est en accord avec les charophytes caractéristiques de la zone à Ungeri (Angelillo 1987, p. 134, Fig. 41).

Enfin Morend et al. (1998), puis Morend (2000) ont repris l'analyse des affleurements de la Roulavaz, qu'ils situent avec précision au sein de la série molassique grâce à des profils sismiques à haute résolution.

1.2. Epeisses

Les Marnes et Grès bariolés affleurent sur rive gauche du Rhône, au N du village d'Epeisses (Fig. 2, lettre K). Un gisement fossilifère, dont la position topographique n'est pas connue avec précision (Kissling 1974, p. 38), a fourni deux exemplaires d'Archaeomys laurillardi, ce qui indique les zones MP 26-30.

1.3. La Versoix et le Nant de Pissevache

Sur la commune de Collex-Bossy, entre Sauverny et la Bâtie, Jayet (1964) signale sur la feuille Coppet à 1/25000, trois gisements fossilifères dans les Marnes et Grès bariolés de la Versoix et de son affluent la Pissevache. L'un d'eux (coord. suisses: 498,3/127,8) lui a fourni, outre des *Unio*, des dents de rongeurs, parmi lesquelles P. Revilliod avait identifié le genre *Issiodoromys* (Jayet 1964, p. 9). Un niveau marneux provenant de la même formation ne lui a livré que des oogones de charophytes, qui n'ont probablement pas été conservés. Quant au troisième gisement, l'auteur de la carte n'en parle pas dans sa notice explicative.

De plus, dans le lit de la Versoix, sous la Vieille Bâtie et très légèrement en aval (coord. suisses: 498,45/127,32/430), un gisement fossilifère (Fig. 2, lettre A) dans les Marnes et Grès bariolés, non mentionné sur la feuille Coppet (Jayet 1964), avait été exploité par P. Revilliod, A. Jayet et J. Hürzeler en 1936. Il avait livré une faunule conservée au Muséum d'Histoire naturelle de la Ville de Genève comprenant Carnivora indét., Archaeomys laurillardi et Issiodoromys quercyi (Pl. 8, Figs. 6-8) indiquant un âge MP 27, plus précisément le niveau de Boningen 1 (voir aussi Kissling 1974, p. 23).

1.4. Nant d'Avril

Les Marnes et Grès bariolés ont livré à D. Rigassi, dans le Nant d'Avril (coord. suisses: 492,10/118,20; voir Fig. 2, lettre I), une association de mammifères

comprenant *Issiodoromys terminus*, *Archaeomys* sp., *Caenotherium* sp., Insectivore indét. Cette association donne un âge légèrement plus jeune que le niveau de Fornant 6 (= MP 28 [partie supérieure]): voir Rigassi (1957, p. 20), Kissling (1974, p. 38), Vianey-Liaud (1979), Engesser & Mödden (1997, p. 488), Angelillo (1987, p. 135).

1.5. Versant oriental du Vuache

Michel (1965, p. 709) cite une communication inédite de D. Rigassi, qui signalait un banc calcaire (= Calcaires inférieurs) sur le flanc nord-oriental du Vuache près de Vulbens. Plus récemment, Donzeau et al. (1997) notent dans cette même région un affleurement de Marnes et Grès bariolés fossilifères (coord. françaises: 877,24/2128,44; Fig. 2, lettre P) dans lequel Blondel (1984, éch. TB323) avait isolé des fragments d'os et de dents de mammifères indéterminables, des ostracodes écrasés, des charophytes (Chara gr. microcera-notata, Stephanochara gr. ungeri?, Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp.) et divers foraminifères marins benthiques et planctiques. Ces derniers comprennent des formes remaniées du Crétacé supérieur, du Paléocène, de l'Eocène, ainsi que des espèces oligocènes, vraisemblablement remaniées elles aussi (R. Wernli, communication écrite 2005). Cet affleurement échantillonné à nouveau nous a livré des charophytes de la zone à Ungeri (Stephanochara gr. ungeri), équivalente des zones MP 27-28.

1.6. Humilly

Près d'Humilly (Fig. 2, lettre L), Rigassi (1957, p. 22) a découvert et fouillé un gisement (coord. suisses: env. 489,7/109,8) qui a livré les micromammifères suivants, déterminés par J. Hürzeler et S. Schaub et révisés par l'un de nous (B. E.): Rodens indét., Issiodoromys sp., Archaeomys sp., Peratherium sp. L'âge de cette faunule correspond à MP 28, mais serait un peu plus ancien que celui du gisement de Nant d'Avril.

1.7. Région de Nyon

Dans le Nant de Riond (coord. suisses: 505,50/135,32; Fig. 2, lettre N), Arn et al. (2005, p. 33) signalent des charophytes de la zone à Ungeri, ainsi que dans le Boiron, où trois gisements autorisent des datations:

- près de la Carrière (coord. suisses: 503,09/136,29), où des charophytes de la zone à Ungeri accompagnent des dents de *Eomys ebnatensis* et d'un Cainothéridé indéterminé, ce qui correspond aux zones MP 27-28;
- au NE d'Arnex (coord. suisses: 504,32/136,97), où des charophytes de la zone à Ungeri sont associées à des dents d'Eomys major, de Plesiosminthus promyarion, de Gliravus sp., de Cricétidé et de Théridomorphes indéterminés indiquant la zone MP 28;

■ au S d'Eysins (coord. suisses:505,57/136,94), où les charophytes déterminent la zone à Ungeri (= MP 27-28).

2. Affleurements de Grès et Marnes gris à gypse

2.1. Le Vengeron

Dans le lit du Vengeron, où furent jadis trouvés des fragments de tortues (Favre 1843, p. 112; 1879, t. II, p. 76), Jayet (1964) mentionne dans la notice explicative de la feuille Coppet à 1/25000, à 385 m, un gisement fossilifère (Fig. 2, lettre B) dans les Grès et Marnes gris à gypse; celui-ci figure également sur la carte géologique. Il s'agit de niveaux marneux où s'intercalent des bancs calcaires centimétriques dont l'un d'eux renferme de nombreux moules internes de mollusques, des oogones de charophytes et des débris de végétaux. Ce gisement (coord. suisses: 500,57/122,37/385) a été fouillé par D. Rigassi et G. de Beaumont qui y ont découvert des dents de Plesiosminthus schaubi, caractéristiques du niveau de Küttigen 1 (= MP30, partie inférieure). Ce matériel (collection MHNG, n° 5195) permet de dater la partie inférieure des Grès et Marnes gris à gypse, le contact avec le sommet des Marnes et Grès bariolés étant tout proche d'après la carte géologique.

2.2. Massongy

Hugueney & Kissling (1972, p. 64) signalent un gisement de mammifères près de Massongy (coord. suisses: 514,58/129,02/495), à 1 km au NW du sondage Mont de Boisy-1 (Fig. 2), dans une série de marnes et de grès comprenant de nombreux bancs de calcaire et de marno-calcaire. Ces derniers ont fourni des charophytes (Nitellopsis (Tectochara) gr. meriani, Sphaerochara. gr. hirmeri, Chara gr. microcera-notata, Rhabdochara gr. langeri, Stephanochara gr. ungeri) et des dents de micromammifères (Peratherium sp., Glirudinus glirulus, Pseudothe-ridomys sp.). Si ces dernières ne permettent pas de trancher entre l'Oligocène supérieur et l'Aquitanien inférieur, l'association des charophytes date le profil de Massongy des zones à Ungeri et Notata de l'Oligocène supérieur.

3. Affleurement de Molasse grise de Lausanne («Aquitanien auct.»)

Nant Trouble-Andilly

Dans un affluent du Nant Trouble, sur le flanc méridional du Mont Sion à l'E de Cernex (Fig. 2, lettre M), un affleurement (coord. françaises: 888,20/124,94) qui surmonte les Grès et Marnes gris à gypse a livré à Rigassi (1957, p. 24) une dent de *Dimyloides stehlini* (Pl. 8, Fig. 1) qui date cette molasse de la «partie

inférieure de l'Aquitanien» ou niveau de Boudry 2 selon Mojon et al. (1985). Il se pourrait toutefois que cette dent appartienne à une forme très proche, *Pseudocordylodon rigassii*, qui indique le même âge (Engesser 1976, Rigassi 1977a).

4. Anciens affleurements disparus

4.1. Nant d'Avanchet

Le Nant d'Avanchet, affluent de la rive droite du Rhône, entaillait des affleurements de Molasse (Fig. 2, lettre G), qui sont reportés sur la carte géologique à 1/25000, relevée par Paréjas (1938; voir aussi Rigassi 1957, pl. II). Depuis la construction de l'autoroute, ces affleurements ont disparu et le Nant d'Avanchet qui prenait sa source dans des marais quelques kilomètres plus au N, a été complètement mis sous tuyau. Dans la notice explicative de la feuille géologique, Paréjas (1938, Figs. 1, 2) présente deux coupes fossilifères, la première de la partie supérieure de la «Molasse bigarrée» (= Marnes et Grès bariolés), la seconde de la partie inférieure de la «Molasse gypseuse» (= Grès et Marnes gris à gypse). Les gastéropodes signalés (Plebecula ramondi, Cepaea subsulcosa, Lymnaea sp.) et les bivalves (Unio sp.) ne permettent pas de datation précise.

Dans la littérature, il est généralement admis que la région du Nant d'Avanchet se trouve dans le prolongement du décrochement du Coin qui sépare le secteur septentrional (Grand et Petit Salève) de la partie méridionale du Mont Salève (chaînon des Pitons). Les levés de détail (affleurements, galeries, sondages) ont permis à Angelillo (1987, p. 38 et Fig. 11, reprise ici dans notre Fig. 27) de démontrer l'existence de 5 blocs limités par des failles décrochantes sénestres et par des fractures annexes diversement orientées. Pour cet auteur, la région du Nant d'Avanchet doit être interprétée comme le lieu de passage d'un couloir décrochant distensif sénestre N130E qui n'est autre que l'expression locale en surface de l'accident décrochant du Coin et qui met côte à côte des compartiments de Marnes et Grès bariolés et de Grès et Marnes gris à gypse sans qu'apparaisse en surface leur contact stratigraphique. Ces conclusions infirment celles de Paréjas (1944), qui avait décrit des plissements dans la Molasse de Vernier («synclinal d'Avanchet», «anticlinal de Chèvres»).

Marnes et Grès bariolés

Dans deux prélèvements (coord. suisses: 119,28/496,55/400 et 119,16/496,47/395) d'une centaine de kilos de marnes foncées à débris charbonneux appartenant au sommet des Marnes et Grès bariolés (Fig. 2, lettre G), J. Rolfo signale (*in* Angelillo 1987, p.

139 et 141) une association de mammifères (coll. NMB) caractéristique du niveau de Küttigen 1 (= MP30, partie inférieure). Elle comprend *Pseudotheridomys rolfoi, Rhodanomys* cf. *hugueneyae, Microdyromys praemurinus, Peridyromys* sp., *Eucricetodon collatus, Pseudocricetodon* cf. *thaleri, Plesiosminthus schaubi, Amphilagus* sp. Les charophytes, *Nitellopsis (Tectochara)* gr. *meriani, Rhadochara* gr. *langeri* se rattachent à la zone à Ungeri et/ou à Notata (Angelillo 1987, p. 136; Engesser 1990, p. 137; Engesser & Mödden 1997, p. 490).

Grès et Marnes gris à gypse

Oertli (1956) cite au Nant d'Avanchet la présence d'une unique espèce d'ostracode (Hemicyprideis genavensis), considérée comme saumâtre (Rigassi 1957; Carbonnel et al. 1985). Selon Angelillo (1987), la diversité des formes trouvées dans ses lavages des Grès et Marnes gris à gypse de l'affleurement aval de la Petite Falaise (coord, suisses: 496,16/118,91), ainsi que la présence d'autres marqueurs d'eau douce, indiquent un milieu de dépôt à salinité variable. Il rappelle en outre la découverte, par C. Meyer de Stadelhofen (in Rigassi 1957, p. 22), de foraminifères benthiques (Ammonia beccarii) typiques de milieux dessalés ou sursalés, dans les Grès et Marnes gris à gypse de la Grande Falaise (coord. suisses: 496,44/119,13).

5. Affleurements temporaires découverts par des travaux de génie civil

5.1. Entrée aval de la galerie du Nant d'Avanchet

A cette entrée (Fig. 2, lettre H), dans un paléosol palustre riche en débris charbonneux, l'échantillon VA 18 (coord. suisses: 496,23/119,05/379) prélevé dans les Grès et Marnes gris à gypse contenait selon Angelillo (1987), outre des fragments de Monocotylédones ou d'Equisetales, des fruits (Cladocarya trebovensis, Brasenia sp.), des mollusques, des ostéodermes et dents d'Ophisaurus:

- des charophytes: Stephanochara gr. ungeri, Chara gr. microcera-notata, Nitellopsis (Tectochara) gr. meriani;
- des ostracodes: *Hemicyprideis genavensis*;
- des dents pharyngiennes de poissons: *Tarsichthys* sp.;
- des dents de mammifères: *Glirudinus glirulus, Peridyromys* cf. *murinus, Eucricetodon* sp.

Les charophytes indiquent la zone à Ungeri et/ou à Notata. Les micromammifères ne permettent pas de trancher entre l'Oligocène supérieur et le Miocène inférieur; cependant, un échantillon récolté dans le même niveau par D. Rigassi avait livré quelques fragments de dents de lagomorphes indéterminés, ce qui permet d'exclure un âge plus ancien que le ni-

veau de Küttigen 1 (= MP 30, partie inférieure). L'échantillon VA 18 peut donc être attribué à l'Oligocène terminal, et très probablement être rattaché au niveau de Küttigen 1. Comme cet échantillon correspond au niveau VA 604 du sondage tout proche SCG 6481 (Fig. 18), qui traverse le sommet des Marnes et Grès bariolés et la partie inférieure des Grès et Marnes gris à gypse (Angelillo 1987), il est possible de bien situer VA 18, soit à une soixantaine de mètres au-dessus de la base des Grès et Marnes gris à gypse.

5.2. Portail Avanchet

L'échantillon VA 220 d'environ 500 kg, prélevé par Angelillo (1987, p. 80 et 131; Figs. 39 et 40) au sommet de la coupe du portail Avanchet du tunnel de l'autoroute (coord. suisses: 496,20/119,05; Fig. 2, tout proche de la lettre H), dans un paléosol palustre riche en débris charbonneux des Grès et Marnes gris à gypse, a fourni, en plus de fragments de mollusques et d'ostracodes,

- des fruits: Cladocarya trebovensis, Brasenia sp.;
- des charophytes: Rantzieniella nitida (Pl. 6, Figs 1-13), Chara notata, Sphaerochara sp.;
- des restes de reptiles: *Ophisaurus* sp., Scincomorphes ?;
- des dents pharyngiennes de poissons: *Tarsichthys* sp., *Rutilus* sp.;
- des otolithes de poissons (révision B. Reichenbacher): *Palaeolebias triangularis, Dapalis rhomboidalis, D.* aff. *rhomboidalis, Hemitrichas dentifer,* genus *Cyprinidarum* sp.:
- des mammifères: Eucricetodon longidens, Rhodanomys sp., Melissiodon sp., Talpidae indét., Lagomorphe indét.

L'association de charophytes reconnue dans ce gisement date de la zone à Nitida (= MP 30 [partie terminale] - MN 1). L'otolithe Palaeolebias triangularis est typique de la zone OT O6, ce qui correspondrait à MP 30. Les micromammifères plaident pour un âge Aquitanien basal. En effet, la présence de Lagomorphes situe l'échantillon VA 220 dans le niveau de Küttigen 1 ou au-dessus. De plus les deux dents d'Eucricetodon longidens sont nettement plus grandes que celles de l'Eucricetodon de Küttigen 1 et sont dans les dimensions de E. longidens de Boudry 2. Il est difficile de placer exactement l'échantillon VA 220 par rapport à la base des Grès et Marnes gris à gypse, mais il se situe vraisemblablement au moins une centaine de mètres audessus. En tenant compte des différentes faunes et flores déterminées dans cet échantillon, un âge situé entre les niveaux de Brochene Fluh 53 (= MP 30, partie supérieure) et de Boudry 2 (= MN 1, partie inférieure) paraît le plus probable.

5.3. Le Vengeron

Dans la région du Vengeron, où furent trouvés jadis des fragments de tortues (Favre 1879, t. II, p. 76), deux affleurements de Grès et Marnes gris à gypse, actuellement recouverts (Fig. 2, lettre B), ont fourni des dents de micromammifères. Le premier, situé le lit du ruisseau (coord. 500,57/122,37/385) et fouillé par D. Rigassi et G. de Beaumont, avait livré notamment Plesiosminthus schaubi (Pl. 8, Fig. 2) caractéristique du niveau de Küttigen 1. Le deuxième gisement a été découvert par les travaux de l'autoroute (coord. suisses: 500,70/122,10; Fig. 2, lettre C). Un dessin de cet affleurement fut publié par Lombard (1965, Fig. 1), tandis que le relevé plus précis du même affleurement par J.-M. Jaquet est resté inédit. D. Rigassi et G. de Beaumont y ont découvert Rhodanomys hugueneyae (coll. MHNG, no V5197, Pl. 7, Fig. 6), ce qui correspond à la zone MP 30 (niveau de Küttigen 1 ou de Brochene Fluh 53).

5.4. Choulex

Une fouille creusée pour les fondations d'un bâtiment dans le village de Choulex (coord. suisses: 506,40/120,12; Fig. 2, lettre D) a mis à jour une coupe de 1 m dans les Grès et Marnes gris à gypse. L'échantillon VA 315-316 de 50 kg, prélevé par Angelillo (1987) dans un niveau palustre riche en débris charbonneux a permis d'extraire une association significative sur le plan biostratigraphique. Outre les fruits (Cyperaceae), les fragments de bois, les débris de mollusques, d'ostracodes, de poissons, de reptiles et d'amphibiens, l'échantillon a fourni des dents de mammifères (coll. NMB): Paratalpa sp., Rhodanomys cf. transiens, Pseudotheridomys cf. schaubi, Pseudotheridomys rolfoi, Eucricetodon sp., Steneofiber sp., Amphilagus ulmensis. Ce dernier indique l'Aquitanien inférieur (= zones MN 1 à MN 2a); un âge plus jeune n'est pas vraisemblable car A. ulmensis y possède un degré évolutif différent. De plus, la présence de *Rhodanomys* cf. transiens exclut la zone MN 2a. En conclusion, l'échantillon prélevé à Choulex date du niveau de Boudry 2 (= MN 1, partie inférieure), c'est-à-dire de la base de l'Aquitanien; voir Angelillo (1987, p. 109 et 133, Fig. 48), Engesser (1990, p. 138), Engesser & Mödden (1997, p. 490).

5.5. Cologny

Dans une fouille (Fig. 2, lettre F), près de Cologny (coord. suisses: 503,36/119,03), D. Rigassi avait levé en juillet 1981 une coupe d'une cinquantaine de mètres, publiée par Angelillo (1987, p. 110 et 134, Fig. 49). Les échantillons Cologny 3 et 4 (coll. J.-P. Berger), récoltés dans la partie inférieure de cette coupe, renferment des fruits de Cladocarya sp. et des charophytes (Rhabdochara nitida, Rhabdo-

chara gr. langeri, Stephanochara gr. praeberdodentis, Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp.) qui caractérisent la zone à Nitida (= MN 1).

5.6. Vandoeuvres

Une fouille (Fig. 2, lettre E) effectuée pour les fondations d'un ensemble de villas à Vandoeuvres (coord. suisses: 504,04/119,08) a mis à jour dans une coupe discontinue d'une vingtaine de mètres «un grès grossier à deux micas massif, chenalisant, d'une épaisseur de 1,2 m» (Angelillo 1987, p. 151, Fig. 65). Cet affleurement temporaire a été attribué à la zone MN 1 ou MN 2a, en se basant sur l'analogie des faciès observés à Cologny et à Vandoeuvres, les charophytes et ostracodes d'eau douce isolés à Vandoeuvres n'autorisant pas une datation.

IV. SONDAGES PÉTROLIERS

1. Sondages du XIXe siècle

Ils sont mentionnés ici pour mémoire, mais n'ont pas fourni d'informations stratigraphiques importantes sur la Molasse; de plus, ils ne sont pas tous localisés avec précision (Wassall & Assoc. 1961).

1.1. Pregny

Exécuté en 1831-1833 «au sommet de la colline de Pregny, dans la propriété de M. Giroud» (coord. suisses: env. 499/121) à environ 3 km au NW de Genève, pour des recherches géothermiques; la profondeur totale de ce sondage a atteint 221,5 m. De la Rive & Marcet (1834), puis Favre (1879, t. II, p. 101-102) en donnent le profil résumé ci-dessous:

- Quaternaire (0 env. 17 m): moraine, puis sable, puis gravier de l'«Alluvion ancienne»;
- - Molasse (= Marnes et Grès bariolés):
- env. 17 128: prédominance des marnes bariolées alternant avec de minces couches de grès;
- 128 221,5: prédominance des grès alternant avec de minces couches marneuses; un de ces intervalles gréseux atteint 24 m d'épaisseur.

1.2. Collonges

Exécuté en 1884, ce sondage implanté pour la prospection de charbon, sur rive droite du Rhône (coord. suisses: env. 877/133), à environ 4 km au N de Vulbens (lettre P, Fig. 2) a atteint 225 m de profondeur.

1.3. Challex-1

Ce sondage de 225 m de profondeur (coord. suisses: env. 487,82/115,05), très proche du puits Challex-2

(Fig. 2), exécuté en 1887, a également été foré pour la prospection de charbon (Manigler 1887; Paréjas 1938).

1.4. La Plaine

Exécuté en 1889 pour la prospection d'hydrocarbures, le sondage de la Plaine (ou sondage Gardy; coord. suisses: env. 489,4/114,9) a atteint 124,5 m de profondeur; il a été foré sur rive droite du Rhône, à environ 1,7 km à l'W du sondage plus récent Gex CD 04 (Fig. 2).

1.5. Pont des Granges

En établissant les fondations du pont des Granges (coord. suisses: 488,9/119,5/407) en 1842, un banc de lignite de 1 m d'épaisseur aurait été traversé (Paréjas 1938, p. 7). Plus tard, en 1889, un forage de 135 m de profondeur implanté près du pont des Granges, à environ 1 km au NW du sondage Peissy-1 (Fig. 2), avait pour but la prospection d'hydrocarbures.

2. Sondage de Challex-2

Exécuté en 1918-1920 par la Société de Pétrole Ain-Savoie et implanté pour la prospection d'hydrocarbures à environ 100 m au SW de Challex-1 (coord. suisses: 487,75/115,0); françaises: 881,50/137,35; Fig. 2), ce sondage a atteint une profondeur totale de 273,5 m (Heim 1922). Selon Wassall & Assoc. (1961), il a traversé:

- - 0 264,7 m: Marnes et Grès bariolés
- - 264,7 273,5: Calcaires inférieurs.

Le fond du sondage se situerait à environ une dizaine de mètres au-dessus du substratum crétacé (très probablement Calcaires urgoniens) d'après le profil dessiné par Heim (1922, Fig. 1). Les grès sont imprégnés d'hydrocarbures de 108 à 110, de 125,6 à 138,4 et de 158,5 à 160,5 m; le niveau supérieur (108 - 111 m) a fourni 3 litres d'hydrocarbures de densité 0,94.

3. Sondage de Peissy-1

Exécuté par la Société de mise en valeur des gisements métallifères suisses, ce sondage (coord. suisses: 489,97/119,05/472; Fig. 2) a été réalisé en 1944-1945, pour la prospection d'hydrocarbures. Curieusement, l'emplacement de ce sondage, dont la profondeur a atteint 293,6 m, n'a pas été reporté sur la carte géologique St-Julien-en-Genevois à 1/50000 (Donzeau et al. 1997). La description détaillée figure dans plusieurs publications de Lagotala (1945, 1947, 1948). Nous avons repris et simplifié le log lithologique synthétique dessiné par Schroeder (1958) sur

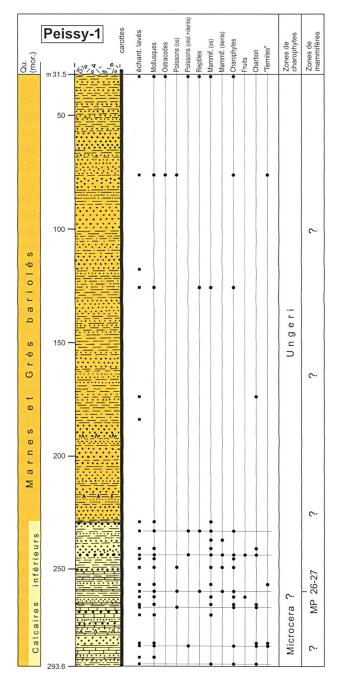


Fig. 6: Sondage de Peissy-1.

notre Fig. 6: après 31,5 m de moraine, ce sondage est resté dans la molasse, ici subhorizontale, sans en atteindre la base; on y distingue les Marnes et Grès bariolés (entre 31,5 et 230 m environ) et les Calcaires inférieurs (entre 230 et 293,6 m). Des imprégnations d'hydrocarbures ont été relevées entre 60 et 64, 71 et 76, 78 et 80, 90 et 94, à 101, à 131, entre 158 et 162, et à 215 m.

Le sondage a été entièrement carotté et les carottes sont conservées au Muséum d'Histoire naturelle de la Ville de Genève; elles avaient déjà fait l'objet de commentaires et de diverses analyses (minéraux lourds, argiles, microfossiles, diagenèse, etc) par Rigassi (1957), Vernet (1964), Kissling (1974), Maurer (1981, 1983), Schegg (1993). Nous y avons à notre tour prélevé et lavé 16 échantillons surtout marneux grâce à l'aimable autorisation de la direction du Muséum; nous avons en outre revu les microfossiles isolés par D. Kissling: charophytes (actuellement coll. J.-P. Berger, Fribourg) et dents de mammifères (NMB).

Lagotala (1947, 1948) a relevé que sur les 261,1 m de molasse traversés par le sondage de Peissy-1, 92,6% des roches avaient un caractère gréseux; quant aux niveaux argileux proprement dits, il n'en signale que sur 4 m d'épaisseur au total. La présence de minces filons de gypse fibreux vers 190, 208 et 278 m doit être soulignée. Les niveaux de «brèche» et de «poudingue» distingués par Lagotala (1948) et par Schroeder (1958) sont des dépôts fluviatiles de fond de chenal (lag deposits). Les fragments charbonneux, souvent riches en pyrite, sont courants à la base de la série, dans les Calcaires inférieurs, dès 250 m. Un premier mince niveau de calcaire lacustre est situé à 230 m.

Marnes et Grès bariolés

- Ech. 32,0-32,1 m: Artiodactyle indét. (fragm. de dents); coquilles d'oeuf (probablement de reptile); ostracodes d'eau douce: Pseudocandona sp., Strandesia sp. (Pl. 3, Fig. 3), Heterocypris? sp.; charophytes: Nitellopsis (Tectochara) sp.,?Stephanochara gr. ungeri, Sphaerochara gr. hirmeri.
- Ech. 75,0: Chara sp., Hornichara lagenalis.
- Ech. 75,9-76,1: Ilyocypris essertinesensis (Pl. 2, Figs. 4-5), Herpetocypris? sp.
- Ech. 125,0: Hornichara lagenalis (parfaitement conservées).

Calcaires inférieurs

- Ech. 233,0: ?Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani.
- Ech. 243,0: Rhabdochara gr. praelangeri-major,?Rh. gr. stockmansi-major, Nitellopsis (Tectochara) gr. meriani.
- Ech. 245,0: Nitellopsis (Tectochara) gr. meriani.
- Ech. 261,0: Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani.
- *Ech. 261,5-261,7*: dent de crocodile.
- Ech. 261,76: Eomys cf. molassicus, cf. Allocricetodon incertus, Blainvillimys sp., Erinacéidé indét.
- Ech. 266,0: ?Stephanochara gr. ungeri, Sphaerochara gr. hirmeri, Nitellopsis (Tectochara) gr. meriani, Hornichara lagenalis.
- Ech. 268,0: Rhabdochara gr. praelangeri-major,?Rh. gr. stockmansi-major.
- Ech. 284,0: Nitellopsis (Tectochara) gr. meriani.
- Ech. 292,0: Rhabdochara gr. praelangeri-major, formes très proches de Rh. major (Pl. 5, Figs 7-9),? Stephanochara gr. ungeri.

Dans une carotte à 261,7 m, Kissling (1974, p. 19-20) avait isolé des dents qui furent déterminées par M. Hugueney, puis revues par B. Engesser; il s'agit de

Eomys cf. molassicus, cf. Allocricetodon incertus, Blainvillimys sp., Erinacéidé indét. Cette association se situe entre les niveaux d'Oensingen 1 et de Wynau 1 (= MP 26 - MP 27[base]). D'autre part, malgré leurs faibles quantités, les charophytes déterminées montrent que presque tout l'intervalle foré doit se situer dans la zone à Ungeri (= MP 27-28). Seule la base du forage, dès 268 m et au-dessous, avec de nombreuses Rhabdochara gr. praelangerimajor mal ornées et la quasi-absence de Stephanochara gr. ungeri, pourrait peut-être appartenir au sommet de la zone à Microcera, ce qui correspondrait au niveau MP 26.

4. Sondage de Messery-1

Exécuté par la Société PREPA en 1958 pour la prospection d'hydrocarbures, le sondage de Messery-1 (coord.françaises: 904,73/157,52/425; Fig. 2) a atteint une profondeur de 737,7 m. D'après des documents inédits de la PREPA, Wassall & Assoc. (1961), Vial (1976), Vial et al. (1987), le profil du sondage est le suivant (Fig. 7):

- - 0 18 m: Quaternaire (moraine)
- - 18 62: Chattien supérieur (Grès et Marnes gris à gypse)
- - 62 589: Chattien inférieur (Marnes et Grès bariolés) prédominance marneuse de 62 à 295, prédominance gréseuse de 295 à 457, à nouveau prédominance marneuse de 457 à 510, nettement plus calcaire de 510 à 565, prédominance de calcaires lacustres de 565 à 589 (= Calcaires inférieurs)
- 589 620: Crétacé supérieur (calcaire fin beige d'âge turonien ou sénonien)
- 620 655: Albien (grès glauconieux verts), puis Aptien (marnes à orbitolines)
- 655 737,75: Barrémien supérieur (calcaires à faciès urgonien).

L'intervalle molassique n'a pas fait l'objet d'investigation particulière et n'a pas livré de fossiles.

5. Sondage du Mont de Boisy-1

Exécuté par la Société PREPA en 1959, ce sondage d'une profondeur totale de 1954,5 m, a été implanté sur le Mont de Boisy (coord. françaises: 908,36/152,67/679; Fig. 2) pour la prospection d'hydrocarbures. Le sondage a rencontré successivement, après une dizaine de mètres de moraine et jusqu'à la profondeur de 1773 m selon les documents de la PREPA (ou 1768 m selon Wassall & Assoc. 1961), des formations molassiques attribuées à l'Aquitanien, au Chattien supérieur et inférieur et au Rupélien. L'analyse palynologique d'une dizaine de carottes mo-

Messery-1 Marne Grès e gris à 100 200 és bariol Grè et arnes 400 inf. Calcaires

Fig. 7: Sondage de Messery-1.

lassiques n'a pas livré de microflores déterminables (Sittler 1965, p. 251). Puis, directement au-dessous de ces terrains tertiaires, le sondage a traversé différents faciès attribués aux formations du Crétacé supérieur, de l'Albo-Aptien et de l'Urgonien (Fig. 8).

L'interprétation de la série tertiaire a été révisée par Büchli et al. (1976) qui, à la suite d'une prospection géoélectrique dans le secteur, considèrent que la colline du Mont de Boisy correspond à une Molasse charriée, chevauchant un ensemble autochtone constitué par une série normale comprise entre le Rupélien et l'Aquitanien. Cette hypothèse est en accord non seulement avec les paramètres géophysiques mesurés par Büchli et al. (1976), mais aussi avec les variations de pendage, soit 5-8° jusqu'à 600 m, 45° entre 750 et 870 m, et environ 30° à 1717 m. Suivant cette hypothèse et en tenant compte des variations de pendages, la Molasse charriée atteint près de 570 m d'épaisseur; chevauche elle Aquitanien autochtone de 45 m de puissance, au-dessous duquel se trouve le Chattien autochtone dont l'épaisseur dépasse 800 m (Büchli et al. 1976, Fig. 35; Vial 1976, Figs. 13-14;

Olive et al. 1987). Ce chevauchement serait celui de la Molasse subalpine, nommé accident de la Paudèze au N du Léman, dont Dupuy (2006) vient de préciser le tracé à travers le lac à l'aide de profils de sismique réflexion à haute résolution.

Suivant Wassall & Assoc. (1961), la base de la série tertiaire se rattache à la Molasse marine inférieure (UMM), montrant 24 m (épaisseur apparente) de grès fins attribués au Rupélien supérieur et rattachés aux Grès de Vaulruz (ou Grès de Bonneville ou Bausteinschichten), puis 48 m (épaisseur apparente)

de marnes grises datées du Rupélien inférieur et assimilées aux Marnes de Vaulruz (ou Série marnomicacée Tonmergelstufe). Rigassi (1977a, p. 23) propose une interprétation différente des épaisseurs de la base du Tertiaire: 46 m de Grès de Bonneville et 67 m de Série marno-micacée reposant sur 9 m Sidérolithique. Ce point de vue n'est pas partagé par Olive et al. (1987), puisque sur leur dessin de la coupe du Mont de Boisy-1 (feuille Douvaine à 1/50000), le Rupélien, mentionné entre 1652 et 1773 m, est représenté par une série de 121 m de puissance apparente composée de haut en bas par des grès, des marnes gréso-sableuses et des grès gris quartzeux.

Le sondage Mont de Boisy-1 livre une précieuse indication sur la position probable du biseau de la Molasse marine inférieure (UMM), dont le tracé dans la ré-

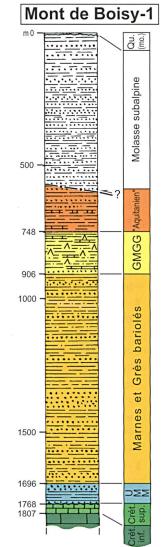


Fig. 8: Sondage de Mont-de-Boisy-1.

gion savoyarde, puis lémanique et au-delà vers le NE, est détaillé par Rigassi (1977, p. 24; 1996, p. 7). Autre fait important que révèle ce sondage: la série tertiaire repose sur des terrains du Crétacé supérieur représentés par 39 m (épaisseur apparente) de calcaires fins (entre 1768 et 1807 m) selon Wassall & Assoc. (1961) ou par 38 m de calcaires beiges avec marnes bariolées (entre 1773 et 1811 m) d'après Olive et al. (1987).

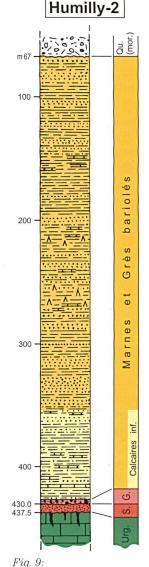
6. Sondage d'Humilly-1

Foré en 1960 par la société PREPA pour prospection d'hydrocarbures, ce sondage (coord. suisses: 883,88/128,04; Fig. 2) d'une profondeur de 905 m a traversé les formations suivantes (Wassall & Assoc. 1961):

- - 0 33 m: Quaternaire;
- I 33 130: Grès et Marnes gris à gypse;
- 130 730: Marnes et Grès bariolés;

- - 730 750: Sidérolithique éocène;
- - 750 885: Urgonien;
- - 885 905: Hauterivien, etc.

Ce sondage n'a pas révélé d'indices d'hydrocarbures. A notre connaissance, la Molasse n'a pas fait l'objet d'investigations biostratigraphiques systématiques, à part la mise en évidence d'ostracodes saumâtres dans les Grès et Marnes gris à gypse (Rigassi 1977a, p. 5) et celle de rares pollens de Pinacées et de Cyrillacées dans les Marnes et Grès bariolés (Sittler 1965, p. 251).


7. Sondage d'Humilly-2

Foré en 1968-1969 par la Société nationale des Pétroles d'Aquitaine (SNPA) pour prospection d'hydrocarbures, le sondage Humilly-2 (coord. françaises: 885,02/130,53; Fig. 2) a atteint 3051 m de profondeur. Selon des documents inédits de la SNPA et

selon Rigassi (1977a, p. 5 et 18), le profil de la partie supérieure de ce puits (Fig. 9) se présente comme suit:

- - 0 67 m: Quaternaire;
- 67 360 env.: Marnes et Grès bariolés;
- 360 env. 428: Calcaires inférieurs;
- - 428 430: Gompholite;
- - 430 437,5: Sidérolithique gréseux (= Huppersand) éocène;
- 437,5 562: Urgonien avec filons de Sidérolithique argileux (= Bolus) jusque vers 445 m:
- - 562 667: Hauterivien; etc.

Quelques indices d'hydrocarbures ont été relevés dans la Molasse, dont les pendages oscillent entre 5 et 10°. L'absence des Grès et Marnes gris à gypse dans ce sondage est due au fait qu'il est implanté sur une zone structuralement haute, ce qui n'est pas le cas de Humilly-1, pourtant relativement proche (Rigassi 1977a, p. 5). Ici aussi, la Molasse n'a à notre connaissance pas fait l'objet d'investigations biostratigraphiques détaillées.

Sondage d'Humilly-2.

IIV. SONDAGES PÉTROLIERS DE BP-FRANCE

1. Sondage Gex CD 01

Exécuté en 1983. Coord. françaises: 887,90/146,62/471; suisses: 494,60/123,75/471; Fig. 4. Log lithologique (Fig. 10) d'après le rapport S.F.E.B.P. (1983) et Olmari (1983). Molasse carottée entre 11,3 et 57,6, 110,0 et 114,5, 135,3 et 143,9, 151,4 et 155,5, 166,8 et 290,5 m.

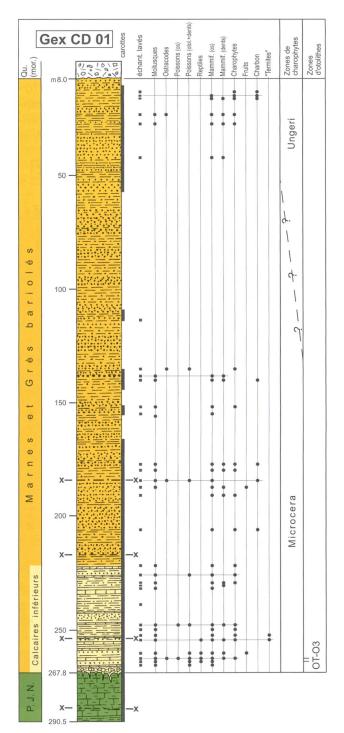


Fig. 10: Sondage Gex CD 01.

Quaternaire

- - 0 1,0 m: terre végétale
- - 1,0 8,0: moraine argileuse et graveleuse

Marnes et Grès bariolés

- - 8,0 11,3: grès fins et marnes rouges
- - 11,3 13,5: grès gris vert à galets mous; terriers
- 13,5 18,5: marnes gris noir et silts marneux, bruns, verts, lie-de-vin; concrétions calcaires, beiges à la base
 Ech. 16,8: Nitellopsis (Tectochara) sp.; Théridomyidé indét.
- - 18,5 23,0: grès gris vert, pyriteux par places
- - 23,0 28,0: argiles et marnes bariolées Ech. 23,0: Nitellopsis (Tectochara) gr. meriani, Hornichara lagenalis, Stephanochara gr. ungeri
- 28,0 41,0: grès gris vert à gris brun, avec passées marnosilteuses; imprégnations d'hydrocarbures
- 41,0 57,6: grès fins et marnes silteuses vertes, brunâtres, bariolées
- - 57,6 64,0: marnes silteuses et silts micacés, glauconieux, gris vert à ocres
- - 64,0 65,0: grès gris clair
- - 65,0 84,4: marnes silteuses brun rouge, gris vert, lie-de-vin
- - 84,4 110,0: marnes silteuses gris beige, gris vert, brun rouge, et grès fins gris vert
- - 110,0 114,5: grès très fins silteux, fortement bioturbés, et marnes silteuses vertes, brun rouge, lie-de-vin
- - 114,5 135,3: grès fins à très fins, gris vert, et marnes silteuses bariolées, gris vert, ocres
- - 135,3 143,9: grès gris vert et marnes silto-gréseuses vertes et brunes, bioturbées, avec par endroits des concrétions calcaires; gros *Unio* sp.; imprégnations d'hydrocarbures
 - Ech. 136,2: Sphaerochara sp.
- 143,9 151,4: grès fins gris et marnes silteuses beiges, ocres
- 151,4 155,5: grès silteux fins, gris vert sombre et marnes brunes et vertes, lie-de-vin
 Ech. 152,0: Hornichara lagenalis
- - 155,5 166,8: grès fins à moyens gris foncé et marnes brun rouge, ocres, gris vert, vertes, lie-de-vin
- 166,8 178,0: grès gris vert à gris brun à galets mous, concrétions calcaires; nombreux *Unio* sp.; imprégnations d'hydrocarbures
 - Ech. 177,7: Théridomyidé indét.
- 178,0 184,4: grès bruns à galets mous avec lits charbonneux centimétriques et marnes silteuses verdâtres; plan de faille à 184,4 m
 - Ech. 180,0: Nitellopsis (Tectochara) sp.
- - 184,4 205,0: grès gris vert à gris brun avec lamines de charbon soulignant la stratification; présence de galets mous et nodules calcaires (caliche) donnant l'aspect d'une gompholite; imprégnations d'hydrocarbures; à 205,0 m niveau de charbon épais de 2 cm *Ech. 191,0*: Cricétidé indét., Théridomyidé indét., Artiodactyle indét.
- 205,0 211,4: grès très fins verdâtres et marnes silteuses vertes, brunes, lie-de-vin, bariolées
 Ech. 206,0: Nitellopsis (Tectochara) sp.

- 211,4 217,4: grès gris vert; fines lamines de charbon; plan de faille à 217,4 m
- 217,4 222,4: grès très fins verts et marnes silto-gréseuses micacées, pyriteuses, gris noir, vertes
 Ech. 221,0: Nitellopsis (Tectochara) sp.

Calcaires inférieurs

- - 222,4 232,5: calcaires marneux beige, grès très fins et marnes silteuses bariolées; niveaux charbonneux Ech. 226,6-226,7: Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp., Chara sp.; Palaeoesox cf. oligocenicus Ech. 230,0: Nitellopsis (Tectochara) gr. meriani, Rhabdochara gr. praelangeri-major Ech. 230,8-231,1: Eomyidé indét.
- 232,5 234,5: calcaires gris beige, verdâtres, avec nodules (paléosols) et poches d'argiles vertes; fractures imprégnées d'hydrocarbures
- - 234,5 254,4: grès très fins silteux verdâtres, calcaires noduleux beiges, roses à verts et marnes silteuses bariolées, rouges, vertes, grises; rares niveaux ligniteux; imprégnations d'hydrocarbures

 Ech. 248,0: Chara sp., Hornichara lagenalis, Rhabdochara gr. praelangeri-major, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri

 Ech. 248,3-248,5: genus Umbridarum sp., genus Cyprinidarum sp. (Pl. 4, Fig. 10)

 Ech. 250,0: Rhabdochara gr. praelangeri-major, Nitellopsis (Tectochara) gr. meriani

 Ech. 250,2: Nitellopsis (Tectochara) gr. meriani

 Ech. 254,0: Rhabdochara gr. praelangeri-major, Nitellopsis
- - 254,4 256,2: calcaires beige rosé avec fractures remplies de marnes silteuses vertes ou rouges; plans de failles *Ech. 255,6*: *Ophisaurus* sp. ?
- 256,2 267,8: calcaires parfois noduleux rosés à beige foncé, grès très fins à moyens, silteux gris et marnes silteuses vertes, brunes, bariolées, lie-de-vin à nodules carbonatés

Ech. 260,0: Sphaerochara sp.

(Tectochara) gr. meriani

Ech. 260,8-261,3: Cricétidé indét.

Ech. 262,8-263,5: dent fragmentaire d'Artiodactyle indét.; Chara sp. (gr. microcera-notata?), Hornichara lagenalis, Stephanochara sp., Sphaerochara sp., Sphaerochara gr. hirmeri; Tarsichthys sp. (dents pharyngiennes de poissons Cyprinidés)

Ech. 263,7-263,9 et éch. 265,6-266,1: Palaeoesox oligocenicus (Pl. 4, Figs. 6, 8, 9), lapilli indét.

Pierre jaune de Neuchâtel

- 267,8 273,2: calcaires beige-verdâtre, glauconieux, bioclastiques grossiers, quartzeux, karstifiés; imprégnations d'hydrocarbures
- 273,2 276,2: calcaires quartzo-glauconieux gris vert ou ocres
- - 276,2 286,3: calcaires marneux bioclastiques, peu glauconieux, gris vert, avec fragments d'échinides et de bivalves; silicifications à 282,4 m; plan de faille avec calcite et pyrite à 286,3 m

- 286,3 - 290,5: calcaires marneux bioclastiques glauconieux
à débris d'échinides et de bryozoaires, passant vers le bas à
une marne peu glauconieuse (= faciès «Marnes
d'Hauterive»).

Remarques

- Dans le sondage CD 01, les Marnes et Grès bariolés, qui ont été traversés sur 216,4 m, sont caractérisés par une prédominance de grès généralement fins et de marnes silto-gréseuses, dont les couleurs sont très variables: grises, brunâtres, verdâtres, lie-de-vin, bariolées, rougeâtres. Des niveaux conglomératiques (lag deposits), presque toujours riches en débris de gros *Unio*, ont été relevés à 138,6, 177,7, entre 187,8 et 188,3, à 191,0, et entre 264,4 et 264,6 m; les éléments sont surtout des galets mous argilo-silteux et des nodules caliches carbonatés, très rarement des calcaires et des silex crétacés.
- Les Calcaires inférieurs, observés sur 45,4 m, se manifestent dès 223 m. Ils surmontent directement la Pierre jaune de Neuchâtel à 267,8 m, et non pas les Calcaires urgoniens comme l'affirme à tort Morend (2000, p. 35-37).
- Le spectre des minéraux lourds varie relativement peu: toutefois l'épidote diminue assez fortement de 210 m à la base de la Molasse au profit des résistants (zircon-tourmaline-TiO2), alors que le grenat, la hornblende et l'apatite restent constants.
- Du point de vue biostratigraphique, la microflore de charophytes est assez représentative
 du Chattien inférieur (avec nombreuses
 Hornichara lagenalis et Rhabdochara gr.
 major-praelangeri) dans la plus grande partie
 du sondage, ce qui correspond probablement à
 la zone à Microcera (= MP 24 [sommet] MP 26)
 et Ungeri (= MP 27-28). Le sommet du sondage
 devrait appartenir à la zone à Ungeri avec la
 présence de Stephanochara gr. ungeri à 23 m.
 - Les otolithes du poisson Palaeoesox oligocenicus observés entre 263,7 et 266,1 m, vers la base des Calcaires inférieurs, apparaissent dans les zones OT-O3 et OT-O2, laquelle correspond à la zone MP 24 à St. Martin-de-Castillon (bassin d'Apt) et à la zone MP 25 en Bavière. Cependant, en raison de l'absence de Palaeolebias symmetricus qui est spécifique de la zone OT-O2, il est raisonnable de rapporter ce niveau à otolithes à la zone OT-O3, qui correspond à la zone MP 25 et à la partie inférieure de la zone MP 26, comme à Oensingen (Suisse) et à Aubenas-les-Alpes (France). Tous les autres otolithes (genus Umbridarum sp., genus Cyprinidarum sp.) rencontrés entre 226 et 266 m, appartiennent à des Umbridés et des Cyprinidés qui sont des poissons d'eau douce typiques.

- Les pendages observés sur les carottes sont tous subhorizontaux. Trois failles ont été notées dans les Marnes et Grès bariolés à 184,4 m, entre 217 et 218 m et dans les Calcaires inférieurs à 254 m.
- Les bancs de grès, d'ordre métrique ou exceptionnellement décamétrique, sont souvent imprégnés par des hydrocarbures (entre 135,4 et 138,5; entre 171,8 et 177,4; entre 185,6 et 191,7; entre 243,2 et 245,0 m). La porosité des grès très imprégnés est excellente avec des valeurs maximales supérieures à 30% et assez constante à l'intérieur d'une même séquence gréseuse. La perméabilité par contre est faible et présente de plus grandes variations. En outre, il faut relever la présence de plusieurs minces veines de charbon, la plus épaisse mesurant 2 cm.
 Le contact entre la base des Calcaires inférieurs
- nes de charbon, la plus épaisse mesurant 2 cm.

 Le contact entre la base des Calcaires inférieurs et le sommet du substratum mésozoïque, représenté dans ce sondage par le faciès «Pierre jaune de Neuchâtel», est souligné par un niveau conglomératique de 6 m d'épaisseur; il correspond très probablement au démantèlement du toit de la «Pierre jaune de Neuchâtel», karsti-

fié et altéré, et non pas à la Gompholite, comme l'indique le rapport de fin de sondage de BP-France (1983).

2. Sondage Gex CD 02

Exécuté en 1983. Coord. françaises : 883,60/145,72/450; suisses : 490,240/123,170/450; Fig. 4. Colonne lithologique (Fig. 11) d'après le rapport C.F.E.B.P. (1983) et Olmari (1983). Molasse carottée entre 216,1 et 347,6 m.

Quaternaire

- - 0 1,2 m : terre végétale
- - 1,2 15,0 : moraine argilo-sableuse et graveleuse

Marnes et Grès bariolés

- - 15,0 30,0 : marnes silteuses, beige ocre, avec intercalations de grès fins
- 30,0 39,0: grès gris verdâtre, très fins à moyens, et silts araileux
- - 39,0 48,0 : marnes silteuses bariolées, ocres, lie-de-vin
- 48,0 60,2 : grès gris verdâtre, fins à très fins au sommet, moyens à la base ; lits ligniteux
 - - 60,2 65,0 : marnes silteuses, gris clair, ocres
 - - 65,0 81,0 : grès fins à très fins, gris et niveaux marneux gris
 - - 81,0 94,2 : grès très fins à moyens, gris clair, et marnes silteuses gris vert, ocres
 - 94,2 100,0 : grès très fins à moyens, gris vert
 - 100,0 118,2 : marnes silteuses ocres, gris vert, lie-de-vin, et grès fins à moyens, gris verdâtre
 - 118,2 135,0 : marnes silteuses gris clair, ocres à la base, avec niveau décimétrique de grès fins à très fins
 - - 135,0 165,0 : marnes silteuses ocres, beiges, grisâtres et grès très fins, gris
 - 165,0 207,0 : marnes silteuses gris clair, rougeâtres, lie-de-vin, bariolées avec rares passées décimétriques de grès fins grisâtres
 - - 207,0 216,2 : grès très fins à moyens, gris clair à gris verdâtre; plan de faille à 212,0
 - - 216,2 233,4 : grès très fins, gris vert, à galets mous et marnes argileuses parfois silteuses vertes, brunes, bariolées ; fragments charbonneux ; plan de faille entre 216,3 et 216,5 m Ech. 223,2-223,4 : fragment d'incisive de Rodens sp. Ech. 227,0 : Rhabdochara gr. langeri,

Ech. 227,0 : Rhabdochara gr. langeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp.

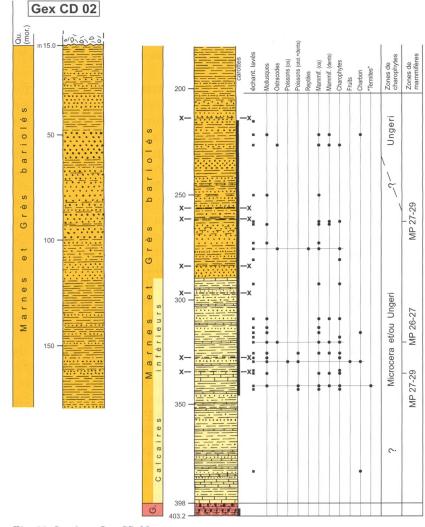


Fig. 11: Sondage Gex CD 02.

Ech. 227,8-228,1: ?Herpetocypris sp., Ostracoda indét. (fragments écrasés de formes juvéniles)
Ech. 228,0: Nitellopsis (Tectochara) sp., Hornichara lagenalis; Rodens indét.

- - 233,4 237,5 : grès fins à moyens, gris verdâtre
- - 237,5 244,4 : grès moyens gris et argiles bariolées
- - 244,4 284,0 : marnes argilo-silteuses bariolées, vertes, brunes, sombres et grès silteux, très fins à fins, gris vert, gris brunâtre ; vers 245, 249 et 261 m, nodules de calcaires marneux beige vert, bioturbés ; plans de failles à 257,2, 261,1, 265,2, 284,0 m ; pendage de 10° à 280 m *Ech. 263,0* : *Sphaerochara* sp. ; *Rodens* indét. (Eomyidé?, Cricétidé?)

Ech. 264,5-264,7: Eomyidé de la taille d'Eomys ebnatensis Ech. 276,3: Nitellopsis (Tectochara) gr. meriani, Rhabdochara gr. praelangeri-major; Rodens indét.; reptiles (Ophisaurus sp.)

Ech. 281,0: Sphaerochara sp.

■ - 284,0 - 289,6 : grès fins à moyens, gris vert, avec rares intercalations marno-silteuses gris vert

Calcaires inférieurs

- 289,6 296,2: grès silteux très fins verts et marnes argileuses brun vert, bariolées; au sommet et vers la base, niveaux décimétriques de calcaires marneux noduleux beige verdâtre
- - 296,2 297,9: marnes argileuses bariolées à nodules calcaires; ce niveau est encadré par deux plans de faille
- 297,9 304,2: grès très fins silteux en lits centimétriques et marnes argileuses bariolées avec deux niveaux décimétriques de calcaires micritiques beige vert
- - 304,2 331,2: grès silteux très fins et marnes argileuses brunes, vertes, lie-de-vin, bariolées; 5 niveaux centimétriques à décimétriques de calcaires noduleux beige vert à beige rosé; à 320 m, pendage d'environ 20°; plan de faille entre 327,7 et 328,9 m

 Ech. 310,1: Nitellopsis (Tectochara) gr. meriani,
 Stephanochara gr. ungeri, cf. Rhabdochara gr. praelangerimajor, Sphaerochara indét., Rodens indét.
 Ech. 318,2: Nitellopsis (Tectochara) gr. meriani, Chara sp.
 Ech. 320,0: Rhabdochara gr. praelangeri-major, Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp.
 Ech. 320,6-321,0: cf. Eomys molassicus
 - Ech. 324,3-327,0: Rodens indét.; Hornichara lagenalis Ech. 330,7-331,0: marnes sableuses charbonneuses sombres à débris végétaux et mollusques; Tarsichthys sp.
- 331,2 332,4: calcaires marneux noduleux beige rosé; plans de faille
- 332,4 335,5: lits centimétriques de grès très fins et de marnes argileuses vertes Ech. 334,8-335,0: Nitellopsis (Tectochara) gr. meriani, cf. Rhabdochara gr. praelangeri-major Ech. 335,0-335,5: Eomys sp.: cf. E. ebnatensis; Nitellopsis (Tectochara) sp., cf. Gyrogona sp.?
- 335,5 339,3: calcaires beiges à fragments de mollusques, riches en matière organique; plans de fractures; pendage subhorizontal

- 339,3 382,0: marnes argileuses silteuses bariolées, lie-devin, et grès silteux, très fins à moyens, gris vert; 9 niveaux centimétriques à décimétriques de calcaires fins beiges, parfois avec feuillets charbonneux
 - Ech. 341,0: Hornichara lagenalis, Nitellopsis (Tectochara) gr. meriani

Ech. 343,0: Nitellopsis (Tectochara) sp.

- 382,0 390,0: calcaires beiges micritiques avec une intercalation centimétrique de grès moyen gris vert
- 390,0 394,2: marnes argilo-silteuses bariolés et grès silteux verdâtres
- 394,2 398,0: calcaires fins beiges avec, au milieu du niveau, faciès bréchique (brèche de faille?)

Gompholite

■ - 398,0 - 403,2: conglomérat polygénique à galets de calcaires fins rosés, beiges ou gris vert, parfois encroûtés et/ou corrodés, de grès verts glauconieux et de silex bruns plus rares; ciment argilo-silteux quartzeux rouge; au sommet, encroûtement calcaire blanc (calcrete).

Remarques

- Ce sondage, qui n'a pas atteint le substratum mésozoïque, a traversé successivement les Marnes et Grès bariolés sur 274,6 m, les Calcaires inférieurs sur 108,4 m et la Gompholite sur 5,2 m. Les niveaux carbonatés reconnus vers 250 m dans les Marnes et Grès bariolés sont des accumulations de nodules calcaires dans une matrice argileuse. Les Calcaires inférieurs, notés dès 289,6 m, sont ici particulièrement épais, ce qui pourrait résulter d'un écaillage, car de nombreux plans de failles affectent ce sondage. En effet, quelques failles ont été relevées dans les intervalles carottés, ainsi que de rares pendages le plus souvent subhorizontaux, mais aussi de 10° à 280 m et de 20° à 320 m. A partir de 394,2 m, les calcaires sont bréchiques, noduleux, encroûtants, de type calcrete; dès 398 m environ, ils alternent avec des conglomérats polygéniques à éléments arrondis et anguleux (calcaires variés, silex bruns, grès glauconieux) et à matrice argileuse-silteuse beige-rosée ou rouge-brique contenant passablement de gros quartz arrondis-mats ou anguleux: c'est le faciès typique de la Gompholite.
- Quelques dents de rongeurs isolées fournissent des éléments de datation:
 - dans les Marnes et Grès bariolés éch. 264,5-264,7 m: Eomyidé de la taille de Eomys ebnatensis (M sup. fragm.), âge probable: niveaux de Wynau 1 Rickenbach (= MP 27 MP 29, base); les charophytes appartiennent à la zone à Ungeri (= MP 27-28);
 - dans les Calcaires inférieurs éch. 320,6-321,0 m: Eomyidé cf. Eomys molassicus (M sup. fragm.), datation douteuse: niveaux de Oensingen 1 Wynau 1 (= MP 26 MP 27, base);

éch. 335,0-335,5 m: Eomys cf. ebnatensis (P4 dext. fragm.), Eomys sp. (M1/2 sin. fragm.), datation douteuse: niveaux de Wynau 1 - Rickenbach (= MP 27 - MP 29, base);

L'association des charophytes reconnue correspond probablement à la zone à Microcera, mais pas à sa base (= MP 25-26) ou à la zone à Ungeri (= MP 27-28).

- Ce sondage a révélé de faibles imprégnations d'hydrocarbures entre 213,5 et 216 m et des traces de gaz entre 400 et 403,5 m. Plusieurs feuillets de lignite, épais de quelques mm, sont présents vers 57 et 331 m
- D'après le rapport de fin de sondage de BP-France (1983), « la présence de rares galets anguleux de silex brun pourrait indiquer la proximité d'un substratum de la Molasse, plutôt hauterivien, sous faciès Pierre jaune de Neuchâtel».

3. Sondage Gex CD 03

Exécuté en 1982. Coord. françaises: 880,60/138,50/505; suisses: 880,60/138,50/505; Fig. 2. Colonne lithologique (Fig. 12) d'après le rapport C.F.E.B.P. (1982) et Olmari (1983). Molasse carottée entre 71,7 et 74,0 m et entre 277,0 et 294,0 m.

Quaternaire

- - 0 0,5 m: terre végétale
- - 0,5 6,0: moraine

Marnes et Grès bariolés

- 6,0 30,0: grès argileux, fins à très fins, gris verdâtre et marnes argilo-silteuses gris verdâtre
- 30,0 66,0: grès très fins à fins, argileux vers le haut, gris verdâtre, avec quelques intercalations décimétriques à métriques de marnes argilo-silteuses rouges, jaunes, ocres
- - 66,0 74,0: grès argileux fins à moyens, pyriteux, gris verdâtre; galets mous d'argiles vertes; fortes imprégnations d'hydrocarbures entre 66,0 et 71,0 m
- - 74,0 76,0: marnes argilo-silteuses rouges, lie-de-vin
- 76,0 84,0: grès très fins à moyens, pyriteux, gris verdâtre
- 84,0 105,2: grès très fins à moyens, pyriteux, gris verdâtre, et silts gris verdâtre, jaune beige et bruns; rares niveaux ligniteux
- - 105,2 106,0: marnes argilo-silteuses rouges
- - 106,0 126,0: grès fins à moyens
- - 126,0 144,0: marnes argilo-silteuses lie-de-vin, gris verdâtre, jaunâtres
- 144,0 180,0: grès très fins à moyens, gris verdâtre, marnes argilo-silteuses lie-de-vin, gris verdâtre, jaune beige
- - 180,0 198,0: grès très fins à moyens avec une intercalation métrique marneuse argilo-silteuse
- - 198,0 209,4: grès fins à moyens gris verdâtre et marnes argilo-silteuses gris verdâtre à gris clair

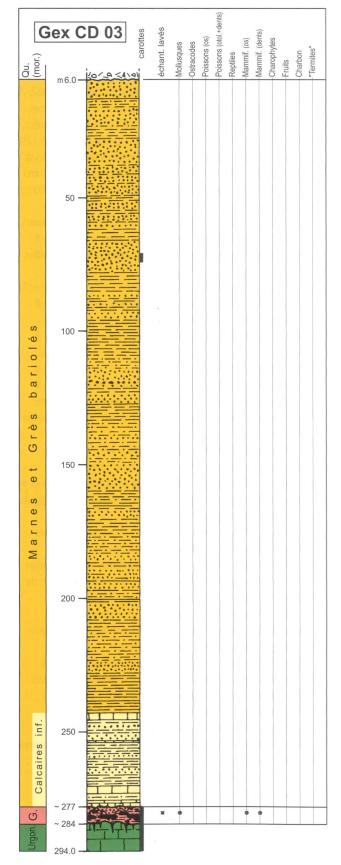


Fig. 12: Sondage Gex CD 03.

- 209,4 231,8: argiles sableuses et silteuses lie-de-vin et marnes très silteuses gris verdâtre, lie-de-vin, jaune beige
- - 231,8 242,6: marnes bariolées très silteuses

Calcaires inférieurs

- - 242,6 243,8: calcaires blancs beiges
- - 243,8 244,4: grès fins, gris verdâtre
- 244,4 270,0: marnes argilo-silteuses gris verdâtre à gris clair, lie-de-vin, bariolées
- 270,0 277,0: niveaux métriques de calcaires micritiques beiges et de grès pyriteux, fins à moyens, gris foncé à gris verdâtre

Gompholite

 277,0 - 284,0 environ: conglomérat polygénique avec galets de calcaires micritiques gris, beiges, noirâtres, encroûtés et/ou perforés; ciment quartzeux blanc à gris et marno-silteux ferrugineux rouge; imprégnations d'hydrocarbures

Ech. 281,1: Eomyidé indéterminé (fragment d'incisive)

Calcaires urgoniens

- environ 284,0 - 294,0: calcaires bioclastiques (grainstones) à fragments d'échinides et de mollusques, blancs, rosés (au sommet); fissures et poches remplies de sables quartzeux, de silts et marnes vertes (Sidérolithique?); imprégnations d'hydrocarbures.

Remarques

- Les rares intervalles carottés font que la description de ce sondage reste très générale; son intérêt réside dans la mise en évidence de la succession lithologique suivante: Marnes et Grès bariolés (236,6 m), Calcaires inférieurs (34,4 m), Gompholite (environ 7 m), Calcaires urgoniens (> 10 m). A cause d'un carottage imparfait entre le sommet des Calcaires urgoniens bien identifiés (dès 286,0 m) et la base des Calcaires inférieurs, l'épaisseur et le faciès de la Gompholite, ainsi que la présence éventuelle du Sidérolithique (reconnu dans les fissures de la partie sommitale des Calcaires urgoniens) restent difficiles à préciser.
- Il n'y a pas d'indications sur les pendages et la fracturation.
- Un intervalle gréseux est imprégné d'huile (entre 66 et 71 m) et les calcaires fracturés ou poreux de la base du sondage (entre 281 et 294 m) sont plus ou moins riches en hydrocarbures.
- Morend (2000, p. 30) prétend à tort que le sondage Gex CD 03 «did not encounter the top Urgonian surface», ... alors qu'il montre le contraire sur sa Fig. 4.4!

4. Sondage Gex CD 04

Exécuté en 1982. Coord. françaises: 881,65/137,97/410; suisses: 881,65/137,97/410; Fig. 2. Colonne lithologique (Fig. 13) d'après le rapport C.F.E.B.P. (1982) et Olmari (1983). Molasse carottée entre 60,0 et 241,6 m, et entre 273,2 et 291,7.

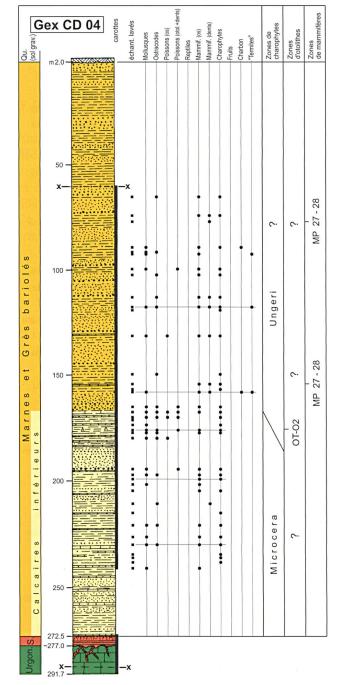


Fig. 13: Sondage Gex CD 04.

Quaternaire

■ - 0 - 2,0 m: sol graveleux

Marnes et Grès bariolés

- 2,0 60,0: grès verdâtres, fins à très fins, et marnes argilosilteuses verdâtres; intercalations de deux niveaux décimétriques lie-de-vin vers 22,0 et 46,0 m
- - 60,0 66,7: marnes silteuses bariolées et grès très fins à moyens gris vert avec quelques galets mous; nodules caliche; plan de faille à 61,0 m
 - Ech. 65,8-66,0: Nitellopsis sp., Stephanochara gr. ungeri
- 66,7 120,5: grès généralement très fins rarement moyens, gris vert, parfois silteux, et marnes argileuses vertes,

rougeâtres, brunes, lie-de-vin ou bariolées; nodules caliche et galets mous

Ech. 74,1-74,4: Hornichara aff. lagenalis, Nitellopsis (Tectochara) sp., Nitellopsis (Tectochara) gr. meriani Ech. 77,0-77,3: une molaire fragmentaire d'Archaeomys cf. intermedius

Ech. 89,3-89,5: Sphaerochara sp., Nitellopsis (Tectochara) sp. Ech. 99,7: Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp.; Tarsichthys sp. (Pl. 4, Fig. 11), ces lapillis de carpe témoignent d'un milieu d'eau douce

Ech. 100,1-100,6: Nitellopsis (Tectochara) cf. meriani, Hornichara sp., Rhabdochara sp.

Ech. 102,4-102,5: Sphaerochara sp.

Ech.113,0: Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp., Rhabdochara gr. langeri

Ech. 113,8-114,3: Rhabdochara gr. praelangeri-major, Sphaerochara gr. hirmeri, Nitellopsis (Tectochara) gr. meriani Ech.117,0: Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp., Rhabdochara gr. langeri

Ech. 118,2: Rhabdochara gr. praelangeri-major, Sphaerochara gr. hirmeri

 120,5 - 146,7: grès fins à moyens gris vert avec deux niveaux centimétriques de calcaires rosés avec du lignite; fortes imprégnations d'hydrocarbures dans la partie supérieure du niveau

Ech. 131,95-132,05: Cricétidé indét.

 146,7 - 159,4: grès très fins silto-argileux et marnes argilosilteuses rougeâtres, brunes, vertes, bariolées; niveau centimétrique de calcaires beige clair à traces de racines; pendage subhorizontal

Ech. 149,1-149,2: Nitellopsis (Tectochara) gr. meriani Ech. 150,8-151,0: dent fragmentaire d'un Cricétidé indéterminé; ostracodes indét.; Chara sp., ?Rhabdochara gr. praelangeri-major,?Stephanochara gr. ungeri

Ech. 153,6-154,1: Nitellopsis (Tectochara) sp., Chara sp.; Eomys cf. zitteli

Ech. 156,5-156,6: Nitellopsis (Tectochara) sp., Sphaerochara sp.

 - 159,4 - 166,6: grès très fins à moyens, gris vert avec galets mous

Calcaires inférieurs

 - 166,6 - 184,3: marnes argilo-silteuses bariolées avec six niveaux centimétriques de calcaires rosâtres à feuillets charbonneux, gastéropodes et traces de racines; pendage subhorizontal entre 175 et 176 m

Ech. 167,4-167,6: Rhabdochara gr. praelangeri-major, Chara gr. microcera, Sphaerochara sp., Chara sp.

Ech. 169,7-170,2: cf. «Charites» minutissima, Stephanochara gr. ungeri?, Grambastichara ou Psilochara indét.

Ech. 171, 8: Helix ramondi très bien conservé

Ech. 173,0-173,2: Rhabdochara gr. praelangeri-major, Sphaerochara gr. hirmeri

Ech. 175,7-176,1: genus Eleotridarum martinii (Pl. 4, Fig. 2), genus Eleotridarum juvénile (cf. martinii), Lapillus indét. Ech. 176,9-177,4: Hornichara aff. lagenalis

■ - 184,3 - 194,7: grès très fins à moyens, gris vert avec galets mous, avec fines stratifications obliques; un niveau centimétrique de marnes silteuses

Ech. 194,5: Tarsichthys sp.; Nitellopsis (Tectochara) gr. meriani, ?Rhabdochara gr. praelangeri-major

 194,7 - 201,8: marnes argilo-silteuses grises, beiges, bariolées; au sommet, niveau centimétrique de calcaires beiges à traces de racines

Ech. 199,3: Hornichara aff. lagenalis

Ech. 196,0: Nitellopsis (Tectochara) gr. meriani, Hornichara lagenalis

Ech. 201,0: Nitellopsis (Tectochara) gr. meriani, Rhabdochara gr. praelangeri-major, Chara sp., Chara gr. microcera-notata

 201,8 - 220,6: grès très fins silteux gris vert et marnes argileuses gris verdâtre, bariolées; trois niveaux centimétriques de calcaire beige avec traces de racines; pendage de 10°

Ech. 204,4-204,5: Hornichara aff. lagenalis Ech. 214,9-215,0: Rhabdochara sp, ?Lamprothamnium sp., Sphaerochara gr. hirmeri

Ech. 220,0: Nitellopsis (Tectochara) gr. meriani, Rhabdochara gr. praelangeri-major, Chara sp., Chara gr. microcera-notata, Hornichara lagenalis, ?Stephanochara gr. ungeri

220,6 - 230,2: marnes argileuses, parfois silteuses, verdâtres, rougeâtres, lie-de-vin, bariolées à concrétions calcaires avec, à la base et au sommet, niveau décimétrique de grès gris vert

Ech. 221,1-221,2: Hornichara aff. lagenalis, Sphaerochara sp., Rhabdochara gr. praelangeri-major

Ech. 226,0: Hornichara lagenalis

Ech. 230,1: Sphaerochara sp., Rhabdochara gr. praelangerimajor, cf. «Charites» minutissima

 230,2 - 241,6: marnes argileuses, parfois silteuses, verdâtres, rougeâtres, bariolées avec nombreux niveaux centimétriques à décimétriques de calcaire rose souvent noduleux, à laminations algaires et fragments de gastéropodes

Ech. 230,5: Chara microcera, Nitellopsis (Tectochara) gr. meriani, Rhabdochara gr. praelangeri-major, Sphaerochara gr. hirmeri

Ech. 236,3: Hornichara aff. lagenalis, cf. Rhabdochara gr. praelangeri-major

Ech. 236,7: Hornichara aff. lagenalis

Ech. 238,3: Hornichara aff. lagenalis, Nitellopsis (Tectochara) sp., Rhabdochara gr. praelangeri-major

 241,6 - 247,0: marnes argilo-silteuses rosâtres à gris verdâtre avec un banc décimétrique de calcaire micritique blanc jaunâtre

 - 247,0 - 258,2: grès très fins à fins et deux niveaux décimétriques de calcaire blanc beige

 - 258,2 - 272,4: marnes silteuses finement micacées, rosâtres vert pâle, lie-de-vin, avec un niveau métrique de grès fins gris

- 272,4 - 272,5: calcaire micritique recristallisé, peu gréseux, blanc rosé

Sidérolithique

■ 272,5 - 277,0 environ: grès fins à moyens gris verdâtre, sans ciment carbonaté; argiles silteuses jaunes, rougeâtres; imprégnations d'hydrocarbures

Calcaires urgoniens

environ 277,0 - 291,7: calcaires blancs à miliolidés, aves poches karstiques remplies de grès silteux, de silts verts, d'argiles bariolées; nombreuses imprégnations d'hydrocarbures; quelques plans de fractures.

Remarques

- Le sondage CD 04, bien que relativement proche du puits CD 03 puisque séparé seulement de 1,25 km, présente une succession lithologique relativement comparable, mais avec des épaisseurs assez différentes: Marnes et Grès bariolés (164,6 m), Calcaires inférieurs (105,9 m), Sidérolithique (4,5 m), Calcaires urgoniens (> 14,7 m).
- Les Calcaires inférieurs sont épais de plus d'unecentaine de mètres; de 160 à 230 m, les nombreux et minces niveaux calcaires sont pour la plupart des calcaires concrétionnés à fissures courbes d'origine pédogénétique. Des fibres de gypse blanc sont présentes entre 175,7 et 176,1 m.
- Les spectres des minéraux lourds sont assez semblables à ceux du sondage Gex CD 01: l'épidote diminue fortement dès 180 m vers le bas, l'apatite diminue aussi quelque peu dès 120 m, alors que le grenat et les résistants demeurent constants.
- Les Calcaires urgoniens sont profondément karstifiés et colmatés par des grès argileux verts du Sidérolithique.
- Les Calcaires inférieurs pourraient appartenir dans leur partie inférieure à la zone à Microcera (= MP 24 [sommet] MP 26), et leur sommet à la zone à Ungeri (= MP 27-28). D'après les otolithes, l'âge du sommet des Calcaires inférieurs (175,6 176,1 m) basé sur le genus Eleotridarum martinii, indiquerait la zone OT O2, reconnue dans la zone MP 24 en Bavière (synclinal de Murnau); cette espèce témoignerait d'un biotope en eau saumâtre. Mais cette datation est à prendre avec précaution, car elle ne concorde pas avec les indications fournies par les autres groupes fossiles étudiés.
- Dans les Marnes et Grès bariolés, une molaire fragmentaire d'Archaeomys cf. intermedius (éch. 77,0-77,3) caractérise les niveaux Boningen 1 Fornant 6 (= MP 27 [sommet] MP 28); cette datation est confirmée par la présence d'Eomys cf. zitteli dont l'extension stratigraphique est semblable. Enfin, les charophytes prélevées dans cette formation indiquent sûrement la zone à Ungeri (= MP 27-28).
- Les pendages sont subhorizontaux à 90, 150 et 175 m, de 10° à 210 m. Une seule faille affecte la Molasse.
- Un intervalle molassique gréseux est imprégné d'hydrocarbures (entre 119,8 et 127,1 m); il en est de même des Calcaires urgoniens et du Grès

sidérolithique (entre 273,5 et 274,6, entre 278,0 et 287,4 m). On a noté deux couches de lignite, l'une épaisse de 7 cm entre 128,1 et 128,2 m, l'autre de <1 cm à 131,5 m.

5. Sondage Gex CD 05

Exécuté en 1983. Coord. françaises: 880,55/135,05/365; suisses: 486,42/112,57/365; Fig. 2. Colonne lithologique (Fig. 14) d'après le rapport C.F.E.B.P. (1983) et Olmari (1983). Molasse carottée entre 350,3 et 404,8, entre 473,1 et 475,7 et entre 493,4 et 499,4 m. Ce sondage n'a pas fait l'objet de diagraphies électriques, contrairement aux autres sondages Gex CD.

Quaternaire

- - 0 1,0 m: terre végétale
- - 1,0 37,0: moraine avec un niveau sableux entre 4 et 8 m

Marnes et Grès bariolés

- 37,0 50,0: marnes argilo-silteuses, jaune ocre, rouges, liede-vin
- 50,0 90,0: grès très fins, gris vert, jaune ocre, et marnes argilo-silteuses gris verdâtre, lie-de-vin
- 90,0 131,0: grès très fins à fins, gris vert avec trois intercalations décimétriques de marnes argilo-silteuses liede-vin, jaune ocre, gris verdâtre
- - 131,0 149,0: grès fins à moyens, grossiers vers 141 m, pyriteux, gris vert avec lits charbonneux et marnes argilosilteuses bariolées, grises, lie-de-vin
- 149,0 172,0: marnes argilo-silteuses ocre beige, rouge brun, bariolées et grès silteux très fins gris vert
- 172,0 204,0: grès très fins, et marnes argileuses bariolées, gris vert, ocres, verdâtres
- 204,0 218,0: grès silteux très fins, gris vert, et marnes argilo-silteuses bariolées, grises, rougeâtres, verdâtres
- - 218,0 219,6: grès très fins à fins gris vert
- 219,6 248,0: grès silteux très fins à fins, gris vert et marnes argilo-silteuses bariolées, lie-de-vin
- 248,0 296,4: grès très fins, gris vert et marnes argileuses bariolées
- 296,4 312,6: grès fins à moyens, gris vert et marnes argilo-silteuses bariolées
- 312,6 350,3: marnes argilo-silteuses verdâtres, rouge brun et grès silteux très fins à fins gris vert
- - 350,3 361,3: grès silteux parfois grossiers, gris vert, avec fines lamines de charbon et quelques galets mous; indices d'hydrocarbures vers 350 m; petite faille à 361,6 m
- 361,3 366,5: grès très fins gris vert, bruns et marnes silteuses très argileuses bariolées
 Ech. 365,0-365,5: Tarsichthys sp.; Nitellopsis (Tectochara) gr. meriani, Hornichara lagenalis; un ostracode d'eau douce: Virgatocypris sp.
- 366,5 399,9: grès gris vert avec lamines de lignite et galets mous; niveaux décimétriques de marnes argileuses bariolées et 4 niveaux centimétriques de calcaires fins beige vert, bioturbés avec traces de racines

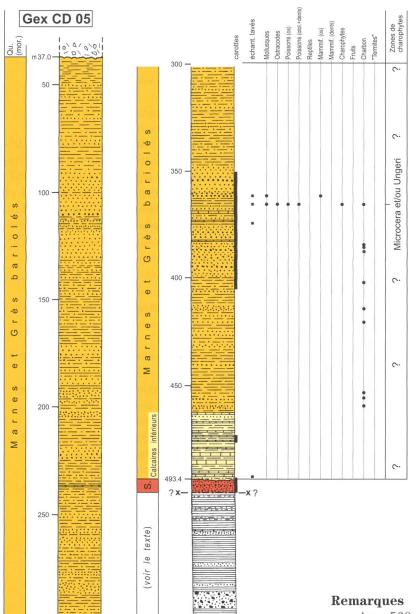


Fig. 14: Sondage Gex CD 05.

- 399,9 404,8: grès silteux très fins et marnes argilosilteuses vertes, brunes, bariolées, lie-de-vin; rares niveaux centimétriques de marnocalcaires beiges bioturbés et avec traces de racines
- 404,8 431,6: grès fins à moyens, parfois grossiers gris vert et marnes argilo-silteuses bariolées; débris charbonneux
- 431,6 453,6: marnes argileuses parfois silteuses, verdâtres, bariolées, avec 4 intercalations métriques de grès fins à moyens, pyriteux, gris vert
- 453,6 462,6: grès fins à grossiers, pyriteux, gris verdâtre, avec lits charbonneux, et marnes argilo-silteuses bariolées

Calcaires inférieurs

 - 462,6 - 477,8: marnes argileuses et argilo-silteuses bariolées et niveaux décimétriques de calcaires blanchâtres à rosâtres, bioturbés, avec traces de racines; pendage subhorizontal

- 477,8 486,0: calcaires beiges avec une intercalation décimétrique de marnes argileuses bariolées
- 486,0 489,0: marnes argilo-silteuses pyriteuses, bariolées
- 489,0 493,4: calcaires beiges avec une intercalation décimétrique de grès moyens à grossiers; à la base, marnes argileuses bariolées, brunes, lie-de-vin; indices d'hydrocarbures à 493,0 m

Sidérolithique

 493,4 - 499,4: sables quartzeux gris vert, beiges ou jaunes, à ciment siliceux et conglomérats à galets centimétriques, à ciment quartzo-siliceux; indices d'hydrocarbures; plan de faille probable à 499,4 m

Calcaires inférieurs

- 499,4 517,0: marnes argilo-silteuses gris vert, ocres, bariolées et grès argileux très fins gris vert
- 517,0 517,6: calcaires micritiques beiges
- 517,6 518,2: grès fins à moyens gris clair, avec lits charbonneux; fragments de gastéropodes
- - 518,2 560,0: marnes argilo-silteuses ocres, bariolées et grès silteux, fins à moyens, grossiers et microconglomératiques entre 550,0 et 553,0 m; indices d'hydrocarbures

Avec 560 m de profondeur finale, le sondage CD 05 est le puits le plus profond de la campagne des 7 forages Gex CD implantés par BP-France. Il a traversé successivement les Marnes et Grès bariolés (425,6 m), les Calcaires inférieurs (30,8 m) et les Grès sidérolithiques (6 m). De 493,4 à 560,0 m (profondeur totale), le sondage a traversé une série attribuée au Sidérolithique par les géologues de BP-France: grès blancs ou gris, peu argileux, non carbonatés, moyens à grossiers, à passées conglomératiques, siltstones gris-verts et argiles ocres, rouges ou brunes. Toutefois, de 499,4 à 560,0 m, les cuttings révèlent des marnes argileuses bariolées, du calcaire micritique beige, des sables gris à traces de lignite et quelques fragments de microgastéropodes; ces faciès sont ceux des Calcaires inférieurs, probablement même de leur partie supérieure. S'il ne s'agit pas là de «retombées» des cuttings, il faut que la faille relevée à 499,4 m répète la série pour expliquer

- cette superposition stratigraphique anormale. Malheureusement, on ne dispose pas suffisamment de données sur les pendages.
- Dans les Marnes et Grès bariolés, on relève une brusque augmentation de l'épidote entre 381,8 et 404,5 m.
- Les rares charophytes découvertes dans les Marnes et Grès bariolés appartiennent probablement aux zones à Microcera et/ou Ungeri (= MP 24, sommet - MP 28).
- Des traces d'hydrocarbures accompagnées de gaz, qui pourraient être en relation avec la présence de lignite, ont été observées entre 348 et 350 m, à 372 m, entre 493 et 496 m et entre 550 et 553 m.

6. Sondage Gex CD 06

Exécuté en 1983. Coord. françaises: 884,70/132,95/452; suisses: 490,50/110,40/452; Fig. 2. Colonne lithologique (Fig. 15) d'après le rapport C.F.E.B.P. (1983) et Olmari (1983). Molasse carottée de 314,4 à 325,4 m et de 398,3 à 402,7 m.

Quaternaire

- - 0 10 m: terre végétale
- - 1,0 9,0: moraine argilo-sableuse à galets
- 9,0 33,0: argiles gris vert à passées silto-sableuses; quelques galets à la base
- - 33,0 42,0: sables fins
- - 42,0 44,0: marne calcaire noire très dure (paléosol?)
- - 44,0 60,0: argiles silto-sableuses gris vert, rarement ocres
- - 60,0 81,0: sables fins gris vert avec deux niveaux métriques de graviers
- - 81,0 104,0: alternance de niveaux sableux et argileux
- - 104,0 110,0: sables gris, graveleux à la base

Marnes et Grès bariolés

- - 110,0 130,0: marnes argilo-silteuses ocres, gris vert et grès très fins à fins, gris vert, pyriteux
- - 130,0 162,0: marnes argilo-sableuses avec quelques passées silteuses; lits ligniteux à 137 et 155 m
- 162,0 178,0: marnes argilo-silteuses gris clair, rougeâtres, et grès fins gris
- 178,0 190,0: marnes argilo-silteuses, grises, ocres, bariolées
- - 190,0 193,6: grès fins à très fins
- 193,6 220,0: marnes argileuses bariolées, avec passées plus silteuses, parfois gréseuses fines
- - 220,0 226,0: grès fins à très fins, gris vert
- 226,0 249,0: marnes argileuses bariolées avec niveaux silteux gris à gris vert
- - 249,0 264,0: grès très fins à fins, parfois silteux, gris vert et marnes argileuses, grises, bariolées
- 264,0 279,0: marnes argileuses grises, ocres, bariolées, parfois silteuses gris vert
- - 279,0 282,4: grès très fins, gris

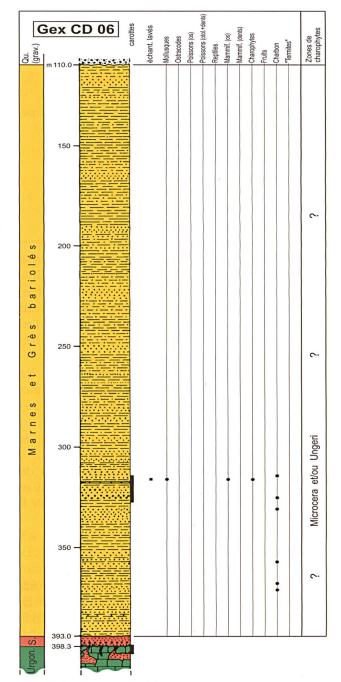


Fig. 15: Sondage Gex CD 06.

- 282,4 314,4: marnes argilo-silteuses grises et de grès fins à très fins gris vert
- Ech. 314,0: ?Rhabdochara gr. praelangeri-major, Hornichara lagenalis,?Stephanochara gr. ungeri
- 314,4 317,2: marnes argileuses verdâtres à rougeâtres avec nodules de calcaires beiges
- 317,2 325,4: grès très fins à moyens, silteux vers le haut, gris vert; nodules carbonatés et feuillets de lignite à la base; faibles imprégnations d'hydrocarbures
- I 325,4 330,0: marnes argileuses bariolées
- - 330,0 337,0: grès très fins à grossiers, pyriteux
- 337,0 351,0: marnes argilo-silteuses bariolées avec 2 niveaux décimétriques de grès grisâtres
- 351,0 393,0: marnes argilo-silteuses gris clair, bariolées, ocres, et grès fins à grossiers, parfois pyriteux

Sidérolithique

■ - 393,0 - 398,3: grès fins quartzitiques

$Calcaires\ urgoniens$

- 398,3 412,0: calcaires (oobiosparites) beige jaune à fragments de mollusques, échinides, foraminifères (dont orbitolines), karstifiés avec poches remplies de Sidérolithique (grès quartzitiques fins gris vert à beiges, parfois pyriteux)
- 412,0 422,0: calcaires (biosparites) beige ocre au sommet, blancs à la base, riches en débris organiques et foraminifères; imprégnations d'hydrocarbures.

Remarques

- Au-dessous de dépôts quaternaires particulièrement épais (110 m), le sondage CD 06 a traversé les Marnes et Grès bariolés (283 m), les Grès sidérolithiques (5,3 m) et les Calcaires urgoniens (> 23,7 m), très fortement karstifiés sur plus d'une douzaine de mètres d'épaisseur. Les Calcaires inférieurs n'ont pas été clairement mis en évidence dans ce sondage.
- Les rares charophytes recueillies dans les Marnes et Grès bariolés correspondent aux zones à Microcera (= MP 24 [sommet] - MP 26) et/ou à Ungeri (= MP 27-28).
- On ne dispose quasiment pas de données sur les pendages ou sur la présence de failles.
- Des traces d'hydrocarbures accompagnées de gaz ont été notées entre 311 et 314, entre 319 et 325, entre 330 et 337 et entre 396 et 410 m.

7. Sondage Gex CD 07

Exécuté en 1983. Coord. françaises: 887,85/146,62/469; suisses: 494,28/123,83/469; Fig. 4. Colonne lithologique (Fig. 16) d'après le rapport C.F.E.B.P. (1983) et Olmari (1983). Molasse carottée entre 120,8 et 256,0 m.

Quaternaire

- - 0 1,0 m: terre végétale
- - 1,0 3,0: moraine argilo-sableuse à galets

Marnes et Grès bariolés

- 3,0 34,0: marnes argileuses, parfois silteuses, gris verdâtres, bariolées
- 34,0 48,0: grès fins à moyens, gris verdâtre; une passée métrique de marnes argilo-silteuses grises à gris verdâtre
- 48,0 63,0: marnes argilo-silteuses lie-de-vin, jaune ocre, gris verdâtre, bariolées
- - 63,0 70,0: grès très fins, gris verdâtre
- - 70,0 111,0: marnes argilo-silteuses bariolées, jaune beige, et grès très fins à fins, parfois silteux, gris-vert
- 111,0 124,0: grès fins à moyens, gris clair à gris foncé, brunâtres; galets mous; fortes imprégnations d'hydrocarbures vers la base; pendage d'environ 15°

- 124,0 129,0: grès très fins, laminés et marnes argilosilteuses vertes, bariolées
- 129,0 135,0: marnes argileuses, parfois silteuses, vertes, jaune ocre, bariolées, lie-de-vin; au sommet et à la base, niveaux centimétriques de calcaire blanc rosâtre, à traces de racines
- 135,0 138,8: grès très fins imprégnés d'hydrocarbures et grès silteux; galets mous; pendage subhorizontal
- 138,8 150,3: marnes argileuses vertes, bariolées, avec quelques passées de grès très fins silteux
- 150,3 154,5: grès fins à moyens, grossiers vers la base, gris brun; galets mous; légères imprégnations d'hydrocarbures
- - 154,5 162,0: marnes argilo-silteuses bariolées avec quelques passées de grès très fins silteux
- - 162,0 166,0: grès très fins silteux, gris verdâtre; galets mous

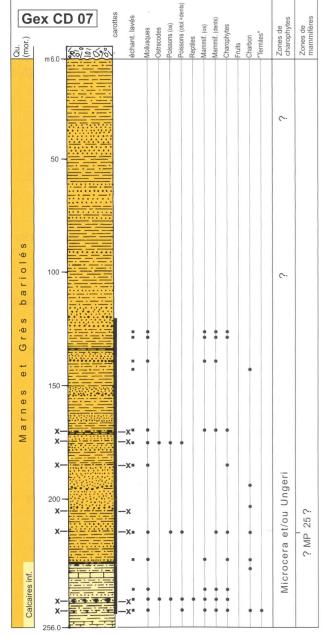


Fig. 16: Sondage Gex CD 07.

- - 166,0 170,0: marnes argileuses bariolées
- 170,0 172,5: grès très fins verdâtres avec plusieurs niveaux de calcaire rosé à gris vert avec traces de racines
- - 172,5 178,4: grès très fins silteux gris vert avec quelques intercalations centimétriques de marnes argilosilteuses gris foncé; galets mous; à 175,4 m plan de faille oblique (45°)
- Ech. 175,4-175,6: genus Eleotridarum martinii (juvénile), Enoplophthalmus sp./cf. schlumbergeri (Pl. 4, Fig. 7), genus Cyprinidarum sp., Lapillus indét.; Cypridopsis sp. (Pl. 2, Figs. 1-3), Heterocypris sp., Ilyocypris sp. (fragments)
- 178,4 185,7: grès très fins silteux verts et marnes argileuses bariolées; nodules de calcaire rose; pendage subhorizontal
- - 185,7 204,9: grès fins à moyens, rarement grossiers, gris vert, parfois silteux à lamines légèrement imprégnées d'hydrocarbures; galets mous de marnes diverses et de calcaires crayeux
- 204,9 210,1: marnes argilo-silteuses vertes avec passées décimétriques de grès très fins; vers le haut, nodules de calcaires marneux beige vert
- 210,1 214,6: grès très fins, gris verdâtre et, vers le bas, niveaux décimétriques plus argileux; surface de décollement subhorizontal à 214,6 m
- - 214,6 226,3: marnes argilo-silteuses vertes, brunes, bariolées et grès très fins silteux, gris vert; galets mous *Ech. 215,0-215,4*: *Gliravus* nov. sp. (Pl. 7, Fig. 10), *Tarsichthys* sp.; *Nitellopsis* (*Tectochara*) gr. *meriani*, *Rhabdochara* gr. *praelangeri-major*

Calcaires inférieurs

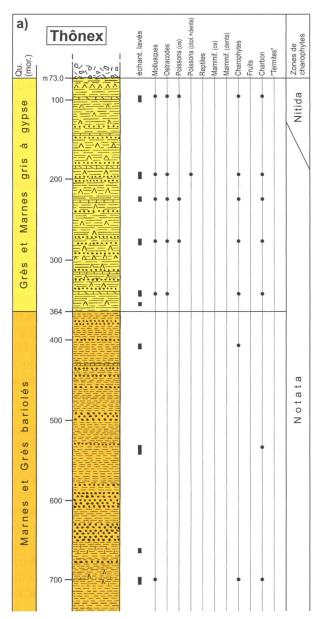
- 226,3 232,6: grès fins à moyens, gris vert et marnes argileuses sombres et argilo-silteuses ocre jaune; au milieu, banc centimétrique de calcaire beige noduleux Ech. 227,0: Nitellopsis (Tectochara) gr. meriani, Rhabdochara gr. praelangeri-major
- - 232,6 235,4: calcaire marneux grumeleux beige à vert
- 235,4 244,4: grès très fins silteux, gris, vert brunâtre contenant des concrétions calcaires beige rosé et marnes argileuses vertes, bariolées, renfermant des nodules de calcaire beige
- Ech. 240,0 + 244,0: Nitellopsis (Tectochara) gr. meriani, Rhabdochara gr. praelangeri-major, formes très proches de Rh. major (Pl. 5, Figs. 10-11), Hornichara lagenalis,?Stephanochara gr. ungeri
- 244,4 247,0: calcaires noduleux roses, rougeâtres, beige brun; pendage subhorizontal
 Ech. 244,9-245,2: Tarsichthys sp.
- - 247,0 250,6: marnes argilo-silteuses gris verdâtre, ocre jaune, bariolées et grès très fins silteux gris vert sombre; à 249,1 m, plan de décollement horizontal strié Ech. 249,1-249,2: Tarsichthys sp.; Chara gr. microceranotata, Hornichara lagenalis, Nitellopsis (Tectochara) gr. meriani
- 250,6 256,0: marnes argilo-silteuses gris verdâtres, ocre jaune, bariolées avec quelques passées décimétriques de grès très fins silteux

Remarques

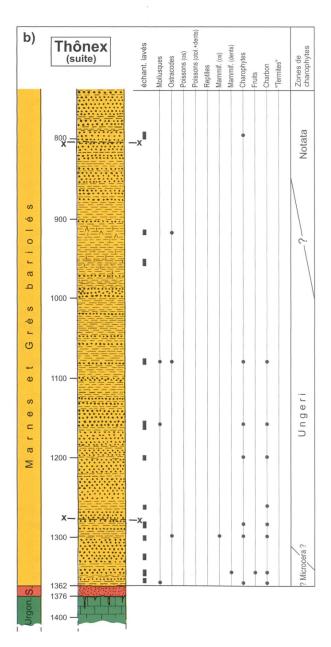
- Le sondage CD 07, situé à une cinquantaine de mètres au NW de CD 01, a traversé les Marnes et Grès bariolés (223,3 m) et les Calcaires inférieurs (29,7 m).
- La P4 sin. de *Gliravus* isolée dans l'échantillon 215,0-215,4 est de taille moyenne (0,80 x 1,20 mm) et ne correspond à aucune espèce décrite jusqu'ici; elle représente certainement une espèce nouvelle. On connaît déjà une forme de morphologie et de taille très semblables dans le gisement de Bumbach (= MP 25).
- L'association de charophytes découverte dans les Calcaires inférieurs (et tout à la base des Marnes et Grès bariolés) correspond aux zones à Microcera (= MP 24 [sommet] - MP 26) et/ou à Ungeri (= MP 27-28).
- Les otolithes de l'échantillon 175,4-175,6 m indiqueraient une eau saumâtre, ce qu'infirme la présence de nombreux ostracodes d'eau douce dans le même niveau.
- Plusieurs failles ont été relevées sur les carottes, ainsi que notamment un plan de décollement subhorizontal à 214,6 m.
- L'implantation du sondage CD 07, tout proche de CD 01, avait pour objectif de préciser l'extension des grès imprégnés d'hydrocarbures découverts dans CD 01.

IVI. SONDAGE GÉOTHERMIQUE DE THÔNEX

La description et les caractéristiques de ce sondage (Fig. 2), implanté dans le canton de Genève (coord. suisses: 505,27/117,45/428) pour la géothermie et exécuté en 1993, sont données par Jenny et al. (1995). Curieusement, la position de ce sondage ne figure pas sur la feuille géologique Annemasse à 1/50000 (Kerrien et al. 1998), alors qu'il est décrit dans la notice explicative (Charollais et al. 1998).


La Molasse traversée par ce sondage n'avait pas été étudiée en détail jusqu'ici (communication orale de J. Jenny et R. Wernli, 2005), mais un log lithologique en avait été établi par Géologie - Géophysique & Geoproduction Consultants (1994) sur la base de l'examen sommaire des cuttings et des diagraphies. Nous avons repris ce log en le simplifiant et en le modifiant sur plusieurs points (Figs. 17 a et b). La Molasse n'a pas été carottée, seuls des cuttings ont été récoltés, à raison d'une prise d'environ 50 g tous les 3 m. Ce matériel ayant été transféré au Muséum d'Histoire naturelle de la Ville de Genève, il ne se trouve plus au Département de géologie et de paléontologie de l'Université comme indiqué par Jenny et al. (1995). Afin de pouvoir laver un volume suffisant de sédiment, augmentant ainsi les chances de trouver des microfossiles, nous avons échantillonné les cuttings de la Molasse en mélangeant plusieurs prises successives, de

telle sorte que chacun de nos échantillons est représentatif de 6 à 12 m d'épaisseur selon les cas. Vu que le sondage est dévié de 25° par rapport à la verticale dès la profondeur de 696 m, les échantillons prélevés au-dessous de cette cote sont identifiés par des longueurs forées (LF) et non par des profondeurs vraies (P).


Lors des opérations de forage, à la suite des nombreuses manoeuvres, reprises et corrections de trajectoire, un cavage important a été constaté dans la Molasse, d'où des retombées de cuttings relativement fréquentes; il est donc possible que des mélanges et remaniements de microfossiles perturbent nos résultats dans une certaine mesure.

Après avoir traversé la moraine argileuse à blocs (Würm) sur 73 m, ce forage a recoupé les Grès et

Marnes gris à gypse sur une épaisseur de 291 m (entre 73 et 364 m), puis les Marnes et Grès bariolés sur 954,6 m (entre 364 et 1331 m). Ces derniers surmontent les grès du Sidérolithique (12 m), eux-mêmes reposant sur les Calcaires urgoniens dont le sommet est karstifié. Comme l'indiquent Jenny et al. (1995), ce paléokarst est rempli par des argiles verdâtres et des grès blancs ou sombres, pyriteux (= Sidérolithique). D'une profondeur totale de 2530 m, le sondage de Thônex a ensuite traversé les formations du Crétacé inférieur et du Jurassique supérieur qui se sont révélées, comme prévu, identiques à celles du Salève, sauf en ce qui concerne les Calcaires récifaux (Formation des Etiollets) qui sont sensiblement plus épais au Grand Salève (126 m) qu'à Thônex (93 m); cet épaississement est en accord avec les conclusions de Meyer (2000).

Le pendage général est inférieur à 10°, légèrement incliné vers S20°E (Jenny et al. 1995, p. 382). Seules deux failles ont été mises en évidence dans la Molasse, vers 805-810 m et 1275-1280 m (LF). Des indices d'hydrocarbures liquides n'y ont pas été relevés, mais par contre de faibles venues de gaz entre 1365 et 1375 m dans le Sidérolithique.

1. Grès et Marnes gris à gypse

Cette formation attribuée au Chattien supérieur par Jenny et al. (1995) comprend essentiellement des marnes grises, dans lesquelles les veines de gypse fibreux sont fréquentes. Les débris charbonneux, les ostracodes (débris d'«ostracodite») et les os de poissons y sont également relativement abondants. L'épaisseur des Grès et Marnes gris à gypse est de 291 m et non de 219 m comme indiqué par erreur à la Fig. 14 de la notice explicative de la feuille Annemasse à 1/50000 (Charollais et al. 1998).

Les associations de charophytes et d'ostracodes sont les suivantes:

- Ech. 92,0-102,0 (P): Chara sp., Rantzieniella nitida; Hemicyprideis dacica, Hemicyprideis rhenana (Pl. 1, Figs. 4-5), Ilyocypris sp.
- Ech. 192,0-198,0 (P): Stephanochara gr. ungeri, Sphaerochara sp.; Hemicyprideis dacica, Hemicyprideis rhenana, Ilyocypris sp.
- Ech. 222,0-228,0 (P): charophytes indét.; Hemicyprideis dacica, Hemicyprideis rhenana (Pl. 1, Figs. 4-5), Ilyocypris sp.
- Ech. 276,0-282,0 (P):?Stephanochara gr. ungeri, Sphaerochara sp.; Hemicyprideis dacica, Hemicyprideis rhenana (Pl. 1, Figs. 6-7), Ilyocypris sp., Cytheromorpha sp. (Pl. 1, Fig. 8), Cypridopsis?
- Ech. (P) 339-345 m: ?Stephanochara gr. ungeri; Hemicyprideis dacica, Hemicyprideis rhenana, Ilyocypris sp.

Les rares valves d'ostracodes trouvées plus bas que 345 m sont très vraisemblablement des retombées et ne sont mentionnnées ici que pour mémoire

2. Marnes et Grès bariolés

Au-dessous des Grès et Marnes gris à gypse, les Marnes et Grès bariolés sont principalement constitués par des grès fins feldspathiques et micacés à ciment carbonaté; leur épaisseur atteint 955 m. A la base de cette formation, les fragments de charbon abondent, comme c'est souvent le cas dans tout le bassin genevois. Il faut relever la prédominance des grès à la base de la série molassique. La présence du gypse dans les Marnes et Grès Bariolés vers 700 m (P) et vers 910-920 m (LF) n'est peut-être pas due à des retombées. Les Calcaires inférieurs n'ont pas été mis en évidence.

Les associations de charophytes et d'ostracodes sont les suivantes:

- Ech. (P) 405,0: Stephanochara gr. ungeri, Sphaerochara sp.
- Ech. (P) 696,0: Nitellopsis (Tectochara) gr. meriani
- Ech. (LF) 792,0: Nitellopsis (Tectochara) gr. meriani
- Ech. (LF) 912-918: Hemicyprideis rhenana (probablement retombé)
- Ech. (LF) 1077-1083: Hemicyprideis dacica, Hemicyprideis rhenana, Ilyocypris sp.
- Ech. (LF) 1155,0: Rhabdochara gr. praelangeri-major, Nitellopsis (Tectochara) gr. meriani
- Ech (LF) 1197,0:?Rhabdochara gr. praelangeri-major, Nitellopsis (Tectochara) sp.
- Ech. (LF) 1281,0: cf. Rhabdochara gr. praelangeri-major
- Ech. (LF) 1299,0-1305,0:?Rhabdocha gr. praelangeri-major, Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani; Hemicyprideis sp. (1 exemplaire, probablement retombé)
- **■** Ech. (LF) 1341,0-1350,0: Nitellopsis (Tectochara) sp.
- Ech. (LF)1353,0: ?Rhabdochara gr. praelangerimajor,?Rhabdochara gr. stockmansi-major

Un seul niveau a livré un reste de mammifère:

■ Ech. (LF) 1341-1350: Théridomorphe indét. (fragment de dent)

Remarques

Seules les associations de charophytes permettent des conclusions biostratigraphiques:

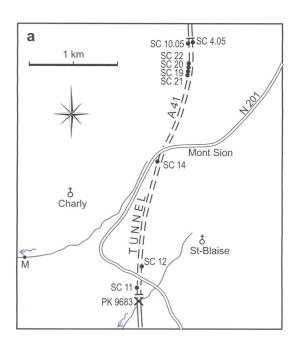
- le sommet des Grès et Marnes gris à gypse (jusqu'à 102 m) doit être attribué à la zone à Nitida;
- le reste de cette formation ainsi que l'essentiel des Marnes et Grès bariolés appartiennent probablement aux zones à Notata et à Ungeri (= MP 27-30);
- la base de la Molasse pourrait correspondre à la zone à Microcera (partie supérieure).

Sur le plan paléoécologique, les ostracodes sont d'un grand intérêt; un large commentaire leur est consacré plus loin (voir IX. 4. 3.)

Rappelons que l'interprétation des faciès sismiques suggère à Morend (2000, p. 43) que la base de la série molassique (environ LF 1100 m à LF 1360 m) serait l'équivalent latéral des Grès de Bonneville rupéliens, présents au SE du Salève; nos résultats biostratigraphiques infirment cette hypothèse.

VII. SONDAGES DIVERS

1. Sondage SCG 6481 de l'autoroute de contournement de Genève

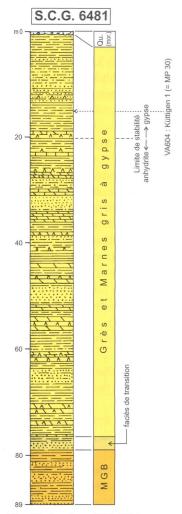

Ce sondage (coord. suisses: 496,24/119,05) a été étudié par Angelillo (1987, Fig. 41 et p. 128-131). Il est repris ici (Fig. 18), car il illustre fort bien le contact entre les Marnes et Grès bariolés et les Grès et Marnes gris à gypse dans le secteur du Nant

d'Avanchet (Fig. 2, lettre G). De plus, il situe à une soixantaine de mètres au-dessus de ce contact la position de l'échantillon VA 604 (équivalent de VA 18) qui est daté du niveau de Küttigen 1 (= MP 30, partie inférieure).

2. Sondages du tunnel autoroutier du Mont Sion

L'autoroute A41 franchit en tunnel, sous le col du Mont Sion, la bordure méridionale du bassin molassique franco-genevois (Figs. 2, 19a, b). Cet ouvrage long de 2914 m se situe entre les cotes 650 m (portail nord; coord. françaises: 890,01/2127,43) et 670 m (portail sud; coord. françaises: 889,49/2124,64). Il permet d'étudier la Molasse de cette région, laquelle est encore relativement mal connue et datée à cause de la rareté des affleurements et de l'étendue du recouvrement morainique (Favre 1843, p. 130-131) bien visible sur la feuille géologique à 1/50000 St-Julien-en-Genevois (Donzeau et al. 1997).

De nombreux sondages de reconnaissance forés de 1996 à 2005 ont précédé le percement exécuté en 2006-2008 par un tunnelier, méthode qui n'autorise pas un examen et un échantillonnage de la Molasse dans des conditions satisfaisantes. Grâce à l'aimable autorisation des sociétés ADELAC et GIE A41 et avec la collaboration des ingénieures-géotechniciennes F. Laurens et J. Dufresnois, nous avons pu prélever en été 2006 des échantillons de carottes dans les quelques caisses qui étaient encore accessibles, si



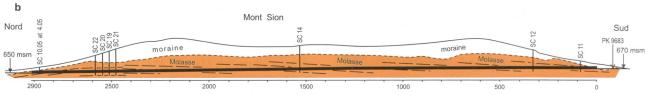

Fig. 18: Sondage SCG 6481.

Fig. 19: a - Situation du tunnel autoroutier du Mont Sion et des sondages étudiés.

Le point M en bas à gauche indique le gisement fossilifère dit "du Nant Trouble-Andilly" (Rigassi 1957).

- b Profil géologique du tube ouest, d'après un document établi par la Société GIE A41 (modifié et simplifié), avec:
- l'emplacement des sondages cités dans le texte et dont nous avons étudié des carottes;
- la position du prélèvement du PK 9683 m;
- le pendage apparent suggéré par l'étude sismique préliminaire.

Même échelle verticale et horizontale

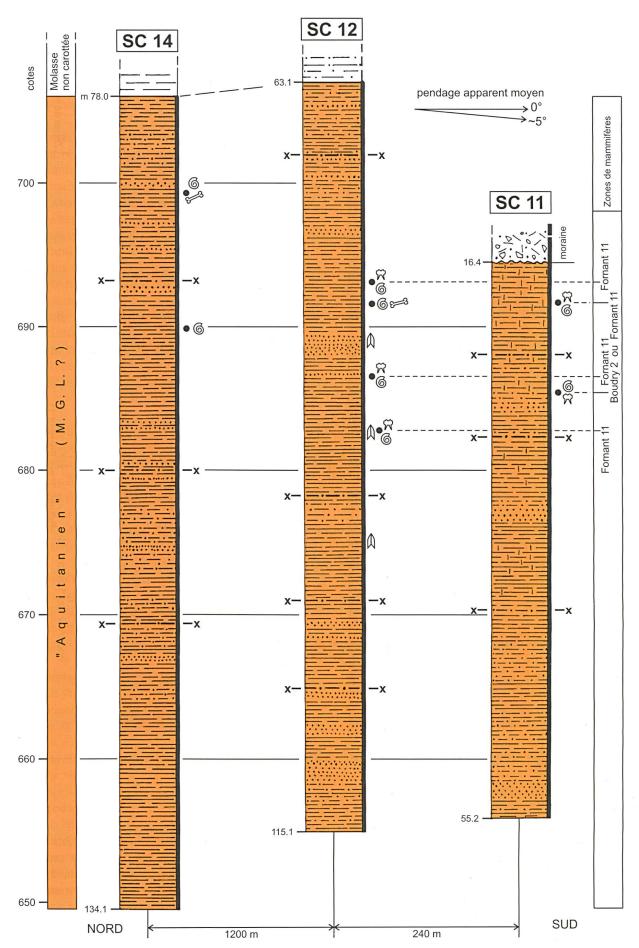
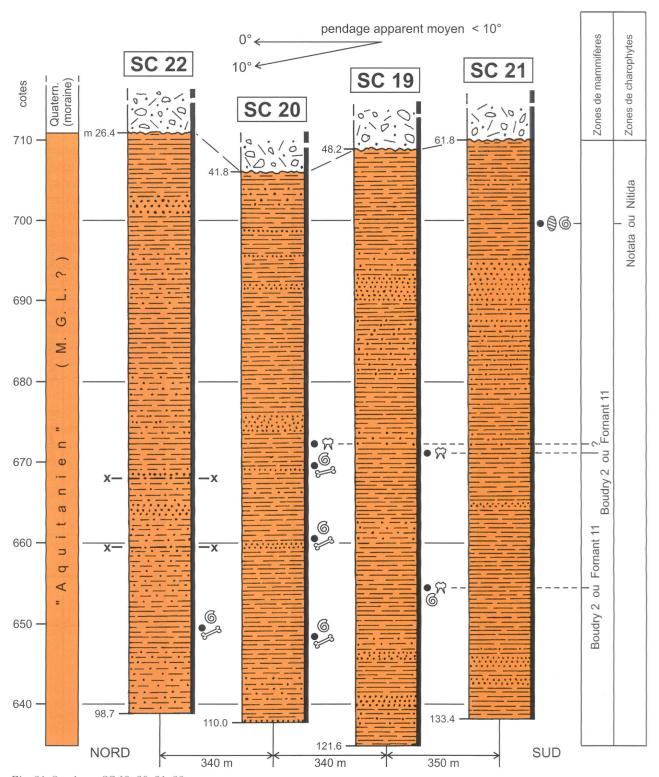



Fig. 20: Sondages SC 11, 12 et 14.

 $Fig.\ 21: Sondages\ SC\ 19,\ 20,\ 21,\ 22.$

bien que notre échantillonnage ne recouvre pas toute l'épaisseur de la série molassique reconnue par les sondages, comme le montre le profil prévisionnel du tunnel (Fig. 19b).

Les logs des sondages, établis par la Division géomécanique des sociétés ADELAC et GIE A41, montrent que la série traversée par le tunnel est caractérisée

par une dominance marno-silteuse avec relativement peu de grès fins à moyens, très rarement grossiers. Les marnes sont souvent très carbonatées, dures et compactes; elles sont bariolées mais rarement dans les tons rouges-ocres. On n'a pas relevé la présence de véritables calcaires lacustres, cependant plusieurs épisodes de marnes calcaires feuilletées à pistes témoignent d'un milieu de dépôt lacustre ou palustre.

ARCHIVES DES SCIENCES Arch.Sci. (2007) 60: 59-174

Du gypse fibreux est parfois signalé en minces feuillets dans les plans de fracture (Beck et al. 1998, p. 276). Les seuls fossiles repérés sur carotte sont des fragments de coquille ou des moules internes de gastéropodes, quelques fragments d'os et des débris charbonneux.

Les pendages, rarement mesurables sur carotte, paraissent réguliers, de moins de 10-15°; selon le profil prévisionnel basé sur des investigations sismiques préliminaires (Fig. 19b), le plongement apparent selon l'axe du tunnel serait dirigé vers le S, sauf à l'extrémité septentrionale du tunnel où il serait subhorizontal ou dirigé vers le N. La fracturation est souvent importante, avec plans diversement orientés portant des stries tant verticales que sub-horizontales, ceci à cause de plusieurs accidents décrochants N120-145E bien connus dans le proche chaînon du Salève. Ces accidents affectent également la Molasse traversée par le tunnel, mais nous ne les avons pas figurés sur le profil de la Fig. 19b, car leur position précise et leur rejet demeurent hypothétiques, en raison des conditions d'observation insuffisantes qu'impose le tunnelier.

Notre échantillonnage (Figs. 20, 21) est sélectif et ne concerne que des niveaux marneux sombres plus ou moins silteux. Les 24 échantillons lavés sont tous fossilifères: fragments de mollusques, d'os et de dents (reptiles et mammifères, jamais de poissons), débris charbonneux, rares charophytes. Sur les 10 sondages étudiés, seuls les sondages ci-dessous ont fourni des données paléontologiques significatives.

Mammifères

- Sondage SC 11 (Fig. 20). Coord. françaises: 889,50/124,69 Ech. 19,3-19,5 m: Plesiosminthus myarion (Pl. 8, Fig. 5) Ech. 25,7-25,8 m: Plesiosminthus myarion (Pl. 8, Fig. 4) Age: niveau de Boudry 2 ou de Fornant 11 (= MN 1)
- Sondage SC 12 (Fig. 20). Coord. françaises: 889,50/124,93

 Ech. 76,6-76,7 m: Pseudocricetodon cf. thaleri,

 Plesiosminthus myarion, Rhodanomys schlosseri (Pl. 7,

 Fig. 7)

 Ech. 83,3-83,4 m: Rhodanomys schlosseri
 - Ech. 86,8-87,0 m: Rhodanomys schlosseri (Pl. 7, Fig. 8) Age: niveau de Fornant 11 (= MN 1, partie supérieure)
- Sondage SC 19 (Fig. 21). Coord. françaises: 889,94/127,05 Ech. 86,1-86,3 m: cf. Peridyromys murinus, Peridyromys sp., Pseudotheridomys bernensis (Pl. 7, Fig. 9) Age: niveau de Boudry 2 ou de Fornant 11 (= MN 1) Ech. 112,9-113,0 m: Eomyodon sp. Age: niveau de Boudry 2 ou de Fornant 11 (= MN 1), ou plus vieux
- Sondage SC 20 (Fig. 21). Coord. françaises: 889,95/127,09 Ech. 75,9-76,0 m: Glirudinus sp. (Pl. 7, Fig. 12)

Portail sud (Figs. 19a, b)

Ech. A41-PK 9683: Eucricetodon sp., Plesiosminthus sp.

Age: MN 1

Charophytes

- Sondage SC 21 (Fig. 21). Coord. françaises: 889,93/127,02 Ech. 72,2-72,35 m: Nitellopsis (Tectochara) gr. meriani Age: zone à Notata ou à Nitida (= MP 29 - MN1).
- Portail sud (Fig. 19a, b)

 Ech. A41-PK 9683: Nitellopsis (Tectochara) gr. meriani,

 Rhabdochara gr. langeri (Pl. 5, Figs. 13-14), Sphaerochara gr.

 hirmeri

Age: zone à Notata ou à Nitida (= MP 29 - MN1).

L'âge aquitanien inférieur (MN 1) de la Molasse traversée par le tunnel est ainsi démontré, en parfait accord avec l'âge du proche gisement du Nant Trouble-Andilly situé dans des couches un petit peu plus anciennes (Fig. 2, lettre M). En l'absence de données suffisantes sur les pendages ainsi que sur la position et le rejet des failles rencontrées par le tunnel, il n'est pas possible d'être beaucoup plus précis; tout au plus peut-on suggérer que la Molasse de la partie septentrionale (sondages SC 19 et 20) date du niveau de Boudry 2, alors que celle de l'extrémité méridionale (sondages SC 11 et 12, PK 9683) est un peu plus jeune et se rattache au niveau de Fornant 11.

3. Sondages de la galerie d'assainissement de Choully

En 2006, trois sondages de reconnaissance ont été forés 500 m à l'ENE de Satigny sur le tracé de la future galerie, longue de 2,7 km et orientée NW-SE, passant sous la colline de Choully, qui fait partie de la longue cuesta molassique Challex-Dardagny-Peissy-Ornex-Bossy correspondant à un large anticlinal très aplati avec pendages inférieurs à 5-10° selon Lagotala (1935). Les trois sondages ont atteint sous une dizaine de mètres de moraine les Marnes et Grès bariolés que nous avons pu échantillonner grâce à la bienveillance du géologue cantonal, M. Meyer. Un seul niveau de marne argileuse grise-verte sombre nous a livré des microfossiles déterminables (sondage S3, coord.suisses: 491,94/ 119,57; Fig. 2, lettre O; prof. 27,2-27,4 m): os de poissons, ostracodes lisses lacustres, charophytes: Nitellopsis (Tectochara) gr. meriani, Stephanochara cf. ungeri, Rhabdochara gr. langeri, Chara gr. microcera-notata (notata probable). Cette association caractérise les zones à Ungeri et à Notata, mais plus probablement la zone à Notata (= MP 29-30).

Un profil de sismique réflexion haute résolution a été acquis sur le tracé de la galerie et révèle clairement la structure anticlinale de la Molasse, ici découpée en blocs à pendages légèrement divergents par des failles apparemment orientées SW-NE (voir plus loin, Fig. 58).

4. Sondage de la ciblerie du stand de Veyrier

Ce sondage (coord. suisses: 501,98/114,08/424; Fig. 2, lettre R) a été foré en 1966 dans le cadre d'une recherche d'eau. Sous un Quaternaire fort épais décrit par Amberger (1978), les Grès et Marnes gris à gypse ont été atteints à 76,3 m et carottés sur une dizaine de mètres: marnes grises un peu gréseuses avec filonnets de gypse et débris charbonneux. Martini (1969) avait déjà analysé une carotte de ce niveau qui lui avait livré des charophytes, des ostracodes et de très petits gastéropodes (Bythinellidés? selon A. Jayet s. d.), des charophytes et des ostracodes qui n'ont pas été déterminés plus précisément ni conservés. Une autre carotte prélevée à 84 m avait été déposée au Muséum d'Histoire naturelle de la Ville de Genève et nous y avons isolé des débris végétaux pyritisés et des ostracodes limniques à saumâtres (Ilyocypris cf. essertinesensis abondants et un Hemicyprideis? cf. dacica fragmentaire).

5. Sondage de l'école d'Avully

Un autre sondage profond (coord. suisses: 489,11/113,87/425) pour la recherche d'eau date de 1965. Sous 81,3 m de Quaternaire (Amberger 1978), les

Marnes et Grès bariolés ont été carottés sur 7 m: marnes grises-verdâtres et grès moyens avec un pendage de 12°. Une carotte prélevée à 84,6 m et conservée au Muséum d'Histoire naturelle de la Ville de Genève ne nous a livré que des fragments de coquilles de gastéropodes.

6. Sondage pour sonde thermique (PAC) à Vernier

Nous devons à S. Cuccodoro (Bureau CSD-Genève) quelques échantillons de cuttings, ainsi que le log de ce sondage non carotté, implanté aux coordonnées suisses 495,87/119,50/436 (Fig. 2, lettre Q; Fig. 22). La Molasse appartient aux Marnes et Grès bariolés situés dans le compartiment IV de l'écorché structural du secteur faillé du Nant d'Avanchet élaboré par Angelillo (1987, Fig. 11), que nous reprenons dans ce travail à la Fig. 22.

Le profil sommaire du sondage est le suivant:

- - 0 48 m: Quaternaire non différencié
- - 48 76: grès plus ou moins marneux, bariolés
- 76 84: marnes silteuses argileuses bariolées beige-jaunerouge-violacé
- - 84 98: marnes silteuses gris-bleu

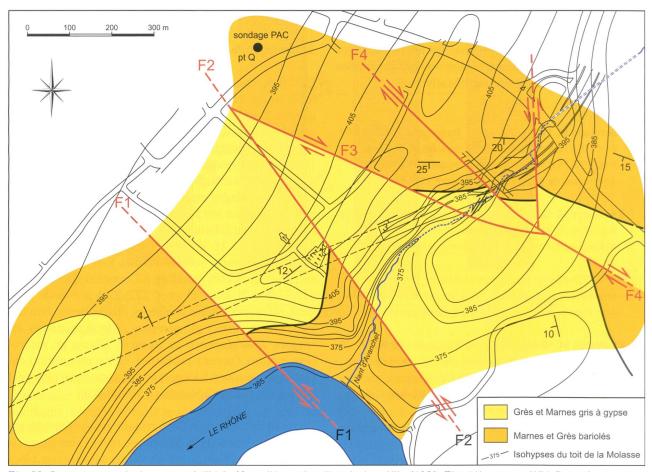


Fig. 22: Carte structurale du secteur faillé du Nant d'Avanchet d'après Angelillo (1987, Fig. 11), peu modifié. Point Q: situation du sondage PAC de Vernier, voir VII.6.

Archives des SCIENCES Arch.Sci. (2007) 60: 59-174

■ - 98 - 200: marnes silteuses argileuses bariolées gris-vert, avec passée brunbeige à 108-110 et marnes grésosilteuses rouges à 156-158 m.

L'échantillon de marnes silteuses vertes prélevé à 116 m est le seul qui soit fossilifère, avec la présence de *Stephanochara* gr. *ungeri* (zone à Ungeri et à Notata).

7. Sondage pour sonde thermique (PAC) à Founex

R. Arn (Bureau ARConseil, Etoy) nous a communiqué les cuttings et le log de ce sondage non carotté, implanté dans la partie septentrionale du bassin franco-genevois, près de Founex (coord. suisses: 503,16/132,30; Fig. 2, lettre S). Les Marnes et Grès bariolés traversés par ce sondage montrent le profil suivant:

- - 0 169 m: marnes plus ou moins silteuses, bariolées grises, beiges, jaunes, brunes, parfois lie-de-vin, avec niveaux de grès fins à 41-43, 67-72, 80-84, 104-107, 121-124, 133-134 m éch. 50-58 m: Sphaerochara gr. hirmeri éch. 80-88: Rhabdochara cf. gr. praelangeri-major, Sphaerochara gr. hirmeri éch. 110-118: Stephanochara gr. ungeri?
- éch. 120-126: Rhabdochara cf. gr. praelangeri-major, Sphaerochara gr. hirmeri éch. 160-168: ?Nitellopsis (Tectochara) gr. meriani
- - 169 200: grès fins à moyens gris ou bruns prédominant avec quelques minces niveaux de marnes bariolées.

Les échantillons fossilifères contiennent tous des associations de charophytes appartenant aux zones à Microcera et/ou à Ungeri (= MP 24 sommet - MP 28).

VIII. SONDAGES DU CERN

1. Sondages F et S

Dès 1970, l'analyse lithostratigraphique des sondages implantés sur le site de l'accélérateur de 300GeV (SPS; Fig. 3) a été assurée par Lanterno (1972): sondages S sur territoire suisse et sondages F sur territoire français. Les carottes ont été malheureusement détruites sans avoir été toutes étudiées d'un point de vue biostra-

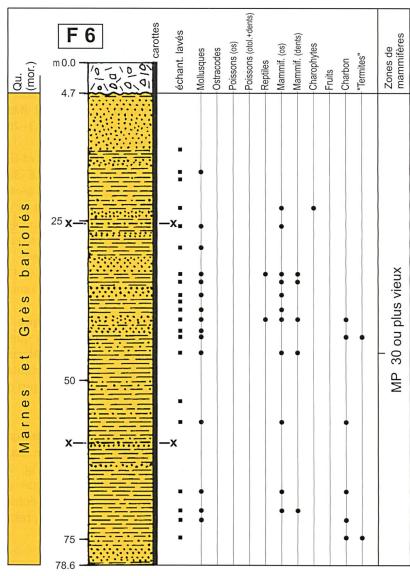


Fig. 23: Sondage F 6.

tigraphique; nous n'avons pu ré-examiner que quelques échantillons des sondages F 6, F 13 et F 15 (Fig. 4), qui avaient été prélevés et lavés par D. Kissling.

1.1. Sondage F 6

Exécuté en 1970/1971. Coord. françaises: 887,30/2146,06/468,6; suisses: 493,98/123,33/468,6; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 23) d'après le rapport Lanterno (1972); échantillons prélevés et lavés par D. Kissling en 1971, restés inédits et partiellement revus par nous.

Quaternaire

- - 0 0,4 m: terre végétale
- - 0,4 4,7: moraine argileuse à galets

Marnes et Grès bariolés

 4,7 - 13,2: grès marneux fins à moyens, gris foncé, à stratifications obliques; nombreuses fractures obliques et subverticales

- - 13,2 16,3: grès marno-micacés et marnes finement gréseuses gris bleu, verdâtres; fractures fréquentes
- - 16,3 26,4: marnes gris bleu, vertes, brunes, lie-de-vin, parfois gréso-micacées; fractures obliques et subverticales; plan de décollement subhorizontal à 25,2 m souligné par des plaquettes de calcite striée
- - 26,4 42,0: grès marneux fins à grossiers, gris, et marnes gris bleu, brun vert, bariolées, lie-de-vin, parfois grésomicacées; fractures obliques à subverticales fréquentes; plan de décollement subhorizontal à 59,9 m souligné par des plaquettes de calcite striée

 Ech. 29,2-29,3: grès marneux pétri d'Unio sp.

 Ech. 33,2: rares Ophisaurus sp.
- 42,0 62,5: marnes gris bleu, vert, lie-de-vin, parfois gréseuses; quelques fractures horizontales et obliques, avec des plaquettes de calcite striée
 Ech. 45,75: Eucricetodon collatus probable (détermination M. Hugueney, 1971)
- 62,5 63,1: grès moyens, gris, marno-micacés
- - 63,1-75,4: marnes gris bleu, vertes, lie-de-vin, rarement gréseuses; fractures obliques
- - 75,4 77,9: grès gris, moyens, marno-micacés
- - 77,9 78,6: marnes gris vert

Remarques

- Ce sondage qui a traversé les Marnes et Grès bariolés sur 73,9 m, n'a fourni qu'une dent de mammifère attribuée avec réserve par M. Hugueney à Eucricetodon collatus en 1971: le milieu de ce sondage serait donc daté du niveau de Küttigen 1 (= MP 30, partie inférieure) ou plus ancien.
- La moitié supérieure de ce sondage est affectée de nombreuses fractures obliques à subverticales, parfois subhorizontales qui ne sont pas toutes indiquées sur la Fig. 23. Les rares pendages mesurés sont subhorizontaux.
- Certains intervalles sont fortement imprégnés par des hydrocarbures: entre 6,0 et 7,3, 8,7 et 11,6, 12,2 et 14,0, 26,4 et 27,4, 30,2 et 32,0, 34,9 et 36,0, et à 77,0 m.

1.2. Sondage F 13

Exécuté en 1971. Coord. suisses: 494,01/124,94/465,7; Fig. 4. Molasse entièrement carottée. Log li-

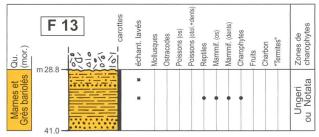


Fig. 24: Sondage F 13.

thologique (Fig. 24) d'après le rapport Lanterno (1972); échantillons prélevés et lavés par D. Kissling en 1971, restés inédits et revus par nous.

Quaternaire

- - 0 0,2 m : terre végétale
- - 0,2 12,3 : moraine sablo-limoneuse à graveleuse
- - 12,3 28,8 : moraine graveleuse et limoneuse

Marnes et Grès bariolés

■ - 28,8 - 38,4 : marnes gris bleu, gris vert, lie-de-vin, bariolées, généralement gréso-micacées ; fractures obliques rares (20 à 30°)

Ech. 34,4-34,5 : fragments de dents (Archaeomys?); Ophisaurus sp. ; Sphaerochara sp., ?Stephanochara gr. ungeri

- 38,4 - 41,0 : grès marneux moyens à grossiers, qris à gris vert.

Remarque

 Les quelques charophytes extraites des 12,2 m de Marnes et Grès bariolés ne permettent qu'une attribution biostratigraphique imprécise: zones à Ungeri ou à Notata (= MP 27-30).

1.3. Sondage F 15

Exécuté en 1971. Coord. suisses: 494,61/125,63/469,7; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 25) d'après le rapport Lanterno (1972); échantillons prélevés et lavés par D. Kissling en 1971, restés inédits et revus par nous.

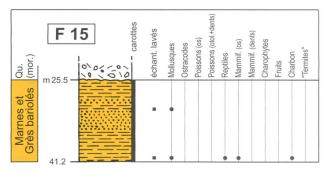


Fig. 25: Sondage F 15.

Quaternaire

- - 0 0,3 m: terre végétale
- - 0,3 5,6: moraine sablo-limoneuse à graveleuse
- - 5,6 25,5: graviers limoneux

Marnes et Grès bariolés

- 25,5 35,2: grès marneux, gris moyens à grossiers, et marnes gréseuses, gris vert, lie-de-vin; quelques fractures obliques à subverticales
- 35,2 41,2: marnes gris bleu, brun vert, lie-de-vin, rarement gréseuses; quelques fractures obliques (20 à 30°)
 Ech. 39,9-40,2: Ophisaurus sp.

2. Sondages SPL

2.2. Sondage SPL 2/3

Exécuté en 1981. Coord.: suisses 490,69/123,28/449; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 26) d'après le rapport Dériaz & Hotellier (1981) et nos relevés.

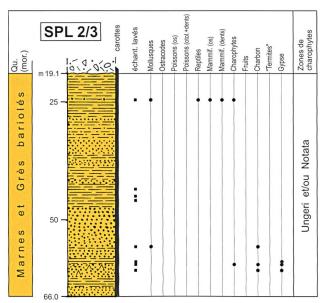


Fig. 26: Sondage SPL 2/3.

Quaternaire

- - 0 1,5 m: colluvions limoneux
- - 1,5 3,5: graviers fluvioglaciaires
- - 3,5 15,0: moraine de fond argileuse à blocs
- - 15,0 19,1: moraine graveleuse limoneuse

Marnes et Grès bariolés

- - 19,1 32,6: marnes argilo-silteuses bariolées, souvent liede-vin, gréseuses entre 30 et 32,6 m Ech. 24,7-24,8: Ophisaurus sp.; Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri
- - 32,6 38,0: grès marneux et marnes gréseuses
- 38,0 48,5: marnes argilo-silteuses avec passées gréseuses, bariolées à prédominance lie-de-vin; stratification horizontale Ech. 45,1-45,6: empreintes végétales, manchons calcaires autour de racines
- - 48,5 58,7: grès fins à moyens, grossiers entre 53,0 et 55,5 m; stratifications obliques; pendage: 10°
- - 58,7 66,0: grès fins à moyens, massifs, verdâtres, avec rares passées décimétriques de marnes silteuses carbonatées; gypse abondant (rosettes, fibres).

Remarques

Les charophytes recueillies dans les 46,9 m de Marnes et Grès bariolés recoupés par ce sondage, ne permettent pas de donner un âge précis; elles appartiennent aux zones à Ungeri et/ou à Notata (= MP 27-30). La présence de gypse entre 58,7 et 66,0 m doit être relevée.

2.3. Sondage SPL 2/5

Exécuté en 1982. Coord. suisses: 491,40/122,32/440,7; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 27) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

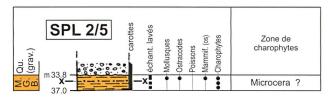


Fig. 27: Sondage SPL 2/5.

Quaternaire

- - 0 3,8 m: remblais
- - 3,8 5,0: colluvions et ancien sol
- - 5,0 24,0: moraine limoneuse à cailloux
- - 24,0 33,8: graviers sableux

Marnes et Grès bariolés

 - 33,8 - 37,0: marnes silto-micacées, lie-de-vin, verdâtres, très fracturées; pendage horizontal

Ech. 35,8: Ilyocypris cf. weidmanni, Herpetocypris? sp.; Chara sp., Hornichara lagenalis

Ech. 36,8: Hornichara lagenalis?, Rhabdochara gr. stockmansi-major, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri.

Remarques

- Les charophytes prélevés dans les Marnes et Grès bariolés traversées sur 6,20 m, pourraient appartenir à la zone à Microcera (= MP 24 sommet - MP 26).
- Les ostracodes sont des formes d'eau douce.

2.4. Sondage SPL 4/1

Exécuté en 1982. Coord. suisses: 491,88/129,11; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 28) d'après le rapport Dériaz & Hotellier (1982).

Quaternaire

- - 0 0,3 m: terre végétale
- - 0,3 29,3: moraine argileuse
- - 29,3 48,2: moraine graveleuse

Marnes et Grès bariolés

■ - 48,2 - 69,3: marnes silteuses, bariolées, lie-de-vin, et de grès gris vert, fracturées dès 68,5 m; pendage de 5° à 64,0 m *Ech. 64,2: Sphaerochara* sp.

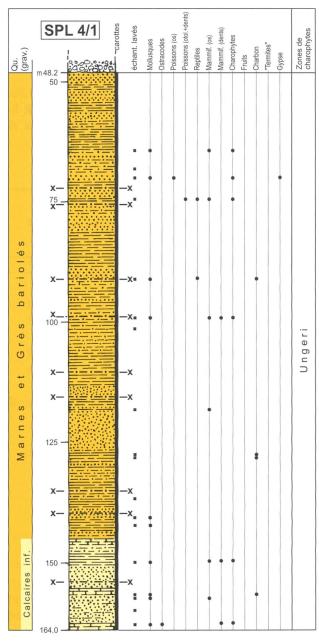


Fig. 28: Sondage SPL 4/1.

- - 69,3 76,2: grès fins et marnes feuilletées grises et verdâtres; traces de gypse à 69,5 m; zone fracturée avec plans de faille à 45°
- Ech. 74,5: Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri
- 76,2 89,4: grès fins gris vert et marnes gréseuses grises, lie-de-vin, parfois feuilletées
- 89,4 115,6: grès fins gris et marnes gréso-silteuses bigarées, violacées, lie-de-vin; zone fracturée Ech. 99,2: Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani; Théridomyidé indét.
- - 115,6 133,4: marnes argileuses silto-gréseuses, grises ou bariolées, et grès fins gris à gris vert
- 133,4 144,8: alternances de marnes silteuses argilogréseuses, bariolées, grises, violacées, lie-de-vin et de grès fins; zone très fracturée

Calcaires inférieurs

 144,8-164,0: calcaires argileux, marnes silto-gréseuses, bariolées, violacées, lie-de-vin, et grès fins, gris vert; zone très fracturée

Ech. 149,7: Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani

Ech. 163,3-163,7: ostracodes d'eau douce: Pseudocandona sp., Strandesia? sp.; Hornichara lagenalis, Rhabdochara gr. langeri (ou Rh. «praelangeri», bien ornées mais très allongées), Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani.

Remarque

 D'après les associations de charophytes, tant les Marnes et Grès bariolés, d'une épaisseur de 96,6 m, que les Calcaires inférieurs, d'une puissance de 19,2 m, pourraient appartenir à la zone à Ungeri (= MP 27-28).

2.5. Sondage SPL 4/3

Exécuté en 1982. Coord. suisses: 491,38/128,70/591,2; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 29) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

Quaternaire

- - 0 2,3 m: moraine limoneuse
- - 2,3 45,2: moraine graveleuse avec niveaux conglomératiques cimentés
- - 45,2 69,0: limons et graviers calcaires

Marnes et Grès bariolés

- 69,0 83,9: marnes très peu gréseuses, gris vert à violacées. lie-de-vin
- - 83,9 92,2: grès marneux et marnes peu gréseuses, gris verdâtre à lie-de-vin; niveau fracturé (fractures obliques et verticales)
- - 92,2 103,5: grès fins à moyens, peu marneux, gris vert, avec nombreuses fractures; pendages probables de 30 à 40°; à 103,5 m, plan de faille souligné par des marnes argileuses schistoïdes, gris verdâtres
- 103,5 109,0: calcaires micritiques avec quelques niveaux marneux, rarement gréseux; fractures et nombreux gastéropodes au sommet
- - 109 117,4: marnes gris verdâtre, plus calcaires à la base
- - 117,4 125,4: grès marneux et marnes gris-vert, fracturés
- 125,4 130,0: calcaires gris clair et marnes gris verdâtre, fracturés
- 130,0 148,0: grès fins gris et marnes bariolées, lie-de-vin, verdâtres, avec parfois niveaux charbonneux; zone fracturée
- - 148,0 155,0: calcaires gris beige et grès calcareux; fractures obliques à 60 à 70°
- 155,0 167,7: grès calcareux verdâtres et marnes gréseuses violacées, gris vert; fractures obliques à subverticales
- - 167,7 172,8: calcaires beige à gris et marnes gréseuses gris vert à mollusques

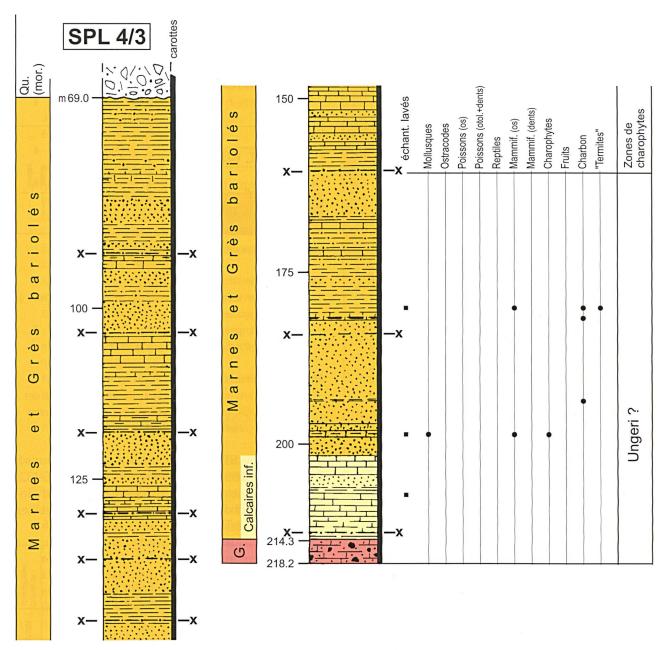


Fig. 29: Sondage SPL 4/3.

 172,8 - 201,3: marnes verdâtres avec niveaux gréseux et calcaires plus ou moins crayeux ou argileux; feuillets charbonneux

Ech. 180,1: coprolithes de termites xylophages («Microcarpolithes hexagonalis»)

Ech. 198,5: Rhabdochara gr. langeri (Pl. 5, Fig. 12)

Calcaires inférieurs

 201,3 - 214,3: calcaires gris à beiges, peu argileux avec passées de marnes gris vert, brunes ou violacées et de grès à nodules calcaires; zone fracturée

Gompholite

■ 214,3 - 218,2: conglomérat à galets calcaires (faciès de type «Pierre jaune de Neuchâtel») à ciment gréseux; fractures à 65 et 25°.

Remarques

Ce sondage a traversé les Marnes et Grès bariolés sur 132,3 m et la Gompholite sur 3,9 m; sur la Fig. 29, les Calcaires inférieurs ont été limités arbitrairement à 13 m. Cependant, l'épaisseur apparente de la série riche en niveaux calcaires atteint 111 m; si l'on tient compte du plongement des couches qui semble osciller autour de 40°, l'épaisseur réelle serait de l'ordre de 80 m. Vu la fracturation, avec des plans de faille portant des stries plongeant à 45°, que nous avons observées sur les carottes notamment au niveau des marnes, surtout lorsqu'elles sont charbonneuses, comme à 140 m, on peut supposer une répétition complexe de la série. Cependant le lever de la galerie du LEP (Fourneaux s. d.) ne révèle pas le moindre accident à cette cote.

 La présence de Rhabdochara gr. langeri montre que la base des Marnes et Grès bariolés doit probablement être rattachée à la zone à Ungeri (= MP 27-28).

2.6. Sondage SPL 5/4

Exécuté en 1982. Coord. suisses: 495,11/129,63/508,5; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 30) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

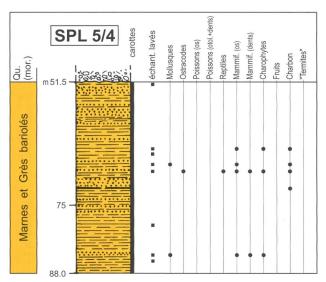


Fig. 30: Sondage SPL 5/4.

Quaternaire

- - 0 1,7 m: terre végétale et colluvions
- - 1,7 32,0: moraine graveleuse jurassienne
- - 32,0 51,5: moraine graveleuse alpine

Marnes et Grès bariolés

souvent gréseuses, marnes argileuses feuilletées et grès fins gris; à 72,1 m, niveau de charbon épais de 3 cm; plusieurs niveaux tectonisés; pendage subhorizontal *Ech. 68,5: Pseudocandona* sp. (Pl. 2, Figs. 6-7), *Candona?* sp., *Ilyocypris* sp., *Heterocypris* sp., *?Stenocypris* sp. (Pl. 3, Fig. 5), *Moenocypris* cf. *ingelheimensis* (Pl. 3, Fig. 4), ostracodes indét.; *Ophisaurus* sp.; charophytes: *Hornichara lagenalis*, *Stephanochara* gr. *ungeri*, *Nitellopsis* (*Tectochara*) gr. *meriani*

- 51,5 - 88,0: marnes bariolées, lie-de-vin à verdâtres,

Ech. 84,5: fragments d'os; charophytes:?Rhabdochara gr. stockmansi-major, Sphaerochara sp.

Remarques

- Les rares charophytes observées dans les Marnes et Grès bariolés traversés sur 36,5 m, pourraient appartenir à la zone à Microcera, mais leur faible nombre ne permet pas de proposer une datation.
- Les ostracodes identifiés sont tous lacustres.

2.7. Sondage SPL 6/5

Exécuté en 1982. Coord. suisses: 497,06/128,70/470; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 31) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

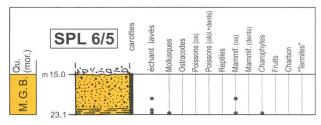


Fig. 31: Sondage SPL 6/5.

Quaternaire

- 0 2,7 m: terre végétale, dépôts palustres, limon argileux à débris végétaux
- - 2,7 7,0: graviers fluvio-glaciaires
- - 1,0 15,0: moraine limono-argileuse

Marnes et Grès bariolés

■ - 15,0 - 23,1: grès fins à grossiers passant dès 21,8 m à des marnes argilo-gréseuses, gris foncé; fractures subverticales *Ech. 22,9: Nitellopsis (Tectochara)* sp.

2.8. Sondage SPL 7/2

Exécuté en 1982. Coord. suisses: 497,92/124,75/432; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 32) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

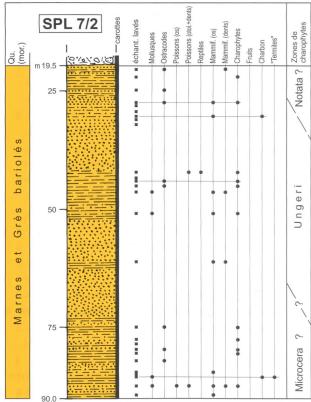


Fig. 32: Sondage SPL 7/2.

Quaternaire

- - 0 9,0 m: moraine limoneuse
- - 9,0 19,5: moraine graveleuse

Marnes et Grès bariolés

- 19,5 31,2: grès fins à moyens, gris vert, et marnes lie-devin, verdâtres, gris bleuté
 - Ech. 27,0: Sphaerochara gr. hirmeri
- 31,2 41,9: grès fins à grossiers gris vert; indices d'hydrocarbures vers le bas
- - 41,9 52,2: marnes bariolées, vertes, lie-de-vin, parfois gréseuses, tectonisées à la base Ech.42,3 et 43,5: Hornichara aff. lagenalis, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri Ech. 51,0: Rhabdochara gr. langeri, ?Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani
- - 52,2 72,7: grès moyens à grossiers, verdâtres avec un niveau marneux métrique violacé; passées charbonneuses à la base *Ech. 61,1: Sphaerochara* sp. (probablement gr. *hirmeri*)
- 72,7 90,0: grès fins, bariolés, gris vert et marnes parfois gréseuses bariolées, gris vert, lie-de-vin; fracturation au milieu et vers la base
- Ech. 79,9:?Rhabdochara gr. stockmansi-major, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri; ostracodes indét.
- Ech. 87,2: Théridomyidé indét.

Remarques

- Ce sondage a recoupé 70,5 m de Marnes et Grès bariolés. D'après les associations de charophytes, la plus grande partie du sondage appartiendrait à la zone à Ungeri (= MP 27-28); le sommet pourrait atteindre la zone à Notata (= MP 29-30) et la base éventuellement à la zone à Microcera.
- Des imprégnations d'hydrocarbures ont été observées entre 36,7 et 42,0 m et entre 58,4 et 60,2 m.

2.9. Sondage SPL 8/2

Exécuté en 1982. Coord. suisses: 496,48/121,93/428,1; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 33) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

Quaternaire

- 0 27,0 m: moraine limoneuse, très argileuse entre 14,0 et 27,0 m
- - 27,0 81,5: moraine argileuse à blocs

Marnes et Grès bariolés

81,5 - 109,1: grès fins à moyens à rares structures obliques et marnes gréseuses gris bleu, gris verdâtre, lie-de-vin; débris charbonneux à la base; pendage subhorizontal; fractures inclinées de 30 à 45°

Ech. 89,0: Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri

Ech. 109,0: Chara sp., Sphaerochara sp.

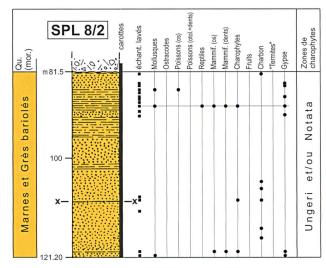


Fig. 33: Sondage SPL 8/2.

- - 109,1 119,5: grès fins à grossiers gris, gris vert à gris bleuté, avec structures obliques fréquentes; faibles indices d'hydrocarbures entre 119,0 et 119,5 m; fractures inclinées de 30 à 45°
 - Ech. 109,8: Rhabdochara gr. langeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri
- - 119,5 121,2: grès gris, fins à grossiers, et marnes bariolées, lie-de-vin, verdâtres; fractures obliques Ech. 120,5: Chara sp., Sphaerochara sp.

Remarque

 Les charophytes déterminées dans ce sondage, qui a traversé 39,7 m de Marnes et Grès bariolés appartiennent probablement aux zones à Ungeri et/ou Notata (= MP 27-30).

2.10. Sondage SPL 8/5

Exécuté en 1982. Coord. suisses: 497,00/122,36/425; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 34) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

Quaternaire

- - 0 4,0 m: terre végétale et remblais
- - 4,0 44,1: moraine limoneuse, graveleuse dans la moitié inférieure
- - 44,1 70,0: moraine argilo-limoneuse gris sombre avec rares cailloux
- - 70,0 77,2: moraine argileuse à blocs

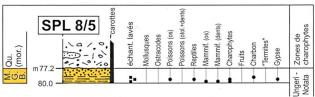


Fig. 34: Sondage SPL 8/5.

Marnes et Grès bariolés

■ - 77,2 - 80,0: grès fins verdâtres et marnes argileuses verdâtres, lie-de-vin; gypse courant et nombreux nodules de pyrite; fractures obliques à 15 - 20°

Ech. 79,9:?Théridomyidé indét.; Hornichara lagenalis (Pl. 5, Figs. 1-3).

Remarques

- Les charophytes déterminées au fond de ce sondage, qui n'a traversé que 2,8 m de Marnes et Grès bariolés, ne permettent pas de datation précise; elles correspondent probablement aux zones à Ungeri et/ou Notata.
- La présence de gypse de 77 à 80 m doit être relevée.

2.11. Sondage SPL 8/7

Exécuté en 1982. Coord. suisses: 496,55/122,04/428; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 35) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

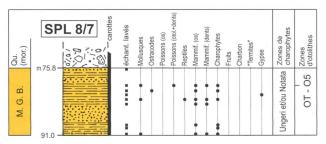


Fig. 35: Sondage SPL 8/7.

Quaternaire

- - 0 4,0 m: terre végétale
- - 4,0 23,5: moraine graveleuse argileuse
- - 23,5 41,0: graviers sablo-limoneux beiges
- - 41,0 75,8: moraine argilo-sableuse

Marnes et Grès bariolés

- 75,8 - 84,0: marnes peu gréseuses, gris verdâtre, bariolées, lie-de-vin

Ech. 79,7: Palaeolebias symmetricus (Pl. 4, Fig. 5), genus Cyprinidarum sp.

Ech. 80,8: ostracodes lacustres: *Ilyocypris* sp., Cypridopsinae? indét.; nombreux *Unio* sp.

Ech. 82,7: Hornichara lagenalis, Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri

■ - 84,0 - 91,0: grès fins, gris verdâtre, avec passée métrique marno-argileuse gris vert et lie-de-vin; nombreux *Unio* sp. et petits nodules de gypse à 84,8 m

Ech. 88,4: Hornichara lagenalis, Stephanochara gr. ungeri (Pl. 5, Figs. 15-17), Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri.

Remarques

- Dans ce sondage qui a traversé 15,2 m de Marnes et Grès bariolés, l'otolithe Palaeolebias symmetricus repéré à 79,7 m, caractériserait la zone OT O2 (= MP 24), ce qui est en contradiction avec les données des charophytes, qui correspondent aux zones à Ungeri et/ou Notata (= MP 27-30); cette contradiction demeure inexpliquée en l'état de nos connaissances.
- La présence de gypse à 84,8 m est à relever.

2.12. Sondage SPL 8/8

Exécuté en 1982. Coord. suisses: 496,73/122,16/426; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 36) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

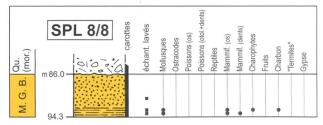


Fig. 36: Sondage SPL 8/8.

Quaternaire

- - 0 2,5 m: terre végétale et colluvions
- - 2,5 6,0: graviers fluvio-glaciaires
- - 6,0 23,0: moraine argileuse à blocs et graviers sableux
- - 23,0 61,0: graviers argilo-sableux
- - 61,0 72,0: sables limoneux, fins à moyens
- - 72,0 86,0: moraine argileuse à blocs

Marnes et Grès bariolés

- 86,0 93,1: grès moyens à grossiers, verdâtres, à rares stratifications obliques
- - 93,1 94,3: marnes argilo-gréseuses, pyriteuses, gris verdâtre, localement gris noir; pendage subhorizontal.

2.13. Sondage SPL 8/13

Exécuté en 1982. Coord. suisses: 496,86/122,26/427; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 37) d'après le rapport Dériaz & Hotellier (1982) et nos relevés.

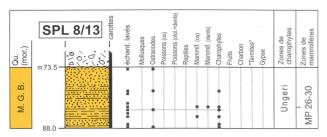


Fig. 37: Sondage SPL 8/13.

Quaternaire

- - 0 1,0 m: terre végétale
- - 1,0 13,0: graviers limoneux
- - 13,0 19,0: moraine argileuse
- - 19,0 47,0: graviers sableux, argileux à la base
- - 47,0 58,7: moraine argileuse
- - 58,7 73,5: argiles fines sableuses, avec quelques galets centimétriques à la base

Marnes et Grès bariolés

■ - 73,5 - 88,0: grès fins à moyens, rarement grossiers, gris vert, et marnes argileuses bariolées, gris verdâtre et lie-devin; imprégnations d'hydrocarbures à 82,3 m; pendage subhorizontal

Ech. 83,0: Plesiosminthus promyarion (Pl. 8, Fig. 3)

Ech. 84,1: Pseudocandona sp. juv.

Ech. 87,5: Candona sp.

Ech. 83,0 + 84,1 + 87,5: Chara sp., Hornichara lagenalis, ?Rhabdochara gr. langeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp.

Remarque

Les Marnes et Grès bariolés forés sur 14,5 m ont livré *Plesiosminthus promyarion*, dont l'âge correspond aux niveaux de Mümliswil - Küttigen 1 (= MP 26 [sommet] - MP 30 [base]); d'autre part, les charophytes reconnues appartiennent probablement à la zone à Ungeri (= MP 27-28); leur association avec les mammifères permet d'attribuer les Marnes et Grès bariolés aux biozones MP 27-28.

Fig. 38: Sondage L 112.

3. Sondages L

3.1. Sondage L 112

Exécuté en 1979. Coord. suisses: 488,35/122,87/482; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 38) d'après le rapport Lanterno et al. (1981). Echantillonnage à partir des carottes déposées au Muséum d'Histoire naturelle de la Ville de Genève.

Quaternaire

■ - 0 - 28,5 m: moraine argilo-graveleuse, parfois limonosableuse, à blocs

Marnes et Grès bariolés

- - 28,5 37,4: grès fins à moyens et marnes silto-gréseuses; zone fracturée; pendage 35°
- - 37,4 61,4: marnes calcaréo-silteuses, gris-bleu à verdâtres, lie-de-vin, bariolées, lustrées, fracturées, peu pyriteuses; minces lits de grès calcareux fins, gris à verdâtres; pendage 30° à 50°

Ech. 37,5 - 37,6: Gliridé, cf. *Microdyromys*; dents pharyngiennes (*Tarsichthys* sp.); *Nitellopsis* (*Tectochara*) gr. *meriani*, *Sphaerochara* sp.

Ech. 42,9 - 43,2: Insectivore indét., Allocricetodon incertus; Nitellopsis (Tectochara) gr. meriani Ech. 45,9 - 46,3: Didelphidé, cf. Amphiperatherium mi-

nutum; Nitellopsis (Tectochara) gr. meriani, Sphaerochara sp., Rhabdochara gr. praelangeri-major, ?Rhabdochara gr. langeri

- - 61,4 64,0: grès fins, gris; plan de faille à la base
- - 64,0 76,8: marno-calcaires silto-gréseux, gris, verdâtres, lie-de-vin, avec niveaux gréseux; nombreuses fractures *Ech.* 68,0 68,4: Théridomyidé, cf. *Issiodoromys* sp.

Calcaires inférieurs

- 76,8-79,0: zone faillée avec grès fins à moyens, calcaires d'eau douce et marnes grises, bariolées, silto-gréseuses, écrasées
- - 79,0-81,2: grès gris, fins, fracturés
- 81,2-84,0: marnes gris-bleu, vertes, lie-de-vin, fracturées *Ech. 81,9-82,1*: Cricétidé indéterminé
- - 84,0 88,3: calcaires lacustres, peu fracturés; traces de racines, figures de dessication; pendage: 50°

- 88,3 92,4: marnes silto-gréseuses gris-bleu, vertes, avec niveau décimétrique gréseux fin, très fracturées; pendage: 40° à 50°
- Ech. 90,0-90,7: débris végétaux pyritisés ou charbonneux (aiguilles de conifères?), fruits de Celtis; Gliravus cf. bravoi (fragment d'une M3 sin. de grande taille, Pl. 7, Fig. 11)
- 92,4 93,2: calcaires lacustres, un peu argileux, ferrugineux, fracturés; figures de dessication; traces végétales
- 93,2 97,5: marnes calcareuses, silto-gréseuses, gris-bleu, vertes, lie-de-vin, très fracturées; plan de faille à la base
- - 97,5 98,5: grès moyens, gris-bleu et verts
- 98,5 100,2: marnes calcareuses, gris-bleu, vertes, lie-devin, silteuses, très fracturées; pendage: 55°
 Ech. 99,2-99,5: Eomys molassicus (Pl. 7, Fig. 1), Gliridé indéterminé

Ech. 99,8-99,9: Eomys molassicus (Pl. 7, Fig. 2)

- - 100,2 101,4: grès moyens, gris-bleu et verts; fracturés
- - 101,4 115,4: marnes calcareuses, parfois silto-gréseuses, grisbleu, vertes, lie-de-vin, avec rares niveaux décimétriques gréseux et niveaux de calcaires lacustres; à la base, très nombreux prismes de *Microcodium*; zone très fracturée; pendage: 70° *Ech.* 104,0: *Rhabdochara* gr. *praelangeri-major Ech.* 105,4 105,6: Eucricetodon sp., Eomys sp.

Gompholite

- - 115,4 115,9: conglomérat à galets de calcaires d'eau douce, peu quartzeux et ferrugineux, à traces de racines et ciment calcaréo-gréseux, gris-vert et lie-de-vin, très fracturé; prismes de *Microcodium*; plan de faille, à la base
- - 115,9 116,0: calcaires lacustres, un peu quartzeux, et grès brun rouge à verts; prismes de *Microcodium*; nombreuses fractures
- - 116,0 120,9: conglomérat très fracturé avec galets de calcaires biosparitiques, parfois lumachelliques avec milioles, serpules, textularidés, *Lenticulina* sp., *Palorbitolina lenticularis*; ciment calcaréo-gréseux, ferrugineux; prismes de *Microcodium*.

Calcaires urgoniens («Couches à orbitolines»)

- - 120,9 121,7: zone très fracturée avec différents faciès: a) calcaires recristallisés très peu quartzeux, pyriteux, riches en *Palorbitolina lenticularis* et avec fragments d'échinides et de lamellibranches; b) calcaires recristallisés, peu quartzeux, pyriteux à rares débris de tests de lamellibranches (?); c) grès beige clair, fins à moyens, peu carbonatés
- - 121,7 130,5: calcaires très fracturés avec niveaux décimétriques à métriques de marnes argilo-silteuses rougeâtres; la quinzaine de lames minces effectuées dans ce niveau révèle des biomicrites et biomicrosparites à *Palorbitolina lenticularis*; à 123,3 m, la biomicrite ferrugineuse à abondantes *Palorbitolina lenticularis* est identique à celle du niveau 15 de la Perte de Rhône près de Bellegarde, d'âge Aptien inférieur (Jayet 1926, p. 168 et Fig. 2).

Remarques

 Ce forage a recoupé successivement les Marnes et Grès bariolés (48,3 m), les Calcaires inférieurs (38,6 m), la Gompholite (5,5 m) et le substratum

- mésozoïque représenté ici par les Calcaires urgoniens (> 9,60 m).
- Le forage L 112 est très fracturé sur une grande partie de sa longueur; les plans de faille ne sont pas tous indiqués sur la Fig. 38. La succession lithologique doit donc être donnée avec prudence. Le contact entre la base des Calcaires inférieurs et le sommet de la Gompholite est notamment souligné par un plan de faille, peutêtre important. De plus, les Marnes et Grès bariolés présentent de grandes variations de pendages qui sont de 25° à 35° jusque vers 80 m, puis se redressent plus bas pour atteindre jusqu'à 70°.
- La limite entre les Calcaires inférieurs et la Gompholite est clairement soulignée par les minéraux lourds dont le spectre change brusquement dès 115,4 m (Maurer 1981).
- Les Marnes et Grès bariolés ont pu être datés grâce à *Allocricetodon incertus*, dont l'âge correspond au niveaux Oensingen 1 Fornant 7 (= MP 26-28) et les Calcaires inférieurs grâce à *Gliravus* cf. *bravoi* dont l'âge correspond aux niveaux Wynau 1 Fornant 6 (= MP 27-28) et à *Eomys molassicus* caractéristique des niveaux Oensingen 1 Wynau 1 (= MP 26 MP 27 base). Il est donc justifié de considérer que dans ce sondage L 112, les Marnes et Grès bariolés appartiennent aux zones MP 27-28 et les Calcaires inférieurs à la zone MP 27. Les rares charophytes, bien que n'autorisant pas une datation précise, indiquent des âges compatibles avec ceux des mammifères.
- De faibles imprégnations d'hydrocarbures ont été relevées à 117,5, 119,5 et 122,5 m.
- Le forage 112 montre que le substratum mésozoïque est constitué ici par le sommet des Calcaires urgoniens à *Palorbitolina lenticularis* («Couches à orbitolines») d'âge Aptien inférieur.

3.2. Sondage L 129

Exécuté en 1980. Coord. suisses: 492,08/130,64/624; Fig. 4. Molasse entièrement carottée. Log lithologique modifié (Fig. 39) d'après Lanterno et al. (1981).

Quaternaire

- 0 - 45,5 m: moraine gravelo-limoneuse avec gros blocs à la base

Marnes et Grès bariolés

- 45,5 48,9: marnes calcareuses, silteuses, gris vert à gris sombre avec débris végétaux; nombreuses fractures
- 48,9 63,2: marnes calcareuses silto-gréseuses, gris foncé à gris bleu vert, parfois violacées, et grès gris moyens; nombreuses fractures
 - *Ech. 52,5-52,6*: mollusques très abondants (planorbes, limnées, lamellibranches), os de poissons

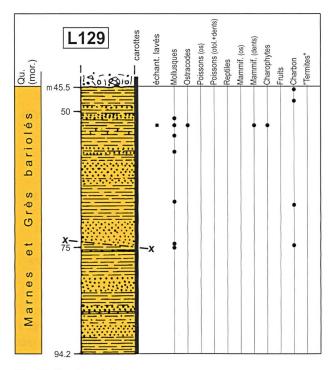


Fig. 39: Sondage L 129.

Ech. 52,8: fragment d'un maxillaire avec 3 dents d'un Cainotheriidae indét. (détermination M. Hugueney, in Lanterno et al. 1981)

- 63,2 69,7: marnes gris noir, silto-gréseuses, très fracturées; débris de plantes et de gastéropodes entre 66,2 et 67,1
- 69,7 74,0: grès gris moyens, très fracturés: fracture ouverte possible entre 72,1 et 73,0 m (pas de carotte) et plan de faille important à la base du niveau
- 74,0 80,4: marnes silteuses, gris bleuté, verdâtres, lie-devin, très fracturées; traces de plantes et fragments de gastéropodes au sommet
- - 80,4 94,2: marnes silteuses, grises, verdâtres, et grès gris fins à moyens; très nombreuses fractures

Remarque

 Les Marnes et Grès bariolés, recoupés sur 48,7 m par ce sondage, sont passablement fracturés et affectés par de nombreux plans de cassures inclinés de 30° à 70°; il n'y a pas d'indication sur les pendages.

3.3. Sondage L 133

Exécuté en 1980. Coord. suisses: 490,11/125,56/513; Fig. 4. Molasse entièrement carottée. Log lithologique modifié (Fig. 40), d'après les rapports Dériaz & Hotellier (1980) et Lanterno et al. (1981)

Quaternaire

- 0 4,0 m: graviers fluvio-glaciaires
- 4,0 16,6: moraine limoneuse à blocs

Marnes et Grès bariolés

- 16,6 24,5: marnocalcaires, parfois gréso-silteux, gris, verts; niveaux décimétriques de calcaires gris beige et de grès fins; fragments de gastéropodes
- - 24,5 24,8: calcaires gris beige, fracturés
- 24,8 41,5: marnes calcareuses, parfois gréso-silteuses, grises, vertes, lie-de-vin; avec niveaux gréseux, fins; fracturation importante
- 41,5 52,3: marnes et marno-calcaires, gris, verts, avec niveaux décimétriques de calcaires brunâtres; quelques fractures

Calcaires inférieurs

- - 52,3 55,0: calcaires gris beige à brunâtres, fracturés
- 55,0 65,0: marnes et marno-calcaires gris, parfois riches en fragments de mollusques (hélicidés, planorbes, limnées, petits lamellibranches); rares niveaux décimétriques de grès fins et de calcaires brunâtres riches en gastéropodes; importante fracturation

Ech. 60,5: abondants restes de poissons: Tarsichthys sp.; Palaeoesox oligocenicus (Pl. 4, Fig. 3); Nitellopsis (Tectochara) gr. meriani, ?Rhabdochara gr. praelangeri-major

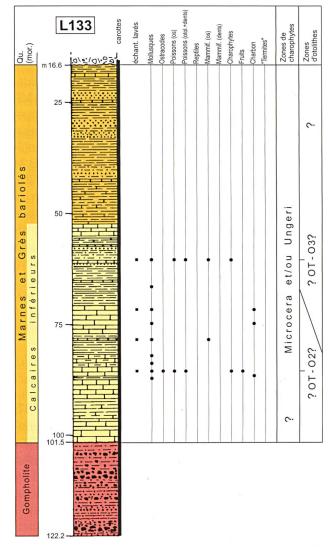


Fig. 40: Sondage L 133.

- - 65,0 66,3: calcaires brunâtres passant vers le bas à un grès; fragments de gastéropodes
- - 66,3 71,4: marnes calcareuses, gris bleu, très fracturées
- - 71,4 89,5: marnes grises, marno-calcaires et calcaires lacustres brunâtres; nodules caliche; pyrite rare en petits nodules; fragments de gastéropodes (surtout des hélicidés) et rares minces niveaux charbonneux

Ech. 78,2: Eucricetodon sp.

Ech. 85,3: Unio sp.; charophytes indéterminées; ostracodes lacustres: Ilyocypris cf. essertinesensis, ?Herpetocypris sp.; Tarsichthys sp., Palaeolebias symmetricus (Pl. 4, Fig. 4), Enoplophthalmus sp. (fragment)

 89,5 - 101,5: calcaires gris beige à brun rouge et marnes calcareuses; peu fracturés

Gompholite

■ - 101,5 - 122,2: marnes gréso-calcaires brun rouge, grès grossiers gris vert et microbrèche à galets centimétriques subanguleux de calcaires divers et de silex; niveau très fracturé

Remarques

- Dans ce sondage, la limite entre les Calcaires inférieurs et les Marnes et Grès bariolés n'est pas clairement définie; l'épaisseur de celles-ci a été évaluée à 35,7 m et celle des Calcaires inférieurs à 49,2 m. La Gompholite a été identifiée entre 101,5 et 122,2 m.
- En se basant sur les otolithes, les Calcaires inférieurs appartiendraient aux zones OT-O2 (= MP 23-25 [base]) et OT-O3 (= MP 25 [partie supérieure] MP 26 [partie inférieure]), alors que, selon les charophytes, le sommet des Calcaires inférieurs est attribué aux zones à Microcera (= MP 24 [sommet] MP 26) ou à Ungeri (= MP 27-28).
- Situé à proximité de la faille du pied du Jura, le sondage L 133 montre de nombreuses fractures.
 Le pendage des couches n'est pas très bien visible: il serait de l'ordre de 15 à 20° à 25 m.
- Des traces d'hydrocarbures ont été relevées entre 71 et 76 m et à 100 m.
- Des venues artésiennes d'une eau de composition spéciale (bicarbonatée - sodique) sont signalées de 71 à 76 m, avec dégagement de bulles de gaz.

3.4. Sondage L 135

Exécuté en 1981. Coord. suisses: 489,91/125,69/527; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 41) d'après le rapport Dériaz & Hotellier (1982) et nos relevés. Echantillonnage à partir des carottes déposées au Département de géologie et de paléontologie de l'Université de Genève.

Quaternaire

- - 0 0,6 m: terre végétale
- - 0,6 11,0: alluvions fluvio-glaciaires

- 11,0 - 18, 7: moraine limoneuse à cailloux et blocs; imprégnations d'hydrocarbures à la base

Calcaires inférieurs

■ - 18,7 - 27,8: marno-calcaires gréseux, pyriteux, gris verdâtre, à très nombreux fragments de gastéropodes (hélicidés, limnées, planorbes, bythinies), avec quelques interlits plus argileux noirâtres; zone fracturée à la base Ech. 18,7: Eomys ou Rhodanomys sp. Ech. 21,8: Chara sp., Nitellopsis (Tectochara) gr. meriani Ech. 22,3: Chara sp., Nitellopsis (Tectochara) gr. meriani, Rhabdochara gr. stockmansi-major Ech. 26,3: ostracodes d'eau douce: ?Heterocypris sp., llyocypris sp., Virgatocypris sp., Candoninae indét.; Nitellopsis (Tectochara) sp., genus Eleotridarum martinii Ech. 27,5: genus Eleotridarum martinii (Pl. 4, Fig. 1), ostracodes indét.

Gompholite

■ - 27,8 - 32,4: grès à ciment calcaire, gris vert à rougeâtres, et marno-calcaires quartzeux, bariolés, gris vert, lie-de-vin; gros grains de quartz détritiques (Ø 2 mm), débris de silex, orbitolines remaniées, fragments de mollusques (hélicidés, bythinies) et d'os; pendage environ 20° Ech. 31,0 et 31,5: Chara sp., Nitellopsis (Tectochara) gr. meriani Ech. 32,1: ostracodes d'eau douce: Pseudocandona sp.,

Ecn. 32, 1: ostracodes d eau douce: Pseudocandona sp., Ilyocypris sp., Heterocypris sp., Virgatocypris sp., ?Moenocypris sp.; Chara sp., ?Stephanochara gr. ungeri

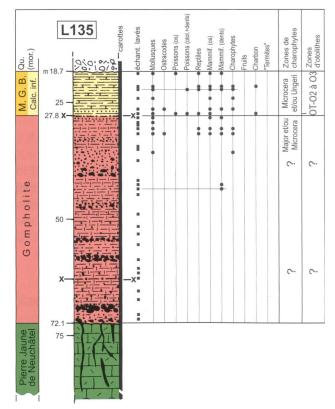


Fig. 41: Sondage L 135.

(formes douteuses), *Nitellopsis* (*Tectochara*) gr. *meriani* (Pl. 5, Figs. 4-5), *Rhabdochara* gr. *stockmansi-major* (population importante et bien conservée, proche de *Rh. major* [Pl. 6, Fig. 6])

- 32,4 58,9: conglomérats à galets centimétriques souvent silicifiés, parfois encroûtés (Cyanophycées) et grès grossiers à ciment marno-calcaire rougeâtre
 - Ech. 32,5: cf. Stephanochara gr. ungeri (forme douteuse), Nitellopsis (Tectochara) gr. meriani, tiges de charophytes Ech. 42,5: rares ostracodes de conservation médiocre, peutêtre remaniés
- 58,9 72,1: marno-calcaires gréseux rougeâtres, grès grossiers et conglomérats à galets centimétriques parfois encroûtés (Cyanophycées); à la base, argiles jaunes ou verdâtres tectonisées
 - Ech. 63,5 + 70,5 + 71,5: foraminifères, ostracodes marins, bryozoaires remaniés du Crétacé inférieur

Pierre jaune de Neuchâtel

■ - 72,1 - 96,2: calcaires biodétritiques grossiers, échinodermiques, glauconieux, verdâtres; au sommet, karstification jusqu'à 86,7 m avec remplissage de marnes rouges et vertes et imprégnations d'hydrocarbures; fracturation très développée.

Remarques

- Dans ce forage d'une profondeur de 135 m, les Calcaires inférieurs ont été traversés sur 9,1 m et la Gompholite sur 44,3 m. La base des Calcaires inférieurs est séparée du sommet de la Gompholite par un plan de faille avec foliation schisteuse; cette dernière est elle-même affectée par une fracturation subverticale importante. D'après le rapport Dériaz & Hotellier (1982), les pendages sont réguliers dans les différentes formations traversées: ils sont compris entre 16 et 20°. On a noté des plans de décollement à 27,1 m et à 62,5 m.
- Entre 31,0 et 32,5 m, les charophytes déterminées n'indiquent pas un âge précis puisque dans ce sondage, l'association des formes reconnues se rencontre dans les zones à Major et/ou à Microcera (= MP 23-26), voire à la base de la zone à Ungeri (= MP 27-28). D'autre part, l'otolithe genus Eleotridarum martinii découverte à 27,5 m (non pas dans la Gompholite, mais à la base des Calcaires inférieurs) témoigne d'un âge correspondant aux zones MP 24-25, d'après la biozonation basée sur ce groupe fossile.
- Le substratum mésozoïque présente également une fracturation importante (fractures verticales dominantes) accentuée par la karstification qui a précédé le dépôt de la Gompholite, karstification qui affecte les calcaires crétacés sur une quinzaine de mètres d'épaisseur. Ce karst est colmaté par des matériaux argilo-gréseux soit appartenant à la Gompholite, soit provenant du délavage de dépôts sidérolithiques. Ce sondage

carotté jusqu'à 135 m, traverse les formations hauteriviennes jusqu'aux Calcaires roux y compris (niveau à *Alectryonia rectangularis*); cette succesion est manifestement perturbée par des failles parfois imprégnées d'hydrocarbures, tant dans la Gompholite que dans les calcaires crétacés.

4. Sondages SPM

4.1. Sondage SPM 1

Exécuté en 1981 et entièrement carotté. Coord. suisses: 488,37/124,59/568; Fig. 4. Log lithologique d'après le rapport Dériaz & Hotellier (1981) et nos propres relevés (1982).

Bien que le forage SPM 1 d'une profondeur de 205,5 m ne montre pas le contact entre la Molasse et le substratum mésozoïque, il est important de le présenter ici, sans le figurer, car les Calcaires urgoniens y sont bien développés (environ 85 m) et y sont datés par orbitolines (R. Schroeder, communication écrite, 1998).

Situé sur le flanc oriental de la Haute-Chaîne, au NW de Sergy, le forage SPM 1 débute par 5 m de dépôts quaternaires (terre végétale, éboulis, moraine würmienne) et pénètre ensuite dans les Calcaires urgoniens jusqu'à 98 m, c'est-à-dire sur une épaisseur apparente de 93 m; le pendage des couches oscillant entre 20 et 25°, l'épaisseur réelle de cette formation est de 86 m (rapport Dériaz & Hotellier 1981). Dans ce sondage, les Calcaires urgoniens n'atteignent donc pas l'épaisseur généralement reconnue dans le Jura méridional, comprise entre 112 et 120 m. Ils ne sont représentés ici que par l'Urgonien blanc. D'une part, les faciès de l'Aptien inférieur (= «Bédoulien inférieur» auct. p. p.) ont certainement été érodés et, d'autre part, l'Urgonien jaune n'apparaît pas en raison d'une fracture importante, qui par suite de la circulation des eaux karstiques, se traduit entre 97,3 et 98,2 m par une cavité partiellement remplie de blocs et graviers jurassiens et alpins.

Au-dessous, le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel», dont le plongement avoisine 30°, a été traversé sur 107,5 m, ce qui confère à cette formation une épaisseur réelle de 91 m environ; cette épaisseur correspond à peu près à celle de ce «Complexe» reconnu dans le Jura méridional. Les calcaires biodétritiques sous-jacents à la zone broyée (brèche tectonique) comprise entre 182,0 et 183,6 m, et considérés comme «Calcaires roux» dans le rapport Dériaz & Hotellier (1981), doivent, à notre avis, être encore rattachés au «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel». Ainsi, cette formation se poursuivrait entre 183,6 et 205,5 m, fin du forage.

Suivant le rapport Dériaz & Hotellier (1981), les Calcaires urgoniens présentent «une fracturation généralisée sur laquelle se sont greffés des phénomènes karstiques». Ce puits révèle de nombreuses fractures subverticales souvent tapissées de calcite fibreuse, notamment entre 28 et 30 m si bien que la foration a connu beaucoup de difficultés et plusieurs opérations de cimentation ont dû être effectuées jusqu'à 57 m de profondeur dans le but de stopper des arrivées de matériau fin dans le puits.

Dans les Calcaires urgoniens, Praedictyorbitolina carthusiana a été identifiée vers 70 et 72 m, tandis que Valserina primitiva a été repérée entre 30 et 40 m; vers 30 m apparaissent des formes de transition Valserina primitiva / V. broennimanni. D'après la biozonation des orbitolines de Clavel et al. (1994), et de Schroeder et al. (1999, 2000), les Calcaires urgoniens traversés par le sondage SPM 1 appartiennent à l'Hauterivien supérieur (zones à Balearis et à Angulicostata) et leur sommet ne dépasserait pas l'extrême base du Barrémien inférieur (base de la zone à Hugii).

Il est curieux que les Calcaires marneux de la Rivière (partie supérieure de l'Hauterivien supérieur: Zone à Angulicostata) n'aient pas été détectés dans ce forage qui recoupe les Calcaires urgoniens sur 85 m (épaisseur réelle), car au Vuache, le long de la route reliant Vulbens à Arcine (soit à 17 km plus au SW), Blondel et al. (1986) signalent ce Membre à environ 56 m au-dessus du sommet du «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel». Par contre, au Rocher des Hirondelles, localité-type où ont été définis les Calcaires marneux de la Rivière, ceux-ci apparaissent plus de 100 m au-dessus du sommet du «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel». Faut-il en conclure que les faciès urgoniens sous-jacents aux Calcaires marneux de la Rivière sont plus épais que dans la partie méridionale du Vuache ou que ce Membre n'existe plus dans la région du forage SPM 1 ? La question reste ouverte en l'état actuel de nos connaissances.

4.2. Sondage SPM 2

Exécuté en 1981. Coord. suisses: 488,49/124,39/535; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 42) d'après le rapport Dériaz & Hotellier (1981).

Quaternaire

■ - 0 - 10,0 m: moraine limoneuse à cailloux et blocs jurassiens et alpins

Calcaires inférieurs

 10,0 - 37,7: marnes peu gréseuses, souvent pyriteuses, bariolées, gris vert à lie de vin, avec quelques niveaux de calcaires fins, parfois un peu argileux, et de grès fins à

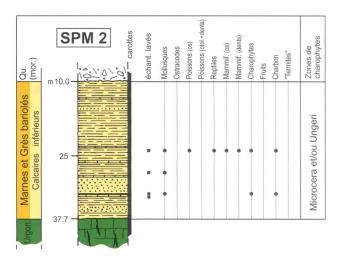


Fig. 42: Sondage SPM 2.

moyens; marnes charbonneuses noires entre 32,5 et 33,0 m; fracturation importante; pendage moyen de 25 à 27° *Ech. 24,0: Nitellopsis (Tectochara)* gr. *meriani, Sphaerochara* gr. *hirmeri*

Ech. 33,0: Rhabdochara gr. praelangeri-major, Nitellopsis (Tectochara) gr. meriani

Calcaires urgoniens

■ - 37,7 - 180,0: calcaires blanchâtres, oolithiques, biodétritiques, par endroits micritiques, crayeux ou recristallisés, en général fortement fracturés et ravinés par l'érosion karstique pré-molassique jusque vers 58 m. Des rudistes et des coraux ont été observés à divers niveaux. Le pendage des couches, difficile à évaluer en raison du caractère massif de ces calcaires et de la fracturation, semble osciller entre 30 et 40°, ce qui confèrerait à cette formation une épaisseur minimale de l'ordre de 116 m.

Remarques

- Ce forage a traversé sur 27,7 m, les Calcaires inférieurs, qui reposent directement sur les Calcaires urgoniens.
- Les charophytes reconnues dans les Calcaires inférieurs appartiennent aux zones à Microcera et/ou Ungeri.
- Comme dans le forage SPM 1, les plans de fractures observés dans SPM 2 sont généralement verticaux à subverticaux. Les fissures, nombreuses et fines, le plus souvent fermées, sont colmatées par des argiles gris vert, parfois pyriteuses (Sidérolithique?).
- L'absence des Calcaires marneux de la Rivière au sein de la Formation des Calcaires urgoniens pose le même problème que celui qui a été évoqué à propos du forage SPM 1. D'autre part, entre 171,9 et 180 m, le rapport Dériaz & Hotellier (1981) signale le faciès «Pierre jaune de Neuchâtel». Or d'après leur description lithologique («calcaire biodétritique, plus ou moins oolithique, assez pur [...] avec rares grains de glauconie»), il s'agirait, à notre avis, plutôt de l'Urgonien jaune.

4.3. Sondage SPM 3

Exécuté en 1981. Coord. suisses: 488,23/124,33/553; Fig. 4. Molasse et substratum mésozoïque entièrement carottés. Log lithologique (Fig. 43) d'après le rapport Dériaz & Hotellier (1981).

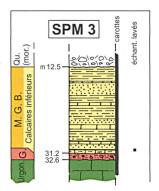


Fig. 43: Sondage SPM 3.

Quaternaire

- - 0 0, 3 m: terre végétale
- - 0,3 2,0: limons sableux, peu argileux, ocre beige
- - 2,0 12,5: moraine argileuse, sablo-limoneuse à blocs

Calcaires inférieurs

■ - 12,5 - 31,2: marnes gris vert à lie de vin et calcaires argileux verdâtres; calcaires lacustres très riches en mollusques; deux niveaux charbonneux épais de 5 cm à 28,6 m et de 3 cm à 29,6 m; fractures obliques et subverticales; pendage de 19 à 20°. Le seul échantillon lavé (30,5 m) n'a livré que des fragments de coquilles de mollusques

Gompholite

 - 31,2 - 32,6: grès conglomératiques peu marneux, verdâtres à rouille, à éléments calcaires subarrondis; très peu fracturés

Calcaires urgoniens

- - 32,6 37,3: Aptien inférieur *pro parte*. Sous la dénomination »Urgonien sommital», le rapport Dériaz & Hotellier (1981) individualise un «calcaire beige, biodétritique, en nodules enrobés d'argile gréseuse verdâtre à pyrite», à la base duquel se trouvent «quelques niveaux de marnes gris vert feuilletées». Il pourrait s'agir des faciès du «Bédoulien inférieur» *pro parte*, tels que les ont décrits Donzeau et al. (1997, p. 54-55). Cependant il ne faut pas totalement exclure la possibilité de rattacher «les lits d'argile gréseuse verdâtre à pyrite» à des faciès sidérolithiques, qui se seraient infiltrés dans la partie sommitale des Calcaires urgoniens après leur karstification: dans ce cas, les faciès urgoniens appartiendraient au Barrémien inférieur et les niveaux argilogréseux pyriteux au Tertiaire.
- 37,3 169,0: Calcaires urgoniens str. s. Calcaires massifs, karstifiés, blancs, jaunâtres ou gris crème, biodétritiques à coraux, rudistes, algues et foraminifères; la microfaune n'a pas été étudiée. Avec un pendage de 23 à 25° jusque vers

- 150 m et de 26 à 30° jusqu'à la base de la formation, les Calcaires urgoniens, assez fracturés, atteignent une épaisseur réelle dépassant une centaine de mètres.
- - 169,0 173,5: Urgonien jaune. Le rapport Dériaz & Hotellier (1981) décrit un «calcaire gris beige, bleuté, pseudobréchique, biodétritique, massif, avec quelques entroques et coquilles de lamellibranches (huîtres)»: il s'agit probablement de l'Urgonien jaune des auteurs jurassiens, attribué à l'Hauterivien inférieur sommital Hauterivien supérieur basal.

«Complexe Marnes d'Hauterive- Pierre jaune de Neuchâtel»

■ - 173,5 - 198,1: Calcaires gris à gris noir, gréseux, glauconieux, peu argileux, biodétritiques à entroques (= faciès «Pierre jaune de Neuchâtel»); à 190 m, niveaux siliceux (silex).

Remarques

- Bien que situé très près du puits SPM 2, le sondage SPM 3 montre une succession de la série tertiaire assez différente: Calcaires inférieurs (18,7 m), Gompholite (1,4 m), reposant sur le substratum mésozoïque composé de Calcaires urgoniens lato sensu (140,9 m), et du «Complexe Marnes d'Hauterive Pierre jaune de Neuchâtel» (24,6 m). La Gompholite remanie peut-être des Grès sidérolithiques.
- La formation des Calcaires urgoniens *l. s.*, complètement traversée par le forage SPM 3, présente une épaisseur réelle dépassant 120 m. Avec une telle puissance et si la succession stratigraphique n'est pas trop perturbée par les accidents tectoniques, les Calcaires marneux de la Rivière auraient dû être recoupés s'ils existaient dans ce secteur du Jura gessien. Prenant aussi en compte les logs des forages SPM 1 et SPM 2, il semble bien qu'il faille admettre que ce membre lithologique a disparu dans cette partie du flanc oriental de la Haute-Chaîne.
- Dans le forage SPM 3, le pendage des couches s'accentue régulièrement de haut en bas: de 19 à 20° entre 12,5 et 37,3 m, de 23 à 25° jusqu'à 150 m, de 26 à 30° jusqu'à 162 m et il atteint 30° jusqu'au fond du puits. D'autre part, le rapport Dériaz & Hotellier (1981) mentionne une fracturation significative subverticale ou oblique tant dans les formations tertiaires que mésozoïques.

4.4. Sondage SPM 4

Exécuté en 1981. Coord. suisses: 488,15/124,57/598; Fig. 4. Molasse carottée de 16 à 58 m et très sporadiquement plus bas. Log lithologique (Fig. 44) d'après le rapport Dériaz & Hotellier (1981) et nos propres relevés (1982).

Quaternaire

- - 0 0, 8 m: terre végétale
- - 0,8 16,0: moraine argileuse, limono-sableuse à blocs

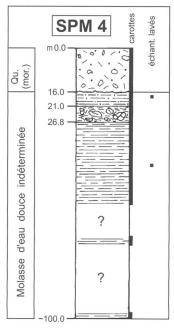


Fig. 44: Sondage SPM 4.

Molasse d'eau douce indéterminée

- 16,0 21,0: marnes gréseuses vertes et rougeâtres avec microfossiles marins remaniés du Crétacé; plan de faille à 45°
- 21,0 26,8: brèche polygénique composée de blocs calcaires fracturés verticalement (calcaires urgoniens principalement) et de marnes argilo-gréseuses vert sombre à gris noir
- - 26,8 100,0: marnes argileuses gris foncé à noires, très tectonisées (nombreuses stries de friction) et mauvais carottage; les très rares oogones de characées indéterminables et les ostracodes isolés à 42,0 m (*Ilyocypris* spp., ?*Moenocypris* sp., ?*Herpetocypris* sp.) sont mal conservés et ne permettent pas de donner un âge.

Remarques

- Le sondage SPM 4 semble avoir été implanté dans une zone de faille subverticale remplie par des marnes broyées appartenant vraisemblablement à la formation des Marnes et Grès bariolés.
- Les traînés électriques effectués à proximité immédiate du SPM 4 ont montré des résistivités apparentes élevées, supérieures à 400 ohm.m, qui dessinent une anomalie très localisée.

4.5. Sondage SPM 5

Exécuté en 1981. Coordonnées suisses: 488,30/124,08/528; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 45) d'après le rapport Dériaz & Hotellier (1981) et Charollais et al. (1982). Sondage déjà publié par Berger et al. (1987).

Quaternaire

- - 0 0,3 m: terre végétale
- - 0,3 6,0: graviers sablo-limoneux, riches en blocs
- - 6,0 22,0: moraine limono-argileuse à blocs

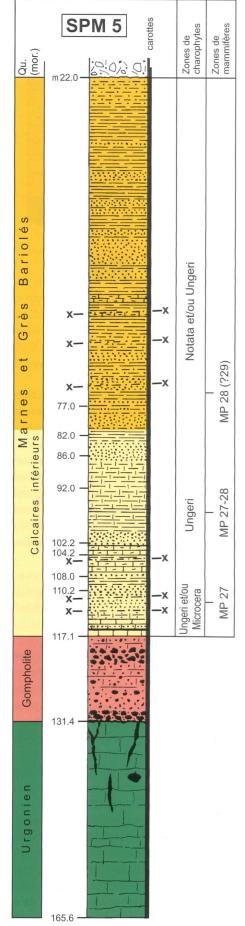


Fig. 45: Sondage SPM 5.

Marnes et Grès bariolés

- - 21,0 38,0: marnes gréseuses, gris noir, verdâtres, jaunâtres, bariolées, lie-de-vin Ech. 22,0-38,0: Chara gr. minutissima, Hornichara lagenalis, Nitellopsis (Tectochara) gr. meriani, Nitellopsis (Tectochara) sp., Rhabdochara gr. praelangeri-major, Sphaerochara gr. hirmeri, ?Stephanochara cavelieri, Stephanochara gr. ungeri
- - 38,0 62,0: grès marneux fins, gris verdâtre, et marnes bariolées, gris vert, lie-de-vin; très fracturées à la base Ech. 38,0-58,6: Chara gr. microcera-notata, Chara gr. minutissima, Nitellopsis (Tectochara) sp., Rhabdochara gr. praelangeri-major, Rhabdochara sp., Sphaerochara sp., ?Stephanochara cavelieri, Stephanochara gr. ungeri Ech. 58,6-62,0: Nitellopsis (Tectochara) gr. meriani
- - 62,0 64,8: calcaires marneux gris clair, avec galets mous, riches en fragments de gastéropodes Ech. 62,0-64,8: Helix (Wenzia) sp., ?Stephanochara cavelieri
- - 64,8 86,0: grès marneux fins, gris verdâtre, avec stratifications obliques et galets mous, et marnes parfois gréseuses bariolées, gris vert, lie-de-vin; fractures au sommet, entre 74,2 et 75,3 m et à 75 m; pendage de 20 à 25° Ech. 65,3: Rhabdochara gr. praelangeri-major Ech. 66,50-82,0: Pseudocricetodon cf. thaleri (77,0 m), Issiodoromys sp. (82,0 m); Chara gr. microcera-notata, Chara microcera, Hornichara gr. lagenalis, Nitellopsis (Tectochara) gr. meriani, Nitellopsis (Tectochara) sp., Rhabdochara gr. praelangeri-major, Rhabdochara sp., Sphaerochara gr. hirmeri, Sphaerochara sp., ?Stephanochara cavelieri

Calcaires inférieurs

- - 86,0 101,8: calcaires marno-gréseux, gris beige à gris verdâtre, parfois bariolés, avec intercalations marno-gréseuses
 - Ech. 86,0-101,8: Eomys ebnatensis ou E. molassicus (86,0 m), Gliravus bruijni (92,0 m); Chara gr. microcera-notata, Chara gr. minutissima, Nitellopsis (Tectochara) gr. meriani, Nitellopsis (Tectochara) sp., Rhabdochara gr. praelangeri-major, Sphaerochara sp., ?Stephanochara gr. ungeri
- - 101,8 106,1: marnes parfois gréseuses, gris vert, bariolées, lie-de-vin et calcaires marneux beiges à verdâtres à charophytes
- Ech. 101,8-106,1: Allocricetodon incertus (102,2 m), Eomys aff. major (104,2 m), E. molassicus ou ebnatensis (104,2 m); Chara gr. microcera-notata, Hornichara gr. lagenalis, Nitellopsis (Tectochara) gr. meriani, Nitellopsis (Tectochara) gr., Rhabdochara sp., Rhabdochara gr. praelangeri-major, Sphaerochara sp., ?Stephanochara cavelieri
- - 106,1 110,3: grès fins, gris verdâtre, à structures obliques, et marnes verdâtres; à la base, niveau charbonneux à nombreux *Helix* sp. *Ech. 106,1-109,9: Eomys molassicus* ou *E. ebnatensis* (108,0 m); *Nitellopsis* (*Tectochara*) *meriani*, *Rhabdochara* gr. *praelangeri-major*, *Chara* sp. *Ech. 109,9-110,3: Helix* (*Wenzia*) *ramondi*; *Eucricetodon*

- dubius (110,2 m); Nitellopsis (Tectochara) sp., Sphaerochara sp., Chara gr. microcera-notata; fruits (Cladocarya sp., Zanthoxylum tertiarium)
- - 110,3 116,2: grès fins à moyens, parfois très marneux, gris verdâtre; à la base, marno-calcaire charbonneux, riche en débris de gastéropodes; lit centimétrique de lignite à 116,1 m; zone broyée subverticale au sommet et à 112,3 m; pendage d'environ 30° *Ech. 110,5-114,0: Helix (Wenzia) ramondi;* Cainothériidé
- 116,2 117,1: calcaires peu marneux, riches en débris de gastéropodes, fracturés

Gompholite

 - 117,1 - 131,4: brèche grossière à éléments centimétriques, voire décimétriques, microbrèche à matrice calcaire grésoglauconieuse et à éléments calcaires parfois enrobés par des cyanophycées; quelques silex

Calcaires urgoniens

indét.; Rhabdochara sp.

■ - 131,4 - 165,6: calcaires biodétritiques à foraminifères (orbitolines notamment) et algues, blancs, massifs, très fracturés. Fissures et poches karstiques avec remplissages argilo-gréseux pyriteux verdâtre (Aptien inférieur et/ou Albien et/ou Sidérolithique?); pendage 24 à 25°.

Remarques

- Le sondage SPM 5 a déjà fait l'objet d'une publication (Berger et al. 1987); nous ne présentons ici qu'une brève description lithologique. Par contre la nomenclature des unités lithostratigraphiques de Berger et al. (1987) a été harmonisée avec celle adoptée dans ce travail. Nous avons donc reconnu dans ce sondage les Marnes et Grès bariolés (64 m), les Calcaires inférieurs (31,1 m), la Gompholite (14,3 m) reposant sur le substratum mésozoïque représenté par les Calcaires urgoniens (>34,2 m).
- Dans les Marnes et Grès bariolés, la fracturation, très oblique (60°) à subverticale, assez bien développée en surface jusque vers 33 m, a été observée jusque vers 75 m de profondeur; dans les zones marneuses elle se traduit par des surfaces luisantes et striées. Entre cette cote et 110 m, aucune faille n'a été repérée, ni par le rapport Dériaz-Hottelier (1981), ni par Charollais et al. (1982), hors une petite faille oblique relevée à 104,1 m par Charollais et al. (1982) et non signalée par Dériaz & Hottelier (1981). De plus, dans cet intervalle de 35 m, les pendages restent constants et oscillent entre 23 à 25°. En revanche, la partie supérieure des Calcaires urgoniens présente de nombreuses fractures, dont les plans subverticaux sont corrodés et agrandis par les eaux karstiques. Le colmatage des cavités ainsi formées est assuré par des argiles et des grès verdâtres qui rappellent certains faciès de l'Aptien inférieur, de l'Albien et/ou du Sidérolithique.

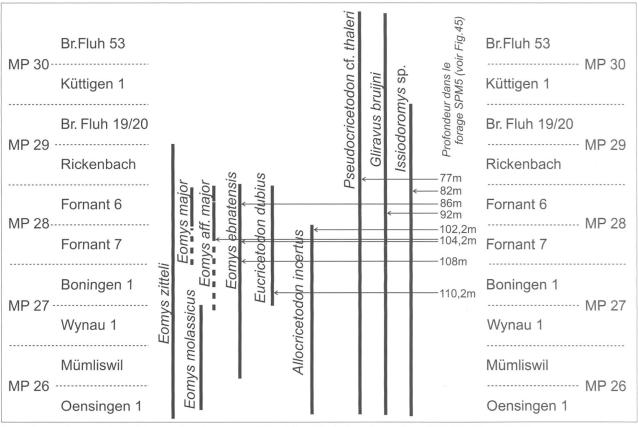


Fig. 46: Position stratigraphique et âge des mammifères déterminés dans le sondage SPM 5.

A la suite de remarques formulées par D. Rigassi, Angelillo (1987, p. 148-149) relevait que les datations des différents niveaux, telles que proposées par Berger et al. (1987, Figs. 3, 5), n'étaient pas cohérentes avec les extensions stratigraphiques des espèces de rongeurs qui avaient été déterminées par M. Hugueney. Angelillo (1987) suggère donc qu'à 104,1 m une faille probablement inverse, qui n'a pas été observée par Dériaz & Hotellier (1981) ou par Charollais et al. (1982), redouble les Calcaires inférieurs, ce qui permettrait de mieux accorder les données acquises par les micromammifères avec celles que fournissent les charophytes. Comme il a été dit plus haut, nous ne pouvons pas supposer un accident tectonique majeur à 104,1 m.

Pour illustrer la problématique d'alors, nous présentons sur la Fig. 46 l'extension stratigraphique des espèces de rongeurs trouvées dans le SPM 5, aux profondeurs indiquées par Berger et al. (1987).

Les photos des dents de rongeurs trouvées dans le sondage SPM 5 (Berger et al. 1987, pl. 1) ont été réexaminées en 2005 par l'un de nous (B. E.) qui a confirmé les anciennes déterminations, sauf en ce qui concerne *Eomys zitelli*: en effet, cette espèce décrite dans le Quercy provient d'un gisement kars-

tique, si bien que son âge précis n'est pas connu. Suite à un échange d'idées entre B. Engesser, M. Hugueney et J.-P. Berger, il ressort que la pauvreté du matériel du SPM 5 ne permet pas de distinguer avec certitude *E. zitteli*, *E. ebnatensis* et *E. molassicus*. En conclusion, la biostratigraphie du sondage SPM 5 s'établit comme suit (Fig. 46):

- la Gompholithe n'a pas été datée dans ce sondage. Son âge est en tout cas plus ancien que le niveau de Boningen 1 (= sommet de MP 27) ou tout au plus contemporain;
- la base des Calcaires inférieurs peut être attribuée à la zone MP 27, probablement à son sommet;
- l'extension stratigraphique des Calcaires inférieurs est difficile à estimer à cause d'une transition graduelle aux Marnes et Grès bariolés; elle est probablement restreinte aux zones MP27-28;
- les Marnes et Grès bariolés sont attribuables au niveau Fornant 6 (= sommet de la zone MP 28) et atteignent peut-être le niveau de Rickenbach (= MP 29, partie inférieure).

En conclusion, il n'est pas nécessaire de supposer un redoublement de série dans ce sondage, comme le proposait Angelillo (1987), pour expliquer la répartition stratigraphique des mammifères tout à fait cohérente et en concordance avec celle des charophytes.

4.6. Sondage SPM 11

Exécuté en 1981/1982. Coordonnées suisses: 490,04/126,10/537; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 47) d'après le rapport Dériaz & Hotellier (1982) et nos propres relevés.

Quaternaire

- - 0 1,1 m: terre végétale
- 1,1 9,5: graviers sablo-limoneux, riches en galets jurassiens et alpins.
- 9,5 22,5: moraine limono-argileuse à cailloux et blocs jurassiens et alpins

Calcaires inférieurs

- 22,5 35,7: marnes parfois gréseuses, gris bleu, avec niveaux marno-calcaires beiges et quelques horizons gréseux gris clair; fragments d'os et de poissons; opercules de gastéropodes; plans de faille obliques
 - Ech. 22,5: Stephanochara gr. ungeri
 - Ech. 23,5: ostracodes d'eau douce: Pseudocandona sp., Metacypris cf. danubialis (Pl. 1, Figs. 1-2), Metacypris cf. helvetica (Pl. 1, Fig. 3); Chara sp.
 - Ech. 24,5: Chara sp., Rhabdochara gr. praelangeri-major, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri, Chara gr. microcera-notata
 - Ech. 25,7: Eucricetodon sp., Artiodactyle; Nitellopsis (Tectochara) gr. meriani, otolithe indét.
 - Ech. 26,7: Nitellopsis (Tectochara) gr. meriani
 - Ech. 27,5: Talpidé indét., Allocricetodon cf. incertus; Nitellopsis (Tectochara) gr. meriani
 - Ech. 30,5: fruits indét.
 - Ech. 34,5: Chara sp., Sphaerochara sp., Nitellopsis (Tectochara) gr. meriani
- - 35,7 44,0: marnes gris vert, parfois gréseuses, et calcaires beiges; nombreux fragments de gastéropodes, d'os et de poissons; fracturation importante à dominante subverticale Ech. 36,5: Nitellopsis (Tectochara) gr. meriani Ech. 37,5 + 38,5 + 39,1: ostracodes d'eau douce; ?Rhabdochara gr. stockmansi-major, Sphaerochara sp. Ech. 42,5 et 42,7: Chara sp., Hornichara lagenalis, ?Rhabdochara gr. stockmansi-major, Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. microceranotata, Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani, Sphaerochara gr. hirmeri
- - 44,0 52,10: calcaires argileux, gris beige, avec niveaux charbonneux noirs; à 44,5 m, gypse fibreux en filonnets de 1 à 2 mm; à 45,5 m, feuillets charbonneux (<1 cm); fragments d'os et de mollusques; fractures à dominante subverticale Ech. 44,5: Didelphidé indét.; Stephanochara gr. ungeri, Nitellopsis (Tectochara) gr. meriani Ech. 45,5: Insectivore indét.; cf. Eomys molassicus, cf. Plesiosminthus promyarion; ?Hornichara lagenalis,

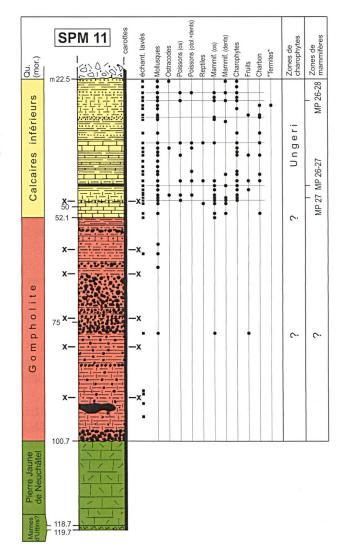


Fig. 47: Sondage SPM 11.

Rhabdochara gr. stockmansi-major, Sphaerochara sp. Ech. 46,4: «Calcicarpinum» fallax, qui est probablement une graine de Borraginaceae

Ech. 47,0 + 47,3 + 47,5: ostracodes d'eau douce: Heterocypris sp. (Pl. 3, Fig. 1), Pseudocandona sp., Virgatocypris sp. (Pl. 3, Fig. 2), Ilyocypris sp., Cypridopsis sp., ?Stenocypris sp.; Chara sp., Chara gr. microcera-notata, Rhabdochara gr. stockmansi-major, Nitellopsis (Tectochara) gr. meriani

Ech. 48,0: Issiodoromys quercyi (Pl. 8, Fig. 9-10); Chara sp., Chara gr. microcera-notata, Nitellopsis (Tectochara) gr. meriani

Ech. 48,5: Artiodactyle indét.; nombreux prismes et rosettes de Microcodium sp.; Chara sp., Nitellopsis (Tectochara) gr. meriani

Ech. 51,7: Erinacéidé, cf. *Tetracus*; nombreux prismes et rosettes de *Microcodium* sp.

Gompholite

- 52,10 64,0: marnes gréseuses microconglomératiques rougeâtres, fracturées
- - 64,0 71,3: conglomérats à galets d'ordre centimétrique et à ciment marno-calcaire gréseux, brun clair, fracturés

- 71,3 92,7: marnes et marno-calcaires gréseux conglomératiques (galets décimétriques) rougeâtres; nombreuses fractures obliques à subverticales souvent imprégnées d'hydrocarbures
- - 92,7 97,7: calcaires et marno-calcaires gréseux avec fractures obliques remplies de bitume visqueux; de 92,75 à 94,0 m, gros bloc d'urgonien fracturé et bitumineux
- 97,7 100,7: brèches beiges à éléments calcaires divers et ciment calcaréo-marneux verdâtres; nombreuses fractures avec hydrocarbures abondants

Pierre jaune de Neuchâtel

- 100,7 118,7: calcaires biodétritiques, spathiques, glauconieux, moyens à grossiers, gris vert, jaunâtres, en bancs de 5 à 45 cm; nombreuses fractures obliques imprégnées d'hydrocarbures
- 118,7 119,7: marno-calcaires feuilletés, kakis à jaunâtres avec minces passées calcaires; stratifications obliques.

Remarques

- Le sondage SPM 11 a traversé les Calcaires inférieurs sur 29,6 m et la Gompholite sur 48,6 m, laquelle repose directement sur le faciès «Pierre jaune de Neuchâtel» (> 19 m).
- La base des Calcaires inférieurs peut être attribuée aux niveaux de Wynau 1 - Boningen 1 (= MP 27), grâce à la découverte d'Issiodoromys quercyi à 4 m au-dessus du sommet de la Gompholite (éch. 48,0). Quant à l'âge de l'éch. 45,5 m, il est basé uniquement sur deux fragments de dents et la datation n'est pas certaine. En effet, le fragment d'une D4 ressemble beaucoup à la partie antérieure d'une dent de lait d'Eomys molassicus, mais il ne faut pas exclure que ce fragment appartienne à un autre éomyidé, par exemple Eomyodon. De même, avec le fragment d'une molaire supérieure de Plesiosminthus, il faut rester prudent. En conclusion, pour autant que les déterminations soient correctes, l'âge de cet échantillon correspondrait aux niveaux de Mümliswil et Wynau 1 (= MP 26 [base] - MP 27 [sommet]), car ce n'est que dans ces deux niveaux que Plesiosminthus et Eomys molassicus coexistaient. Enfin, l'âge du Allocricetodon cf. incertus reconnu dans l'échantillon 27,5 m, se situe probablement entre les niveaux d'Oensingen 1 et de Fornant 7 (= MP 26 - MP 28 [base]).
- Dans les Calcaires inférieurs, le pendage est inférieur à 10°, et il atteint 15° dans le faciès Pierre jaune de Neuchâtel.
- Dans la Gompholite, seuls des fragments de coquille de gastéropodes et de rares fragments d'os et de dents ont été isolés; des pisolithes ferrugineux et des gros quartz arrondis-mats remaniés du Sidérolithique y sont fréquents; les galets et grains, souvent encroûtés, sont des calcaires et des silex hauteriviens.

- A signaler entre 44,0 et 52,1 m, la présence de gypse fibreux.
- A 44 m, dans un calcaire lacustre, le forage est devenu légèrement artésien; l'analyse de cette eau (Dériaz & Hotellier 1982) révèle un pH de 8,84 et une composition inhabituelle, bicarbonatée sodique, proche de l'eau du sondage L 133 et très différente de l'eau des sources du Pays de Gex.

4.7. Sondage SPM 15

Exécuté en 1982. Coordonnées suisses: 490,15/126,73/565; Fig. 4. Molasse entièrement carottée. Log lithologique (Fig. 48) d'après le rapport Dériaz & Hotellier (1982)

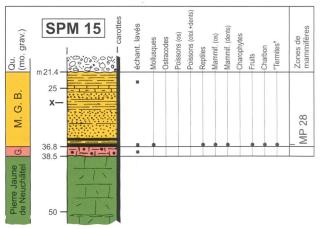


Fig. 48: Sondage SPM 15.

Quaternaire

- - 0 0,3 m: terre végétale
- - 0,3 6,0: graviers à éléments calcaires et sables
- - 6,0 21,4: moraine sablo-limoneuse et graveleuse

Marnes et Grès bariolés

- 21,4 29,2: marnes grises à gris noir, fines, feuilletées, souvent tectonisées
- - 29,2 35,2: grès gris vert, mal cimentés
- 35,2 36,8: calcaires argileux, gris beige, noduleux, avec deux niveaux argileux, charbonneux et pyriteux noir; zone tectonisée

Ech. 35,2-36,8: dans deux niveaux de lignite argileux et pyriteux, noir, pétri de mollusques aplatis (Lymnées, Planorbes); rares fruits de Celtis; Palaeosciurus sp., Eomys sp., Eomys ebnatensis (Pl. 7, Fig. 3), Eomys major (Pl. 7, Fig. 4 et 5), pseudocricetodon sp., Allocricetodon cf. incertus, Eucricetodon sp.

Gompholite

 - 36,8 - 38,5: marno-calcaires peu gréseux et peu pyriteux, brun chocolat à gris vert, à petits éléments de calcaires et de silex noirs

Pierre jaune de Neuchâtel

- 38,5 40,0: calcaires échinodermiques grossiers, gris vert avec veinules marneuses verdâtres
- - 40,0 51,3: calcaires fins, gris vert, argileux vers le bas
- - 51,3 53,35: marno-calcaires verdâtres
- 53,55 65,5: calcaires échinodermiques grossiers, brunâtres à verdâtres, avec veinules marneuses violacées
- - 65,5 69,3: calcaires fins jaunâtres
- 69,3 76,5: calcaires échinodermiques grossiers avec lits marneux violacés à beiges

Marnes d'Hauterive

- - 76,5 76,9: marnes fines feuilletées, jaune verdâtre
- - 76,9 78,5: calcaires argileux beige brunâtre, avec veinules plus argileuses
- 78,5 84,0: marno-calcaires gris et jaune verdâtre; fractures obliques
- - 84,0 87,0: calcaires argileux à entroques, brun verdâtre

Calcaires roux

- 87,0 102,7: calcaires biodétritiques grossiers, roux, parfois verdâtres, glauconieux par places, avec veinules marneuses et zones silicifiées (chailles, silex) dans la partie supérieure; fractures rares à dominante subverticale; traces d'hydrocarbures
- 102,7 108,3: calcaires brunâtres finement échinodermiques
- 108,3 124,8: calcaires biodétritiques grossiers en bancs décimétriques, avec quelques niveaux de marnes feuilletées brunâtres

Marnes d'Arzier (?)

 124,8 - 126,5: au sommet, marno-calcaires à entroques, brunâtres, passant vers le bas à des marnes fines, brunâtres à kakis

Formation de la Chambotte inférieure

■ - 126,5 - 130,0: calcaires oolithiques et biodétritiques.

Remarques

- Le sondage SPM 15 a recoupé les Marnes et Grès bariolés sur 15,4 m et la Gompholite sur 1,7 m; celle-ci repose sur le substratum mésozoïque comprenant successivement le «Complexe Marnes d'Hauterive Pierre jaune de Neuchâtel» (48,5 m), les Calcaires roux (37,8 m), les Marnes d'Arzier? (1,7 m) et la partie supérieure de la Formation de la Chambotte (> 3,5 m). Dans la série tertiaire, les Calcaires inférieurs n'ont pas été clairement mis en évidence.
- L'association de mammifères découverte à l'extrême base des Marnes et Grès bariolés permet de la rattacher avec certitude au niveau de Fornant 6 (= MP 28 [sommet]).
- Les différentes mesures de pendage sont comprises entre 19° et 30°, avec une moyenne de 24°. La dispersion des valeurs, assez importante, se manifeste principalement dans les calcaires du Valanginien et de l'Hauterivien inférieur, sans

- doute en raison des stratifications obliques caractéristiques de ces dépôts. Dans les marnes des formations crétacées et tertiaires, la dispersion est beaucoup plus faible (23° à 25°). Compte tenu d'un pendage moyen de 24°, l'épaisseur réelle du faciès Pierre jaune de Neuchâtel atteint 34,8 m, celle des Marnes d'Hauterive 9,6 m et celle des Calcaires roux 39,3 m, ce qui montre que la partie supérieure du «Complexe Marnes d'Hauterive Pierre jaune de Neuchâtel» a été érodée.
- Aucun accident majeur n'a apparemment été recoupé par le sondage SPM 15. En revanche une certaine fracturation affecte les horizons peu résistants (marnes, lignites) des formations crétacées et des Marnes et Grès bariolés. Dans les calcaires, quelques fractures fermées surtout subverticales présentent des imprégnations bitumineuses de 87 à 94 m.

IX. PALÉONTOLOGIE ET BIOSTRATIGRAPHIE

1. Mammifères

L'outil biostratigraphique le plus efficace et le plus précis pour dater les terrains molassiques est basé sur les micromammifères (Rodentia, Insectivora). Leurs dents isolées, souvent bien conservées, sont relativement courantes dans les sédiments d'origine terrestre ou palustre. L'évolution rapide de la plupart des taxons a permis d'élaborer une biozonation fine qui recouvre l'Oligo-Miocène et qui est désormais bien documentée et testée dans tout le bassin molassique, de la Savoie à la Bavière (Fig. 49).

On trouvera dans les travaux de Engesser & Mödden (1997), Kälin (1997), Kempf et al. (1997), Reichenbacher et al. (2004a, b) un exposé détaillé de cette biozonation et des modalités de son application, ainsi que toutes les références aux monographies décrivant et illustrant les espèces de micromammifères reconnues jusqu'ici.

La Gompholite, tout comme les Grès sidérolithiques, n'a livré jusqu'ici aucun reste de mammifère significatif malgré plusieurs lavages; par contre, quelques charophytes et otolithes de poissons y ont été découverts.

Les Calcaires inférieurs ont fourni quelques formes significatives dans les sondages suivants:

- Peissy-1: Eomys cf. molassicus, cf. Allocricetodon incertus, Blainvillimys sp.
- Gex CD 02: cf. Eomys molassicus, Eomys cf. ebnatensis, Eomys sp.;

SÉRIES	Etages	Foraminifères planctiques	Nannofossiles calcaires	Charophytes		Mammifères	Otolithes		
MIOCÈNE inférieur	Aquitanien	M1b	NN2	Berdotensis	MN2b MN2a	Vully 1 Mèbre 698 La Chaux 7 Bergières	OT-M2		
		Aqui	N4	N4		N4		Nitida	MN1
Е	Chattien	IVITA	NN1		MP30	Broch. Fluh 53 Küttigen 1	OT-06		
		Chattien P221b	P22 NP25	Notata	MP29	Broch. Fluh 19/20 Rickenbach	OT 05		
				Ungeri	MP28	Fornant 6 Fornant 7	OT-05		
					MP27	Boningen 1 Wynau 1			
Z W							OT-04		
O				Microcera	MP26	Mümliswil			
OLIGOCÈNE						Oensingen 1			
					MP25	Bumbach 1	OT-O3		
						Talent 7			
	Rupélien	P21a NP2	NP24		L 				
		lpdr	nbél	Major	MP24	Grenchen 1	OT-02		
		로 P20	P20 NP23		MP23	Lovagny 14			

Fig. 49: Tableau de corrélations biostratigraphiques des principaux groupes fossiles utilisés dans ce travail pour l'Oligocène et le Miocène inférieur (voir Berger et al. 2005, Fig. 1).

- L 112: Gliravus cf. bravoi, Eomys molassicus;
- SPM 5: partie supérieure: *Eomys ebnatensis* ou *E. molassicus*; partie inférieure: *Allocricetodon incertus, Eomys* aff. major (figuré par Berger et al. 1987; Pl. 1, Fig. 9), *E. molassicus* ou *ebnatensis, Eucricetodon dubius* (figuré par Berger et al. 1987; Pl. 1, Fig. 13-16);
- SPM 11: partie supérieure: Allocricetodon cf. incertus; partie inférieure: cf. Eomys molassicus, cf. Plesiosminthus promyairion, Issiodoromys quercyi.

Les Marnes et Grès bariolés ont été étudiés en affleurements et dans les forages; les formes suivantes ont été identifiées:

- à la Roulavaz: Eomys major, Plesiosminthus promyarion, Archaeomys sp., Issiodoromys sp.;
- **■** Epeisses: Archeomys laurillardi;
- à la Vieille Bâtie: Archaeomys laurillardi, Issiodoromys minor;
- au Nant d'Avril: *Issiodoromys terminus*, *Archaeomys* sp., *Caenotherium* sp.;
- près d'Humilly: *Rodens* indét., *Issiodoromys* sp., *Archaeomys* sp., *Peratherium* sp.;
- au NE d'Arnex: Eomys major, Plesiosminthus promyarion, Gliravus sp.;

- au Nant d'Avanchet: Pseudotheridomys rolfoi, Rhodanomys cf. hugueneyae, Microdyromys praemurinus, Peridyromys sp., Eucricetodon collatus, Pseudocricetodon cf. thaleri, Plesiosminthus schaubi, Amphilagus sp.
- dans le sondage Peissy-1: Eomys cf. molassicus, cf. Allocricetodon incertus, Blainvillimys sp.;
- dans le sondage Gex CD 02: Eomyidé de la taille de *Eomys* ebnatensis;
- dans le sondage Gex CD 04: Archaeomys cf. intermedius, Eomys cf. zitteli;
- dans le sondage F 6: *Eucricetodon collatus* (détermination douteuse);
- dans le sondage SPL 8/13: Plesiosminthus promyarion;
- dans le sondage L 112: Allocricetodon incertus;
- dans le sondage SPM 5: *Pseudocricetodon* cf. *thaleri* (figuré par Berger et al. 1987; pl. 1, Fig. 2), *Issiodoromys* sp. (figuré par Berger et al. 1987; pl. 1, Fig. 1);
- dans le sondage SPM 15, l'association composée de Palaeosciurus sp., Eomys sp., Eomys ebnatensis, Eomys major, Pseudocricetodon sp., Allocricetodon cf. incertus et Eucricetodon sp., appartient soit à l'extrême base des Marnes et Grès bariolés, soit aux Calcaires inférieurs non identifiés lithologiquement ici.

Les Grès et Marnes gris à gypse n'ont livré du matériel qu'à partir de l'étude d'affleurements naturels ou découverts par des ouvrages d'art:

- au Vengeron: *Plesiosminthus schaubi, Rhodanomys hugue-neyae* ou *Rh.* aff. *hugueneyae*;
- dans la galerie d'Avanchet: Glirudinus glirulus, Peridyromys cf. murinus, Eucricetodon sp.;
- au portail d'Avanchet: Eucricetodon longidens (grande dent);
- à Choulex: Paratalpa sp., Rhodanomys cf. transiens, Pseudotheridomys cf. schaubi, Pseudotheridomys rolfoi, Eucricetodon sp., Steneofiber sp., Amphilagus ulmensis.

La Molasse grise de Lausanne («Aquitanien auct.») est fossilifère dans la région du Mont Sion, soit en affleurement (Nant Trouble avec *Dimyloides stehlini* ou *Pseudocordylodon rigassii*), soit dans les sondages suivants:

- SC 11: Plesiosminthus myarion;
- SC 12: Pseudocricetodon cf. thaleri, Plesiosminthus myarion, Rhodanomys schlosseri;
- SC 19: cf. Peridyromys murinus, Peridyromys sp., Pseudotheridomys bernensis, Eomyodon sp.;
- SC 20: Glirudinus sp.

Au portail sud du tunnel autoroutier, au point PK A41 9683 m, les lavages ont livré: *Eucricetodon* sp. et *Plesiosminthus* sp.

2. Charophytes

Très fréquentes dans les échantillons de la Molasse du bassin franco-genevois, les charophytes sont de bons marqueurs biostratigraphiques pour le Paléogène. La zonation utilisée ici (Fig. 49) est celle de Riveline et al. (1996), modifiée par Berger (1999). Au niveau taxonomique, les charophytes de la Molasse ont d'abord été étudiées par Berger (1983, 1986); au cours des années 1990, en raison de la difficulté de séparer les «espèces», plusieurs

1 / 1
taxons ont été réunis en «group-species» (Berger
1992, 1999). Ces groupes corrrespondent à des
morphotypes généralement utilisables en stratigra-
phie, si bien que leur détermination est fort utile
pour la présente étude.

La biozonation des charophytes présentée ici se base sur l'étude de Berger (1999); elle peut se résumer comme suit (voir tableau en haut de page):

Reprenant le travail de Feist et al. (1994), qui proposaient d'introduire une zone à Lagenalis entre les zones à Microcera et Ungeri, Berger (1999) est parvenu à une autre conclusion:

- soit *H. lagenalis* apparaît durant la zone MP 26, et la zone à Lagenalis est alors justifiée (et correspond à MP 26),
- soit H. lagenalis apparaît dans la zone MP 27 et est donc contemporaine avec le FAD de St. ungeri qui indique le début de la zone du même nom. Dans ce cas, les deux zones sont identiques, ce qui invalide l'introduction de la zone à Lagenalis.

Dans l'état actuel des connaissances, il est impossible de trancher. Pour cette raison, nous n'utiliserons pas la zone à Lagenalis dans la présente étude.

2.1. «Hornichara groupe lagenalis».

Ce groupe réunit toutes les charophytes attribuées à *Hornichara lagenalis*, ainsi qu'à diverses formes affines caractérisées par leur taille, leur apex charoïde et leur colonne basale saillante (Pl. 5, Figs. 1-3).

Décrite par Straub (1952) dans l'OSM bavaroise sous le nom de *Chara lagenalis*, puis renommée *Tectochara conica* var. *lagenalis* par Maedler (1955), elle devient l'espèce-type du genre *Krassavinella* créé par Feist (1977), dont l'étude est basée sur du matériel en provenance de la Molasse de Suisse occidentale (voir aussi Kissling 1974). Enfin, l'espèce *lagenalis* est actuellement incluse dans le genre *Hornichara* (Huang 1978).

La diagnose de référence est celle de Feist (1977): la principale caractéristique de cette espèce est la région basale prolongée par une colonne saillante. Tailles de $400-525\mu$ x $325-400\mu$.

Extension biostratigraphique: zones à Ungeri (et à Notata?).

FAD Ch. microcera à FAD St. ungeri	MP (24?)-25 et MP 26
FAD St. ungeri à FAD Ch. notata	MP 27-28
FAD Ch. notata à FAD R. nitida	MP 29-30
FAD R. nitida à LAD R. nitida	MN 1
LAD R. nitida à FAD N. T. ginsburgi	MN 2a-2b
	FAD St. ungeri à FAD Ch. notata FAD Ch. notata à FAD R. nitida FAD R. nitida à LAD R. nitida

FAD: «First Appearance Data» = le niveau le plus ancien où le taxon apparaît LAD: «Last Appearance Data» = le niveau le plus récent où le taxon est encore présent

Dans la Molasse suisse, cette espèce parait limitée à la zone à Ungeri, mais elle atteint peut-être la partie inférieure de la zone à Notata. Dans le bassin rhénan, elle est également connue dans l'Oligocène (Riveline 1985), alors qu'elle semble exister encore dans l'Aquitanien inférieur du bassin d'Aquitaine (Feist-Castel & Ringeade 1977).

2.2. Chara groupe microcera-notata

Les deux principales espèces de ce groupe, Chara microcera et Ch. notata, sont considérées comme marqueurs des zones à Microcera et à Notata dans la littérature (Riveline et al. 1996). Le groupe microcera-notata (Berger 1992, 1999) rassemble les Chara ornées de points qui, en l'absence de populations importantes ou de spécimens bien conservés, ne permettent pas toujours de distinguer Chara microcera Grambast & Paul de Chara notata Grambast & Paul. Appartiennent également à ce groupe:

- I toutes les gyrogonites désignées comme Chara microcera,
- les *Chara* aff. *notata* selon Feist (1977), Berger (1983) et Fasel (1986),
- les Chara groupe notata selon Mojon et al. (1985).

Ces gyrogonites sont connues dans toutes les formations de l'USM.

Extension biostratigraphique: dès la zone à Microcera jusqu'au Miocène. Pour les raisons citées plus haut, notamment la difficulté d'identifier clairement *Ch. notata*, Feist et al. (1994) proposent de supprimer la zone à Notata. Nous suivrons ici Berger (1999) qui maintient cette zone.

2.3. Stephanochara groupe ungeri

Ce groupe réunit principalement deux taxons, Stephanochara ungeri Feist 1977 et Stephanochara rochettiana (Heer) Feist 1977. Ces deux espèces dont les types paraissent bien distincts sont pourtant parfaitement mélangées lorsque l'on prend en compte des populations importantes. D'autre part, l'histoire de leur taxonomie est extrêmement compliquée car ces formes ont bien souvent été déterminées de façon erronnée en raison de l'incertitude qui plane encore sur les types originaux. Pour clarifier l'imbroglio taxinomique qui en résulte,

Berger (1992, 1998) a présenté une étude détaillée des anciennes collections, et notamment des originaux de Oswald Heer (1855) concernant le «Chara escheri» (= Stephanochara ungeri Feist) et le «Chara» rochettiana. Les deux espèces avaient déjà fait l'objet de nombreuses études, mais la riche collection provenant du gisement-type de Rochette, déposée au Musée cantonal de Géologie de Lausanne, n'avait jamais été prise en considération. Or, l'examen des charophytes de Rochette est d'une importance capitale pour la résolution du problème taxinomique posé par ces deux espèces: c'est en effet à partir de ce matériel (ou au moins d'une partie de celui-ci) que Oswald Heer les a décrites et figurées pour la première fois en 1855 dans sa Flora Tertiaria Helvetiae I.

C'est pourquoi nous utilisons ici le terme de Groupe *ungeri* pour toutes les formes identiques à la population de Rochette, c'est-à-dire *escheri* + *rochettiana*.

Les Stephanochara groupe ungeri sont connues dans toutes les formations de l'USM oligocène (Pl. 5, Figs. 15-17). Leur présence dans l'«Aquitanien» est toujours un peu douteuse, car elles y sont généralement remplacées par des Stephanochara du groupe praeberdotensis. A noter enfin que les espèces des genres fossiles Stephanochara et Rhabdochara sont généralement regroupées dans le genre actuel Lychnothamnus.

Extension biostratigraphique: Zones à Ungeri et Notata

2.4. Nitellopsis (Tectochara) groupe meriani

Regroupant les anciennes espèces *Nitellopsis* (*Tectochara*) *meriani*, *globula*, *huangi*, *helvetica* et d'autres formes affines, ce groupe a fait l'objet d'études détaillées (Berger 1992, 1997) dont nous reprenons quelques éléments ici.

Ce groupe illustre bien la problématique de la détermination des charophytes fossiles, à savoir les problèmes de convergences de forme et de variabilité intraspécifique. Le genre Nitellopsis n'est plus représenté actuellement que par une seule espèce, le Nitellopsis obtusa. Pour les formes fossiles, quatre sous-genres (Nitellopsis, Tectochara, Campaniella, Microstomella) et de nombreuses espèces ont été créés. Si l'on excepte certaines espèces bien typées par leur ornementation (thaleri ou ginsburgi par exemple) ou par leur taille (major, latispira), la majorité des taxons sont très difficiles à distinguer les uns des autres.

Il semble maintenant clair qu'il n'est pas utile de séparer les populations «mérianisantes» de l'OligoMiocène: toutes les formes se retrouvent mélangées, quelle que soit la position stratigraphique. En effet, bien qu'il paraisse très probable que nous soyons en présence de plusieurs espèces, il est impossible, à partir des seules gyrogonites, de distinguer entre variation spécifique et variation individuelle ou entre convergence de forme et caractères phénotypiques. C'est pourquoi, suivant Berger (1997), nous avons réuni toutes ces gyrogonites en un seul groupe, le groupe *meriani* (Pl. 5, Figs. 4-5).

Extension biostratigraphique: ce groupe oligo-miocène a été trouvé dans toutes les formations molassiques.

2.5. Rhabdochara groupe stockmansi-major, Rhabdochara gr. praelangeri-major, Rhabdochara gr. langeri

Les charophytes du genre Rhabdochara (genre ou sous-genre fossile actuellement représenté par le genre Lychnothamnus) sont connues dans l'Oligocène européen par plusieurs espèces à cellules concaves parfois ornementées. Ces espèces sont caractérisées par leur forme et leur taille (par exemple Rh. major, Rh. stockmansi, Rh. cauliculosa) ou leur ornementation (Rh. praelangeri, Rh. langeri). Suivant Berger (1992) et en raison de la présence de nombreuses formes de transition entre ces espèces, nous avons distingué les groupes ci-dessous:

■ le groupe *stockmansi-major* (Pl. 5, Fig. 6) représenté par les formes attribuables à Rhabdochara stockmansi, Rh. major, Rh. cauliculosa et autres formes affines. Les petites formes concaves du genre Rhabdochara, généralement non-ornées, avaient été incluses dans le groupe «praelangeri-major» créé par Berger (1986). La poursuite de nos recherches a montré qu'il était utile de les séparer pour en faire un groupe à part entière (Berger 1992). Ces formes semblent être des intermédiaires entre Rhabdochara major, Rhabdochara stockmansi et Rhabdochara cauliculosa. De telles gyrogonites avaient d'ailleurs déjà été mises en évidence par Feist (1977), qui les avait précisément nommées «Rhabdochara stockmansimajor». Sont également rattachés à ce groupe le Rh. cf. stockmansi selon Berger et al. (1986) et le Rhabdochara sp. A selon Berger et al. (1987).

Extension biostratigraphique: zones à Major et à Microcera, disparaît dans la zone à Ungeri. Les formes de ce groupe ne se trouvent que dans les formations basales de l'USM comme les Marnes Bariolées Inférieures ou la Molasse Rouge de la Veveyse, où elles précèdent les Rhabdochara du groupe praelangeri-major.

le groupe praelangeri-major (Pl. 5, Figs. 7-11), représenté par des formes de grande taille, non- ou faiblement ornementées. De nombreux échantillons contiennent des Rhabdochara très peu ou même non-ornées qui sont, de par leur taille, très proches de Rhabdochara major Grambast & Paul. Comme de grandes Rhabdochara très peu ornées existent aussi chez Rhabdochara praelangeri Castel (voir par exemple Castel 1967), nous les avons toutes réunies en un seul groupe. Par contre, nous ne suivons pas Berger (1986) et nous séparons de ce groupe les petites formes généralement non ornées, qui constituent le Rhabdochara groupe stockmansi-major décrit précédemment.

Extension biostratigraphique: zones à Microcera et Ungeri.

Remarque: dans les échantillons Gex CD 01 (230 m) et Thônex (1281 m) existe une population difficile à déterminer. Il s'agit de gyrogonites de taille moyenne (630-750 μ long / 525-600 μ large), avec un ISI (rapport L/l) variant de 1,12 à 1,28 et montrant 8 à 10 tours de 80-90 µ de haut. Ces charophytes présentent les affinités suivantes: la taille générale, la structure apicale, la forme et l'absence presque totale d'ornementation rapprochent ces gyrogonites Stephanochara praeberdotensis, de l'Aquitanien moyen et supérieur (voir Berger 1983). Cependant, morphologie est plus allongée, et deux gyrogonites présentent clairement des signes d'ornementation de type «Rhabdochara praelangeri». La plaque basale, qui est creuse, vient confirmer cette hypothèse. Rappelons que les variations de taille sont très proches entre St. praeberdotensis et Rh. praelangeri.

Il s'agit donc probablement de *Rh. praelangeri* mal calcifiées (Chattien inférieur-supérieur). Pour cette raison, nous les avons attribuées avec doute au *Rhabdochara* gr. *praelangeri-major*:

le groupe langeri (Pl. 5, Figs. 12-14), représenté par les formes régulièrement ornées. Ici sont réunies les Rhabdochara régulièrement ornées de bâtonnets, c'est-à-dire Rh. praelangeri Feist (sauf celles qui sont peu ou non ornées et qui se trouvent dans le groupe praelangeri-major) et Rh. langeri (Ettingshausen) Maedler. La distinction de ces deux espèces, essentiellement basée sur la forme, nous parait très aléatoire. Le groupe langeri avait été publié sous le nom de groupe praelangeri par Berger et al. (1987).

Extension biostratigraphique: ces gyrogonites bien ornées apparaissent dans la zone à Ungeri et dispa-

raissent dans la zone à Nitida. Selon Riveline (1985), elles pourraient se poursuivre dans la zone à Berdotensis.

2.6. Rantzieniella nitida

Cette magnifique forme (Pl. 6, Figs. 1-13), très reconnaissable et seule représentante de la famille des Raskyellaceae en terrain molassique, y a déjà été signalée par Feist *in* Kissling (1974). Nous avons eu la chance d'en identifier une très riche population de plusieurs milliers d'individus dans l'échantillon VA 220 du Nant d'Avanchet (Angelillo 1987). Aucun doute n'est possible quant à la détermination de cette espèce: en premier lieu on remarque les 5 cellules apicales séparées (caractère typique de la famille des Raskyellaceae) ainsi que les sutures finement ondulées sur la face interne.

L'espèce n'est connue que vers le sommet des Grès et Marnes gris à gypse, ainsi que dans les Obere Bunte Mergel.

Extension biostratigraphique: marqueur de la zone à Nitida, cette espèce parait avoir une durée de vie relativement courte. Sa rareté limite cependant quelque peu son intérêt biostratigraphique. Selon Berger (1999), la zone à Nitida est corrélée avec la zone à mammifères MN1.

2.7. Sphaerochara groupe hirmeri

Sous cette dénomination, on regroupe les *Sphaerochara* de l'Oligo-Miocène dont la diagnose recoupe celles de *Sph. hirmeri*, *Sph. granulifera*, *Sph. ulmensis* et *Sph. inconspicua*. Ces petites formes globuleuses (440-640 µ x 380-560 µ) ont été reconnues depuis bien longtemps, mais les descriptions et diagnoses qui en ont été données nécessitaient une révision à la lumière des méthodes taxinomiques modernes. Berger (1992) a examiné la majorité des types et originaux encore disponibles et déposés dans divers musées en Europe; nous en reprenons les conclusions ci-dessous:

- a) il n'y pas de différences morphologiques sensibles entre les populations-types de hirmeri, granulifera et ulmensis;
- b) ces trois populations présentent aussi des formes quasiment identiques à *inconspicua*;
- c) dans les populations-types de inconspicua, on identifie des formes identiques aux individus ovales et plano-convexes de hirmeri et ulmensis;
- d) dans la Molasse suisse, ces quatre «espèces» se trouvent ensemble dans les mêmes formations et ont les mêmes âges.

Il n'est pas exclu qu'il y ait bien plusieurs espèces de *Sphaerochara* dans l'Oligocène européen, mais il nous parait judicieux de les rassembler en un seul groupe, étant donné les quatre points que nous avons

énumérés plus haut. Le nom de *hirmeri* a été choisi pour le groupe en raison de la qualité de la collectiontype et de la présence à la fois d'un holotype et d'une population paratypique mesurables, ce que n'offrent ni *granulifera*, ni *inconspicua*, ni *ulmensis*.

Extension biostratigraphique: ces formes sont connues dans toutes les formations de l'USM. Leur présence dans l'OSM et dans le Miocène post-Aquitanien en général doit encore être confirmée.

2.8. Stephanochara groupe praeberdotensis

Dès le début des années 1980, nous avons attiré l'attention sur l'existence, à partir du Miocène inférieur, de formes à cellules concaves appartenant certainement au genre Stephanochara et qui se rapprochent de St. berdotensis Feist ou de St. oodea Feist, tout en présentant un spectre de taille nettement inférieur. Nous avons d'abord attribué ces gyrogonites à Stephanochara nov. sp. (Berger in Mumenthaler et al. 1981). L'étude détaillée de ces formes a été publiée par Berger (1983) et nous avions alors distingué trois espèces, toutes nouvelles: St. praeberdotensis Berger, St. rhabdocharoides Berger et St. pseudoodea Berger. A cette même occasion, nous avons montré les différences et affinités existant entre ces trois espèces et les deux espèces de Feist (oodea et berdotensis). Par la suite, les découvertes de nouvelles populations ont complexifié quelque peu la question: nous avons régulièrement observé des formes intermédiaires, par exemple entre praeberdotensis et rhabdocharoides, ou entre pseudoodea et praeberdotensis, si bien que nous sommes peu à peu arrivés à remettre en question la validité de nos propres espèces. Il est tout à fait probable qu'il y ait plusieurs espèces de Stephanochara concaves dans le Miocène inférieur suisse, mais nous pensons aujourd'hui qu'il n'est pas possible de les différencier de façon fiable avec les seuls critères morphologiques que présentent les gyrogonites. C'est pourquoi, nous avons proposé la création d'un groupe praeberdotensis, rassemblant nos trois espèces ainsi que le Stephanochara oodea Feist (Berger 1986). Nous avons maintenu séparément le Stephanochara berdotensis str. s. qui, de par sa grande taille et ses caractères très marqués (nodules apicaux, sutures doubles), nous parait être bien différenciable.

Nous avions également attiré l'attention sur la difficulté de séparer les genres *Stephanochara* et *Rhabdochara* à partir du Miocène inférieur, difficulté bien illustrée par la dénomination de *Stephanochara rhabdocharoides* donnée à l'une des espèces (Berger 1983). Nos vues ont été confirmées par l'étude de Soulié-Märsche (1989) qui considère les genres *Rhabdochara* et *Stephano-*

chara comme de simples variétés plus ou moins bien calcifiées du genre actuel Lychnothamnus. On peut donc émettre l'hypothèse que les morphotypes Rhabdochara et Stephanochara ont représenté de véritables genres ancestraux à l'Oligocène, mais que leurs différences se sont peu à peu effacées (adaptations écologiques?, évolution parallèle?) au cours du Miocène et jusqu'à nos jours. Ceci expliquerait que certains caractères particuliers à chacun d'eux se retrouvent actuellement ensemble sur leur seul descendant vivant, Lychnothamnus barbatus.

Ces formes ne sont connues qu'à partir du sommet des Grès et Marnes gris à gypse et sont fréquentes à partir de l'«Aquitanien» *auct*. (Molasse Grise de Lausanne et Obere Bunte Mergel).

Extension biostratigraphique: zones à Nitida et à Berdotensis.

3. Otolithes de poissons

3.1. Matériel

Les otolithes ont été extraits des résidus de lavage de marnes provenant de sondages et de quelques échantillons de surface récoltés par Angelillo (1987). Les otolithes du sacculus (= sagittae) ont pu être déterminés au niveau de l'espèce, à l'exception d'une forme. Les otolithes de l'utriculus (= lapilli) ne présentent en général que peu de caractères distinctifs: les lapilli de grande taille (longueur d'environ 0,7 mm) peuvent être attribués en partie à la famille des Cyprinidae, alors qu'une détermination n'est pas possible pour les lapilli plus petits.

3.2. Taxonomie

On dénombre sept taxa appartenant à cinq familles (Tabl. 1 et pl. 4).

Cyprinidae: les formes de lapilli distinguées correspondent à deux taxa de Cyprinidés. La détermination de Tarsichthys est fondée sur sa ressemblance avec Tarsichthys moeddeni (Schulz-Mirbach & Reichenbacher 2006, décrite comme Palaeotinca). La présence de Tarsichthys dans le bassin molassique franco-genevois fait suite à la découverte de dents pharyngiennes dans d'autres localités de la Molasse d'eau douce inférieure (Gaudant et al. 2002).

Umbridae: les otolithes de Palaeoesox oligocenicus sont semblables aux formes de cette espèce décrites dans le S de la France (Reichenbacher & Philippe 1997, Fig. 4A-E). L'otolithe nommé «genre Umbridarum sp.» montre une extrémité antérieure brisée et il est de plus corrodé, ce qui empêche une détermination plus précise. Osmeridae: Enoplophthalmus sp. n'est pas attribuable à l'une des espèces décrites jusqu'ici (Reichenbacher 2000; Martini & Reichenbacher 2007). Si on considère la position géographique des gisements, il pourrait s'agir de *E. schlumbergeri* Sauvage 1880 trouvé à Céreste (S de la France). Mais cette espèce n'est identifiée jusqu'ici que par son squelette, si bien que ses otolithes demeurent inconnus.

Cyprinodontidae: les otolithes de Palaeolebias symmetricus correspondent à ceux qui furent déterminés en France méridionale (Reichenbacher & Philippe 1997, Fig. 7A-H).

Eleotridae: on connait dans la molasse oligocène deux espèces d'otolithes d'Eléotridés: Eleotridarum martinii est connu vers la limite Rupélien-Chattien et Eleotridarum sectus s'étend de l'Oligocène supérieur jusqu'au Miocène inférieur (Reichenbacher & Uhlig 2002: Taf. 1, Fig. 7-8; Reichenbacher & Weidmann 1992: Taf. 8, Fig. 12-16). Les otolithes du bassin molassique franco-genevois appartiennent à Eleotridarum martinii.

3.3. Paléoécologie

Des otolithes particulièrement bien conservés, provenant de formes juvéniles et adultes de la même espèce, coexistent dans quelques échantillons, si bien que l'on peut estimer que la faune d'otolithes est autochtone.

Les otolithes isolés dans le sondage Gex CD 01 (entre 226 et 266 m) appartiennent à des Umbridés et des Cyprinidés qui sont des poissons d'eau douce typiques. Dans les sondages L 133 (entre 60 et 85 m) et SPL 8/7 (à 79,7 m), ces espèces diminuent au profit de Cyprinodontidés euryhalins (*Palaeolebias symmetricus*). Cependant, il ne s'agit pas là d'une indication déterminante en faveur d'un milieu de vie en eau saumâtre, aussi faut-il considérer qu'on a ici aussi un faciès d'eau douce.

Bien au contraire, dans les sondages Gex CD 04 (175,7-176,1 m), Gex CD 07 (175,4-175,6 m) et L 135 (27,5 m), c'est le Genre Eleotridarum *martinii* qui

est présent, une espèce jusqu'ici trouvée uniquement dans des faciès saumâtres pliohalins (Reichenbacher & Uhlig 2002). Dans le Rupélien supérieur des «Marnes à Cyrènes» du fossé rhénan méridional, Pirkenseer (2007) mentionne la présence du Genre Eleotridarum cf. martinii, ici aussi dans un faciès saumâtre. Une espèce d'Enoplophthalmus dans le même échantillon de Gex CD 07 est une autre indication d'un milieu saumâtre, car la plupart des espèces fossiles d'Enoplophthalmus vivaient en eau saumâtre (Gaudant & Reichenbacher 1998). Il est étonnant de constater dans les deux sondages Gex CD 04 et CD 07, et aux mêmes profondeurs, la présence de cette espèce qui pourrait indiquer une brève incursion marine ou saumâtre très localisée. Toutefois, ces deux sondages sont éloignés l'un de l'autre de plus de 10 km et leur cote d'implantation diffère de 54 m; on ne peut donc pas démontrer une éventuelle corrélation stratigraphique entre ces deux niveaux saumâtres, encore moins avec le niveau de 27,5 m du sondage L 135.

3.4. Biostratigraphie

La présence de *Palaeolebias symmetricus* dans les sondages L 133 (85,3 m) et SPL 8/7 (79,7 m) place ces niveaux dans la zone OT-O2 (Reichenbacher 1999).

Dans le sondage Gex CD 01 (226 et 266 m), les couches avec *Palaeoesox oligocenicus* (mais sans *Palaeolebias symmetricus*) sont corrélables avec le niveau stratigraphique de la zone OT-O3. Un âge un peu plus ancien (OT-O2) n'est cependant pas exclu, car l'absence apparente de *P. symmetricus* peut aussi être due au petit nombre des otolithes isolés. La zone OT-O4 ou une zone plus récente ne saurait être envisagée, car *Palaeoesox oligocenicus* n'y est plus représenté (Reichenbacher 1999).

Du point de vue biostratigraphique, les niveaux à otolithes des sondages examinés se situent dans un intervalle allant de la limite Rupélien-Chattien jusque dans le Chattien inférieur, ce qui correspond à peu près aux zones de mammifères MP 24-25 (Fig. 49). L'extension stratigraphique du Genre Eleotridarum *martinii*,

Tableau 1. Tableau récapitulatif des poissons découverts dans le bassin molassique franco-genevois (sondages Gex CD 01, CD 04, CD 07, SPL 8/7, L 133, L 135).

Famille	Espèces .	Nombre	Planche 4
Cyprinidae	Tarsichthys sp.	1.1.1	Fig. 11
	Genus Cyprinidarum sp.	3	Fig. 10
Umbridae	Palaeoesox oligocenicus Reichenbacher & Philippe 1997	5	Fig. 3, 6, 8-9
	Genus Umbridarum sp.	1	
Osmeridae	Enoplophthalmus sp./cf. schlumbergeri Sauvage 1880	1+1 sp.	Fig. 7
Cyprinodontidae	Palaeolebias symmetricus (Weiler 1963)	4	Fig. 4-5
Eleotridae	idae Genus Eleotridarum <i>martinii</i> Reichenbacher & Uhlig 2002		Fig. 1-2

telle qu'elle est reconnue jusqu'ici, correspond aussi à cet intervalle de temps (Reichenbacher & Uhlig 2002). Toutefois, il faut souligner que le découpage biostratigraphique des otolithes ne correspond pas toujours à celui basé sur les mammifères et sur les charophytes; en effet, dans le bassin franco-genevois, les datations basées sur ces deux groupes montrent que la sédimentation molassique a débuté dans les zones MP 27-28 (= Chattien «moyen»).

3.5. Paléozoogéographie

L'assemblage des poissons déterminés dans la Molasse du bassin franco-genevois montre des relations avec le S de la France (bassin d'Apt, Céreste), avec le bassin molassique de l'Allemagne méridionale et avec le S du fossé rhénan (Tabl. 2).

Le contour des otolithes des Palaeoesox oligocenicus genevois diffère quelque peu de celui de la forme connue en Allemagne méridionale (comparer avec Reichenbacher & Schwarz 1997, Figs. 42-44), ce qui indique qu'il s'agit de deux populations temporairement isolées, d'une part dans la molasse allemande et d'autre part dans le secteur Suisse occidentale -France méridionale (Reichenbacher et al. 2007). Si l'attribution supposée des otolithes Enoplophthalmus à l'espèce E. schlumbergeri se confirme, cela fortifie encore davantage l'hypothèse d'une étroite parenté faunistique entre le bassin molassique et le S de la France.

Il faut encore remarquer que l'on n'a pas trouvé d'espèces de *Dapalis*, normalement très fréquentes dans la Molasse oligocène, ce qui pourrait être dû à la relative pauvreté du matériel récolté.

4. Ostracodes

4. 1. Matériel

Les ostracodes provenant des sondages du bassin molassique franco-genevois sont généralement mal conservés. Les tests ont été compressés ou partiellement détruits durant la diagenèse et il ne subsiste bien souvent que des moules internes. Une détermination spécifique est dès lors impossible dans la majorité des cas.

4.2. Systématique

La systématique proposée ici est celle de Martens & Behen (1994).

Genre *Metacypris* Brady & Robertson 1870 Ce n'est que dans l'échantillon 23,5 m du sondage SPM 11, que nous avons trouvé des formes attribuables au genre *Metacypris*. Il s'agit probablement de deux espèces différentes, mais le matériel est trop rare et trop mal conservé pour une détermination spécifique sûre.

- - Metacypris cf. danubialis Straub 1952 (Pl. 1, Figs. 1-2);
- - Metacypris cf. helvetica Schäfer 2002 (Pl. 1, Fig. 3)

Genre Hemicyprideis Malz & Triebel 1970

- Hemicyprideis rhenana (LIENENKLAUS 1905) (Pl. 1, Figs. 4-7)
 * 1905 Cytheridea muelleri var. rhenana LIENENKLAUS,
 Ostrak. des Mainzer Tertiärbeckens, S. 39
 ? 1956 Cytheridea genavensis OERTLI, OStrak. aus der Molasse der Schweiz, S. 40-41, Taf. 3, Fig. 59-68
 ? 1985 Hemicyprideis genavensis Carbonnel et al., Rev. Paléobiol., 4(2), p. 224, pl. III, Fig. 1-5
 L'espèce H. genavensis érigée par Oertli (1956) est probablement un synonyme de Hemicyprideis rhenana (LIENENKLAUS 1905).
- - Hemicyprideis dacica (Н£IJAS 1894)

 *1894 Cytheridea dacica H£IJAS, Mitt. Siebenbürg. Mus.

 Ver., 16, S. 108, Taf. 4, Fig. 10 a-c

 1978 Hemicyprideis clivosa MALZ, Senck. leth., 59 (1/3),

 S. 73-75, Taf. 1, Figs. 3-14

 ? 1978 Hemicyprideis krejcii MALZ, Senck. leth., 59 (1/3),

 S. 75-77, Taf. 2, Figs. 15-18; Taf. 3, Figs. 26-28

Abondamment décrite dans la littérature, *H. dacica* est une des espèces les plus répandues dans les milieux saumâtres de la Paratéthys, de l'Oligocène supérieur au Miocène supérieur (Bassiouni 1979, p. 59). Elle est connue en France (vallée du Rhône), dans le bassin molassique, le bassin de Vienne, ainsi qu'en Roumanie, Bulgarie et Turquie. Une augmentation graduelle de la taille, liée à une variation du contour des valves, a été observée dans divers environnements de dépôt. Ainsi, les formes provenant du Chattien moyen à supérieur de l'USM subalpine montrent un bord dorsal descendant obliquement vers l'arrière et qui conduit, sans point d'inflexion

Tableau 2. Distribution géographique des espèces d'otolithes du Rupélien supérieur-Chattien inférieur, hors du bassin molassique franco-genevois, d'après Reichenbacher & Philippe (1997), Reichenbacher & Schwarz (1997), Reichenbacher & Uhlig (2002), Pirkenseer (2007).

Espèces du bassin molassique franco-genevois	Sud de la France	Sud du Fossé rhénan	Molasse de l'Allemagne méridionale
Palaeoesox oligocenicus	X		X
Enoplophthalmus sp./cf. schlumbergeri	X		
Palaeolebias symmetricus	X	X	X
Genus Eleotridarum <i>martinii</i>		Χ	X

marqué, à un bord postérieur modérément raide et une terminaison postérieure basse en pointe (Müller 1985, p. 22).

Au Chattien terminal et à l'Aquitanien, on trouve des populations présentant des individus nettement plus grands. Leur bord dorsal est moins fortement incliné vers l'arrière; les femelles, plus particulièrement, présentent un angle cardinal postérieur marqué et le bord postérieur tombe de manière beaucoup plus raide. Le même type d'évolution a été observé par Bassiouni (1979, p. 58) sur des populations de *H. dacica* de l'Oligocène et du Miocène turc.

Dans le bassin de Mayence, Malz (1978) décrit *H. clivosa* et *H. krejcii* qui montrent la même tendance observée chez *H. dacica*. C'est ainsi que l'on passe des petites *clivosa* des «Untere Cerithienschichten» aux grandes *krejcii* essentiellement présentes dans les «Obere Cerithienschichten».

La comparaison des H. dacica de l'USM suisse avec les H. clivosa des «Untere Cerithienschichten» du bassin de Mayence ne laisse voir aucune différence morphologique qui justifierait la séparation taxonomique en deux espèces. Hemicyprideis clivosa Malz 1978 doit donc être considéré comme un synonyme junior de H. dacica. D'autre part, comme Müller (1985) a démontré que les grandes formes de H. dacica de l'USM étaient comparables aux H. krejcii du bassin de Mayence, on peut considérer que cette dernière espèce est elle aussi un synonyme de H. dacica. Les formes «clivosa» et «krejcii» décrites dans le bassin de Mayence peuvent être considérées comme des sous-espèces car l'augmentation graduelle de la taille est probablement à la base d'une tendance phylogénétique.

Genre Cytheromorpha Hirschmann 1909

■ - Cytheromorpha sp. (Pl. 1, Fig. 8)

Genre *Ilyocypris* Brady & Norman 1889

- Ilyocypris essertinesensis Carbonnel 1985 (Pl. 2, Figs. 4-5)
 * 1985 Ilyocypris essertinesensis Carbonnel et al., Rev. Paléobiol., 4(2), p. 224, pl. IV, Fig. 1, 4, 8
 2002 Ilyocypris essertinesensis, Schäfer, Cour. Forsch.-Inst. Senckenberg, 237, S. 204, Taf. 4, Fig. 30-33
- - *Ilyocypris* cf. *weidmanni* Schäfer 2002

Genre Candona Baird 1845

- - Candona sp.
- - Genre Pseudocandona Kaufmann 1900
- - Pseudocandona sp. (Pl. 2, Figs. 6-7)

Genre Heterocypris Claus 1893

■ - Heterocypris sp. (Pl. 3, Fig. 1)

Genre Moenocypris Triebel 1959

• Moenocypris cf. ingelheimensis TRIEBEL (1959) (Pl. 3, Fig. 4) 1985 Moenocypris ingelheimensis - CARBONNEL et al., Rev. Paléobiol., 4(2), p. 226, pl. VI, Fig. 6-9 L'exemplaire figuré est sous toute vraisemblance à attribuer au M. ingelheimensis décrit par Triebel (1959) dans les «Süßwasser-Schichten» du bassin de Mayence.

Genre Strandesia Stuhlmann 1888

- Strandesia sp. (Pl. 3, Fig. 3)

Genre Herpetocypris Brady & Norman 1889

■ - ?Herpetocypris sp.

Genre Stenocypris Sars 1889

■ - ?Stenocypris sp. (Pl. 3, Fig. 5)

Genre Virgatocypris Malz 1973

■ - Virgatocypris sp. (Pl. 3, Fig. 2)

Genre Cypridopsis Brady 1867

■ - Cypridopsis sp. (Pl. 2, Figs. 1-3)

4.3. Paléoécologie

Les genres d'ostracodes rencontrés dans la majorité des forages proviennent de paléoenvironnements lacustres. Par contre, dans les Grès et Marnes gris à gypse du forage de Thônex-1 et dans le sondage de la ciblerie du stand de Veyrier, les milieux de dépôt sont probablement saumâtres.

Dans le forage Thônex-1, la présence fréquente de *Hemicyprideis dacica* (Héjjas 1894) et *Hemicyprideis rhenana* (Lienenklaus 1905) témoigne de conditions probablement saumâtres. Selon Oertli (1956, où *H. rhenana* est décrite comme *H. genavensis*), ces deux espèces forment des populations très riches en individus qui s'excluent mutuellement. Ceci plaide pour une différence paléoécologique entre *H. dacica* et *H. rhenana*. Leur présence conjointe dans certains niveaux de Thônex-1 est probablement due à des retombées ou à la faible résolution de l'échantillonnage (6-10m!).

D'une manière générale, les riches populations d'*Hemicyprideis* sont de bons indicateurs d'un milieu oligo- à mésohalin. Selon Malz (1971), ces espèces présentent de fortes affinités écologiques avec les espèces fossiles et actuelles du genre *Cyprideis*. Ce dernier genre est cependant composé d'espèces euryhalines et les populations monospécifiques de l'actuel *Cyprideis torosa* (Jones 1850) sont connues des milieux tant saumâtres qu'hypersalins (Kruit 1955).

De même, Keen (1971) a démontré que l'espèce Hemicyprideis montosa (Jones & Sherborn 1889) de l'Oligocène inférieur était exclusivement euryhaline, avec une répartition essentiellement dans les milieux saumâtres, mais qu'elle pouvait aussi coloniser des eaux presque lacustres ou hypersalines. C'est pourquoi, en se basant sur les ostracodes, on ne peut pas exclure que le sondage de Thônex-1 ne présente pas aussi des phases hypersalines. Pourtant la présence des ostracodes limniques *Ilyocypris* sp. et ?Cypridopsis sp. prouve qu'un milieu oligohalin à mésohalin est plus vraisemblable. La découverte de Cytheromorpha sp. à 276-282 m laisse aussi supposer des conditions saumâtres. Au-dessous de 339-345 m, la présence des rares Hemicyprideis n'est probablement due qu'à des retombées des cuttings.

X. DONNÉES DIVERSES

1. Hydrocarbures

Comme on l'a vu plus haut, les géologues de la Société Française d'Exploration British Petroleum (BP-France) ont repris l'évaluation des possibilités pétrolières du bassin molassique franco-genevois (Guillemin 1981, 1983) en se basant sur les travaux anciens, sur les données acquises dans les sondages et les galeries du CERN, enfin sur les sondages Gex CD 01 à 07. Un recensement régional très complet des sondages avec imprégnations d'hydrocarbures est par ailleurs présenté en annexe au rapport d'Olmari (1983).

Selon les rapports BP, les porosités des grès imprégnés sont en général bonnes (20-35%), alors que les perméabilités sont faibles et très variables. Les teneurs en huile sont également très variables (10-30%). La faible extension latérale des niveaux imprégnés est illustrée par les sondages Gex CD 01 et 07 séparés d'une distance inférieure à 100 m, sur un axe NW-SE: les zones imprégnées totalisent 5,6 m dans CD 07 contre 14,0 m dans CD 01. En effet, si les corrélations sont excellentes entre les deux sondages pour les horizons carbonatés lacustres, elles sont médiocres pour les horizons gréseux car les variations latérales de granulométrie, cimentation et épaisseur sont très importantes. Toutes ces constatations ont motivé l'abandon des travaux de recherche, car une exploitation d'hydrocarbures dans ce bassin se révèle trop hasardeuse dans les conditions actuelles.

Dans la Molasse, les hydrocarbures analysés sont des huiles en général légères, accompagnées d'un peu de gaz, alors qu'il s'agit d'huiles plus lourdes ou de bitume dans les fractures du substratum mésozoïque calcaire ou dans les Grès sidérolithiques. Les analyses de l'huile prélevée dans un puits du LEP, dans le sondage L 134 (38-40 m) et dans le tunnel du SPS in-

diquent selon Cornioley (1988, p. 51) que cette huile trouverait son origine dans des roches du type Kimméridgien d'Orbagnoux (Gorin et al. 1989): «milieu marin confiné, déposition anoxique, matrice fortement carbonatée». Selon Guillemin (1981, p. 12), c'est une «huile d'origine marine littorale avec fort apport continental».

De faibles venues de méthane ont été rencontrées lors du percement du tunnel du SPS (Hugot 1983, p. 40) et une brève, mais forte, éruption ponctuelle de gaz s'est produite dans le tunnel autoroutier du Mont Sion en cours de percement, à environ 300 m du portail nord (J. Dufresnois, comm. pers. 2007).

Si des imprégnations d'hydrocarbures ont été observées dans la moraine (sondage L 134 bis) et que l'on a constaté de fortes odeurs de HC dans des graviers sis sous la moraine wurmienne (sondage SLHC 46 à 18-19 m), il est cependant probable, selon Rigassi (1977a, p. 37), que les migrations des hydrocarbures sont en majorité «postérieures au Chattien inférieur [et] antérieures à l'Aquitanien».

2. Hydrogéologie

Du point de vue hydrogéologique, la Molasse du bassin franco-genevois est considérée comme un niveau imperméable et non aquifère. Les travaux souterrains du CERN (sondages, galeries et puits) n'y ont rencontré que de très rares venues d'eau dont les débits sont modestes. Selon Hugot (1983, p. 31) et Martinez (1986, p. 141-143), ces eaux sont fortement minéralisées, leur température est relativement élevée (14-17°) et leur teneur en tritium est très faible ou inférieure au seuil de détection, si bien qu'on peut en conclure qu'elles ont séjourné longuement sous terre et qu'il y a donc une quasi-absence de circulation dans la Molasse.

Il faut cependant noter deux exceptions: celle du sondage L 133 (71,4-76,8 m) et celle du sondage SPM 11 (44 m) qui ont tous deux rencontré, dans les Calcaires inférieurs, un niveau fracturé et karstifié de calcaire qui était aquifère et artésien, fournissant une eau basique de composition bicarbonatée sodique tout à fait inhabituelle dans le Pays de Gex (l'analyse complète de cette eau figure dans le rapport Dériaz & Hotellier 2271/31 du 23.02.1982). A l'aplomb du sondage L 133, une venue d'eau identique a été recoupée lors du percement de la galerie G1R.

3. Karst

Hugot (1983, p. 37) signale, dans les sondages SPM 1 à 98 m de profondeur et dans SPM 10, à 84 m, la

présence de matériel morainique d'origine alpine en remplissage de fissures karstiques dans les calcaires crétacés, alors que ces deux sondages n'ont pas de recouvrement molassique. Des observations identiques ont été faites dans la galerie du LEP passant sous le Jura (Fourneaux & Laporte 1990, p. 1271; Fourneaux et al. 1990). Ce karst colmaté par des matériaux alpins jusque vers 100 m de profondeur au moins suggère que son creusement date d'avant les grandes glaciations, alors que le niveau de base était beaucoup plus bas que l'actuel, peut-être lors de la crise messinienne; son colmatage remonte au plus tard à l'époque du dernier retrait glaciaire; voir aussi Martinez (1986, p. 51, 54 et 61), ainsi que Fourneaux et al. (1990).

Par contre, les sondages qui présentent un recouvrement molassique, par exemple SPM 5, montrent dans le Crétacé inférieur un karst à remplissage argilo-gréseux et pyriteux vert (= Albo-Aptien, ou éventuellement Sidérolithique), mais jamais un remplissage de matériaux alpins.

4. Pétrographie sédimentaire

Nos recherches surtout biostratigraphiques ne se sont pas particulièrement attachées à la pétrographie sédimentaire de la Molasse. Toutefois, nous citerons quelques données analytiques intéressantes tirées de rapports non publiés.

4.1. Pétrographie sédimentaire des Marnes et Grès bariolés

(d'après Odier 1996; en italiques figurent des valeurs tirées d'Olmari 1983)

Grès (roche totale)

	quartz	40-70 %	(25-35%)
88	feldspaths	5-10 %	(15-25%)
100	chlorite-micas	5-20 %	(10-20%)
1	carbonates	5-45 %	(10-20%)
8	divers		(5%)

Marnes (roche totale)

- 32-55 % (moy. 50 %) de minéraux argileux
- 20-24 % de quartz
- 9-27 % (moy. 20 %) de carbonates

Fraction argileuse des marnes

- 48-73 % d'illite
- 16-21 % de chlorite
- 10-34 % d'interstratifiés illite-smectite (50-70 % de smectite); la kaolinite n'a pas été mise en évidence
- 0-5% d'oxydes de Fe

4.2. Minéralogie des argiles des Grès et Marnes gris à gypse

(prélèvements dans la galerie de l'Aire, d'après Angelillo 1986, p. 18)

- ll chlorite 10-25%
- illite 20-40%
- smectite 30-60%
- kaolinite très rare ou absente
- très faible proportion de quartz et feldspath de < 2 u

Les interstratifiés irréguliers illite-smectite et chlorite-smectite sont toujours présents, mais en faibles proportions.

4.3. Calcaires

Les logs des sondages et puits relèvent parfois la présence de niveaux de «calcaires» dans les Marnes et Grès bariolés, bien au-dessus des Calcaires Inférieurs. Mais, le plus souvent, il n'est pas précisé s'il s'agit de vrais calcaires lacustres, de calcrete ou d'accumulation de nodules carbonatés d'origine pédogénétique. Rappelons que d'excellentes analyses pétrographiques des calcaires de la Molasse d'eau douce inférieure sont dues à Kissling (1974), Reggiani (1989), Platt (1992).

4.4. Charbon

Les débris ligniteux n'ont pas été systématiquement relevés dans tous les sondages, si bien qu'une analyse statistique ne serait pas fiable. Notons toutefois qu'ils sont beaucoup plus fréquents dans les Calcaires inférieurs et dans les Grès et Marnes gris à gypse que dans les Marnes et Grès bariolés. Il en est de même des «niveaux charbonneux» ou des «feuillets de lignite» qui n'excèdent pas quelques cm d'épaisseur. On a toutefois signalé dans le sondage SPM 15 deux couches de 40 et 60 cm de «houille assez pure avec niveaux de marne houillère» à la base des Calcaires inférieurs, directement sur la Gompholite (rapport Dériaz & Hotellier 2271/56).

5. Minéraux lourds

Des analyses des minéraux lourds de la molasse oligocène du bassin franco-genevois ont déjà été présentées par Vernet (1964, sondage de Peissy-1), Wagner (1969, La Roulavaz), Maurer (1981, sondage L 112; 1983, sondage de Peissy-1) et Olmari (1983, sondages L 112 et Peissy-1). Nous avons demandé à U. Wefels (Krefeld) d'étudier des échantillons tirés des intervalles carottés des sondages Gex CD 01 (11 éch.), Gex CD 04 (10 éch.) et Gex CD 05 (4 éch.). D'un auteur à l'autre, on relève des différences importantes dans le mode de préparation des échantillons d'une part, dans les méthodes de comptage

des minéraux et d'analyse statistique des résultats d'autre part. C'est pourquoi des comparaisons fines entre ces divers travaux n'ont guère de sens, mais cependant les mêmes tendances générales se retrouvent partout, avec des particularités locales dues principalement à la position proximale/distale dans le bassin de la série étudiée.

A la base de la série molassique, le spectre de minéraux lourds de la Gompholite est largement dominé par les minéraux ultrastables (tourmaline, zircon, staurotide, sphène et groupe TiO2), avec de très rares grains d'épidote, d'apatite et de hornblende (Ducloz 1980, p. 176). Ce spectre dérive directement de celui des grès sidérolithiques et des formations jurassiennes d'âge crétacé.

Ensuite, le spectre des Calcaires inférieurs montre une nette dominance de l'apatite et du grenat, avec présence discrète mais régulière de la staurotide, les minéraux ultrastables étant toujours présents en faible quantité. L'épidote est quasiment absente.

Enfin, le spectre des Marnes et Grès bariolés est caractérisé par la dominance de l'apatite et du grenat, ainsi que par de fortes variations de l'épidote qui montre au moins trois pics successifs. Les minéraux ultrastables sont subordonnés, mais leur proportion peut varier elle aussi entre 10 et 30%.

Comme cela avait été déjà illustré par Maurer (1983, p. 34), Burbank et al. (1992, p. 426) et d'autres auteurs, ces données démontrent l'existence de deux zones d'apport (ou «Schüttungen») différentes qui alimentent simultanément le bassin. La zone d'apport principale («Genferseeschüttung») est axiale, permanente et d'origine alpine, son matériel provient du SW et est transporté en direction du NE. Une autre zone d'apport, secondaire et épisodique, est d'origine locale, elle alimente latéralement le bassin depuis le NW.

IXI. NOUVELLES DONNÉES SUR LE SUBSTRATUM PRÉ-MOLASSIQUE

1. Etat des connaissances

Dans ce chapitre, nous présenterons une revue critique des principaux travaux de synthèse élaborés au cours des cinquante dernières années sur le territoire étudié (Figs. 50, 51, 52).

1.1. Données de terrain

Vingt ans après la synthèse de Paréjas (1938) sur la géologie des environs de Genève, Rigassi (1957) publiait de nombreuses données originales dans une note sur le Tertiaire de la région genevoise et savoi-

sienne. Dans ce travail, l'auteur ne disposait pas d'informations sur la stratigraphie et sur la structure du substratum du bassin molassique franco-genevois. En 1961, Rigassi présentait aux participants de la Réunion annuelle de l'Association suisse des géologues et ingénieurs du Pétrole, dans un livret-guide à tirage limité, une remarquable coupe «palinspastique» du Tertiaire entre le front des chaînes subalpines (massif des Bornes) et la région de la Pesse (Jura méridional). Cette coupe reprise par Lombard & Charollais (1965, p. 546 et Fig. 4) n'apportait pas de précisions supplémentaires sur le substratum de ce bassin molassique.

Un autre travail de Rigassi (1977b) amène de nouvelles données tant sur le substratum mésozoïque de la Molasse que sur la Molasse elle-même. L'auteur y présente notamment:

- une carte «paléogéologique» du substratum mésozoïque (1977b, Fig. 6), supposé constitué uniquement par l'Urgonien, sauf sur la rive gauche du lac Léman, au NE de Vésenaz, où l'Albien et le Crétacé supérieur ont été préservés de l'érosion «fin Crétacé-début Tertiaire»;
- I les isopaques des formations du Crétacé inférieur (1977b, Fig. 7), orientées parallèlement aux directions des axes de la Haute-Chaîne et du Salève et montrant un épaississement progressif de la série du NW vers le SE, entre le synclinal de la Valserine et le Plateau des Bornes;
- les isopaques du «Chattien inférieur» ou Marnes et Grès bariolés (1977b, Fig. 5) orientées NE-SW en croissant du NW vers le SE, entre le Plateau des Bornes et le synclinal de la Valserine;
- les Calcaires de Grilly, ou Calcaires inférieurs, dessinant «un fond de cuvette» orienté NE-SW et présentant des amincissements en bordure de la Haute-Chaîne et du Salève.

1.2. Données cartographiques

Les feuilles géologiques à 1/50000 St-Claude (Meurisse et al. 1971) et St-Julien-en-Genevois (Donzeau et al. 1997) ne donnent qu'un reflet relativement approximatif de la géologie du versant SE de la Haute-Chaîne entre Gex et le défilé de l'Ecluse. En effet, les cartographes n'ont pas arpenté systématiquement le flanc SE du Jura; soulignons à leur décharge que le terrain très accidenté et l'importante couverture végétale (même en hiver) nuisent fortement à l'accès et à l'observation. Pourtant l'étude des très nombreuses anciennes carrières sises sur ce versant du Jura permettrait certainement d'en acquérir une bien meilleure connaissance stratigraphique et structurale. Schardt (1891, p. 34) n'écrivait-il pas: «entre Crozet et les Echenevex, il y a une dizaine de carrières, en partie abandonnées, dans lesquelles on exploite les bancs supérieurs du Valanginien inférieur, le vrai marbre bâtard. [...] Deux faits rendent cette partie du pied de la chaîne fort intéressante; c'est d'abord la disposition presque horizontale des bancs et leur plongement N-W vers l'intérieur

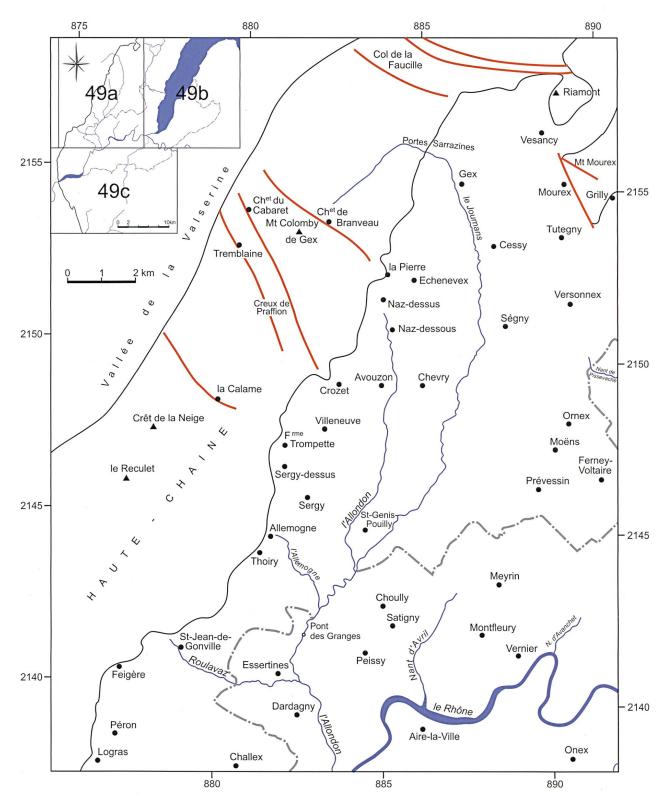


Fig. 50: Localités de la partie nord-occidentale du bassin franco-genevois, mentionnées dans le texte.

de la chaîne, ce qui accuse un pli secondaire, répétition de l'accident de la colline de Vesancy». Or, ce pli secondaire, pourtant bien visible au-dessus d'Avouzon sur le profil 2 de Schardt (1891, pl. II/VII), ne figure pas sur les profils géologiques récents. A relever encore que dans sa magnifique monographie, Schardt (1891) avait reconnu dans cette portion du Jura méridional, le «vrai

marbre bâtard», qu'il considérait comme équivalent de celui décrit dans le stratotype de Valangin, et dénommé aujourd'hui «Formation de Pierre Châtel».

De plus, sur la feuille St-Claude à 1/50000 (Meurisse et al. 1971), il manque l'affleurement des sources de l'Allondon décrit par Ducloz (1980) qui montre le

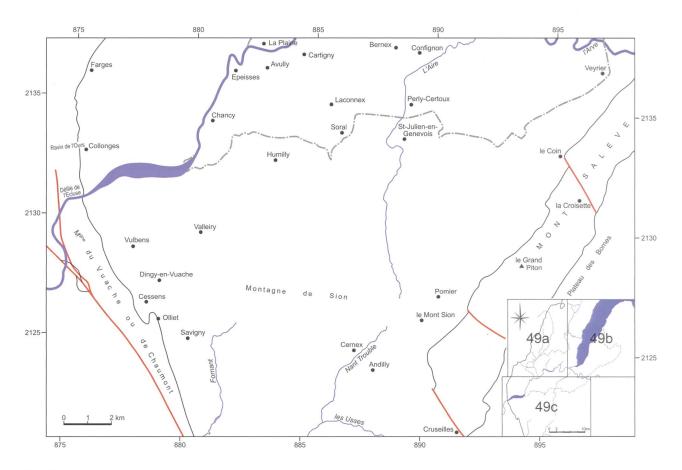


Fig. 51: Localités de la partie méridionale du bassin franco-genevois, mentionnées dans le texte.

contact entre la Gompholite tertiaire et la Formation de la Chambotte (membre inférieur). L'importante faille décrochante de Branveau, pourtant bien visible dans la carrière de «La Pierre» (audessus d'Echenevex), a été omise, tout comme les failles bien observables dans les carrières bordant et dominant le parking de la télécabine du Crozet. Les mêmes remarques s'appliquent au versant NE de la Montagne du Vuache, dont l'extrémité méridionale figure sur la feuille à 1/50000 Seyssel (Donze 1972). Par exemple, sur cette feuille géologique, une étude récente des affleurements de Calcaires urgoniens de la région d'Olliet, au NW de Savigny, permet d'identifier un «kink», qui n'apparaît pas sur les profils géologiques actuellement publiés; il manque également la fracturation parallèle à l'axe du Vuache dans les terrains molassiques affleurant au-dessus de Vulbens.

Le bord SE du bassin franco-genevois, bordé par le chaînon du Salève et tel que cartographié sur la feuille Seyssel (Donze 1972), ne reflète pas exactement ce que l'on peut observer sur le terrain. Si les principaux décrochements sont bien identifiés dans ce secteur, il n'en va pas de même pour la fracturation de la montagne elle-même: en effet, le Salève correspond bien à un pli-faille (Hottinger 1990), et non

pas à un pli déjeté dont la charnière serait préservée, comme l'exprime le dessin de la carte géologique à 1/50000 (Donze 1972). Cette même remarque s'applique également à la portion du chaînon du Salève, comprise entre Cruseilles et la Croisette et reportée sur la feuille Annemasse à 1/50000 (Kerrien et al. 1998).

Cette analyse critique n'est pas faite pour dévaloriser les travaux souvent remarquables de nos prédécesseurs; son seul but est de mettre en évidence les lacunes de nos connaissances sur la structure et plus particulièrement sur la fracturation des chaînons jurassiens (Haute-Chaîne, Vuache, Salève) qui encadrent le bassin franco-genevois. C'est donc avec prudence qu'il faut raccorder les accidents repérés au Salève avec ceux de la Haute Chaîne à travers le bassin molassique franco-genevois. Bien des géologues n'ont pas hésité à dessiner d'assez nombreux décrochements à travers ce bassin; malheureusement tous les dessins ne concordent pas! C'est pourquoi ne sont reportées sur le plan de situation (Fig. 1) que les principales fractures admises par la plupart des auteurs.

Dans le cadre du Permis Clairvaux-Gex, la Société française d'exploration BP a réalisé diverses études

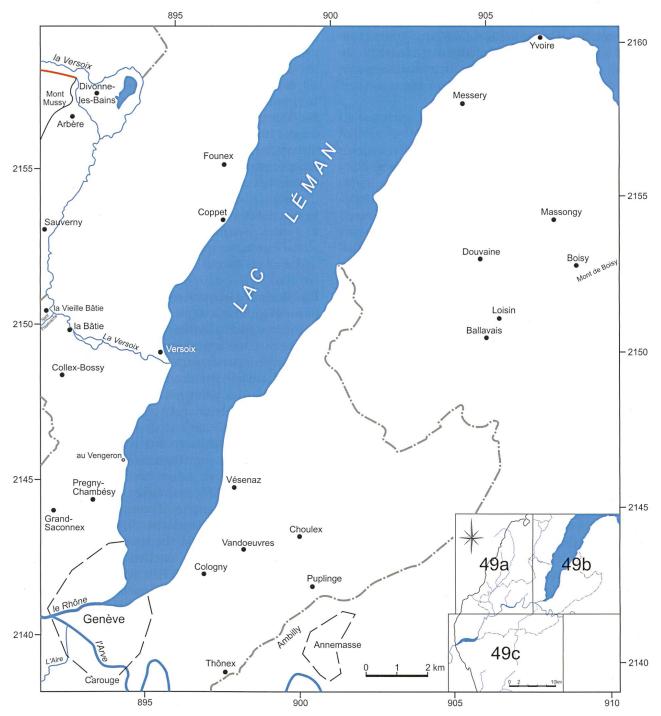


Fig. 52: Localités des parties centrale et nord-orientale du bassin franco-genevois, mentionnées dans le texte.

préliminaires avant l'implantation des sept sondages Gex CD 01 à 07 sur territoire français. Ainsi, dans un de ces rapports, Barragne-Bigot (1981) apporte des données stratigraphiques et tectoniques sur le piémont du Jura entre Echenevex au nord et Collonges au sud. L'auteur identifie une série de failles transverses (Branveau, Tremblaine, la Calame, Crêt de la Neige, Reculet), dont trois atteignent le piémont:

■ - la faille de Naz-Dessus déjà reconnue par Meurisse & Llac (1971) sur la feuille St-Claude;

- la faille du Ravin de l'Ours à l'aplomb de Collonges, reportée sur la feuille St-Julien-en-Genevois par Donzeau et al. (1997);
- une faille à l'aplomb de St-Jean-de-Gonville, qui ne figure pas sur la feuille St-Julien-en-Genevois (1997).

En revanche, Barragne-Bigot (1981), Meurisse & Llac (1971), Donzeau et al. (1997) ne signalent pas de faille longitudinale orientée NE-SW, donc parallèle à l'axe de la Haute-Chaîne et située à son piémont. Si des failles

longitudinales n'ont pas été reconnues par photointerprétation, Barragne-Bigot (1981, p. 5) relève toutefois que les «exurgences karstiques d'Allemogne, de Thoiry et de Logras se situent aux intersections des deux directions transverse et longitudinale:

- - pour Allemogne et Thoiry: N20 et N110
- - pour Logras: N60 et N90-100

Ces directions longitudinales ont été observées entre 520 et 540 m d'altitude, mais une faille inverse N50-60 existe entre Echenevex et Crozet à 720 m».

En plus des feuilles géologiques à 1/50000 éditées par le Service de la Carte géologique de France (BRGM) mentionnées ci-dessus, nous avons bénéficié de nombreux autres documents cartographiques parfois très détaillés mais inédits, commandités par différents organismes: CERN (Malatrait 1981, 1982), BP-France (Barragne-Bigot 1981), Service cantonal de Géologie de Genève (Ruchat 1978; Amberger 1983, 1988).

Enfin, il faut citer les profils structuraux établis par Meyer (2000, Fig. 14), qui traversent le bassin francogenevois et qui sont basées sur des données cartographiques, stratigraphiques, structurales et géophysiques.

1.3. Données de géophysique

Amberger (1982), Signer (1992), Gorin et al. (1993), Jenny et al. (1995), Signer & Gorin, 1995, Morend (2000), GEO2X-Geophysic & Geology (2006) ont présenté des cartes et/ou des profils du bassin franco-genevois et de ses abords en partie basés sur des analyses de photos aériennes et surtout sur des données sismiques. Ces travaux montrent parfois des divergences qui se manifestent dans le nombre, l'emplacement et l'orientation des failles reportées.

Il semble unanimement admis, même dans les travaux relativement récents, que le toit du substratum mésozoïque est toujours et partout constitué par les Calcaires urgoniens, malgré les résultats contradictoires publiés par Ducloz (1980). En effet, par exemple, Gorin et al. (1993, p. 706-707) notent que, dans la région de Genève, «the Tertiary serie rests unconformably on karstified Urgonian carbonates. Between the Jura mountains and Mount Salève, this unconformity has the configuration of an essentially southeasterly dipping monocline».

Toutefois, comme l'écrivent Signer & Gorin (1995, p. 236 et Fig. 13), il ressort des études géophysiques que la tectonique du bassin franco-genevois serait dictée par l'existence de linéaments permo-carbonifères qui montrent deux orientations:

 l'une, SW-NE, indétectable en surface, détermine des demi-grabens permo-carbonifères, qui ont rejoué à plusieurs reprises, notamment pendant l'orogenèse tardi-alpine; ■ - l'autre, NW-SE, correspond à l'orientation des failles décrochantes identifiées en surface par de nombreux auteurs: décrochements du Vuache, de Cruseilles, du Coin et de l'Arve (Fig. 1); ces accidents s'expriment également par des culminations liées à des «structures en fleur».

Sur leur carte du bassin franco-genevois, Signer & Gorin (1995, Fig. 13) dessinent, au SE d'une ligne Chevry-Sergy-Thoiry-Péron, une succession de «hauts morphologiques» (= anticlinaux ?) et de «sillons» (= synclinaux ?) du NE au SW:

- «haut» de Challex-Choully-Prévessin-Moëns,
- «sillon» de Montfleury,
- «haut» de Bernex-Confignon,
- «sillon» du Petit Lac
- «haut» de Cologny-Vandoeuvres-Choulex.

1.4. Données acquises dans les sondages, puits et galeries

Notre étude sur la Molasse du bassin franco-genevois repose essentiellement sur des analyses de carottes et de «cuttings» extraits de sondages qui n'ont pas fait l'objet d'une pendagemétrie. Sur les carottes, le plongement des pendages n'a pas toujours été mesuré et leur direction reste inconnue. La plupart des pendages indiqués sur les logs sont qualifiés de «subhorizontaux», sauf pour ceux relevés dans les sondages proches du Jura; dans ce cas, ils peuvent localement atteindre et même dépasser 40°. Dans les puits d'accès au LEP, les valeurs parfois relevées au cours du creusement ne dépassent pas 3 à 5°, avec une direction du plongement toujours orientée vers le SW. Il est regrettable que les informations sur les pendages de la Molasse que nous avons pu recueillir dans les rapports du CERN demeurent très lacunaires ou imprécises, voire inexistantes en ce qui concerne les tunnels SPS et LEP. En conséquence, il est difficile de préciser l'allure et la localisation des plis, ou plutôt des faibles ondulations, qui affecteraient la Molasse et que la sismique suggère dans ce secteur du bassin franco-genevois (Signer 1992, Signer & Gorin 1995, GEO2X 2006).

A plusieurs reprises et du haut en bas de la série molassique, nous avons observé sur les carottes des plans subhorizontaux calcitisés avec stries, témoignant de décollements (par exemple sondages F 6 à 59,0 m, F 13 entre 31,1 et 31,3 m). Mais de telles observations n'ont pas été systématiquement faites et ne sont pas reportées sur la plupart des logs consultés.

2. Bord occidental du bassin franco-genevois9

2.1. Affleurements de la région de Grilly

Entre Divonne-les-Bains et Grilly (Figs 50, 52), les Monts Mourex et Mussy correspondent à «une voûte d'axe nord-sud délimitée par des failles inverses, rap-

pelant une structure en fleur» d'après les profils sismiques interprétés par Signer (1992, p. 49). Dans ce secteur, la Gompholite surmontée par les Calcaires inférieurs repose en plusieurs points sur les Calcaires urgoniens. Ce contact entre la Gompholite et les Calcaires urgoniens avait été signalé tout d'abord par Michel (1965, p. 706, Fig. 1) dans une fouille à l'W du village de Grilly (890,48/154,56), puis par Ducloz (1983, p. 267, Fig. 2) dans une excavation au pied du Mont Mourex, près de Grilly, où il décrit avec minutie le contact entre le sommet des Calcaires urgoniens encroûtés et altérés et la base des marnes gompholitiques (= Gompholite). Suivant ce dernier auteur (1983, p. 283), une croûte calcaire riche en Microcodium sépare ces deux formations et scelle des poches sidérolithiques; elle serait «vraisemblablement d'âge Lutétien terminal». Dans son étude sur les Monts Moussy, Mourex et Riamont, Morel (1946-1947) décrit le sommet du substratum mésozoïque: l'Urgonien blanc à rudistes épais d'une cinquantaine de mètres (environs d'Arbère) surmontant une vingtaine de mètres d'Urgonien jaune. La structure de ce secteur a également été décrite par Caminade (rapport inédit, 1981), par Marti (1983), puis par Meyer (in Arn et al. 2005).

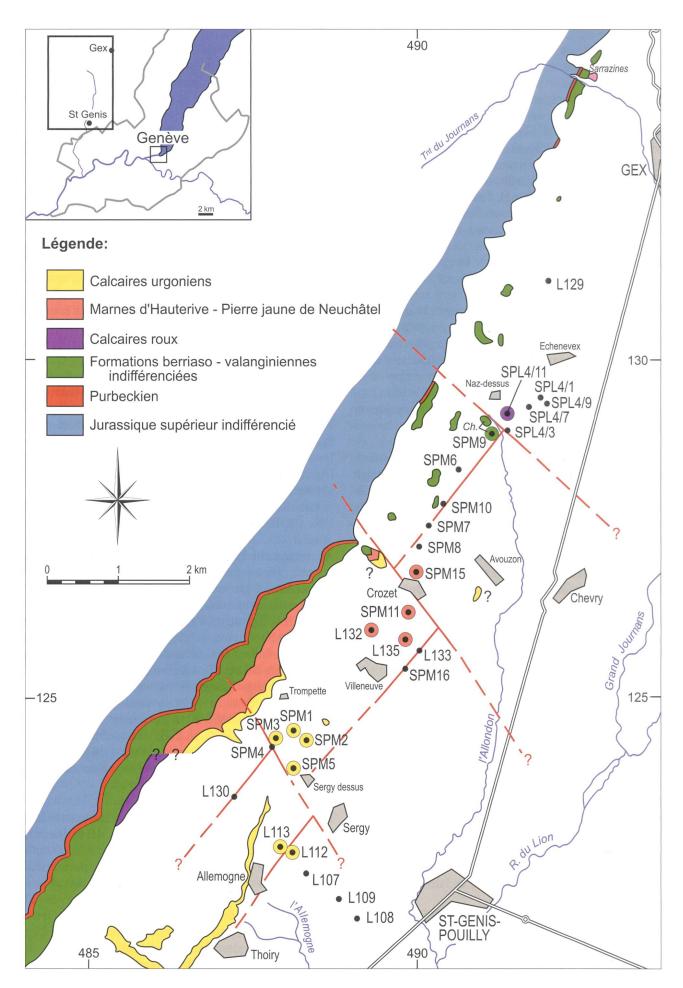
Enfin, dans son travail sur les sources de l'Allondon, Ducloz (1980, p. 177) rappelle que «d'après Schardt (1894), certains affleurements de Molasse dans le voisinage de l'Hauterivien près de Tutegny et Grilly indiqueraient même une transgressivité du Tertiaire sur le Néocomien». Il semblerait donc que Schardt avait déjà soupçonné que la Molasse puisse reposer sur différentes formations du substratum mésozoïque. Ducloz (1980) adhère à ce point de vue puisqu'il démontre que sur le flanc SE de l'anticlinal du Mont-Mussy, la Molasse est en contact suivant les points avec différents niveaux stratigraphiques de la Formation des Calcaires urgoniens.

2.2. Zone faillée de la région de Gex

Au SW du Mont Mourex (Fig. 50) se développe une zone faillée décrochante très complexe, comme le montre la feuille St-Claude à 1/50000 (Meurisse et al. 1971). Le contact entre la base de la Molasse et le sommet du Mésozoïque n'apparaît pas à l'affleurement; sur la carte géologique, seul l'Hauterivien (= faciès Pierre jaune de Neuchâtel) est mentionné aux Portes Sarrazines, sur rive gauche du Journans (Fig.

53), ce qui n'exclut pas dans cette région la présence de terrains plus jeunes (Calcaires urgoniens par exemple); ces derniers sont, soit masqués par des dépôts glaciaires, soit en grande partie décapés par les érosions quaternaires.

Le sondage L 129 (492,08/130,64/624) d'une profondeur de 94,2 m, dont les pendages sont inconnus, n'a traversé que les Marnes et Grès bariolés (Fig. 39) selon Lanterno et al. (1981); il ne donne donc pas d'indication sur la nature du substratum mésozoïque entre Gex et les sources de l'Allondon.


2.3. Affleurement et sondages près des sources de l'Allondon

Proche de Naz-dessus en direction du SW (Figs. 50, 53), un affleurement découvrant «une gompholite oligocène sur des calcaires valanginiens aux sources de l'Allondon» a été décrit minutieusement par Ducloz (1980). Comme mentionné plus haut, cet affleurement ne figure pas sur la feuille St-Claude (Meurisse et al. 1971), alors qu'il avait été indiqué en 1894 déjà par Schardt et identifié en tant que «Valanginien». Ces calcaires «valanginiens» correspondent au Membre inférieur de la Formation de la Chambotte (Berriasien sommital-Valanginien basal; voir II.2.1). Bien que contestées, à tort, par Rigassi (1980a), les observations de Ducloz (1980) s'inscrivent logiquement dans le contexte régional, comme le révèlent les résultats des forages SPM 9, SPL 4/3, SPL 4/10 et SPL 4/11 (Figs. 4, 29, 52, 54).

Au niveau du LEP, le contact Jura-Molasse septentrional, proche des sources de l'Allondon, est quant à lui déterminé par un système de failles inverses décrochantes, orientées N145E et plongeant de 70-75° vers le SW. Il pourrait s'agir de la prolongation vers le NW du décrochement (plus exactement d'une «famille de failles décrochantes») du Coin - Nant d'Avanchet; cet accident se poursuit au NW et affecte toute la Haute-Chaîne de part et d'autre du Mont Colomby de Gex. Le rejet vertical de cet accident complexe fut estimé à 40 m par Ducloz (1980), à 100 m par Malatrait (1982), à 130 m au moins par Dériaz & Hotellier (1982) et par Martinez (1986, p. 102), mais il serait de l'ordre de 70 m selon notre coupe de la Fig. 54.

Le sondage SPL 4/11 (coord. suisses: 491,29/128,64/558), très proche de SPL 4/10 (coord. suisses: 491,32/128,62/559) et profond de 151,0 m, a traversé successivement, 42 m de Quaternaire, puis les Marnes et Grès bariolés entre 42 et 58 m, les Calcaires inférieurs entre 58 et 103,5 m et enfin la Gompholite de 105,5 à 121,3 m (Figs. 4, 54). Cette série tertiaire repose sur les Calcaires roux jusque vers 138 m; ces derniers surmontent la Formation de la Chambotte (Membre inférieur) jusqu'à 151 m. Le

L'étude pétrographique et micropaléontologique du substratum mésozoïque des sondages SPM 1, SPM 2, SPM 3 et SPM 9 fera l'objet d'un travail ultérieur. Une partie de ce substratum a déjà été étudiée par H. Ruchet (2005) dans les sondages SPM 6, SPM 7, SPM 8 et SPM 10.

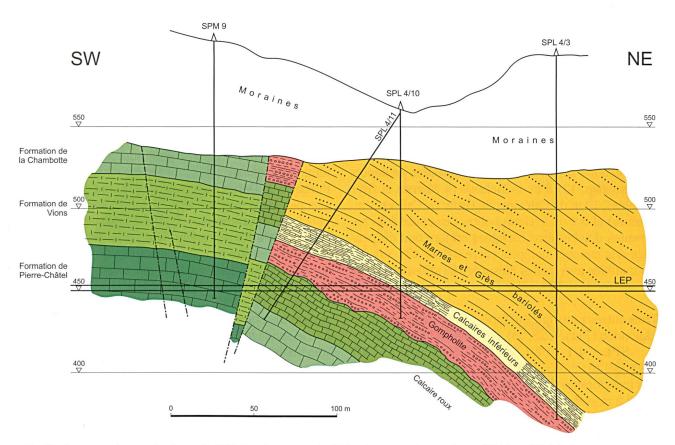


Fig. 54: Coupe verticale selon l'axe du LEP dans le secteur de l'Allondon, entre les sondages SPM 9 et SPL 4/3. La situation de la galerie du LEP et des sondages est donnée sur la Fig. 4.

contact Gompholite/Calcaires roux démontre la structuration du substratum mésozoïque dans la région des sources de l'Allondon puisque, aux sources elles-mêmes, la Gompholite «transgresse» directement sur le Membre inférieur de la Formation de la Chambotte.

Sur rive droite de l'Allondon, à environ 250 m en aval de l'affleurement décrit par Ducloz (1980), **le sondage SPM 9** (coord. suisses: 491,21/128,57/593,8) a traversé sous 68 m de dépôts quaternaires, le Membre inférieur de la Formation de la Chambotte représentée ici par des calcaires biodétritiques blanc

crème à rosé, renfermant *Pfenderina neocomiensis* (Figs. 53, 54). Les pendages relevés dans ce sondage varient entre 35° et 40°, ce qui s'accorde parfaitement avec ceux que Ducloz (1980, Fig. 4) avait reportés sur sa carte géologique; sur la Fig. 54, ces pendages sont plus faibles du fait de l'orientation de la coupe. Sous le Membre inférieur de la Chambotte, Dériaz & Hotellier (1982) avaient identifié les Couches de la Corraterie (= Formation de Vions) et les Calcaires de Thoiry (= Formation de Pierre-Châtel). Bien que ce sondage SPM 9 n'ait pas montré, comme à l'affleurement, le contact entre la Formation de la Chambotte et la Gompholite, il est

Fig. 53: Carte géologique schématique du versant sud-oriental de la Haute-Chaîne d'après les feuilles Saint-Claude 1/50000 (Meurisse et al. 1971) et St.-Julien-en-Genevois 1/50000 (Donzeau et al. 1997).

- -Les limites cartographiques des formations hauteriviennes et barrémiennes dessinées sur ces deux feuilles ne coincident pas, d'où les points d'interrogation.
- -L'affleurement des sources de l'Allondon décrit par Ducloz (1981), et qui ne figure pas sur la feuille Saint-Claude, a été rajouté avec le sigle «Ch.» (= Formation de la Chambotte; partie inférieure).
- -Les affleurements d'Urgonien sis au S d'Avouzon et au NW du Crozet, qui figurent sur la feuille Saint-Claude 1/50000, sont certainement fictifs (d'où les points d'interrogation).
- -Les terrains quaternaires (en blanc) n'ont pas été différenciés.
- -Lorsque les sondages implantés au pied de la Haute-Chaîne ont traversé le contact entre la Molasse et le substratum mésozoïque, celui-ci est mentionné avec les mêmes couleurs que celles des affleurements.

évident, suivant la proposition de Dériaz & Hotellier (1982), que son absence est due à «l'érosion glaciaire ou anté-glaciaire».

Les terrains traversés par **le sondage SPL 4/3** (coord. suisses: 491,38/128,70/591) implanté sur rive gauche de l'Allondon à environ 200 m du forage SPM 9, confirment les données précédentes (Figs. 4, 29, 54). En effet d'après Dériaz & Hotellier (1982), SPL 4/3 a recoupé successivement, sous 69,5 m de dépôts quaternaires, 131,8 m de Molasse (= Marnes et Grès bariolés), 13 m de Calcaires de Grilly (= Calcaires inférieurs) et 3,9 m de Gompholite. Ces épaisseurs apparentes doivent être corrigées en fonction du pendage des couches compris entre 34° et 43°, valeurs compatibles avec celles mesurées à l'affleurement et dans le sondage SPL 4/3.

Trois autres puits ont été forés au NE des sources de l'Allondon (Figs. 4, 28, 53), à moins de 1 km de celles- \mathbf{SPL} 4/1 (491,88/129,11/594), **SPL** (491,88/129,06/595), **SPL 4/9** (491,97/129,01/590). Ces trois forages d'une profondeur respective de 164 m, 62,2 m et de 55 m ont tous traversé les Marnes et Grès bariolés, mais n'ont pas atteint le substratum mésozoïque. Dans le 1er puits, les pendages des couches oscillent entre 3 et 6°, dans le 3e entre 8 et 10° et dans le 2e ils atteignent 5° environ. Dériaz & Hotellier (1982), qui ont analysé ces trois forages, relèvent que les «niveaux de calcaire molassique» (= Calcaires inférieurs) n'ont pas été atteints, même dans le sondage SPL 4/1; ceci laisse donc supposer que le substratum mésozoïque se situe au moins à 200 m de profondeur. Or, d'une part le toit de ce substratum affleure aux sources de l'Allondon à 570 m (Ducloz 1980, Fig.1) et d'autre part les pendages relevés dans les 3 forages sont faibles, il est donc nécessaire de supposer la présence d'un accident important, parallèle à la direction de l'axe de la Haute-Chaîne. Selon Rigassi (1996, p. 44), il s'agirait d'une faille inverse avec un rejet vertical de 200 à 300 m.

2.4. Sondages entre les sources de l'Allondon et Crozet

D'après la feuille St-Claude à 1/50000 (Meurisse et al. 1971), le contact entre la Molasse et le substratum mésozoïque (n2 = «Valanginien») est masqué par les éboulis et les dépôts morainiques entre les sources de l'Allondon et Crozet. Toutefois, les 4 sondages (Figs. 4, 53) implantés par le CERN (du NE au SW: SPM 6, SPM 10, SPM 7, SPM 8) apportent de précieux renseignements d'ordre stratigraphique et tectonique. En effet, bien que n'ayant pas recoupé le contact Molasse/Mésozoïque, ils nous renseignent sur l'âge minimum du substratum antémolassique; celui-ci a fait l'objet d'une étude détaillée (Ruchet 2005).

Le sondage SPM 6 (490,75/128,08/624; Figs. 4, 54) d'une profondeur de 180,1 m, a traversé sous 24,3 m de dépôts quaternaires, les formations berriaso-valanginiennes comprises entre le Calcaire roux et le Purbeckien. Les pendages atteignent 63° au début du forage et décroissent avec la profondeur; ils ne dépassent pas 22° au fond du puits. La fracturation importante dans l'ensemble est irrégulièrement distribuée: très développée dans la partie supérieure, elle s'atténue fortement en profondeur au niveau du Purbeckien. Dériaz & Hotellier (1982) ont observé que «les pendages mesurés dans le forage sont beaucoup plus forts que ceux relevés dans les carrières juste en amont (10° à 20°)», à environ 300 m au N de SPM 6. Ils notent que «cette brusque variation correspond à une sorte de flexure formant une amorce de pli en genou, peut-être accompagné d'une faille. [...] La zone broyée rencontrée vers 20 m de profondeur pourrait correspondre à une petite faille inverse». Ils en concluent que le sondage SPM 6 «a mis en évidence une flexure très nette orientée parallèlement à la chaîne».

Le sondage SPM 10 (490,48/127,63/619 m; Figs. 4, 54) de même profondeur que SPM 6 a recoupé les mêmes formations que ce dernier, soit du Calcaire roux au Purbeckien. Les variations de pendage y sont également comparables: ces derniers atteignent 47° jusqu'à 100 m de profondeur, puis diminuent assez brusquement au-delà et avoisinent 25° à 30°. D'autre part, entre 84,5 et 85,6 m, une cavité karstique d'ordre métrique remplie de matériaux sablo-graveleux à cailloux jurassiens et alpins, peut-être liée à une faille inverse à faible rejet, affecte la Formation de Vions. Au vu des variations des pendages et de la fracturation, Dériaz & Hotellier (1982) en déduisent que le sondage SPM 10, comme le SPM 6, «se situe sur une flexure orientée parallèlement à la chaîne».

Le sondage SPM 7 (490,31/127,83/599; Figs. 4, 54) d'une profondeur de 170,2 m, a traversé les mêmes formations berriaso-valanginiennes que celles reconnues dans les puits SPM 6 et SPM 10. Bien que les pendages oscillent entre 21° et 31° tout le long du forage, des zones broyées (avec brèches de faille) ont été observées entre 36,5 et 44 m. Pour Dériaz & Hotellier (1982), elles représentent une faille inverse qui entraîne la répétition partielle de deux formations valanginiennes: Chambotte et Calcaires roux; ils estiment son rejet vertical à 40 m.

Le sondage SPM 8 (490,19/127,00/585; Figs. 4, 54) profond de 151,2 m, a rencontré sous les dépôts quaternaires, successivement les Marnes d'Hauterive (sur 3 m), les Calcaires roux, les Formations de la Chambotte et de Vions, et peut-être celle de Pierre-Châtel (partie sommitale). Avec des pendages variant entre 25° et 27°, la fracturation est «dans l'ensemble très peu développée» (Dériaz & Hotellier 1982).

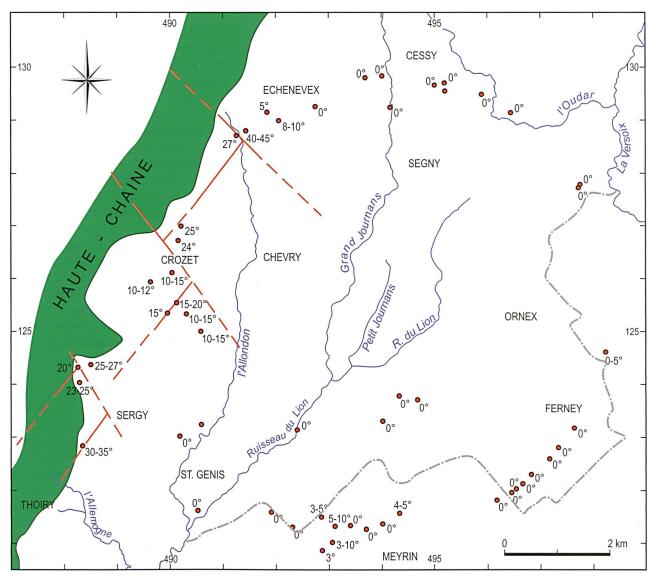


Fig. 55: Carte des failles supposées au pied du Jura et des plongements des couches relevés dans les sondages du CERN. La valeur "0°" est le plus souvent notée "subhorizontal" sur les logs et rapports décrivant ces sondages.

Les quatre sondages sus-décrits démontrent, sur un axe orienté NE-SW au pied de la Haute-Chaîne, la présence sous la Molasse aujourd'hui érodée, des Calcaires roux et même de la base du «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel»; la présence de Calcaires urgoniens n'est pas à exclure d'emblée, car l'importance de l'érosion quaternaire dans cette région n'est pas connue. Or moins de 2 km plus au NE, aux sources de l'Allondon, la base de la série molassique repose sur le Membre inférieur de la Formation de la Chambotte. Ces observations démontrent une structuration déjà bien marquée du substratum mésozoïque avant le dépôt de la Molasse.

Comme on l'a vu, l'étude des pendages et de la fracturation dans les sondages SPM 6, SPM 10 et SPM 7, incite Dériaz & Hotellier (1982) à proposer, au pied de la Haute Chaîne, l'existence d'un «pli en genou» sou-

ligné par une fracture, pli dont l'axe serait orienté parallèlement à celui de la Haute-Chaîne (Figs. 53, 55). Au NE, cet accident pourrait se prolonger par celui qu'évoquait Rigassi (1996, p. 44; voir plus haut); au SW, nos observations ne permettent pas de le poursuivre au-delà du sondage SPM 8, implanté à 500 m au N de Crozet. L'hypothèse d'un «pli en genou» proposée par Dériaz & Hotellier (1982) est compatible avec la géologie reportée sur la feuille Saint-Claude (Meurisse et al. 1971); en effet, d'après cette carte géologique, les failles liées au pli supposé ne peuvent pas être attribuées à des décrochements, puisque le secteur compris entre les sources de l'Allondon et le Crozet en semble dépourvu. Par contre, au SW du sondage SPM 8, Signer & Gorin (1995), se basant sur des profils sismiques, signalent un décrochement orienté NW-SE dans la région du Crozet; celui-ci ferait partie de la «famille de failles décrochantes» déjà évoquée plus haut.

2.5. Affleurement d'Avouzon

Sur la feuille St-Claude à 1/50000 (Meurisse et al. 1971), entre Chevry et Crozet, un affleurement de Calcaires urgoniens figure au S du hameau d'Avouzon (Fig. 53), ce qui ne serait peut-être pas en désaccord avec la carte géologique de Schardt (1891); la mauvaise qualité de l'impression des couleurs en rend la lecture très difficile, il n'est donc pas possible de se prononcer avec certitude. Toutefois, sur le profil 2 de la planche II/VII de Schardt (1891), la présence d'une «carrière sur Avouzon» est clairement indiquée; par contre elle serait entaillée non pas dans les Calcaires urgoniens, comme on pourrait le croire en regardant sa carte, mais dans le «Valanginien», d'où le point d'interrogation sur la Fig. 53, à côté d'Avouzon.

En conclusion, à notre avis, l'affleurement de Calcaires urgoniens reporté sur la feuille St-Claude (Meurisse et al. 1971) près d'Avouzon, est une erreur de cartographie. En effet, nous avons visité la butte correspondant à cet affleurement: elle a été récemment éventrée par une gravière qui exploitait de la moraine graveleuse et non pas de la roche en place. De plus, le creusement du tunnel du LEP démontre l'absence en profondeur de Calcaires urgoniens dans ce secteur.

2.6. Sondages entre Crozet et Villeneuve

Le sondage SPM 15 (490,15/126,73/165 m; Figs. 4, 53), profond de 130 m et implanté à 200 m au N du village de Crozet, a recoupé le contact entre la Gompholite et le «Complexe Marnes d'Hauterive -Pierre jaune de Neuchâtel» (Fig. 48); ici très peu épaisse (moins de 2 m), la Gompholite est surmontée par les Marnes et Grès bariolés. Ce puits est caractérisé par des pendages compris entre 19° et 30°, ainsi que par une faible fracturation; il présente donc beaucoup de similitude avec le sondage SPM 8, situé à environ 300 m plus au N. L'épaisseur du «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel» y atteint 35 m, soit environ le 1/3 de l'épaisseur originelle totale de cette formation dans la région. D'après la feuille St-Claude à 1/50000 (Meurisse et al. 1971), des couches de Calcaires urgoniens inclinées à 40° vers le SE affleureraient dans la carrière du parking de la télécabine de Crozet, situés seulement à 500 m du sondage SPM 15: il s'agit certainement d'une erreur de cartographie (d'où le point d'interrogation à côté de l'affleurement, sur la Fig. 53), comme en témoignent le profil de Malatrait (1981, Fig. 4, coupe 7), ainsi que la carte et les profils de Malatrait (1982, Fig. 2, 4/8), qui figurent des couches berriaso-valanginiennes plongeant de 30° seulement vers le SE.

Le sondage SPM 11 (490,04/126,10/537; Figs. 4, 54) situé à 400 m au S du hameau de Crozet et d'une profondeur de 119,7 m, recoupe également le contact entre le «Complexe Marnes d'Hauterive - Pierre

jaune de Neuchâtel» et la Gompholite surmontée par les Calcaires inférieurs (Fig. 47). Apparemment les pendages sont faibles (15° à 20°). D'autre part, Dériaz & Hotellier (1982) relèvent que «l'ensemble des couches traversées présente une fracturation importante d'orientation essentiellement subverticale ou oblique». Il faut relever que dans ce sondage, la Gompholite atteint presque une cinquantaine de mètres d'épaisseur, alors que dans le forage SPM 15 situé à moins de 600 m plus au N elle ne dépassait guère 1,5 m. De même, dans SPM 11, l'épaisseur des Calcaires inférieurs est de l'ordre d'une trentaine de mètres, alors qu'ils n'existent pas dans SPM 15.

En conséquence, il faut admettre l'existence probable, avant le dépôt des Marnes et Grès bariolés, d'une dépression morphologique entre les sondages SPM 15 et SPM 11, peut-être liée au grand décrochement N155-160°, qui recoupe toute la Haute-Chaîne entre le chalet du Cabaret, au NW, et la cote 1045 m sous le Creux de Praffion, au SE (Figs. 53, 55). Sur leur carte, Meurisse et al. (1971) n'avaient pas poursuivi cet accident sous le placage quaternaire.

Le sondage L 132 (490,11/125,56/570; Figs. 4, 53), implanté à environ 500 m au SW de SPM 11, n'a pas recoupé le contact entre la Molasse et son substratum mésozoïque, celui-ci étant directement recouvert par les dépôts quaternaires. Ce sondage a été décrit par Lanterno et al. (1981) et par l'un de nous (Charollais et al. 1982): si les avis concordent pour reconnaître le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel» sous les dépôts quaternaires à 27 m de profondeur, par contre l'interprétation du substratum mésozoïque recoupé par ce sondage diffère complètement.

Dans leur rapport, Lanterno et al. (1981) décrivent une série d'écailles, de haut en bas:

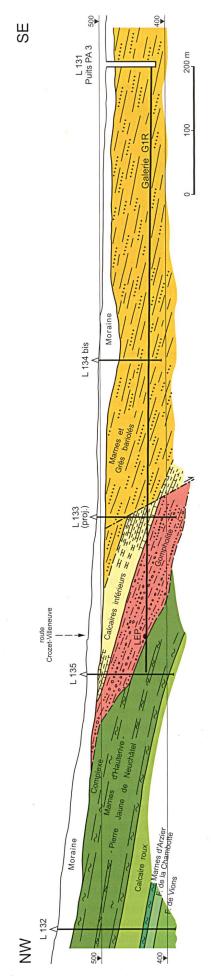
- - 27 54 m: «Complexe Marnes d'Hauterive Pierre jaune de Neuchâtel» Calcaires roux
- 54 90,3: «Complexe Marnes d'Hauterive Pierre jaune de Neuchâtel» - Calcaires roux
- 90,3 180,5: «Complexe Marnes d'Hauterive Pierre jaune de Neuchâtel» - Calcaires roux - Chambotte - Vions.

Cette interprétation avait été retenue par Barragne-Bigot (1981, p. 4), qui estimait que ces «redoublements faillés» indiquaient«l'existence de failles inverses longitudinales au Piémont et de plongement sud-est». A notre avis, ces conclusions ne peuvent être qu'hypothétiques, vu qu'aucune pendagemétrie, a été effectuée dans le sondage L 132.

Par contre, pour Charollais et al. (1982), le substratum mésozoïque serait représenté par une série stratigraphique normale à faible pendage, avec de haut en bas:

- 27 92,8 m: «Complexe Marnes d'Hauterive Pierre jaune de Neuchâtel»,
- 92,8 142,2: Calcaires roux: niveau à *Alectryonia rectangularis*, Calcaire roux *str. s.*, Guiers,
- - 142,2 153,0: Chambotte (membre inférieur)
- - 153 180,5: Vions.

Nous retiendrons cette 2^e interprétation car, d'une part, elle est basée sur des analyses microscopiques de faciès et sur des déterminations micropaléontologiques, et d'autre part, elle s'intègre tout à fait bien dans le contexte régional tant sur le plan stratigraphique que tectonique.


Le sondage L 135 (489,91/125,69/527; Figs. 4, 54), profond de 135 m et implanté à environ 300 m au S de SPM 11, présente une grande similitude avec ce dernier (Fig. 41); en effet:

- la Gompholite est en contact avec le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel»,
- la Gompholite est bien développée et se trouve directement surmontée par
- les Calcaires inférieurs,
- les pendages des couches sont faibles, compris entre 18° et 20°

Le sondage L 133 (490,11/125,56/512), d'une profondeur de 122,2 m, a traversé successivement de haut en bas, les Marnes et Grès bariolés, les Calcaires inférieurs et la Gompholite, sans atteindre le substratum mésozoïque (Fig. 40). Situé à 400 m au SE de L 135 (Figs. 4, 53, 56), il lui est tout à fait comparable. De plus les faibles pendages (15° à 20°) s'intègrent parfaitement dans le contexte régional.

Bien que **le sondage SPM 16** (489,94/125,39/515; Figs. 4, 53) implanté à 400 m à l'E de Villeneuve et d'une profondeur de 102 m, n'ait pas atteint le substratum mésozoïque, sa description est d'un grand intérêt. Après 28,2 m de dépôts quaternaires, le forage a traversé les Marnes et Grès bariolés ici à prédominance marneuse, puis, à partir de 84,5 m les Calcaires inférieurs qui comprennent notamment des niveaux charbonneux parfois riches en mollusques; ces faciès ont été observés jusqu'à 102 m. Les pendages relevés dans la Molasse oscillent entre 12° et 19°, soit une moyenne d'environ 16°. Se basant sur les observations faites dans les sondages L 133, SPM 16 et dans la galerie de reconnaissance G1R, Dériaz & Hotellier

Fig. 56: Coupe verticale selon l'axe de la galerie G1R, d'après le plan 2271.318 du Bureau Dériaz, 24.11.1982 (modifié). La situation de la galerie et des sondages est donnée sur la Fig. 4. Coord. suisses des sondages L 131 (490,56/125,05/487,69) et L 134 bis (490,24/125,34/502,1); les coordonnées des sondages L 132, L 133 et L 135 sont données dans le texte.

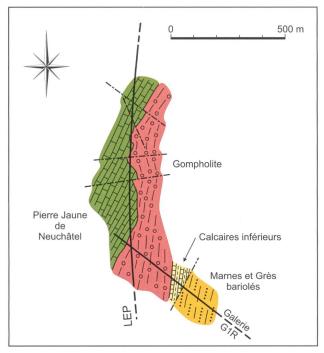


Fig. 57: Coupe horizontale au niveau du LEP, montrant la discordance de la Gompholite sur le Crétacé dans le secteur Villeneuve-Crozet (d'après Fourneaux 1998, modifié); cote env. 434 msm (situation: voir Fig. 4).

(1982) invoquent la présence «d'une faille normale, de direction approximative N70° à 80°E avec rejet vertical de 35 à 45 m», comme le montrent nos Figs. 56 et 57.

Sur les six forages implantés par le CERN entre Crozet et Villeneuve, quatre d'entre eux (SPM 15, SPM 11, L 132 et L 135) montrent donc le contact entre la Molasse et le substratum mésozoïque qui est représenté par le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel».

Si les terrains du substratum mésozoïque traversés par quatre des six forages sont facilement corrélables, il n'en est pas de même pour les formations tertiaires. En effet, la lithologie de la partie inférieure de la Molasse présente de fortes variations en faciès et en épaisseur; là aussi nous supposons la présence d'éventuelles fractures pour expliquer cette observation (Figs. 53, 55). D'autre part, les relevés faits dans le tunnel du LEP par Fourneaux (rapport non daté) nous permettent d'illustrer le contact Jura-Molasse dans la région de Crozet-Villeneuve. La coupe horizontale (Fig. 57) au niveau du LEP montre fort bien que la base de la Gompholite, observée sur près de 400 m, repose en discordance sur une surface d'érosion, probablement karstique, qui a profondément creusé le faciès Pierre Jaune de Neuchâtel. La coupe verticale passant par la galerie d'accès G1R (Fig. 56) d'une part complète l'image de ce contact et d'autre part situe une importante faille normale très probablement orientée parallèlement à l'axe de la HauteChaîne. Voir aussi, pour ce même secteur, la coupe verticale selon l'axe du tunnel du LEP que propose Martinez (1986, pl. 21).

2.7. Affleurement et sondages de la région de Sergy-Dessus

A mi-distance entre Villeneuve et Sergy (coord. françaises: 882,0/2147,0; Figs. 50, 53), la feuille St-Claude à 1/50000 indique une carrière dans le «Barrémien» (= Calcaires urgoniens) avec un plongement des couches de 5° vers le SE, ce qui est en accord avec la carte géologique de Schardt (1891). Cette carrière aujourd'hui remblayée avait été cartographiée et décrite par Copponex (1955). Les Calcaires urgoniens découverts dans cette carrière, ainsi que ceux qui sont cartographiés au-dessus de la Ferme de Trompette, jalonnent la limite de leur extension septentrionale; en effet plus au N, cette formation a certainement été érodée avant les dépôts tertiaires. Comme mentionné plus haut, elle ne réapparaît qu'à partir du Mont Moussy.

Le sondage SPM 4 (coord. suisses: 488,15/124,57/598; Figs. 4, 53), le plus élevé en altitude des six forages implantés dans la région de Sergy-Dessus, est resté sur une centaine de mètres de profondeur dans un plan de faille rempli de marnes sombres écrasées, parfois de brèches, appartenant très probablement aux Marnes et Grès bariolés (Fig. 44).

Le sondage SPM 1 (coord. suisses: 488,37/ 124,59/ 568; Figs. 4, 53) foré au NE de SPM 4, a atteint une profondeur de 205,5 m. Bien qu'il ne montre pas le contact avec la Molasse, il permet de connaître approximativement la nature du toit du substratum mésozoïque. Il s'agit des Calcaires urgoniens, qui atteignent ici une épaisseur minimale de 86 m; ils surmontent successivement le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel» et le sommet des Calcaires roux. Les pendages mesurés par Dériaz & Hotellier (1981) dans les Calcaires urgoniens, attribués à l'Hauterivien supérieur (voir VIII. 4. 1), oscillent entre 20° et 25°, ce qui est en accord avec les pendages reportés sur les affleurements voisins cartographiés par Copponex (1955).

Le sondage SPM3 (coord. suisses: 488,23/124,33/553,2; Figs. 4, 53), situé entre SPM 1 et SPM 4 et d'une profondeur de 198,1 m, a recoupé à 32,6 m le contact entre les Calcaires urgoniens et la Gompholite ici très peu épaisse et surmontée par les Calcaires inférieurs (Fig. 43). Les pendages sont compris entre 19° (au sommet) et 30° (à la base); ils concordent avec ceux observés en surface et dans les forages de la région de Sergy-Dessus. L'épaisseur réelle des Calcaires urgoniens lato sensu dépasserait 120 m; vu cette épaisseur et les caractères des faciès sommitaux, il nous semble justifié de rattacher ces derniers à l'Aptien inférieur (voir VIII.4.3).

Cette interprétation s'inscrit logiquement dans le contexte régional puisque Favre (1843, p. 97-98) avait signalé un faciès identique à Allemogne, situé à environ 2 km au S du sondage SPM 3, faciès dans lequel il avait découvert une faune caractéristique de l'Aptien inférieur.

Le sondage SPM 2 (coord. suisses: 488,49/124,39/535,8; Figs. 4,53) d'une profondeur de 180 m est tout à fait comparable à SPM 3, situé quelques centaines de mètres plus à l'W. Ici surmontés directement par les Calcaires inférieurs, les Calcaires urgoniens ont une épaisseur identique à celle découverte dans le sondage SPM 3 (Figs. 42, 43); cependant, dans SPM 2, les faciès attribués à l'Aptien inférieur n'ont pas été observés.

Le sondage SPM 5 (coord. suisses: 488,30/124,08/528; Figs. 4, 53), profond de 165,6 m, a recoupé la succession suivante de haut en bas (Figs. 45, 46): Marnes et Grès bariolés, Calcaires inférieurs, Gompholite, Calcaires urgoniens. Tant la tectonique (pendages compris entre 23° et 25°) que la stratigraphie rappellent celles des sondages voisins, à l'exception de la Gompholite qui présente des variations d'épaisseur déjà observées dans d'autres secteurs, variations qui s'expliquent par une paléomorphologie accentuée du substratum mésozoïque.

Le sondage L 130 (coord. suisses: 487,45/123,85/600; Figs. 4, 53), d'une profondeur de 192,7 m, est situé à moins d'1 km au SW des cinq sondages précédemment décrits. Lanterno et al. (1981) en donnent la succession suivante, de haut en bas:

- - 0 18 m: moraine locale;
- - 18 112,1: glaciaire ancien remanié?;
- 112,1 192,7: fragments fracturés, karstifiés et altérés de calcaires blancs, jaunes, beiges ou bruns (Crétacé indéterminé: Urgonien?, Pierre jaune de Neuchâtel?), résidus marneux gris jaune, avec traces de remplissage glaisolimonitique délavé.

Cette description et le figuré lithologique dessiné par Lanterno et al. (1981) suggèrent que le sondage L 130 a été implanté dans un plan de faille ou sur une zone faillée verticale sur près de 100 m.

Si les sondages SPM 1, SPM 2, SPM 3 et SPM 5 présentent une grande cohérence stratigraphique, les sondages SPM 4 et L 130 révèlent d'importants plans de faille. Comme ces failles ne semblent pas affecter l'inclinaison des couches du versant oriental du Jura reconnue soit dans les affleurements, soit dans les forages, elles pourraient correspondre à des décrochements orientés NW-SE. Cette hypothèse ne peut pas être argumentée en l'état actuel de nos connaissances car, entre Sergy-Dessus et Thoiry, aucun décrochement est signalé sur les feuilles St-Claude (Meurisse et al. 1971) et

St-Julien-en-Genevois (Donzeau et al. 1997); toutefois, sur la Fig. 53, nous avons figuré la trace d'un décrochement (hypothétique, mais vraisemblable), qui passerait par le sondage SPM 4 et qui se poursuivrait au S de Sergy. D'autre part, considérer les fractures reconnues dans les sondages SPM 4 et L 130 comme des failles parallèles à l'axe de la Haute-Chaîne, paraît également plausible car Signer (1992, p. 42), qui a interprété la ligne sismique SJIU3 perpendiculaire au Jura et traversant ce secteur, signale une rupture de pente des couches mésozoïques bien visible sur ce profil. Pour cet auteur, «l'inflexion du substratum [paléozoïque] a formé dans le Mésozoïque des failles inverses à déversement vers le bassin genevois, il s'agit donc de rétrocharriage». Tout le secteur compris entre Sergy dessus et Allemogne est situé, rappelons-le, à la jonction des feuilles St-Claude (1971) et St-Julienen-Genevois (1997), dans une zone où les raccords ne coincident pas très bien, donc où une nouvelle analyse sur le terrain serait nécessaire.

Enfin, les forages extrêmement rapprochés de la région de Sergy-Dessus permettent de mettre en évidence les fortes variations d'épaisseur de la Gompholite, variations dictées par l'orientation de la fracturation suivie par une érosion karstique différentielle des Calcaires urgoniens.

2.8. Sondages de la région d'Allemogne

Le sondage L 113 (coord. suisses: 488,14/122,94/493,5; Figs. 4, 53) implanté au NE d'Allemogne n'a que 30,3 m de profondeur. Après 20 m de moraine, il est directement entré dans les Calcaires urgoniens. D'après l'analyse micropaléontologique de M.-A. Conrad (*in* Lanterno et al. 1981), il s'agit de la base de cette formation attribuée dans la région à l'Hauterivien supérieur (voir II.2.4.).

Le sondage L 112 (coord. suisses: 488,36/122,87/ 481; Figs. 4, 53), d'une profondeur de 130,5 m, a fait l'objet de deux rapports inédits (Lanterno et al. 1981; Charollais et al. 1982). Sous les Marnes et Grès bariolés apparaissent successivement de haut en bas (Fig. 38): les Calcaires inférieurs, la Gompholite, le sommet des Calcaires urgoniens (Couches à orbitolines de l'Aptien inférieur). Dans ce sondage situé à 250 m au SE de L 113, le contact Gompholite / substratum mésozoïque se situe à la cote 361 msm, alors que les Calcaires urgoniens (partie inférieure) du forage L 113 ont été repérés entre les cotes 473,5 et 463,2 msm. Or, comme le montre la feuille St-Julien-en-Genevois à 1/50000 (Donzeau et al. 1997), les pendages mesurés sur les affleurements environnants sont subhorizontaux et ne permettent donc pas d'expliquer cette différence d'altitude de plus de 100 m entre les formations des Calcaires urgoniens des sondages L 113 et L 112. Elle ne peut être due qu'à une faille à fort rejet vertical, dont le plan serait proche de la verticale et qui expliquerait également les variations de pendages observées dans le forage L 112 (Hugot 1983, Fig. 12).

Les sondages L 107 (coord. suisses: 488,55/122,55/469), L 109 (coord. suisses: 488,97/122,20/463) et L 108 (coord. suisses: 489,26/121,90/446) ne dépassent pas une quarantaine de mètres et n'apportent malheureusement pas d'informations, car Lanterno et al. (1981), qui les ont décrits, n'ont pas noté les pendages. Ces trois sondages situés respectivement à 400 m, 800 m et 1400 m au SE du sondage L 112 (Figs. 4, 53) sont tous restés dans les Marnes et Grès bariolés et n'ont pas atteint les Calcaires inférieurs.

L'analyse des sondages de la région d'Allemogne permet donc de mettre en évidence une faille à fort rejet vertical. Selon Lanterno et al. (1981), il s'agirait d'une faille subverticale orientée NE-SW, parallèle à l'axe de la Haute-Chaîne. Cette hypothèse a été confortée par l'analyse des photos aériennes et par les résultats d'une prospection géoélectrique (C. Meyer de Stadelhofen, rapport inédit, juillet 1980). Cette faille avait aussi été repérée dans la région de Thoiry selon la carte tectonique jointe au rapport 2271/1 de Dériaz & Hotellier (1980).

2.9. Région comprise entre Allemogne et le défilé de l'Ecluse

Sur le flanc sud-oriental de la Haute-Chaîne, entre Allemogne et le Défilé de l'Ecluse (Fig. 53), le contact entre la Molasse et le substratum mésozoïque n'apparaît pas selon la feuille St-Julien-en-Genevois (Donzeau et al. 1997) qui montre partout la présence des Calcaires urgoniens, dont l'épaisseur est estimée à une cinquantaine de mètres dans la région du Défilé de l'Ecluse (Blondel 1990). Cette formation est profondément karstifiée et renferme de nombreux filons et poches de Grès sidérolithiques; d'après la feuille St-Julien-en-Genevois (Donzeau et al. 1997), il semblerait que ces Grès prennent une extension beaucoup plus importante vers le S à partir de Collonges.

2.10. Conclusions sur le substratum mésozoïque du bord occidental du bassin franco-genevois

De l'analyse des affleurements et des nombreux forages implantés par le CERN, il ressort que la Molasse du flanc sud-oriental de la Haute-Chaîne repose en discordance (à grande échelle) sur un substratum mésozoïque structuré, morphologiquement accidenté, et dont la composition stratigraphique varie spatialement (Fig. 53). Ce schéma diffère des conceptions antérieures, par exemple, de Rigassi (1977b, Fig. 6) ou de Trümpy (1980, p. 18 et Fig. 5),

mais correspond en tous points à ce qu'écrivait Signer (1992, p. 83): «...la Molasse s'est déposée sur un Crétacé inférieur déjà bien structuré». Les observations présentées plus haut, sont résumées ci-dessous:

- Au NE des sources de l'Allondon, l'absence de sondages et les couvertures morainique et/ou végétale ne permettent pas de connaître la nature du substratum mésozoïque. Toutefois le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel» a été repéré sur le terrain (Portes Sarrazines), mais rien ne permet de prétendre que cette formation constitue ici le substratum mésozoïque de la Molasse, qui pourrait être représenté par des terrains plus jeunes (Calcaires urgoniens?).
- A partir du Mont Mourex et encore plus au NE, la Molasse (Calcaires inférieurs) repose sur les Calcaires urgoniens.
- Aux sources de l'Allondon, la Molasse (Gompholite) repose sur le Membre inférieur de la Formation de la Chambotte (Berriasien sommital-Valanginien basal).
- Plus au SW, entre ces sources et Crozet, elle transgresse sur les Calcaires roux, plus rarement sur le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel».
- - Encore plus au SW, entre Crozet et Villeneuve, le substratum mésozoïque n'est plus représenté que par le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel».
- - A partir de la région de Sergy-Dessus et jusqu'au Défilé de l'Ecluse, la Molasse repose sur les Calcaires urgoniens; mais, alors qu'aux environs de Sergy-Dessus cette formation atteint 120 m d'épaisseur (sondage SPM 3), elle ne mesure plus qu'une cinquantaine de mètres près du Défilé de l'Ecluse. A l'inverse, les Grès sidérolithiques semblent peu développés au NE de Sergy-Dessus, alors qu'ils prennent une grande extension au SW.

La grande variabilité des formations constituant le substratum mésozoïque de la Molasse, sur le flanc sud-oriental de la Haute-Chaîne entre Divonne-les-Bains et le Défilé de l'Ecluse, offre des perspectives nouvelles sur la compréhension de la structuration régionale avant le dépôt de la Molasse (Gompholite et/ou Calcaires inférieurs et/ou Marnes et Grès bariolés): ondulations, décrochements, failles parallèles à l'axe de la Haute-Chaîne (Fig. 53). Certaines fractures sont très probablement fort anciennes; c'est elles qui auraient dicté les grands traits de l'érosion karstique différentielle des Calcaires urgoniens, contribuant ainsi à accentuer une paléomorphologie accidentée, d'où les fortes variations d'épaisseur des dépôts de gompholites. Ces conclusions concordent avec les observations de Signer (1992, p. 42), qui a relevé sur toutes les lignes sismiques NW-SE une rampe du substratum paléozoïque qui s'élève vers le NW sous la première chaîne; cette rampe serait à l'origine de plusieurs failles inverses à déversement vers le bassin francogenevois, failles détectées dans les couches mésozoïques.

3. Bord méridional du bassin franco-genevois

3.1. Flanc sud-est de la Montagne du Vuache Le bassin franco-genevois est bordé au S par la Montagne du Vuache et, à partir de Dingy, par la ligne de crête dénommée «la Montagne de Sion» (Fig. 51), qui aboutit au col du Mont Sion (785 m). Dans cette région, aucun contact entre la Molasse et son substratum mésozoïque ne serait visible sur le terrain d'après les feuilles St-Julien-en-Genevois (Donzeau et al. 1997) et Seyssel (Donze 1972), bien que Favre (1843, p. 115, note infrapaginale) ait écrit: «...j'ai vu la molasse redressée contre le Vouache». Récemment, l'un de nous (J. C. 2006, inédit) a découvert près de Cessens (726,05/5107,10/760) un affleurement montrant le contact entre les Calcaires urgoniens et la Gompholite. D'autre part, dans un affleurement de Molasse figuré au-dessus de Vulbens sur la feuille St-Julien-en-Genevois (Donzeau et al. 1997), les Calcaires inférieurs, déjà repérés par D. Rigassi (voir Michel 1965), apparaissent en pente structurale et sont en contact tectonique avec les Marnes et Grès bariolés très redressés. Le substratum mésozoïque de la Molasse de tout le versant oriental du Vuache est très certainement constitué par les Calcaires urgoniens, sans que leur épaisseur puisse être évaluée précisément.

Comme la faille du Vuache borde le versant sud-occidental de la Montagne du Vuache et ne limite donc pas directement le bassin franco-genevois, nous ne traiterons pas ici de ce fameux décrochement sénestre, d'une mobilité constante, comme le prouvent les nombreux séismes décrits dans la littérature; nous renvoyons le lecteur au travail de Donzeau et al. (1998).

A environ 4 km au NE du flanc oriental du Vuache, sur le bord méridional du bassin molassique francogenevois, l'analyse des profils sismiques a permis à Signer (1992, p. 41) de repérer dans la région de Valleiry une dépression de la surface sous-tertiaire atteignant la cote - 400 m, qu'il a nommée «structure synclinale de Valleiry» et qui correspond à une cuvette d'une quinzaine de km de longueur orientée parallèlement à l'axe du Vuache; d'après cet auteur, elle se prolonge jusqu'au pied du Jura comme le montrent les profils sismigues 82Gex2 et 82Gex5. Par contre, faute de documents géophysiques, Signer (1992, Fig. 17) n'a pu raccorder les structures de subsurface décelées par la géophysique avec les profils géologiques du versant nord-oriental du Vuache, établis à partir des observations d'affleurements.

3.2. Montagne de Sion

Ce haut topographique permet d'observer à l'affleurement dans les régions du Nant Trouble et d'Andilly (Fig. 51), au-dessus des Grès et Marnes gris à gypse, des couches datées de l'Aquitanien et rattachées à la Molasse grise de Lausanne. Les sondages et les tunnels de l'autoroute A41 (Figs. 20, 21) ont traversé la même série, dont le contenu fossilifère a permis de confirmer l'âge aquitanien.

La nature, la cote et la structure du substratum mésozoïque n'ont pas été dévoilées par ces sondages trop peu profonds. Toutefois la présence des Calcaires urgoniens au Mont Salève et dans le sondage Humilly-1 permet de supposer que cette formation constitue le substratum mésozoïque de la série molassique du Mont Sion.

3.3. Sondages Humilly-1 et Humilly-2

Le sondage Humilly-1 (coord. suisses: 883,88/128,04/645; Fig. 2) a traversé successivement les Grès et Marnes gris à gypse (d'une épaisseur apparente dépassant 100 m), les Marnes et Grès bariolés (600 m), les Grès sidérolithiques (20 m). Cette série tertiaire repose sur les Calcaires urgoniens à 700 m de profondeur, soit à une centaine de mètres au-dessous du niveau de la mer; la puissance de l'Urgonien atteindrait une centaine de mètres d'après Wassall et Assoc. (1961).

Le sondage Humilly-2 (coord. suisses: 885,02/130,53/500; Figs. 2, 9) a découvert les Marnes et Grès bariolés (300 m), les Calcaires inférieurs (88 m), la Gompholite (2 m), les Grès sidérolithiques (7,5 m); il s'agit également d'épaisseurs apparentes. A notre avis, la puissance des Calcaires inférieurs a été surévaluée au détriment des Marnes et Grès bariolés. Cette série repose sur les Calcaires urgoniens, dont l'épaisseur apparente (130 m) est du même ordre de grandeur que celle observée dans le sondage Humilly-1.

Si l'on compare l'altitude (par rapport au niveau de la mer) du toit des Calcaires urgoniens dans les sondages Humilly-1 et Humilly-2, on constate une différence d'au moins 160 m, puisque dans le puits Humilly-2, le contact entre la base de la série molassique et le sommet du substratum mésozoïque se situe à 63 m au-dessus du niveau de la mer. Il paraît logique d'imputer cette disposition à la présence d'une faille entre les deux forages Humilly-1 et Humilly-2, en l'occurrence au passage d'un grand décrochement orienté NW-SE, donc parallèle à la «faille du Vuache» et au décrochement dit du Coin (Fig. 1). Ce décrochement bien observable à l'extrémité méridionale du Mont Salève, à Cruseilles, est caractérisé par une composante verticale importante qui explique l'élévation des Calcaires urgoniens dans le compartiment NE (visible à Cruseilles et déductible dans le sondage Humilly-2) par rapport à l'abaissement du compartiment SE. Cette interprétation est confirmée dans le bassin molassique franco-genevois par Signer (1992, p. 45-46), grâce à la ligne sismique HR530 qui révèle «une structure «en fleur» qui s'étend de la limite sud-ouest du décrochement de Cruseilles à celle nord-est du Pommier». Pour Signer (1992), un linéament parallèle à la faille du Vuache, passe par Cruseilles et le forage Humilly-2; dans ce décrochement de Cruseilles, «toutes les couches du Trias au Tertiaire semblent affectées».

3.4. Sondage Gex CD 06

Le sondage Gex CD 06 (coord. suisses: 884,70/132,95/452; Figs. 2, 15), implanté à 2,5 km au N du puits Humilly-2, a rencontré à 398,2 m de profondeur directement les Calcaires urgoniens, sous les Marnes et Grès bariolés et les Grès sidérolithiques. Le toit de cette formation se trouve donc à 53,7 m au-dessus de la mer, ce qui concorde (à une dizaine de mètres près) avec les données fournies par le sondage Humilly-2.

3.5. Conclusions sur le substratum mésozoïque du bord méridional du bassin franco-genevois Sur le bord méridional du bassin molassique franco-genevois, le substratum mésozoïque est représenté sur une large portion, sinon en totalité, par les Calcaires urgoniens; toutefois les sondages sont trop peu nombreux pour pouvoir en préciser la structure et la profondeur.

4. Partie centrale du bassin franco-genevois

4.1. Région d'Echenevex-Versonnex

Seuls quelques échantillons de Molasse provenant des sondages **SPL 5/4** (coord. suisses: 495,11/129,63/508) et **SPL 6/5** (coord. suisses: 497,06/128,70/469) implantés dans cette région (Figs. 4, 30, 31, 50) ont été analysés sur le plan micropaléontologique. Il nous a semblé néanmoins utile de mentionner les données fournies par les nombreux autres forages (Dériaz & Hotellier 1982) qui nous renseignent sur la structure du bassin molassique et de son substratum.

A 500 m au SE d'Echenevex, le sondage **SPL 5/1** (coord. suisses: 492,72/129,23/541) a découvert sous les dépôts quaternaires, de 38,5 à 120,5 m, des alternances de marnes gréseuses bigarrées et de grès quartzo-feldspathiques chloriteux à ciment calcaire, dont le pendage est subhorizontal.

A peu près à mi-distance entre Echenevex et Versonnex, trois sondages ont été forés: **SPL 4/5** (coord. suisses: 493,68/ 129,75/530), **SPL 5/9** (coord. suisses: 494,06/ 129,78/523) et **L 126** (coord. suisses: 494,30/ 129,83/522). Dans le sondage SPL 4/5, les Marnes et Grès bariolés ont été traversés entre 50,6 m et 54,0 m: il s'agit de marnes avec un pendage subhorizontal. Dans le forage SPL 5/9, les Marnes et Grès bariolés rencontrés sous les dépôts quaternaires, entre 40,6 et 44,2 m, ont aussi montré un pendage horizontal. Par contre, dans le

sondage L 126 décrit par Lanterno et al. (1981), les pendages n'ont pas été relevés dans les Marnes et Grès bariolés.

A environ 1,5 km au NW de Versonnex, 5 sondages ont été implantés très proches les uns des autres: **SPL 5/4, SPL 5/6** (coord. suisses: 495,27/129,59/506), **SPL 5/7** (coord. suisses: 494,96/129,66/511), **SPL 5/8** (coord. suisses: 495,03/129,64/509), **SPL 5/10** (coord. suisses: 495,46/129,56/503). Les pendages des couches dans les Marnes et Grès bariolés, lorsqu'ils ont pu être mesurés, sont toujours horizontaux à subhorizontaux. Après avoir traversé 51,5 m de dépôts quaternaires, le forage SPL 5/4 (Figs. 4, 30) a recoupé les Marnes et Grès bariolés sur 36 m d'épaisseur.

Dans le sondage SPL 6/1 (coord. suisses: 494,08/ 129,15/520), les Marnes et Grès bariolés, à pendage subhorizontal, reconnues entre 36,2 et 100,6 m sous les dépôts quaternaires, sont représentés par des alternances de marnes gréseuses bigarrées et de grès quartzo-feldspathiques chloriteux à ciment calcaire. Le sondage **SPL 6/2** (coord. suisses: 494,11/129,20/ 520) a montré, sous les dépôts quaternaires, les mêmes faciès entre 35,0 et 101,2 m avec le même pendage subhorizontal que dans le forage SPL 6/1. Le sondage SPL 6/5 d'une profondeur de 23,1 m a découvert dès 15 m, les Marnes et Grès bariolés (Figs. 4, 31) dont les rares charophytes isolées n'autorisent pas une datation précise. Cette même formation a été reconnue dans le sondage SPL 6/7 (coord. suisses: 496,44/129,14/486), entre 19,0 et 23,5 m; le pendage des couches est également subhorizontal.

En conclusion, entre Cessy et Versonnex (Fig. 50), soit sur un axe d'environ 4 km orienté NW-SE, tous les sondages sus-mentionnés ont atteint la Formation des Marnes et Grès bariolés, dont les pendages sont horizontaux à subhorizontaux. Par contre, nous ne disposons d'aucune information sur le substratum mésozoïque.

4.2. Région de Ferney-Voltaire

Au N de Ferney-Voltaire (Fig. 50), les sondages SPL 7/2 (coord. suisses: 497,92/124,75/432) et SPL 7/3 (coord. suisses: 498,29/124,60/425) n'ont traversé que les Marnes et Grès bariolés sur une épaisseur de 70,5 m pour le premier et de 5,4 m pour le second, dans lequel un pendage subhorizontal a pu être relevé.

En vue de préciser le contact entre la Molasse et les formations quaternaires, le CERN a implanté de nombreux sondages entre Ferney-Voltaire et Meyrin: SPL 8/1 à 8/13. Ils ont tous recoupé les Marnes et Grès bariolés représentés dans cette région par une alternance de marnes, de marnes finement gréseuses et de grès quartzo-feldspathiques micacés à ciment calcaire.

Des pendages subhorizontaux ont été mesurés sur seulement trois sondages: **SPL 8/2** (coord. suisses: 496,48/121,93/428), **SPL 8/7** (coord. suisses: 496,55/122,04/428) et **SPL 8/9** (coord. suisses: 497,12/122,52/417); dans ces trois puits (Figs. 4, 33, 35), les Marnes et Grès bariolés ont été forés sur moins de 40 m. Vus les pendages observés dans les Marnes et Grès bariolés, il semblerait justifié d'admettre que le pendage du substratum mésozoïque demeure subhorizontal entre Ferney-Voltaire et Meyrin (Fig. 55).

4.3. Région de Prévessin et du site du CERN D'août 1970 à juin 1971, 36 sondages prévisionnels ont été effectués sur le site du SPS, sur territoire suisse (S 1 à S 5) et sur territoire français (F 1 à F 31). Sous les dépôts quaternaires, tous ces sondages ont atteint les Marnes et Grès bariolés, ce qui représente au total 895,6 m de carottes. Nous n'avons pu examiner que quelques échantillons des forages F 6, F 13 et F 15 (Figs. 4, 22, 24, 25), le reste du matériel n'ayant pas été conservé. Ces sondages n'ont pas atteint le substratum mésozoïque. Le sondage F 6 (coord. suisses: 493,98/123,33/468; Fig. 23), le plus profond avec 78,60 m, présente des pendages subhorizontaux. D'après Lanterno (1972, p. 9 et Fig. 3), «la carte structurale du toit de la molasse, établie à partir des sondages effectués au CERN de 1955 à 1971, montre que le soubassement rocheux molassique [...] est un bloc parfaitement homogène [...], dont les formations présentent un pendage de quelques degrés vers le SE».

Dans le sondage Gex CD 01 (coord. suisses: 494,60/123,75/471; Figs. 4, 10), les Calcaires inférieurs surmontés par les Marnes et Grès bariolés reposent directement sur le faciès Pierre jaune de Neuchâtel; les pendages y sont subhorizontaux. Le toit du substratum mésozoïque est situé à 103,2 msm. Dans les forages L 132, L 135, SPM 11 et SPM 15 implantés à 6 km plus à l'W, le toit du substratum mésozoïque, également représenté par le faciès Pierre jaune de Neuchâtel, avait été rencontré entre les cotes 436,7 m (SPM 11) et 543,8 m (L 132). Bien que le substratum soit de même nature, il serait hasardeux en l'état actuel de nos connaissances de relier directement le faciès «Pierre jaune de Neuchâtel» du sondage Gex CD 01 avec celui des sondages du pied du Jura, sans envisager la possibilité d'éventuelles fractures.

Le sondage Gex CD 07 (coord. suisses: 494,28/123,83/469; Figs. 4, 16) n'a pas atteint le substratum mésozoïque. Toutefois il semble légitime de considérer que celui-ci est également représenté par le faciès Pierre jaune de Neuchâtel. En effet, le sondage CD 07 implanté à une cinquantaine de mètres du puits CD 01 et à quasiment la même altitude, a traversé le contact entre les Calcaires inférieurs et les

Marnes et Grès bariolés, à presque la même cote que celui-ci: 222,4 m dans CD 01 et 226,3 m dans CD 07 (ou à 224,8 m si l'on tient compte de la différence d'altitude entre les deux plates-formes de forage). Cet argument n'est certes pas déterminant puisque la limite entre les Calcaires inférieurs et les Marnes et Grès bariolés n'est pas formellement définie et semble assez variable suivant les régions.

En conclusion, dans la région de Prévessin et du site du CERN (Fig. 50), le substratum mésozoïque, qui accuse un faible pendage vers le SE, est très probablement représenté partout par le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel».

4.4. Région de Saint Genis-Pouilly

Dans cette région (Fig. 50), il n'y a pas de sondage qui ait atteint le substratum mésozoïque. Les sondages SPL 2/3 (coord. suisses: 490,69/123,27/449; Figs. 4, 21) et SPL 2/7 (coord. suisses: 489,99/124,73/490) au N de Saint Genis-Pouilly, SPL 2/5 (coord. suisses: 491,40/122,31/440; Figs. 4, 22) et SPL 2/6 (coord. suisses: 491,49/122,20/442) à l'E, SPL 2/1 (coord. suisses: 490,53/121,59/426) et SPL 2/2 (coord. suisses: 490,54/121,65/429) au S, ont tous rencontré sous les dépôts quaternaires les Marnes et Grès bariolés; dans SPL 2/1, SPL 2/2, SPL 2/5, SPL 2/7, les pendages sont subhorizontaux (Fig. 55).

Le sondage Gex CD 02 (coord. suisses: 490,24/123,17/450; Figs. 4, 8) a traversé les Marnes et Grès bariolés, les Calcaires inférieurs et la Gompholite, sans atteindre le substratum mésozoïque, qui devrait se trouver ici à une cinquantaine de mètres audessus du niveau de la mer. D'après le rapport de fin de sondage de BP-France (SFEPBP 1983), « la présence de rares galets anguleux de silex brun pourrait indiquer la proximité d'un substratum de la Molasse, plutôt hauterivien, sous faciès Pierre jaune de Neuchâtel».

Il est intéressant de relever que le sondage Gex CD 02 a été implanté à moins de 2 km à l'E du L 112; or, dans ce dernier, le substratum mésozoïque représenté par le sommet des Calcaires urgoniens (Couches à orbitolines) est situé à 361 msm.

4.5. Région de Vernier

Si les études motivées par le tunnel autoroutier de contournement de Genève ont apporté de nombreux résultats nouveaux sur la connaissance de la Molasse des environs de Vernier (Angelillo 1987, Fig. 19), aucun forage profond n'a été implanté dans ce secteur; nous ne disposons donc pas d'observations directes du substratum mésozoïque (Fig. 22). Cependant, les interprétations de la sismique par Signer (1992) et Signer & Gorin (1995) conduisent à

admettre que les fractures reconnues dans la Molasse de la région de Vernier s'enracinent dans le substratum mésozoïque et correspondent à la prolongation du décrochement sénestre du Coin; son extension dans la Haute-Chaîne reste encore imprécise (région du Crozet - sources de l'Allondon - Branveau; Fig. 50).

4.6. Région de Choully et de Peissy

Le sondage de Peissy-1 (coord. suisses: 489,97/119,05/474; Figs. 2, 5) a traversé les Marnes et Grès bariolés et les Calcaires inférieurs sans atteindre le substratum mésozoïque. Dans la littérature (Heim 1922, Poldini 1963), la partie supérieure de ce substratum est classiquement attribuée aux Calcaires urgoniens.

Signer (1992, p. 46-47) a détecté sur les profils sismiques une structure parallèle à la Haute-Chaîne, qui correspond à un bombement mésozoïque et qui se manifeste dans la morphologie par les coteaux de Challex (510 m), de Choully (505 m) et par la colline de Prevessin-Moëns (482 m). Les anomalies gravimétriques résiduelles avaient déjà révélé un axe positif sous Choully, interprété comme une «remontée» de 250 m du contact de la Molasse sur le substratum mésozoïque (Poldini 1963). Toutefois, l'ampleur de cette remontée est estimée à 50 m au plus par Signer (1992, p. 47).

Tout à l'W et d'après Lagotala (1948, p. 3 et Fig. 1), cet axe positif (anticlinal) est rejeté vers le S d'environ 400 m par un décrochement NNW-SSE que suit le cours inférieur de l'Allondon.

De nouvelles données ont été apportées grâce à une étude sismique à haute résolution (GEO2X 2006) dans la région de Choully, à environ 1 km au N du son-

dage de Peissy. Un profil orienté NW-SE montre la structure anticlinale de la colline de Choully, affectée de failles subverticales qui la découpent en «miniblocs» (Fig. 58).

4.7. Région de Challex

L'ancien sondage Challex-2 (coord. suisses: 487,75/115,00; Fig. 2) n'a pas touché le substratum mésozoïque. Les sondages Gex CD 03 (coord. suisses: 880,60/ 138,50 /505; Figs. 2, 12) et **Gex CD 04** (coord. suisses: 881,65/137,97/415; Figs. 2, 13), situés respectivement au NE et au SW de Challex et séparés latéralement de 1,25 km, ont recoupé la succession «Marnes et Grès bariolés - Calcaires inférieurs» et ont atteint le substratum mésozoïque représenté par les Calcaires urgoniens. Bien que dans ces deux puits les pendages soient subhorizontaux, la différence d'altitude du toit de l'Urgonien dans ces deux sondages est significative: 221 msm pour CD 03 et 138 msm pour CD 04. Cette différence d'altitude, qui reflète une surface topographique irrégulière du substratum, ne peut être imputée qu'à une structuration (bombement, fractures) ou/et à une érosion différentielle anté-molassique des Calcaires urgoniens, ce qui explique:

- la présence de 7 m de Gompholite dans le sondage CD 03, alors qu'elle est absente dans le puits CD 04,
- la surépaisseur des Calcaires inférieurs dans le sondage CD
 04 par rapport à celle observée dans le puits CD 03.

4.8. Région de Bernex

Sur le profil sismique GG87-4, Signer (1992, p. 41) constate que dans la région de Bernex (Fig. 51), les rejets des failles affectant tout le substratum mésozoïque «s'amenuisent, ces dernières devenant de simples flexures à l'échelle des profils sismiques, [...] certaines de ces flexures sont exprimées dans la topographie de surface», comme par exemple le

Arch.Sci. (2007) 60: 59-174

Fig. 58: Profil sismique selon le tracé de la galerie de Choully, extrait du rapport GEO2X (2006), modifié (coord. suisses: 490,44/120,98[extrémité NW du profil]; 492,22/119,36 [extrémité SE du profil]) et reproduit avec l'autorisation du Service cantonal de Géologie de Genève. En jaune clair: couverture morainique.

ARCHIVES DES SCIENCES

flanc méridional abrupt du coteau de Bernex. Comme on l'a vu plus haut, Poldini (1963) avait déjà mis en évidence cette relation entre la fracturation de subsurface et la morphologie du coteau de Bernex en se basant sur les anomalies gravimétriques résiduelles: il avait alors interprété l'axe gravifique positif découvert sous Bernex comme étant la résultante d'une tectonique en marche d'escalier descendant vers le SE; d'après Signer (1992, p. 41-42), «les flexures observées sur la sismique correspondent exactement à cette description» et (p. 66) «le flanc abrupt sud-est du coteau de Bernex est lié à une grande faille mésozoïque qui se prolonge, par ailleurs, dans les terrains molassiques tertiaires».

4.9. Région de Chancy

Le sondage Gex CD 05 (coord. suisses: 880,55/ 135,05/365; Figs. 2, 14) implanté sur la rive droite du Rhône, au N de Chancy, a traversé les Marnes et Grès bariolés, les Calcaires inférieurs et les Grès sidérolithiques sans atteindre le substratum mésozoïque, qui devrait se trouver ici peu au-dessous de la cote -195 m. La partie inférieure du sondage a révélé des perturbations tectoniques importantes (superposition stratigraphique anormale; voir V.2.5). Situé à 3 km au NNE du forage CD 04 et à un peu plus de 4 km au SE de CD 06, le puits CD 05 révèle une cote du toit du substratum mésozoïque très nettement inférieure à celle découverte dans ces deux autres forages: 138 msm dans CD 04 et 54 msm dans CD 06. Il est donc évident que le sondage CD 05 a été implanté dans une zone tectonisée fortement déprimée.

5. Partie orientale du bassin franco-genevois

5.1. S de la vallée de l'Arve

Sur rive gauche de l'Arve, les seules données sur le substratum mésozoïque du bassin franco-genevois sont fournies par le forage géothermique de **Thônex** (coord. suisses: 505,27/117,45/428; Figs. 2, 17a, b). Bien qu'implanté à 2,5 km au NW du Petit-Salève (Fig. 52), ce puits a traversé des terrains qui se trouvaient originellement à une dizaine de km en arrière du front de cet «anticlinal» jurassien, si l'on tient compte de l'amplitude de son chevauchement sur le bassin molassique franco-genevois. Le substratum mésozoïque est ici constitué par les Calcaires urgoniens épais d'une centaine de mètres; cette formation est surmontée par les Grès sidérolithiques, puis par les Marnes et Grès bariolés et enfin par les Grès et Marnes à gypse; la Gompholite et les Calcaires inférieurs sont absents.

Au NE de Thônex, sous le village de Puplinge (Fig. 52), la sismique a mis en évidence une dépression du socle mésozoïque, profonde d'un millier de mètres,

parallèle au chaînon du Salève et due «à l'enfouissement des couches sous l'effet de surcharge du front chevauchant du Salève» (Signer 1992, p. 41). Cette dépression remonte ensuite en direction du décrochement du Coin, où elle se situe à la cote -500 m.

5.2. Vallée de l'Arve

Il n'y a pas eu de sondage profond dans ce secteur et, comme le soulignent Signer & Gorin (1995), les études géophysiques sont nettement insuffisantes pour permettre d'établir un profil crédible à travers le bassin franco-genevois entre Etrembières au SE et la région de Gex - col de la Faucille au NW.

5.3. N de la vallée de l'Arve

Le sondage de Messery-1 (904,73/ 157,52/ 425; Figs. 2, 7, 52) implanté sur la Molasse autochtone au SE de Messery et le sondage Mont de Boisy-1 (908,36/ 152,67/ 678; Figs. 2, 8, 52) situé sur la Molasse charriée au NW de Boisy, ont tous deux atteint le substratum mésozoïque représenté par les Calcaires sublithographiques du Crétacé supérieur. Cette formation n'a jamais été observée à l'affleurement ou en sondage dans le bassin franco-genevois, au S d'une transversale passant par la vallée de l'Arve et Gex. Pourtant, les Calcaires crayeux à silex ont dû s'y déposer puisqu'ils se retrouvent très souvent à l'état de galets dans la Gompholite.

La cote du toit du substratum mésozoïque dans les sondages Messery-1 et Mont-de-Boisy-1, distants de 5,5 km, est de -164 m pour le premier et -1089,4 m pour le second. Cette différence d'altitude laisse supposer une pente moyenne du toit du substratum de l'ordre d'une dizaine de degrés vers le SE (pour autant qu'il n'y ait pas de faille), ce qui est tout à fait compatible avec le contexte géologique régional.

6. Conclusions

De l'étude présentée ici, et en accord avec d'autres travaux régionaux (notamment Signer 1992; Morend 2000; Charollais et al. 2006), il ressort très clairement que, dans le bassin franco-genevois et avant le dépôt de la Molasse, le substratum mésozoïque était:

- - structuré (ondulations et failles),
- accidenté morphologiquement (karst, paléo-vallées),
- érodé plus ou moins profondément suivant les secteurs.

IXII. ÂGE DE LA MOLASSE DU BASSIN FRANCO-GENEVOIS

Les nombreux échantillons de la Molasse du bassin franco-genevois décrits ci-dessus fournissent des informations bio- et chronostratigraphiques de précision très inégale. Toutefois, en assemblant les différentes pièces du «puzzle», les données présentées dans les chapitres précédents permettent de proposer un cadre chronologique fiable (Fig. 49).

1. Substratum mésozoique

Le sommet du substratum mésozoïque souvent karstifié (avec remplissage de grès sidérolithiques) sur lequel repose la Molasse, est constitué par diverses formations crétacées, dont les âges sont compris entre le Crétacé supérieur (Calcaires crayeux à silex) et le Berriasien supérieur - Valanginien inférieur (Membre inférieur de la Formation de la Chambotte).

2. Sidérolithique

Le Sidérolithique n'a pas été daté dans la région franco-genevoise; par analogie avec celui du Jura vaudois, il est attribué à l'intervalle Bartonien - Priabonien.

3. Gompholite

La base du remplissage molassique est représentée, soit par la Gompholithe, soit par les Calcaires inférieurs, soit directement par les Marnes et Grès bariolés.

La Gompholite n'a pas fourni de datation directe, sauf dans le sondage L 135 (31,0 - 32,5 m), où une association de charophytes a été découverte à son sommet; mais celle-ci s'étend sur un laps de temps très large puisqu'elle couvre les zones à Major et/ou à Microcera (= MP 23-26), voire la base de la zone à Ungeri (= MP 27-28). Dans ce même sondage, la base des Calcaires inférieurs (27,5 m), donc juste au-dessus du sommet de la Gompholite, a fourni l'otolithe genus Eleotridarum *martinii*, qui correspondrait aux zones MP 24-25. Même si la biozonation basée sur les otolithes pose encore des problèmes de corrélation avec celle des charophytes, il faut, en l'état de nos connaissances, rattacher provisoirement la Gompholite du pied du Jura aux zones MP 24 et MP 25, soit au Rupélien supérieur - Chattien basal.

Le sondage L 135 ayant été implanté dans la partie distale du bassin molassique franco-genevois, il serait normal que la Gompholite qu'il a traversée, soit plus jeune que celle qui se trouve en position proximale, si l'on admet une migration de la subsidence orientée du SE vers le NW dans le bassin molassique (Charollais et al. 2006, p. 40). Ceci est d'ailleurs fort bien montré dans la coupe dessinée par Rigassi (in Lombard & Charollais, 1965; Fig. 4) entre le Jura et les chaînes subalpines: l'antériorité des faciès gompholitiques du versant oriental du chaînon du

Salève (Poudingues de Mornex) par rapport à ceux du bassin franco-genevois apparaît très clairement. Mais faute d'arguments paléontologiques, l'âge des gompholites du versant oriental du Salève n'est pas connu. Par contre, nous savons qu'au centre du bassin compris entre le Salève et le front des chaînes subalpines (Charollais et al. 1981), la sédimentation molassique débute dans la zone de Montalban (niveau de Lovagny 14, = MP 23), voire à la base de la zone d'Heimersheim (niveau de Grenchen 1, = MP 24).

Nous n'avons pas relevé dans le bassin molassique franco-genevois un âge qui soit antérieur au Rupélien supérieur (MP 24, OT O2, Zone à Major), contrairement à ce qu'indiquent les données acquises sur le plateau vaudois ou dans les synclinaux jurassiens (Berger et al. 2005). La totalité du remplissage du bassin franco-genevois est donc postérieure à la régression de l'UMM (MP 22-23, Berger et al. 2005), dont le biseau («pinch out») se situe sur sa marge sud-orientale (Rigassi 1977a).

4. Calcaires inférieurs

En premier lieu, il faut rappeler que les Calcaires inférieurs, qui n'apparaissent pas partout dans le bassin franco-genevois, représentent une unité lithologique, dont la base est bien définie, mais dont le sommet reste flou. Dans bien des cas, la limite entre les Calcaires inférieurs et les Marnes et Grès bariolés a été fixée arbitrairement. De ce fait, la datation de la base des Calcaires inférieurs peut être donnée avec précision, ce qui n'est pas le cas pour son sommet.

4.1. Datation de la base des Calcaires inférieurs dans les sondages SPM 11 et SPM 5

Parmi tous les sondages étudiés, le forage SPM 11 est certainement un des plus importants car les Calcaires inférieurs y ont livré à leur base des dents de micromammifères, qui doivent être attribuées aux niveaux de Wynau 1 - Boningen 1 (= MP 27); cette datation repose sur la découverte d'Issiodoromys quercyi à 4 m au-dessus du contact Gompholite / Calcaires inférieurs (éch. 48,0 m). Plus haut stratigraphiquement, à 45,5 m, la coexistence de *Plesiosminthus* et d'*Eomys mo*lassicus permet de rattacher cette partie des Calcaires inférieurs aux niveaux de Mümliswil et Wynau 1 (= MP 26 [sommet] - MP 27 [base]), car ce n'est que dans ces deux niveaux que ces deux formes coexistent. Enfin, encore plus haut dans ce sondage, à 27,5 m la découverte d'Allocricetodon cf. incertus correspond probablement à des niveaux compris entre Oensingen 1 et Fornant 7 (= MP 26 [base] - MP28 [base]). En conclusion, dans le sondage SPM 11, les Calcaires inférieurs semblent bien correspondre à la zone MP 27, voire MP 28, partie inférieure.

Dans le sondage SPM 5, la partie basale a livré Eucricetodon dubius et Eomys molassicus (ou E. ebnatensis) qui indiquent la zone MP 27, probablement son sommet (niveau de Boningen 1). Cette datation est confirmée par l'âge (zone à Ungeri) des associations de charophytes provenant des mêmes couches. Encore plus haut stratigraphiquement, les Calcaires inférieurs ont fourni, avec des charophytes de la zone à Ungeri, Allocricetodon incertus, Eomys aff. major, E. molassicus ou ebnatensis. On peut en conclure que l'extension stratigraphique des Calcaires inférieurs, bien que difficile à estimer à cause d'une transition graduelle avec les Marnes et Grès bariolés, est probablement restreinte dans ce sondage aux zones MP 27-28.

4.2. Datation de l'ensemble des Calcaires inférieurs dans d'autres sondages

Les données acquises dans d'autres puits presque tous implantés dans la partie distale du bassin franco-genevois, sont principalement basées sur les mammifères, mais aussi sur les charophytes, rarement sur les otolithes. Les résultats sont identiques aux datations ci-dessus, en tout cas pour la partie inférieure des Calcaires inférieurs.

- Dans le sondage de Peissy-1, Eomys cf. molassicus, cf. Allocricetodon incertus et Blainvillimys sp. indiquent les niveaux d'Oensingen 1 - Wynau 1 (= MP 26 - MP 27 [base]). Les charophytes confirment cette datation, puisqu'elles appartiennent à la zone à Ungeri (= MP 27-28); à la base des Calcaires inférieurs, les associations de charophytes pourraient être attribuées au sommet de la zone à Microcera (= MP 26).
- Dans le sondage Gex CD 01, les charophytes appartiennent à la zone à Microcera (= MP 24 [sommet] - MP 26) et Ungeri (= MP 27-28). Les otolithes correspondent à la zone OT-O3 (= ± MP 25-26), éventuellement à la zone OT-O2, ce qui est partiellement en accord avec les datations fournies par les charophytes.
- Dans le sondage Gex CD 02, cf. Eomys molassicus et Eomys cf. ebnatensis indiquent les niveaux de Wynau 1 Rickenbach (= MP 27 MP 29 [base]). Les datations basées sur les charophytes concordent avec celles obtenues par les mammifères, puisqu'elles correspondent probablement à la zone à Microcera (= MP 24 [sommet] MP 26) et à la zone à Ungeri (= MP 27-28).
- Dans le sondage Gex CD 04, les Calcaires inférieurs appartiendraient peut-être à la zone à Microcera (= MP 24 [sommet] MP 26) et leur sommet à la zone à Ungeri (= MP 27-28). Les datations basées sur les otolithes ne concordent pas avec ces attributions. En effet l'âge du sommet des Calcaires inférieurs (175,6 176,1 m) basé sur le genus Eleotridarum martinii, indiquerait la zone OT O2, reconnue dans la biozone MP 24 en Bavière (synclinal de Murnau); cette espèce témoignerait d'un biotope en eau saumâtre. Cette datation est donc à prendre avec précaution, car elle est en contradiction avec toutes les données fournies par les autres groupes fossiles étudiés.

- Dans le sondage Gex CD 05, les rares charophytes n'autorisent pas de datation précise, puisqu'elles appartiennent probablement aux zones à Microcera (= MP 24 [sommet] MP 26) et/ou à Ungeri (= MP 27-28). Il en est de même dans les sondages Gex CD 06 et Gex CD 07.
- Dans le sondage L 112, ont été découverts *Gliravus* cf. bravoi (Wynau 1 - Fornant 6 [= MP 27-28]) et *Eomys* molassicus (Oensingen 1 - Wynau 1 [= MP 26 - MP 27, base]).
- Dans le sondage L 135, la population de *Rhabdochara stockmansi-major* plaiderait pour un âge relativement ancien, probablement zone à Major (= MP 23-24) ou zone à Microcera (= MP 24 [sommet] MP 26), quoique la présence de rares formes douteuses de *Stephanochara* gr. *ungeri* plaiderait pour un âge un peu plus jeune (= MP 27-28). La datation fournie par le genus Eleotridarum *martinii* ne concorde pas avec celle qu'indiquent les charophytes (voir VIII.3.4.).

4.3. Conclusions

Au vu des résultats sus-mentionnés, la base des Calcaires inférieurs peut être attribuée, dans la partie distale du bassin molassique franco-genevois, à la zone **MP 27** (niveau de Wynau 1), peut-être à son sommet (niveau de Boningen 1). Comme nous l'avons mentionné à plusieurs reprises, l'extension stratigraphique de cette unité lithologique est difficile à estimer à cause de sa transition graduelle avec les Marnes et Grès bariolés. Débutant dans la zone **MP 27**, elle se poursuit très probablement dans **MP 28**, ce qui concorde avec les associations de charophytes, qui se rapportent à la zone à Ungeri. Cette datation correspond à **la partie supérieure (non sommitale) du Chattien**.

Il semblerait qu'il faille admettre un hiatus stratigraphique entre la Gompholite (MP 24-25) et les Calcaires inférieurs (MP 27-28); les analyses de minéraux lourds (sondage L 112) montrent effectivement un changement brutal à la limite de ces deux unités lithologiques. Toutefois, vu le peu d'arguments paléontologiques dont nous disposons pour dater la Gompholite, il convient de rester très prudent quant à son âge.

5. Marnes et Grès bariolés

5.1. Affleurements

Les affleurements ayant livré des mammifères, sont les suivants:

- la Roulavaz: *Eomys major, Plesiosminthus promyarion,*Archaeomys sp., *Issiodoromys* sp. (Fornant 6, = MP 28

 [sommet]) et charophytes de la zone à Ungeri (= MP 27-28);
- Epeisses: Archaeomys laurillardi (= MP 26-30);
- la Vieille Bâtie: *Archaeomys laurillardi*, *Issiodoromys minor* (Boningen 1, = MP 27 [sommet]);

- Nant d'Avril: *Issiodoromys terminus*, *Archaeomys* sp., *Caenotherium* sp. (un peu plus jeune que Fornant 6, c'est-àdire sommet de MP 28 - base de MP 29);
- Versant oriental du Vuache (près de Vulbens): charophytes de la zone à Ungeri (= MP 27-28);
- près d'Humilly: Issiodoromys sp., Archaeomys sp., Peratherium sp. (= MP 28; un peu plus ancien que le gisement du Nant d'Avril);
- près d'Arnex: Eomys major, Plesiosminthus promyarion, Gliravus (= MP 28);

Les résultats obtenus dans le sondage F 6 peuvent être assimilés à ceux d'un affleurement, car la position stratigraphique d'un niveau à mammifère au sein des Marnes et Grès bariolés est inconnu. Ce niveau contenait un probable Eucricetodon collatus (Küttigen 1 ou plus ancien, = sommet de MP 29 ou base de MP 30).

5.2. Age de la partie inférieure des Marnes et Grès bariolés en sondages

La partie inférieure des Marnes et Grès bariolés a été datée par mammifères et/ou charophytes dans les puits suivants:

- Gex CD 01; charophytes de la partie inférieure des Marnes et Grès bariolés: zones à Microcera (= MP 24 [sommet] - MP 26) et Ungeri (= MP 27-28).
- - Gex CD 02; *Eomys ebnatensis*: probablement Wynau 1 Rickenbach (= MP 27 MP 29 [base]); charophytes de la zone à Ungeri (= MP 27-28).
- Gex CD 04; à la base des MGB, Eomys cf. zitteli: Boningen
 1 Fornant 6 (= MP 27 [sommet] MP 28); cette datation est confirmée par des charophytes de la zone à Ungeri (= MP 27-28). A 77 m plus haut: Archaeomys cf. intermedius (même extension stratigraphique).
- Gex CD 05; quelques charophytes de la zone à Microcera (= MP 24 [sommet] - MP 26) et/ou Ungeri (= MP 27-28), charophytes toutefois trop rares pour assurer une datation précise.
- SPL 8/13; Plesiosminthus promyarion (Mümliswil [= MP 26, sommet] - Küttigen 1 [MP 30, base]).
- L 112; Allocricetodon incertus (Oensingen 1 Fornant 7 [= MP 26 MP 28, base]).
- SPM 5; Pseudocricetodon cf. thaleri, Issiodoromys sp.
 (Fornant 6 [= MP 28, sommet] et peut-être Rickenbach [= MP 29, base]).
- - SPM 15; riche association de mammifères à la base des Marnes et Grès bariolés, directement au-dessus de la Gompholite (sans Calcaires inférieurs), composée de Palaeosciurus sp., Eomys sp., Eomys ebnatensis, Eomys major, Pseudocricetodon sp., Allocricetodon cf. incertus et Eucricetodon sp.: Fornant 6 (= MP 28, sommet); charophytes des zones à Microcera (= MP 24 [sommet] MP 26) et Ungeri (= MP 27-28), en accord avec cette datation.
- Sondage géothermique de Thônex; charophytes peut-être à la partie supérieure de la zone à Microcera (= MP 24 [sommet] - MP 26): datation incertaine.

5.3. Age de la partie supérieure des Marnes et Grès bariolés

La datation du sommet des Marnes et Grès bariolés repose sur l'étude d'un affleurement au Nant d'Avanchet (Fig. 2, lettre G) aujourd'hui disparu, affleurement qui était proche du contact avec les Grès et Marnes gris à gypse et dans lequel ont été recueillis Pseudotheridomys rolfoi, Rhodanomys cf. hugueneyae, Microdyromys praemurinus, Peridyromys sp., Eucricetodon collatus, Pseudocricetodon cf. thaleri, Plesiosminthus schaubi et Amphilagus sp. Cette association correspond au niveau de Küttigen 1 (= MP30, partie inférieure), ce qui concorde avec les charophytes attribuées aux zones à Ungeri et/ou à Notata (= MP 27-30).

Cette datation est en accord avec les résultats obtenus dans deux sondages:

- - Gex CD 01; charophytes de la partie supérieure des Marnes et Grès bariolés: zone à Ungeri (= MP 27-28).
- sondage géothermique de Thônex; partie supérieure des Marnes et Grès bariolés: zone à Notata (= MP 29-30); partie inférieure des MGB: zone à Ungeri (= MP 27-28).

De même dans les sondages de Choully, qui ont atteint la partie supérieure des Marnes et Grès bariolés, les charophytes correspondent à la zone à Ungeri (= MP 27-28) et plus probablement à la zone à Notata (= MP 29-30).

5.4. Conclusions

Au vu des résultats précités, les Marnes et Grès bariolés du bassin molassique franco-genevois sont compris entre les niveaux de Fornant 6 (= partie supérieure de MP 28) et de Küttigen 1 (= partie inférieure de MP 30), ce qui correspond au Chattien supérieur. Seul le gisement de la Vieille Bâtie semblerait légèrement plus vieux (Boningen 1 [= partie supérieure de MP 27]), mais la qualité du matériel récolté incite à la prudence.

Il faut toutefois rappeler dans les Marnes et Grès bariolés du sondage SPL 5/4, la présence de quelques rares charophytes attribuées à la zone à Microcera (= MP 24 [sommet] – MP 26); mais le nombre de charophytes est trop faible pour assurer une datation fiable.

6. Grès et Marnes gris à gypse

Cette formation a été datée par mammifères dans trois affleurements aujourd'hui disparus (Angelillo 1987):

- dans les régions d'Avanchet et du Vengeron pour la partie inférieure;
- près de Choulex pour la partie supérieure.

6.1. Age de la partie inférieure

La partie inférieure des Grès et Marnes gris à gypse, dans la galerie du Nant d'Avanchet a livré Glirudinus glirulus, Peridyromys cf. murinus et Eucricetodon sp., une association attribuée avec doute au niveau de Küttigen 1 (= MP 30, base); elle était accompagnée de charophytes des zones à Ungeri et/ou à Notata (= MP 27-30). Tout proche du gisement précédent, au Portail d'Avanchet ont été récoltées deux dents d'Eucricetodon longidens, nettement plus grandes que celles de l'Eucricetodon de Küttigen 1 (= MP 30, base) et qui sont dans les dimensions de E. longidens de Boudry 2 (= MN 1, base). Associées à ces dents, les charophytes indiquent la zone à Nitida (= MP 30 [sommet] - MN 1); elles sont associées à l'otolithe Palaeolebias triangularis, typique de la zone OT O6 (= MP 30).

Toujours dans la partie inférieure des Grès et Marnes gris à gypse, dans la région du Vengeron, il a été signalé *Plesiosminthus schaubi* (voir III.5.3.), caractéristiques du niveau de Küttigen 1 (= MP30, partie inférieure) et *Rhodamys hugueneyae* ou *Rh.* aff. hugueneyae (voir III.V.3.), qui appartient au même niveau ou à celui de Brochene Fluh 53 (= MP 30, sommet).

6.2. Age de la partie supérieure

Dans la partie supérieure des Grès et Marnes gris à gypse de la région de Choulex, *Paratalpa* sp., *Rhodanomys* cf. *transiens*, *Pseudotheridomys* cf. *schaubi*, *Pseudotheridomys rolfoi*, *Eucricetodon* sp., *Steneofiber* sp. et *Amphilagus ulmensis* indiquent le niveau de Boudry 2 (= MN1, base). Cette datation est confirmée par les charophytes du gisement de Cologny, caractéristiques de la zone à Nitida (= MP 30 [sommet] - MN 1).

Il faut encore signaler à l'extrémité septentrionale du bassin franco-genevois, le gisement de Massongy, dans lequel les charophytes appartiennent aux zones à Ungeri et Notata (= MP 27-30) en association avec des mammifères (*Peratherium* sp., *Glirudinus glirulus* et *Pseudotheridomys* sp.) qui ne permettent pas de datation précise.

Enfin, dans la partie supérieure du sondage géothermique de Thônex, les Grès et Marnes gris à gypse ont livré des charophytes de la zone à Nitida (= MP 30 [sommet] - MN 1).

6.3. Conclusions

La base des Grès et Marnes gris à gypse doit être attribuée à la zone MP 30, très probablement à sa partie supérieure (= Chattien sommital). Quant à la partie supérieure de cette formation, elle appartient à la zone MN 1, ce qui correspond à l'Aquitanien inférieur.

7. «Aquitanien auct.» ou Molasse grise de Lausanne

Cette formation n'a été datée que dans la région du Mont Sion, où elle a livré

- dans le Nant Trouble, *Dimyloides stehlini* (ou *Pseudocordylodon rigassii*): Boudry 2 (= MN 1, base),
- en sondages, *Plesiosminthus myarion*, *Plesiosminthus* sp., *Pseudocricetodon* cf. *thaleri*, *Rhodanomys schlosseri*, cf. *Peridyromys murinus*, *Peridyromys* sp., *Pseudotheridomys bernensis*, *Eomyodon* sp., *Glirudinus* sp. et *Eucricetodon* sp.: niveaux de Boudry 2 et de Fornant 11 (= MN 1); avec de rares charophytes de la zone à Notata (= MP 29-30) ou de la zone à Nitida (= MN 1).

En conclusion, «l'Aquitanien» *auct*. ou Molasse grise de Lausanne de la région du Mont Sion se rapporte à la **zone MN 1** (= Aquitanien inférieur).

IXIII. PALÉOENVIRONNEMENTS ET PALÉOGÉOGRAPHIE

Sans pouvoir s'appuyer sur un découpage chronologique très précis, il est toutefois possible d'esquisser l'évolution paléogéographique et paléoclimatique du bassin molassique franco-genevois.

Le climat global de l'Oligocène inférieur se caractérise par le retour de conditions tropicales-subtropicales humides qui suivent le refroidissement du «Terminal Eocene Event» (Zachos et al. 2001). Il en va bien entendu de même dans le bassin molassique suisse et dans le S du Fossé rhénan (Berger 1990, Becker 2003, Berger et al. 2005). Dans le bassin franco-genevois, les analyses sédimentologiques et paléontologiques montrent que le dépôt des Marnes et Grès bariolés s'est effectué dans un système fluviatile méandriforme de type «mixed load» (Galloway 1977), avec des rivières chenalisées dont les dimensions moyennes seraient d'environ 5 m de profondeur, 80 m de largeur, avec un lit majeur avant avulsion de plusieurs centaines de mètres. L'épaisseur maximale des bancs de grès se situe généralement entre 5 et 10 m, sans que l'on constate de nettes variations en fonction de la situation géographique ou stratigraphique. Les phases de sédimentation alternaient avec d'importants épisodes d'assèchement et de pédogenèse dans la plaine d'inondation (Olmari 1983). Pour comparaison, on trouvera d'excellents exemples de conditions de sédimentation identiques dans les travaux de Keller et al. (1990) et de Platt & Keller (1992), consacrés à la partie centrale du bassin molassique suisse.

Deux axes d'alimentation majeurs ont été mis en évidence dans le bassin molassique franco-genevois (Olmari 1983; Angelillo 1986): un drainage principal

allant du SW au NE, correspondant à la «Genfersee-schüttung», accompagné d'apports secondaires et épisodiques de provenance jurassienne, du NW vers le SE. Les minéraux lourds permettent d'affiner quelque peu ce modèle: ainsi, on peut considérer avec Maurer (1983) qu'une augmentation significative de l'épidote dans le spectre des minéraux lourds témoigne de l'influence prépondérante de la Genferseeschüttung. Or, une telle augmentation a été observée dans les sondages suivants:

- sondage L 112 (*éch. 115,4 m*), à la limite entre la base des Calcaires inférieurs et le sommet de la Gompholite (Maurer 1983),
- sondage Gex CD 04 (*éch. 180 m*), dans la partie supérieure des Calcaires inférieurs,
- sondage Gex CD 02 (éch. 287 m), à la base des Marnes et Grès bariolés,
- sondage Gex CD 01 (*éch. 210 m*), vers la base des Marnes et Grès bariolés,
- - sondage Gex CD 05 (éch. 381,8-404,5 m), dans la partie inférieure des Marnes et Grès bariolés,
- - sondage Gex CD 07 (*éch. 141, 184 m*), dans la partie inférieure des Marnes et Grès bariolés,
- sondage de Peissy-1, vers 200 m et vers 100 m, dans les Marnes et Grès bariolés (Maurer 1983).

Au NE du bassin franco-genevois, sur le Plateau vaudois (profil du Talent), Strunck (2001) et Strunck & Matter (2002) montrent une augmentation nette de l'épidote durant les zones MP 26-27. Cette même tendance se retrouve à la même période dans le Jura (Molasse alsacienne de Moutier, Becker 2003).

Dans le bassin molassique franco-genevois, on n'observe pas, comme sur le Plateau vaudois et dès la zone MP 29, la mise en place d'un nouveau régime lacustre qu'indique le Membre des Calcaires et Dolomies, alors que plus loin encore en direction proximale alpine, ce sont des sédiments palustres (Molasse à Charbon) qui se déposent dans le secteur qui deviendra la Molasse subalpine (Kissling 1974; Fasel 1986).

Rappelons que des otolithes de poissons vivant en eau saumâtre ont été identifiés dans les Calcaires inférieurs (L 135 [éch. 27,5 m], Gex CD 04 [éch. 175,7-176,1 m]) et les Marnes et Grès bariolés (Gex CD 07 [éch. 175,4-175,6 m]), ce qui pourrait suggérer de possibles influences saumâtres au moment de leur dépôt. Cependant, les ostracodes (exclusivement des formes d'eau douce dans ces mêmes échantillons) et les nombreuses charophytes infirment cette hypothèse. Il est toutefois possible que des poissons typiques d'eau saumâtre, mais tolérant temporairement une eau douce, aient parfois visité le bassin franco-genevois en provenance de régions plus ou moins voisines (fossé rhénan? mer périalpine?). La question reste ouverte.

La situation paléogéographique change complètement à la fin du Chattien avec le dépôt des Grès et Marnes gris à gypse dans un système de playas avec faunes saumâtres. Le paléoclimat se modifie lui aussi, puisque se développe un épisode climatique plus aride et probablement plus froid: la «Late Chattian Climatic Crisis» (Becker 2003), qui est notamment révélée par la disparition des faunes (Anthracothères et Ronzothères, Becker 2003) et des flores (Palmiers et Taxodiaceae, Berger 1990) caractéristiques d'un climat chaud et humide.

Comme le soulignent Strunck & Matter (2002), il y a une apparente contradiction dans la coexistence des faciès évaporitiques des Calcaires et Dolomies et des Grès et Marnes gris à gypse en secteur distal et des faciès palustres de la Molasse à Charbon en secteur plus proximal. Le modèle de Platt & Wright (1992) pourrait réconcilier partiellement ces deux tendances antagonistes en proposant une étendue de basse plaine palustre à très faible pente tant pour les Calcaires et Dolomies que pour la Molasse à Charbon. Il reste cependant à expliquer les conditions évaporitiques que démontrent les Grès et Marnes gris à gypse: l'une des explications possibles, que nous proposons ici, résiderait dans la présence de reliefs plus humides en bordure des Alpes naissantes, alors que les basses plaines distales étaient plus arides. Les reliefs alpins déjà ébauchés auraient alors joué un rôle de barrière climatique dès cette période.

Enfin à l'Aquitanien inférieur, le système fluviatile se réinstalle avec la Molasse grise de Lausanne qui souligne le retour à des conditions climatiques à nouveau plus humides et plus chaudes. Il n'en subsiste dans le bassin franco-genevois que de rares reliques épargnées par les érosions plus récentes.

IXIV. CONCLUSIONS

1. Résultats biostratigraphiques

Dans le puits de Peissy-1, les nombreuses charophytes extraites des Marnes et Grès bariolés ont permis de rattacher la plus grande partie de cette formation à la zone à Ungeri (= MP 27-28). De plus, les mammifères et charophytes provenant des 7 sondages Gex CD 01 à 07 sont caractéristiques des zones MP 27-28 pour les Calcaires inférieurs et appartiennent à l'intervalle compris entre la partie supérieure de MP 28 et la partie inférieure de MP 30 pour les Marnes et Grès bariolés. Dans les sondages du CERN, la Gompholite n'a pas pu être datée avec certitude; elle pourrait appartenir aux zones MP 24 – MP 25. Par

contre, l'extrême base des Calcaires inférieurs est rattachée avec certitude à la zone MP 27 (sondages SPM 11, SPM 5); leur partie supérieure se poursuit probablement dans la zone MP 28. Quant aux Marnes et Grès bariolés, elles appartienennt à l'intervalle compris entre les niveaux de Fornant 6 (= partie supérieure de MP 28) et de Küttigen 1 (= partie inférieure de MP 30). Dans le forage géothermique de Thônex, les charophytes datent le 1/3 supérieur des Grès et Marnes gris à gypse, de la zone à Nitida (= MN 1), et les 2/3 inférieurs de cette formation ainsi que l'essentiel des Marnes et Grès bariolés, des zones à Notata (= MP 29-30) et Ungeri (= MP 27-28). Dans le sondage du Nant d'Avanchet, les mammifères de la partie inférieure des Grès et Marnes gris à gypse indiquent le niveau de Küttigen 1 (= MP 30, base). Les niveaux de Boudry 2 et de Fornant 11 (= MN 1) ont été identifiés grâce aux mammifères dans les sondages du Mont Sion (autoroute Genève - Annecy).

Les anciennes et nouvelles données paléontologiques obtenues à partir de l'étude d'affleurements, de forages et de travaux de génie civil permettent de préciser la biostratigraphie de la Molasse du bassin franco-genevois pour

- les Calcaires inférieurs: zones MP 27 à MP 28;
- les Marnes et Grès bariolés: zones MP 28 (sommet) à MP 30 (base);
- les Grès et Marnes gris à gypse: zones MP 30 (sommet) à MN 1:
- la partie inférieure de la Molasse grise de Lausanne (=Aquitanien *auct*.): zone MN 1.

2. Résultats paléogéographiques et structuraux

La mise en évidence, dans le bassin franco-genevois, de la structuration du substratum mésozoïque antémolassique, déjà pressenti par de rares études de terrain (Schardt 1894; Ducloz 1980) et observée sur certains profils géophysiques (Signer 1992; Jenny et al. 1995; Signer & Gorin 1995), constitue un important résultat de ce travail. En effet entre Gex et Thoiry, la série tertiaire repose sur les terrains suivants, du NE au SW:

- la formation de la Chambotte (partie inférieure) aux sources de l'Allondon;
- les Calcaires roux , un peu plus au S de ces sources (sondage SPL 4/11);
- le «Complexe Marnes d'Hauterive Pierre jaune de Neuchâtel» au N de Crozet (SPM 15) jusqu'au N de Villeneuve (L 132, L 135);
- les Calcaires urgoniens, entre Villeneuve et le Défilé de l'Ecluse.

Au centre du bassin franco-genevois, là où les sondages Gex CD ont atteint le substratum mésozoïque anté-molassique, la série tertiaire repose soit sur les Calcaires urgoniens (CD 03, CD 04, CD 06) soit sur le «Complexe Marnes d'Hauterive - Pierre jaune de Neuchâtel» (CD 01).

D'autre part, sur le bord occidental du bassin francogenevois, entre Echenevex et Thoiry, les analyses des nombreux sondages ont révélé un réseau de fractures important partiellement inconnu jusqu'ici: décrochements et failles parallèles à l'axe du pli de la Haute-Chaîne (Figs. 53, 55). De grands décrochements entre le chaînon du Salève et la Haute-Chaîne étaient pressentis depuis longtemps (Fig. 1); le présent travail montre que leur nombre est certainement beaucoup plus important qu'il n'y paraît sur les cartes géologiques récentes: feuilles St-Claude 1/50000 (Meurisse et al. 1971), St-Julien-en-Genevois 1/50000 (Donzeau et al. 1997). Quelques investigations sur le versant sud oriental de la Haute-Chaîne nous ont révélé que sa cartographie doit être complètement révisée, particulièrement au niveau de la fracturation.

La structuration (ondulations, fractures) du substratum mésozoïque avant les dépôts tertiaires a réglé l'érosion pendant la période «fin Crétacé - début Tertiaire», ce qui est certainement à l'origine d'une paléomorphologie accentée. Elle permet d'expliquer la répartition hétérogène de la Gompholite et ses variations d'épaisseur. La présence et le développement plus ou moins important des Calcaires inférieurs sont peut-être aussi liés à cette paléomorphologie.

Comme on l'a vu, c'est la Molasse qui constitue, sur toute l'étendue du bassin franco-genevois, le substratum rocheux, lequel est recouvert de terrains quaternaires, le plus souvent de médiocre qualité géotechnique. La Molasse est donc une assise de choix pour les fondations. C'est aussi un «bon» matériau pour les ouvrages souterrains: pas trop dur ni trop tendre, et quasi imperméable. Ses caractéristiques lithostratigraphiques et son histoire tectonique sont précieuses pour le génie civil, car elles apportent des éléments d'information très utiles dans la conception, le dimensionnement et l'exécution des ouvrages, souterrains notamment.

Les sondes géothermiques, qui connaissent depuis peu un rapide essor, devraient contribuer à améliorer encore notre connaissance de la Molasse régionale, pour peu qu'on prenne la peine de recueillir et d'analyser toutes les données qu'elles fournissent. Ce voeu nous servira d'ultime conclusion.

REMERCIEMENTS

En tout premier lieu, les auteurs tiennent à remercier les personnes qui leur ont permis d'accéder aux nombreux échantillons de Molasse décrits dans ce travail:

- Henri Laporte, chef du Groupe Génie civil du CERN, qui a mis à notre disposition toutes les carottes provenant des campagnes de sondages précédant le creusement du tunnel du LEP et qui nous a autorisés de publier les résultats de leur étude;
- Jean Taborin, chef-géologue à la Société Française des Pétroles BP, qui nous a donné l'autorisation d'utiliser pour une publication scientifique les résultats de l'expertise réalisée par François Olmari;
- Danielle Decrouez, directrice du Muséum d'Histoire naturelle de la Ville de Genève et du Muséum de l'Histoire des Sciences, qui nous a fourni des échantillons et des carottes déposés dans les collections du Muséum;
- Michel Agassiz, Chef du Service de géologie du Canton de Genève, et Michel Meyer, géologue cantonal, qui nous ont procuré, outre de nombreux documents inédits, des échantillons provenant de travaux d'utilité publique;
- Julie Dufrenoy et Fabienne Laurens, géologues-géotechniciennes des Sociétés Adelac et GIE A41, qui ont autorisé le prélèvement d'échantillons dans les sondages du tunnel du Mont Sion, ainsi que la publication de données diverses sur cet ouvrage;
- Robert Arn (ARConseils) et Silvio Cuccodoro (CSD-Genève), géologues-consultants, grâce à qui nous avons obtenu des cuttings recueillis dans des forages pour sondes thermiques.

Nous exprimons notre reconnaissance aux trois assistants du Département de géologie et de paléontologie de l'Université de Genève, Edgardo Amato, François Gischig et Pierre Desjacques, qui pendant plusieurs semaines en 1982 ont échantillonné avec l'un de nous (J. C.) une quarantaine de sondages sur le site du CERN. Un merci tout particulier à Pierre Desjacques, qui a lavé de nombreux échantillons de marnes et en a extrait minutieusement les microfossiles.

L'iconographie de cette étude a pu être réalisée grâce à la bienveillance et à la compétence de Jacques Metzger, géologue-graphiste au Département de géologie et de paléontologie de l'Université de Genève; nous lui sommes très reconnaissants d'avoir mis à notre disposition son temps et ses talents de graphiste.

La synthèse présentée ici est basée non seulement sur nos recherches personnelles, mais également sur de nombreuses études pour la plupart inédites: rapports de bureaux privés, du Service cantonal de géologie, travaux de diplôme de l'Université de Genève, etc. Nous en dressons la liste en mentionnant leur lieu de dépôt:

- le Bureau de géotechnique appliquée Pierre & Claude Dériaz & Cie S.A. nous a transmis sans aucune restriction les nombreux rapports relatifs aux travaux effectués pour le CERN et nous a donné l'autorisation d'en publier les principaux résultats;
- le Centre européen de Recherches nucléaires (CERN) nous a libéralement permis d'accéder à tous les documents géologiques déposés dans ses archives: rapports de Jean Gervaise & Edouard Lanterno, d'Edouard Lanterno & collaborateurs, de Jean-Claude Fourneaux & collaborateurs, etc;
- la Société Française des Pétroles BP-France nous a permis de publier diverses données tirées des rapports préliminaires et finaux de sa campagne de forages;
- le Service de géologie du Canton de Genève nous a ouvert ses archives;
- le Département de géologie et de paléontologie de l'Université de Genève a mis à notre disposition divers travaux de diplôme, parmi lesquels il faut relever tout particulièrement les remarquables mémoires de Vito Angelillo et de Claude Signer.
- le Département de géologie et de paléontologie du Muséum d'Histoire naturelle de la Ville de Genève, particulièrement son directeur, Lionel Cavin, et ses assistants-techniques.

Nous avons reçu de précieux conseils et d'utiles remarques de la part:

- de nos collègues des Universités de Genève (Eric Davaud, Jean Michel Jaquet, Roland Wernli) et de Lyon (Marguerite Hugueney, Bernard Clavel);
- des géologues-consultants Jacques Jenny (GEO2X, Oulens) et Alain-Michel Malatrait (ANTEA, France);
- et des ingénieurs du CERN: Jean-Luc Baldy, Daniel Froidevaux, Bernard Guyot, Michel Hubelin, Michel Mayoul, Jean-Pierre Quesnel.

La Société de Physique et d'Histoire naturelle de Genève a bien voulu assurer la publication de ce travail dans les *Archives des Sciences*, et participer généreusement aux frais d'impression: que son président Michel Grenon et son rédacteur Robert Degli Agosti, qui nous a fait profiter de sa large expérience, en soient remerciés.

Les auteurs assurent la Société académique de Genève de leur plus vive gratitude; sans son généreux soutien financier, l'impression de cette synthèse n'aurait pas pu être éditée.

Nous remercions également le Fonds national suisse de la Recherche scientifique, qui a subventionné une partie de ces travaux de recherches (Prof. J.-P. Berger: projets 109457 et 200020-118025).

Bibliographie

- Amberger G. 1978. Contribution à l'étude du Quaternaire de la région lémanique: résultats de quelques sondages profonds exécutés à Genève. Eclogae geol. Helv. Basel, 71: 193-206.
- **Amberger G.** 1982. Profil tectonique schématique à travers le canton de Genève. *In* Encyclopédie de Genève, 1: Le Pays de Genève, éd. Roto-Sadag, Genève.
- AMBERGER G. 1983. Isohypses du contact Molasse Quaternaire au 1/25000. Département Intérieur & Agriculture, République et Canton Genève
- AMBERGER G. 1987. La Molasse du Bassin genevois. Cahiers de la Fac. Sciences, Univ. Genève, 15: 81-88.
- AMBERGER G. 1988. Isobathes du sommet du Crétacé. Service cantonal de Géologie Genève, rapport inédit, réf. SCG 100.88.3.
- ANGELILLO V. 1986. Le comportement gonflant des faciès à anhydrite des Marnes et Grès gris à gypse («Molasse grise») du bassin genevois. Exemple de la galerie de décharge du bassin de l'Aire. Diplôme inédit Ing.-géol. Univ. Genève et Service cantonal de géologie de Genève, 124 p.
- ANGELILLO V. 1987. Les Marnes et Grès gris à gypse («Molasse grise») du bassin genevois. Géologie, sédimentologie, stratigraphie. Diplôme inédit Ing.-géol. Univ. Genève, 183 p.
- ARN R, CONRAD M-A. & WEIDMANN M. 2004. Feuille 1261 Nyon. Atlas géol. Suisse 1:25'000, carte 117, O.F.E.G., Ittigen/Berne.
- ARN R, CONRAD M-A, MEYER M, WEIDMANN M. 2005. Notice explicative de la feuille 1261 Nyon de l'Atlas géol. de la Suisse au 1:25'000. O.F.E.G., Ittigen-Berne, 1-101.
- BARRAGNE-BIGOT P. 1981. Approche géologique du Piémont jurassien entre Gex et Collonges. Rapport interne inédit, Soc. Fr. Explor. BP, Paris, 9 p.
- **Bassiouni M A.** 1979. Brackische und marine Ostrakoden (Cytherideinae, Hemicytherinae, Trachyleberidinae) aus dem Oligozän und Neogen der Türkei. Geologisches Jahrbuch, Stuttgart (B) 31: 3-195.
- BAUMBERGER E. 1903-1910. Fauna der unteren Kreide im westschweizerischen Jura. Abh. Schweiz. Paläont. Ges., Basel, I-VI, 313 p.
- Beck C, Deville E, Blanc E, Philippe Y, Tardy M. 1998. Horizontal shortening control of Middle Miocene marine siliciclastic accumulation (Upper Marine Molasse) in the southern termination of the Savoy Molasse Basin (northwestern Alps/southern Jura). *In*: Mascle A, Puigdefabregas C, Luterbacher H P, Fernandez M. (eds): Cenozoic Foreland Basins of Western Europe. Geol. Soc. London, spec. publ. 134: 263-278
- **Becker D.** 2003. Paléoécologie et paléoclimats de la Molasse du Jura (Oligo-Miocène): apport des Rhinocerotoidea (Mammalia) et des minéraux argileux. GeoFocus, 9, Fribourg, 1-327.
- **Becker E.** 1999. Orbitoliniden-Biostratigraphie der Unterkreide (Hauterive-Barrême) in den spanischen Pyrenäen (Profil Organyà, Prov. Lérida). Rev. Paléobiol. Genève, 18: 359-489.
- BERGER J-P. 1983. Charophytes de l'«Aquitanien» de Suisse occidentale. Essai de taxonomie et stratigraphie. Géobios, Lyon, 16: 5-37.
- Berger J-P. 1986. Biozonation préliminaire des charophytes oligocènes de Suisse occidentale. Eclogae geol. Helv. Basel, 79: 897-912.
- **Berger J-P.** 1990. Floral changes in the Molasse of Western Switzerland (Oligo-Miocene): paleoclimatic implications. *In*: Knobloch E & Kvacek Z (eds.): Proc. Symp. «Paleofloristic and paleoclimatic changes in the Cretaceous and Tertiary», 189-194, Geol. Surv. Public., Praha.
- BERGER J-P. 1992. Paléontologie de la Molasse de Suisse occidentale. Thèse d'habilitation inédite, Univ. Fribourg, 25.5.1992, 450 p.
- **Berger J-P.** 1997. *Nitellopsis* (*Tectochara*) du groupe *meriani* (Charophyta): les populations de la Molasse suisse (types) et du gisement miocène de Li Mae Long, Thaïlande. Geodiversitas, Paris, 19/4: 773-781.
- **Berger J-P.** 1998. «Rochette» (Late Oligocene, Swiss Molasse), a strange example of a fossil assemblage. *In*: Ferguson D. (ed.): Case studies in the Cenophytic Palaeobotany of Central Europe. Rev. Paleobot. & Palynol., Amsterdam, 101: 95-110.
- Berger J-P. 1999. Redefinition of European Oligo-Miocene Charophyte Biozonation. Austr. J. Botany, Sydney, 47/3: 283-296.
- BERGER J-P, Kunz E, Weidmann M. 1986. La Molasse oligocène du sondage Noréaz-1 près d'Yverdon (Vaud). Bull. Soc. vaud. Sci. nat. Lausanne, 78/2: 207-213.
- **Berger J-P, Charollais J, Hugueney M.** 1987. Nouvelles données biostratigraphiques sur la Molasse rouge du bassin genevois. Archs. Sc., 40: 77-95.
- BERGER J-P, REICHENBACHER B, BECKER D, GRIMM M, GRIMM K I, PICOT L, STORNI A, PIRKENSEER C, SCHÄFER A. 2005. Eocene-Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). Intern. J. Earth Sciences, Stuttgart, 94: 711-731.
- **BLANC E.** 1996. Transect plateforme-bassin dans les séries carbonatées du Berriasien supérieur et du Valanginien inférieur (domaines jurassien et nord vocontien); chronostratigraphie et transferts de sédiments. Géol. Alpine Grenoble, 25: 312 p.
- **BLONDEL T.** 1984. Etude tectonique de la partie septentrionale de la Montagne du Vuache (Haute-Savoie, France). Diplôme inédit Sc. Terre, Dépt. géol. pal. Univ. Genève, 115 p.
- **BLONDEL T.** 1990. Lithostratigraphie synthétique du Jurassique et du Crétacé inférieur de la partie septentrionale de la Montagne du Vuache (Jura méridional, Haute-Savoie, France). Archs. Sci. Genève, 43: 175-191.
- **BLONDEL T, CHAROLLAIS J, CLAVEL B, SCHROEDER R.** 1986. Livret-guide de l'excursion du congrès Benthos'86, Jura méridional et chaînes subalpines, 27 septembre 1986. Publ. Départ. Géol. Pal. Univ. Genève, sér. Guide géol. 5, 107 p.
- **BOEKER E.** 1994. Interprétation des milieux de dépôts et recherche des discontinuités sédimentaires dans une coupe de la Haute-Chaîne à la limite Berriasien/Valanginien. Diplôme inédit. Sc. Terre, Dépt. géol. pal. Univ. Genève, 43 p.

- **В**ÜCHLI **H, P**AQUIN **R, D**ONZE **A.** 1976. Etude géoélectrique et gravimétrique du Chablais entre Anières et Evian. Mat. Géol. Suisse, Géophys. Zürich, 18: 170 р.
- BULOT L, THIEULOY J-P. 1995. Les biohorizons du Valanginien du Sud-Est de la France: un outil fondamental pour les corrélations au sein de la Téthys occidentale. Géol. alpine Grenoble, Mém. h. s. 20: 14-41.
- Burbank D W, Engesser B, Matter A, Weidmann M. 1992. Magnetostratigraphic chronology, mammalian faunas and stratigraphic evolution of the Lower Freshwater Molasse, Haute-Savoie, France. Eclogae geol. Helv. Basel, 85: 399-431.
- **Caminade J-P.** 1981. Reconnaissance structurale des Avants-Monts de Gex-Divonne. Permis de Clairvaux-Gex. Rapport interne inédit, Soc. Fr. Explor. BP, Paris, 10 p.
- **CARBONNEL G, WEIDMANN M, BERGER J-P.** 1985. Les ostracodes lacustres et saumâtres de la Molasse de Suisse occidentale. Rev. de Paléobiologie Genève, 4: 215-251.
- CAROZZI A. 2005. Horace-Bénédict de Saussure (1740-1799). Un pionnier des sciences de la Terre. Ed. Slatkine, Genève.
- CAROZZI M. 1983. Voltaire's Attitude toward Geology. Archs. Sci., 36: 1-145.
- **CASTEL M.** 1967. Charophytes de l'Oligocène supérieur de Marseille. Bull. Soc. géol. France, Paris, 7e sér., 9: 514-519.
- CEDERBOM C, SINCLAIR H, SCHLUNEGGER F, RAHN M. 2004. Climate induced rebound and exhumation of the European Alps. Geology, Boulder, 32: 709-712.
- CHAROLLAIS J, AMATO E, DESJACQUES P, GISCHIG F. 1982. Analyse lithologique des forages du CERN. Rapports inédits, Archives du CERN, Genève.
- CHAROLLAIS J, BUSNARDO R, CARDIN M, CLAVEL B, DEPILLER D, DELAMETTE M, GORIN G, LEPILLER M, MONDAIN P, ROSSET J, VILLARS F. 1988. Notice explicative, Carte géol. France (1:50'000), feuille Annecy-Bonneville (678). BRGM, Orléans, 139 p. Carte géologique par J. Charollais, C. Ruchat, C. Ginet, J.-P. Müller, A. Lombard, D. Dondey, J. Rosset (1986).
- Charollais J, Clavel B, Busnardo R. (2007). Biostratigraphie et découpage séquentiel des formations du Crétacé inférieur de la plateforme jurassienne (France, Suisse). Livre jubilaire Prof. A. Soares, Coimbra (sous presse).
- CHAROLLAIS J, CLAVEL B, BUSNARDO R, MAURICE B. 1989. L'Hauterivien du Jura du bassin genevois. Mém. Soc. neuchât. Sci. nat., Neuchâtel, 11: 49-72.
- CHAROLLAIS J, GINET C, HUGUENEY M, MÜLLER J-P. 1981. Sur la présence de dents de mammifères à la base et dans la partie supérieure de la Molasse rouge du plateau des Bornes (Haute-Savoie, France. Eclogae geol. Helv., Basel, 74/1: 37-51.
- CHAROLLAIS J, PLANCHEREL R, MONJUVENT G, DEBELMAS J, AVEC la collaboration de Deville Q, Donzeau M, Gallay A, Gorin G, Nicoud G, Kindler P, Ruchat C, Turrel C, Wernli R. 1998. Notice explicative, Carte géol. France (1:50'000), feuille Annemasse (654). BRGM, Orléans, 130 p.
- CHAROLLAIS J, WERNLI R, JAN DU CHÊNE R, SALIS K VON, STEINER F. 2006. La Molasse marine supérieure de la Combe d'Evuaz et de La Pesse (Jura méridional, France). Archs. Sci., 59: 21-46.
- CLAVEL B, CHAROLLAIS J. 1989. Biostratigraphie de l'Hauterivien du Jura méridional. Mém. Soc. neuchât. Sci. nat., Neuchâtel, 11: 291-298.
- CLAVEL B, CHAROLLAIS J, BUSNARDO R, SCHROEDER R. 1994. Biozonation de l'Hauterivien supérieur et du Barrémien inférieur en domaine de plate-forme carbonatée. Publ. Départ. Géol. Pal. Univ. Genève, 14: 1-14.
- CLAVEL B, CHAROLLAIS J, CONRAD M, JAN DU CHÊNE R, BUSNARDO R, GARDIN S, ERBA E, SCHROEDER R, CHERCHI A, DECROUEZ D, GRANIER B, SAUVAGNAT J, WEIDMANN M. 2007. Dating and progradation of the Urgonian limestone from the Swiss Jura to South-East France. Z. dt. Ges. Geowiss., Stuttgart, 158/4: 1025-1062.
- COLLET L W, PARÉJAS E. 1934. Les environs de Mornex. C. R. Soc. Phys. Hist. nat. Genève, 51: 171-174.
- CONRAD M-A. 1969. Les calcaires urgoniens dans la région entourant Genève. Eclogae geol. Helv., Basel, 62: 1-79.
- Unrad M-A, Ducloz C. 1977. Nouvelles observations sur l'Urgonien et le Sidérolithique du Salève. Eclogae geol. Helv., Basel, 70:127-141.
- **COPPONEX J-P.** 1955. Etude géologique de l'anticlinal du Reculet (Ain, France) entre le Col de Crozet et le Crêt de la Neige. Diplôme inédit, Laboratoire de Géologie, Univ. de Genève, 1-36.
- **CORNIOLEY Y.** 1988. Géochimie des hydrocarbures dans les sédiments anciens du bassin lémanique. Thèse Fac. Sciences Univ. Genève, n° 2309, 147 p.
- DELAMETTE M, CHAROLLAIS J, DECROUEZ D, CARON M. 1997. Les Grès verts helvétiques (Aptien moyen Albien supérieur) de Haute-Savoie, Valais et Vaud (Alpes occidentales franco-suisses). Analyse stratigraphique et inventaire paléontologique. Publ. Dépt. Géol. Pal. Univ. Genève 23 400 p.
- **DÉRIAZ P + C, HOTELLIER J-F.** 1980 et suivantes. Nombreux rapports inédits concernant les sondages et divers travaux souterrains du CERN. Archives géologiques et géotechniques du CERN et Bureau Dériaz, Genève.
- **DEVILLE Q.** 1990. Chronostratigraphie et lithostratigraphie synthétiques du Jurassique supérieur et du Crétacé inférieur de la partie méridionale du Grand-Salève (Haute-Savoie, France). Archs. Sci. Genève, 43: 215-235.
- **DEVILLE Q.** 1991. Stratigraphie, sédimentologie et environnements de dépôts, et analyse séquentielle dans les terrains entre le Kimméridgien supérieur et le Valanginien du Mont-Salève (Haute-Savoie, France). Thèse inédite, Fac. Sciences Univ. Genève, 141 p.
- Donze P. 1972. Feuille 677 Seyssel. Carte géologique de la France à 1:50'000. BRGM, Orléans.
- Donzeau M, Wernli R, Charollais J. 1998. Interprétation nouvelle de la géométrie de l'accident du Vuache dans le Jura méridional: le relais de failles transpressif sénestre Léaz-Champfromier (Ain). Géologie de la France, Orléans, 2: 25-45.
- **Donzeau M, Wernli R, Charollais J, Monjuvent G.** 1997. Carte géologique et notice explicative, Carte géol. France (1:50'000), feuille Saint-Julien-en-Genevois (653). BRGM, Orléans.

- DucLoz C. 1980. Observations géologiques aux sources de l'Allondon (Ain, France). C. R. Séances Soc. Phys. Hist. nat. Genève, N.S., 15: 167-178.
- **Ducloz C.** 1983. Les croûtes calcaires des environs de Genève: comparaisons avec les encroûtements du Jura oriental, de l'Allemagne méridionale et du sud-est de la France. Archs. Sci., 36: 265-289.
- **Dupuy D.** 2006. Etude des sédiments quaternaires, de la Molasse et de sa tectonique dans le Grand Lac (Lac Léman) à partir de données sismiques 2D et 3D. Thèse Inst. Géophys. Univ. Lausanne, 1-236.
- ENGESSER B. 1976: Zum Milchgebiss der Dimyliden (Insectivora, Mammalia). Eclogae geol. Helv. Basel, 69: 795-808.
- **ENGESSER B.** 1990: Die Eomyidae (Rodentia, Mammalia) der Molasse der Schweiz und Savoyens. Schweiz. Paläont. Abh. Basel, 112: 1-144
- **ENGESSER B, MÖDDEN C.** 1997. A new version of the biozonation of the Lower Freshwater Molasse (Oligocene and Agenian) of Switzerland and Savoy on the basis of fossil mammals. *In*: Aguilar J-P, Legendre S, Michaux J. (eds): Actes du congrès BiochroM'97, Mém. Trav. EPHE Inst. Montpellier 21: 475-499.
- Fasel J-M. 1986. Sédimentologie de la Molasse d'eau douce subalpine entre le Léman et la Gruyère. Thèse Univ. Fribourg, no 907, 142 p.
- **FAVRE A.** 1843. Considérations géologiques sur le Mont Salève et sur les terrains des environs de Genève. Mém. Soc. Phys. Hist. nat. Genève, 10: 49-162.
- FAVRE A. 1879. Description géologique du Canton de Genève.- Bull. Classe Agricult., Soc. des Arts, Genève, 79, 2 vol.
- **FEIST M.** 1977. Description du nouveau genre *Krassavinella* (Charophyta, Characeae) et répartition de *K. lagenalis* (Straub) dans l'Oligocène supérieur de la Molasse suisse. Eclogae geol. Helv., Basel, 70: 771-775.
- **Feist-Castel M, Ringeade M.** 1977. Etude biostratigraphique et paléobotanique (Charophytes) des formations continentales d'Aquitaine, de l'Eocène supérieur au Miocène inférieur. Bull. Soc. géol. France, Paris, (7), t. XIX/2: 341-354.
- FEIST M, ANADON P, CABRERA I, CHOI S J, COLOMBO F, SAEZ M. 1994. Upper Eocene-Lowermost Miocene charophyte succession in the Ebro Basin (Spain). Contribution to the charophyte biozonation in Western Europe. Newsl. Stratigr., Stuttgart, 30: 1-32.
- FOURNEAUX J-C. s. d. Analyse géologique du percement du tunnel du LEP sous le Jura. Rapport inédit, Archives géologiques et géotechniques du CERN, Genève.
- FOURNEAUX J-C. 1988. Les conditions géologiques et hydrogéologiques du percement du tunnel du LEP sous le Jura. Travaux, juin 1988, Ed. Science et Industrie, Paris, 42-45.
- FOURNEAUX J-C, LANDRU B, SOMMERIA L. 1990. La karstification profonde dans le Jura à partir des observations faites lors du percement du tunnel du LEP (Ain et canton de Genève). Karstologia, Chambéry, 16: 1-8.
- FOURNEAUX J-C, LAPORTE H. 1990. Influence des conditions hydrogéologiques sur le percement du tunnel du LEP sous le Jura. Mem. 22nd Congress I.A.H., EPF-Lausanne 1990, 22/2: 1269-1277.
- **GALLOWAY W E.** 1977. Genetic stratigraphic sequences in basin analysis. I: Architecture and genesis of flooding-surface bounded depositional units. Am. Assoc. Petrol. Geol. Bull., Houston, 73: 125-142.
- **GAUDANT J, REICHENBACHER B.** 1998. Skelette der Gattung *Enoplophthalmus* Sauvage 1880 (Teleostei, Osmeridae) mit Otolithen in situ aus dem Unter-Miozän des Mainzer Beckens. N. Jb. Geol. Paläont. Abh., 210, Stuttgart, 237-266.
- GAUDANT J, WEIDMANN M, BERGER J-P, BOLLIGER T, KÄLIN D & REICHENBACHER B. 2002. Recherches sur les dents pharyngiennes de Poissons Cyprinidae de la Molasse d'eau douce oligo-miocène de Suisse (USM, OSM) et de Haute-Savoie (France). Rev. Paléobiol. Genève, 21: 371-389.
- **GÉOLOGIE-GÉOPHYSIQUE & GÉOPRODUCTION CONSULTANTS.** 1994. Forage géothermique de Thônex. Rapport final inédit et annexes. Office cantonal de l'énergie, Etat de Genève.
- **GEO2x-Geophysic & Geology.** 2006. Galerie de Choully (Genève). Etude géophysique par sismique. Rapport inédit, Service cantonal de Géologie de Genève.
- GORIN G, GÜLAÇAR F, CORNIOLEY Y. 1989. Organic geochemistry, maturity, palynofacies and palaeoenvironment of Upper Kimmeridgian and Lower Tertiary organic-rich samples in the southern Jura (Ain, France) and subalpine massifs (Haute-Savoie, France). Eclogae geol. Helv. Basel, 82: 491-515.
- GORIN G, SIGNER C, AMBERGER G. 1993. Structural configuration of the western Swiss Molasse Basin as defined by reflection seismic data. Eclogae geol. Helv. Basel, 86: 693-716.
- GUILLAUME A, GUILLAUME S, LLAC F, MEURISSE M. 1972. Notice explicative, Carte géol. France (1:50'000), feuille St-Claude (XXXIII-28). BRGM, Orléans, 15 p. Carte géologique par M. Meurisse, F. Llac, S. Guillaume & A. Guillaume (1971).
- **G**UILLEMIN M. 1981. Imprégnations d'huile dans l'Oligocène des forages du CERN. Demande de permis Clairvaux-Gex (périmètre de Gex). Rapport inédit, Société française d'exploration BP, Paris.
- **G**UILLEMIN M. 1983. Rapport de fin de sondages Gex CD 01 à 07 (Géologie). Permis de Clairvaux-Gex. Rapport inédit, Société française d'exploration BP, Paris.
- **HANTKE R.** 1984. Die Fächerpalmreste aus der Molasse der Schweiz und ihrer nordöstlichen Grenzgebiete sowie ihr paläoklimatischer Aussagewert. Diss. Bot., Vaduz, Festschrift Welten, 72: 137-175.
- HEER O. 1855. Flora Tertiaria Helvetiae, Wurster, Winterthur, 1-118.
- **Н**ЕІМ **А.** 1922. Le sondage pour la recherche du pétrole à Challex (Ain). Eclogae geol. Helv., Basel, 17: 115-123.
- HOOKER J J, WEIDMANN M. 2000. The Eocene mammal faunas of Mormont, Switzerland. Systematic revision and resolution of dating problems. Schweiz. Paläont. Abh., Basel, 120: 1-143.

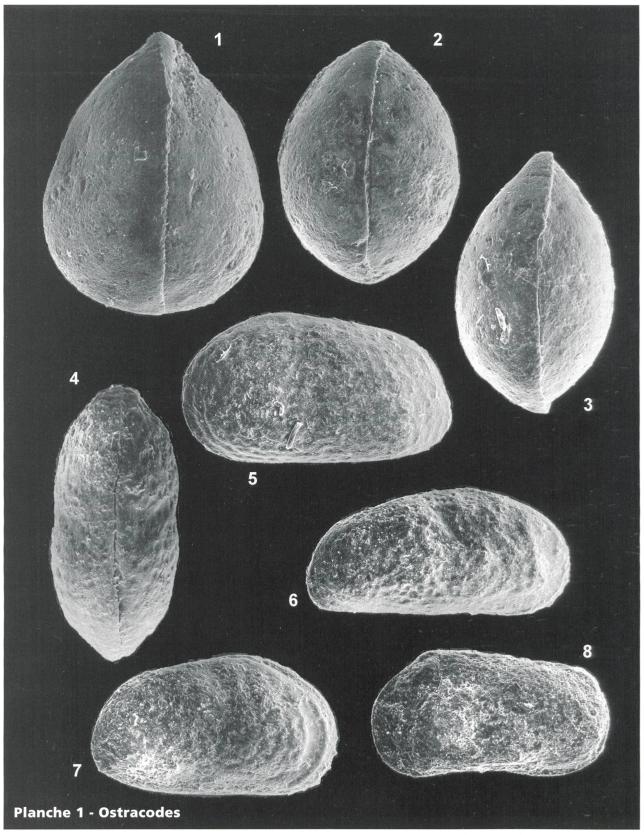
- HOOKER J J, WEIDMANN M. 2007. A diverse rodent fauna from the middle Bartonien (Eocene) of Les Alleveys, Switzerland: snapshot of the early theridomyid radiation. Swiss j. geosci. 100: 469-493.
- HOTELLIER J-F, REBUFFÉ P. 1988. Les parois moulées dans la construction du LEP. Travaux, juin 1988, Ed. Science et Industrie, Paris, 31-33.
- HOTTINGER M. 1990. Géologie de la partie centrale du Chaînon du Salève, au Nord de Cruseilles (Haute-Savoie, France). Région de la Grande Montagne les Avenières. Diplôme inédit, Départ. Géol. Paléont. Univ. Genève, 33 p.
- **Huang R J.** 1978. Early Tertiary Charophytes from coastal region of Bohai.(en chinois).
- Нидот G. 1983. Hydrogéologie et paléomorphologie glaciaire du Pays de Gex (Ain). Thèse, Univ. scientif. et médic., Grenoble, 1-261.
- HUGUENEY M, KISSLING D. 1972. Nouveaux gisements de mammifères de l'Oligocène supérieur de Suisse occidentale. Géobios, Lyon, 5: 55-66.
- JAQUET J-M, DUCLOZ C, VUAGNAT M. 1990. Introduction géologique. *In*: Sentier naturaliste, Vallon de la Roulavaz (Dardagny). Conservatoire et Jardin botanique, Ville de Genève, Sér. docum. 27: 9-16.
- JAYET A. 1926. Etude stratigraphique de la Perte du Rhône près de Bellegarde (Ain, France). Eclogae geol. Helv., Basel, 20: 159-222.
- JAYET A. 1964. Feuille 1281 Coppet et notice explicative. Atlas géol. suisse 1:25.000, Comm. géol. suisse, Basel.
- JENNY J, BURRI J-P, MURALT R, PUGIN A, SCHEGG R, UNGEMACH P, VUATAZ F, WERNLI R. 1995. Le forage géothermique de Thônex (Canton de Genève): aspects stratigraphiques, tectoniques, diagénétiques, géophysiques et hydrogéologiques. Eclogae geol. Helv., Basel, 88: 365-396.
- Joukowsky E, Favre J. 1913. Carte géologique du Salève, 1:25.000. Mém. Soc. Phys. Hist. nat. Genève, 37/4.
- **K**ÄLIN **D.** 1997. The mammal zonation of the Upper Marine Molasse of Switzerland reconsidered a local Biozonation of MN 2-MN 5. *In*: Aguilar J-P, Legendre S, Michaux J (eds): Actes du congrès BiochroM'97, Mém. Trav. EPHE Inst. Montpellier, 21: 515-535.
- KELLER B, BLÄSI H-R, PLATT N H, Mozley P S, MATTER A. 1990. Sedimentäre Architektur der distalen Unteren Süsswassermolasse und ihre Beziehung zur Diagenese und den petrophysikalischen Eigenschaften am Beispiel der Bohrungen Langenthal.- Geol. Ber. Landeshydrol. u. -geol., Bern, 13: 1-100.
- **Kempf O, Bolliger T, Kälin D, Engesser B, Matter A.** 1997. New magnetostratigraphic calibration of early to middle Miocene mammal biozones of the North Alpine Foreland Basin. *In*: Aguilar J P, Legendre S, Michaux J. (eds) Actes du congrès Biochrom'97. Mém. Trav. EPHE Inst. Montpellier 21: 547–561.
- **KEEN M C.** 1971. A palaeoecological study of the ostracod *Hemicyprideis montosa* (Jones & Sherborn) from the Sannoisian of North-West Europe. *In* Oertli H.J. (ed.): Colloque sur la Paléoécologie des Ostracodes. Bull. Centre Rech. SNPA, Pau, 5 suppl.: 523-543.
- KERRIEN Y, TURREL C, MONJUVENT G, CHAROLLAIS J, LOMBARD A, BALMER F, OLMARI F, PAPILLON R, FONTANNAZ L, AMBERGER G, RUCHAT C, GREBERT Y, MARTHALER M. 1998. Carte géol. France (1:50'000), feuille Annemasse (654). BRGM, Orléans, Notice explicative par J. Charollais, R. Plancherel, G. Monjuvent, J. Debelmas et coll. (1998), 130 p.
- Kissling D. 1974. L'Oligocène de l'extrémité occidentale du bassin molassique suisse. Stratigraphie et aperçu sédimentologique. Thèse n° 1648, Univ. Genève, Impr. Gessler, Colombier, 94 p.
- **Kruit C.** 1955. Sediments of the Rhône Delta. 1. Grain size and microfauna. Verhandelingen Koninklijk Nederlandsch geologisch-mijn-bouwkunding Genootshap, Geol. Ser. 15: 357-514.
- LAGOTALA H. 1932. Les gîtes bitumineux de Dardagny (Genève). Le Globe, Soc. géogr. Genève, 71: 1-118.
- **LAGOTALA H.** 1945. Profil géologique du sondage de Peissy au 1:100e. *In*: Rapport pour la Société d'Etudes pour la mise en valeur des gisements métallifères suisses, Berne. Rapport inédit, Archives du Service cantonal de Géologie, Genève.
- LAGOTALA H. 1947. Quelques résultats du sondage de Peissy (Genève). C. R. Séances Soc. Phys. Hist. nat. Genève, 64: 73-76.
- LAGOTALA H. 1948. Les roches bitumineuses de Peissy (Genève). Le Globe, Soc. géogr. Genève, 87: 39-85.
- LANTERNO E. 1972. Rapport inédit du 1er juillet 1972, réf. MC/61/Rev., Archives géol. et géotechn. du CERN, Genève.
- LANTERNO E. 1975. Dix kilomètres d'excavation dans le sous-sol molassique franco-genevois. Musées de Genève, 158: 9-17.
- LANTERNO E, KÜNZLE A, GERVAISE J, BRUDERLEIN J. 1981. Projet LEP. Sondages de reconnaissance 1979-1980. Rapport inédit, réf. SPS-SU-81-2, 13 p. + annexes. Archives géol. et géotechn. du CERN, Genève.
- LOMBARD A. 1965. Feuille 1301 Genève, notice explicative. Atlas géol. de la Suisse au 1:25'000. Comm. géol. suisse, Bâle, 42 p.
- LOMBARD A, CHAROLLAIS J. 1965. La flexure du Salève Les Bornes et son influence sur la paléosédimentologie régionale. Geol. Rundschau, Stuttgart, 55: 542-548.
- LOMBARD A, PARÉJAS E. 1965. Feuille 1301 Genève. Atlas géol. de la Suisse au 1:25'000. Comm. géol. suisse, Bâle.
- MAEDLER K. 1955. Zur Taxonomie der tertiären Charophyten. Geol. Jb. Hannover, 70: 265-328.
- MALATRAIT A M. 1981. Etude géologique détaillée des Monts du Jura à l'aplomb du projet LEP sur le territoire des communes de Echenevex, Crozet, Sergy, Thoiry (01). Rapport inédit au CERN, BRGM, Orléans, réf. 81 SGN 079 RHA, 95 p.
- MALATRAIT A M. 1982. Conditions géologiques pour le percement du tunnel du LEP en Piémont du Jura (01). Rapport inédit au CERN, BRGM, Orléans, réf. 82 SGN 505 RHA, 7 p.
- MALZ H. 1971. A palaecological review of the Chattian/Aquitanian boundary in the Mainz Basin by means of Ostracoda. *In*: Oertli HJ (ed.): Colloque sur la paléoécologie des ostracodes. Bull. Centre Rech. Pau, SNPA, 5: 515-522.
- MALZ H. 1978. Neue Hemicyprideis-Arten (Ostracoda; Tertiär) aus dem Mainzer Becken und seinen Randgebieten. Senckenbergiana lethaea, Frankfurt a.M., 59: 71-91.
- MANIGLER A. 1887. Le sondage de Challex. Bull. Soc. Industrie Minérale, Paris, 1: 397.
- MARTENS K, BEHEN F. 1994. A Checklist of the Recent Non-Marine Ostracods (Crustacea, Ostracoda) from the Inland Waters of South America and Adjacent Islands. Travaux scientifiques du Musée national d'histoire naturelle de Luxembourg, 22: 1-81.

ARCHIVES DES SCIENCES Arch.Sci. (2007) 60: 59-174

- MARTI L. 1983. Contribution à l'étude géologique et hydrogéologique du Mont Mourex Mont Mussy (Ain, France). Diplôme inédit, Dépt. Géol. Pal. Univ. Genève, 1-140.
- MARTINEZ J-F. 1986. Etude du fonctionnement d'aquifères complexes, Pays de Gex, Ain. Thèse 3e cycle, Univ. scientif. et médic., Grenoble, 261 p.
- MARTINI E, REICHENBACHER B. (2007). Nannoplankton und Fisch-Otolithen in der Mittleren Pechelbronn-Formation (Unter-Oligozän, Oberrheingraben/Mainzer Becken). Geol. Abhandl. Hessen, 116: 235-273.
- MARTINI J. 1962. Note sur le Tertiaire des environs de Mornex. Arch. Sci. Genève, 15: 619-626.
- Martini J. 1969. Note sur le gypse chattien de la région genevoise. C. R. Séances Soc. Phys. Hist. nat. Genève, NS, 4: 183-186.
- MAURER H. 1981. Pétrographie sédimentaire des sondages Peissy et L 112. Rapport inédit, 1-6.
- Maurer H. 1983. Sedimentpetrographische Analysen an Molasseabfolgen der Westschweiz. Jb. Geol. B.-A. Wien, 126: 23-69.
- MEURISSE M, LLAC F, GUILLAUME S, GUILLAUME A. 1971. Carte géol. France (1:50'000), feuille St-Claude (XXXIII-28). BRGM, Orléans. Notice explicative par A. Guillaume, S. Guillaume, F. Llac, M. Meurisse (1972), 15 p.
- MEYER M. 2000. Le Complexe récifal kimméridgien-tithonien du Jura méridional interne (France), évolution multifactorielle, stratigraphie et tectonique. Terre & Environnement, Genève, 24: 179 p.
- MEYER DE STADELHOFEN C. 1980. Prospection géoélectrique pour le CERN. Rapport inédit, Arch. géol. et géotechn., CERN, Genève.
- MICHEL R C. 1965. Les calcaires oligocènes de Grilly (Ain, France). Archs. Sci., 10: 706-711.
- Mojon P-O. 1987. Affleurements molassiques de la Roulavaz (Dardagny). Rapport inédit, Dépt. géol. paléont. Univ. Genève, 1-8.
- Mojon P-O, Engesser B, Berger J-P, Bucher H, Weidmann M. 1985. Sur l'âge de la Molasse d'eau douce inférieure de Boudry, NE. Eclogae geol. Helv. Basel, 78: 631-667.
- Monjoie A. 1990. Impact des travaux souterrains profonds sur les nappes aquifères en région montagneuse. Mem. 22nd Congress of IAH, EPF-Lausanne 1990, vol. 22/2: 1208-1232.
- MOREL P. 1946-1947. Riamont, Mt Mourex, Mt Mussy. Etude de quelques avant-plis du Jura gessien. Bull. Soc. Natural. Archéol. Pays Ain, Bourg-en-Bresse, 60: 86-117 et 61: 37-46.
- MOREND D. 2000. High-resolution seismic facies of alluvial depositional systems in the Lower Freshwater Molasse (Oligocene-early Miocene, western Swiss Molasse Basin). Terre et Environnement, Genève, 23: 1-97.
- MOREND D, Pugin A, Gorin G E. 1998. Sedimentological interpretation of high-resolution seismic facies in the Lower Freshwater Molasse (Chattian, western Switzerland). Terra Nova, Paris, 10: 155-159.
- MÜLLER D. 1985. Biostratigraphische Untersuchungen in der subalpinen Unteren Süßwassermolasse zwischen Inn und Lech anhand von Ostrakoden. Palaeontographica, Stuttgart, Abt. A, 187: 1-57.
- MUMENTHALER T, PETERS T, WEIDMANN M. 1981. Niveau de bentonite dans la Molasse grise de Lausanne (USM-«Aquitanien»). Eclogae geol. Helv., Basel, 74: 639-650.
- NECKER L-A. 1841. Etudes géologiques dans les Alpes. 1 vol., Pitois, Paris.
- **ODIER M.** 1996. Projet LHC, Lot 1: reconnaissances géologiques et géotechniques. Géotechnique appliquée P. & C. Dériaz, Genève, rapport inédit 3545/81, 35 p., Archives géol. et géotechn. du CERN.
- OERTLI H-J. 1956. Ostrakoden aus der Oligozänen und Miozänen Molasse der Schweiz. Schweiz. Paläont. Abh., Basel, 74: 1-119.
- ULIVE P, VIAL R, ALAIN Y, CONRAD M-A, VERNET J-P. 1987. Carte géol. France (1:50'000), feuille Douvaine (629). BRGM, Orléans.
- OLIVIER R. 1983. Atlas gravimétrique du Plateau suisse, partie Ouest, au 1:100'000. Bull. Inst. géophys. Univ, Lausanne, 5.
- OLMARI F. 1983. Etude sédimentologique de la Molasse du bassin genevois. Rapport inédit à la S.F.D.P.-B.P., Paris, 39 p.
- Paréjas E. 1938. Feuille 12: 449 Dardagny, 449bis Chancy, 450 Vernier, 450bis Bernex, avec notice explicative. Atlas géol. Suisse au 1/25'000. Comm. géol. suisse, Bâle.
- Paréjas E. 1944. Plissements dans la molasse de Vernier (Genève). C.-R. somm. Soc. Phys. Hist. nat. Genève, 61: 75-77.
- PARKIN R. 2000. A megascience project: the design and construction at Point 1 of the CERN LHC project. Tunnels & Tunnelling International, London, nov. 2000, 42-44.
- PIRKENSEER C. 2007. Foraminifera, Ostracoda and other microfossils of the Southern Upper Rhine Graben. Thèse Nr. 1565, 340 p. Univ. Fribourg (Suisse).
- **PLATT N H.** 1992. Fresh-water carbonates from the Lower Freshwater Molasse (Oligocene, Western Switzerland): sedimentology and stable isotopes. Sedimentary Geol., Amsterdam, 78: 81-99.
- PLATT N H, Keller B. 1992. Distal alluvial deposits in a foreland basin setting the Lower Freshwater Molasse (Lower Miocene), Switzerland: sedimentology, architecture and palaeosoils. Sedimentology, Oxford, 39: 545-565.
- PLATT N H, WRIGHT V P. 1992. Palustrine carbonates and the Florida Everglades; towards an exposure index for the fresh-water environment. J. Sedim. Petrology 62: 1058-1071.
- Poldini E. 1963. Les anomalies gravifiques du canton de Genève. Mat. géol. Suisse, sér. Géophys. 4, Bern, 63 р.
- REGGIANI L. 1989. Faciès lacustres et dynamique sédimentaire dans la Molasse d'eau douce inférieure oligocène (USM) de Savoie. Eclogae geol. Helv., Basel, 82: 325-350.
- **Reichenbacher B.** 1999. Preliminary otolith-zonation in continental Tertiary deposits of the Paratethys and adjacent areas. N. Jb. Geol. Paläont. Abh., Stuttgart, 214: 375-390.
- **Reichenbacher B.** 2000. Das brackisch-lakustrine Oligozän und Unter-Miozän im Mainzer Becken und Hanauer Becken: Fischfaunen, Paläoökologie, Biostratigraphie, Paläogeographie. Courier Forschungsinst. Senckenberg, Frankfurt am Main, 222: 1-143.

- REICHENBACHER B, PHILIPPE M. 1997. Les otolithes de Téléostéens oligocènes du bassin d'Apt (Vaucluse, France). N. Jb. Geol. Paläont. Abh., Stuttgart, 203: 391-423.
- REICHENBACHER B, SCHWARZ J. 1997. Charophyten und Otolithen aus den Cyrenen-Schichten des nördlichen Alpenvorlandes. Paläont. Zeitschrift, Stuttgart, 71: 173-188.
- REICHENBACHER B, UHLIG U. mit einem Beitrag von Jürgen Schwarz 2002. Die Fischfauna der chattischen Unteren Cyrenen-Schichten in der Murnauer Mulde (süddeutsche Faltenmolasse). Courier Forschungsinstitut Senckenberg, Frankfurt am Main, 237: 175-191.
- **Reichenbacher B, Weidmann M.** 1992. Fisch-Otolithen aus der oligo-miozänen Molasse der West-Schweiz und der Haute-Savoie (Frankreich). Stuttgarter Beiträge zur Naturkunde, B, 184: 1-83.
- RIGASSI D. 1957. Le Tertiaire de la région genevoise et savoisienne. Bull. Ver. Schweizer. Petrol.-Geol. U. Ing. Basel, 24/66: 19-34.
- Rigassi D. 1977a. Subdivision et datation de la Molasse «d'eau douce inférieure» du Plateau suisse. Paleolab News, Nyon, 1, 42 p.
- RIGASSI D. 1977b. Encore le Risoux. Bull. Soc. vaud. Sci. nat. Lausanne, 73: 379-413.
- RIGASSI D. 1980. Couches détritiques de La London (Pays de Gex, Ain). Chez l'auteur, Genève, 11 p.
- RIGASSI D. 1982. Bassin molassique sud-occidental. Carte géologique interprétative (sans Quaternaire) au 1:200'000. *In*: Jung, P. (éd.), Doc. Labo géol. Univ. Lyon, H.S. 7.
- RIGASSI D. 1996. Regional geological framework of the Pays de Gex (Jura foldbelt, Molasse basin, Bresse). Rapport inédit, 1-50, Soc. Gén. Industrie, Genève.
- RIVE A DE LA, MARCET F. 1834. Quelques observations de physique terrestre. Mém. Soc. phys. hist. nat. Genève, 6: 503-528.
- RIVELINE J. 1985. Les charophytes du Paléogène et du Miocène inférieur d'Europe occidentale. Cah. Micropaléont., Paris, 227 p.
- RIVELINE J, BERGER J-P, FEIST M, MARTIN-CLOSAS C, SCHUDACK M, SOULIE-MÄRSCHE I. 1996 European Mesozoic-Cenozoic charophyte biozonation. Bull. Soc. géol. France, Paris, 167: 453-468.
- RUCHAT C. 1978. Relevé tectonique général du bassin genevois. *In*: Etude de la fracturation tectonique active dans le canton de Genève et environs. Rapport inédit, 1-45, E.O.S. et Service cantonal de Géologie de Genève.
- RUCHAT C. 1997. Carte géologique de la Molasse du bassin genevois. *In*: Charollais et al. 1998. Notice explicative, Carte géol. France (1:50'000), feuille Annemasse (654). BRGM, Orléans, 130 p.
- **RUCHET H.** 2005. Micropaléontologie des formations de Vions, Chambotte et Calcaires roux (Berriasien supérieur-Valanginien) dans trois forages du CERN près de Genève. Diplôme inédit, Dépt. Géol.-Paléont., Univ. de Genève, 1-103.
- Rutsch F. 1971. Région-type et faciès de la Molasse. Archs. Sci. Genève, 24: 11-15.
- SALVINI-BONNARD G, ZANINETTI L, CHAROLLAIS J. 1984. Les foraminifères dans le Crétacé inférieur (Berriasien moyen Valanginien inférieur) de la région de la Corraterie, Grand Salève (Haute-Savoie, France): inventaire préliminaire et remarques stratigraphiques. Rev. Paléobiol. Genève, 3: 175-184.
- Saussure H B de. 1779-1796. Voyages dans les Alpes, précédés d'un essai sur l'histoire naturelle des environs de Genève. 4 vol., Fauche-Borel, Neuchâtel.
- **SCHARDT H.** 1891. Etudes géologiques sur l'extrémité méridionale de la première chaîne du Jura (Reculet-Vuache). Bull. Soc. vaud. Sci. nat. Lausanne, 27: 1-92.
- **S**CHARDT H. 1894. Excursion géologique dans le Jura méridional. Exc. 1, Livret-guide géologique dans le Jura et les Alpes, Congrès géol. Intern. Vlème session, Zürich, 1-10.
- **SCHEGG R.** 1993. Thermal maturity and history of sediments in the North Alpine Foreland Basin (Switzerland, France). Publ. Dépt. Géol. Pal. Univ. Genève, 15: 1-194.
- **SCHEGG R, MORITZ R.** 1993. Indications for paleogeothermal anomalies in the Molasse Basin (Switzerland and France). *In*: Parnell J, Ruffell A H, Moles N R. (eds.): Geofluids 93. Contributions to an International Conference on fluid evolution, migration and interaction in rocks. Torquay, England.
- **SCHEGG R, LEU W.** 1996. Clay mineral diagenesis and thermal history of the Thônex well, Western Swiss Molasse Basin. Clays and Clay Miner., Aberdeen, 44: 693-705.
- **Schlunegger F, Rieke-Zapp D, Ramseyer K.** 2007. Possible environmental effects on the evolution of the Alps-Molasse Basin system. Swiss j. geosci., Basel, 100: 383-405.
- **SCHROEDER J W.** 1958. Géologie du Pays de Genève. Le Globe, Genève, 97: 51-87.
- Schroeder R, Clavel B, Cherchi A, Charollais J. 1999. *Praedictyorbitolina busnardoi* n. sp. (Foraminiferida) et évolution de la lignée *Praedictyorbitolina-Dictyorbitolina* (Hauterivien supérieur Barrémien basal). Paläont. Zeitschr., Stuttgart, 73: 203-215.
- Schroeder R, Clavel B, Conrad M A, Zaninetti L, Busnardo R, Charollais J, Cherchi A. 2000. Corrélations biostratigraphiques entre la coupe d'Organyà (Pyrénées catalanes, NE de l'Espagne) et le Sud-Est de la France pour l'intervalle Valanginien-Aptien. Treb. Mus. Geol. Barcelona, 9: 5-41.
- **Schulz-Mirbach T, Reichenbacher B.** 2006. Reconstruction of Oligocene and Neogene freshwater fish faunas an actualistic study on cypriniform otoliths. Acta Palaeont. Polonica, Varsovie, 51: 283–304.
- **SIGNER C.** 1992. Interprétation sismique structurale et sismostratigraphie entre Jura et front alpin dans la région genevoise. Diplôme inédit, Dépt. géol. paléont. Univ. Genève, 1-90.
- SIGNER C, GORIN G E. 1995. New geological observations between the Jura and the Alps in the Geneva area, as derived from reflection seismic data. Eclogae geol. Helv. Basel, 88: 235-265.
- SITTLER C. 1965. Le Paléogène des fossés rhénan et rhodanien. Etudes sédimentologiques et paléoclimatiques. Mém. Serv. Carte géol. Als. Lorr., Strasbourg, 24: 392 p.

- Société Cartographique de France. 1989. Etude de géologie structurale. Carte d'interprétation de synthèse 1:50'000 du bassin du Genevois. Rapport inédit, Service cantonal de Géologie, Genève.
- Société Française d'Exploration Pétrolière British Petroleum France (SFEPBP). 1982-1983. Permis de Clairvaux-Gex. Masterlog des puits Gex CD 01 à 07 et Rapport de fin de sondages. Documents inédits, Société française d'exploration pétrolière BP, Paris.
- **Soulie-Märsche I.** 1989. Etude comparée de Gyrogonites de charophytes actuelles et fossiles et phylogénie des genres actuels. Thèse d'Etat, Univ. de Montpellier, Imprimerie des Tilleuls, Millau, 237 p.
- **S**TEINHAUSER N, LOMBARD A. 1969. Définitions des unités lithostratigraphiques dans le Crétacé inférieur du Jura méridional (France). C.R. Séances SPHN Genève, N.S., 4: 100-113.
- **STRASSER A, HILLGARTNER H.** 1998. High-frequency sea-level fluctuations recorded on a shallow carbonate platform (Berriasian and Lower Valanginian of Mount Salève, French Jura). Eclogae geol. Helv. Basel, 91: 375-390.
- **STRAUB E W.** 1952. Mikropaläontologische Untersuchungen im Tertiär zwischen Ehingen und Ulm an d. Donau. Geol. Jb., Stuttgart, 66: 433-525.
- **STRUNCK P.** 2001. The Molasse of Western Switzerland. Unpubl. Thesis, Univ. Bern, 244 p.
- STRUNCK P, MATTER A. 2002. Depositional evolution of the western Swiss Molasse. Eclogae geol. Helv., Basel, 95: 197-222.
- TRIEBEL E. 1959. Moenocypris n. g. (Crust., Ostr.). Senckenbergiana lethaea, Frankfurt a. M., 40: 1-17.
- TRÜMPY R. 1980. Geology of Switzerland. A guide-book. Part A: An outline of the Geology of Switzerland. Schweizer. Geol. Kommission, Ed. Wepf & Co, Basel, 104 p.
- **VERNET J-P.** 1964. Pétrographie sédimentaire du sondage de Peissy. Archs. Sci., 17: 92-99.
- VIAL R. 1976. Etudes géologique et hydrogéologique de la région de Thonon-Douvaine (Haute-Savoie). Thèse Illème cycle Univ. Grenoble, 1-169. + annexes.
- VIAL R, CONRAD M A, CHAROLLAIS J. 1987. Notice explicative, Carte géol. France (1:50'000), feuille Douvaine (629). BRGM, Orléans, 21 p.
- VIANEY-LIAUD M. 1979. Evolution des rongeurs à l'Oligocène en Europe occidentale. Palaeontographica, Stuttgart, A, 166: 135-236.
- **VOLTAIRE** (AROUET F-M dit). 1768. Les Singularités de la nature par un Académicien de Londres, de Boulogne, de Petersbourg, de Berlin, &c. A Basle, in-8.
- **W**AGNER A. 1969. Etudes minéralogiques et sédimentologiques dans les formations tertiaires des bassins lémanique (Suisse occidentale) et de Frangy-Bellegarde (Haute-Savoie). Archs. Sci., 22: 605-623.
- **W**ASSALL **H &** ASSOCIATES 1961. Résultats sommaires des forages, Genève-Haute Savoie-Ain. Document distribué aux participants de la réunion de l'Assoc. suisse des Géol. et Ing. du pétrole, Genève, 24-26 juin 1961, 6 p.
- WILDI W, PUGIN A. 1998. Histoire du relief géologique du bassin lémanique. Archs. Sci., 51: 5-12.
- WILLETT S D, SCHLUNEGGER F, PICOTTI V. 2006. Messinian climate change and erosional destruction of the central European Alps. Geology, Boulder, 34: 613-616.
- **Zachos J, Pagani M, Sloan L, Thomas E, Billups K.** 2001. Trends, rythms, and aberrations in global climate 65 Ma to Present. Science, Washington, 292: 686-693.

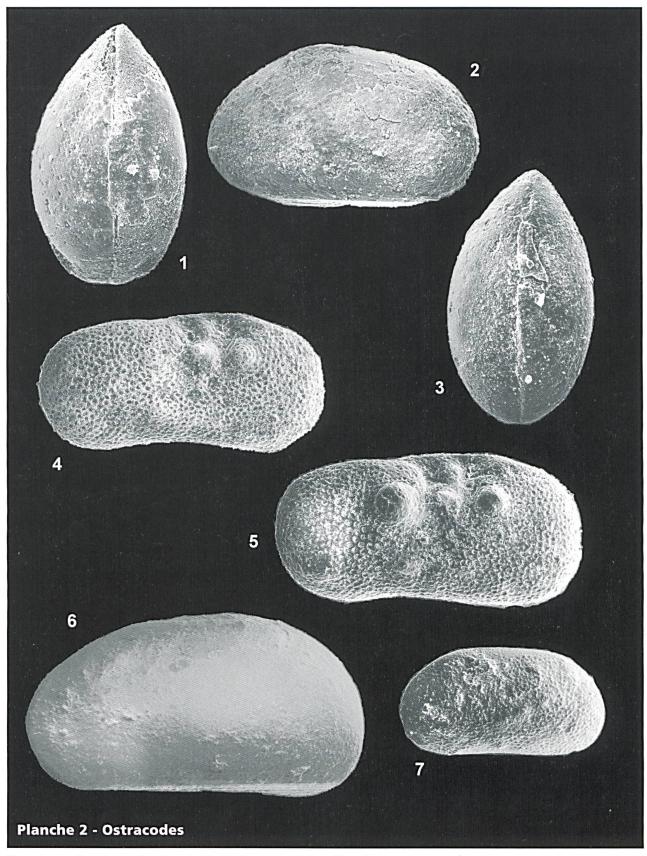

Annexe

Liste, profondeurs et coordonnées des sondages mentionnés dans le texte

Nom	Année	Profondeur	Coordonnées
		[[m]	[CH ou F]
Avully école	1965	88,8	489,108/113,866
CERN F 6	1970-1971	78,6	493,980/123,335
CERN F 13	1971	41	494,010/124,940
CERN F 15	1971	41,2	494,610/125,630
CERN L 107	1979	22,5	488,547/122,549
CERN L 108	1979	34	489,258/121,896
CERN L 109	1979	40	488,967/122,205
CERN L 112	1979	130,5	488,356/122,871
CERN L 113	1979	30,3	488,137/122,938
CERN L 126	1979	42,1	494,297/129,827
CERN L 129	1980	94,2	492,080/130,644
CERN L 130	1980	192,7	487,448/123,851
CERN L 131	1980	99,2	490,563/125,025
CERN L 132	1980	180,5	490,113/125,564
CERN L 133	1980	122,2	490,113/125,564
CERN L 134 bis	1980	96,2	490,244/125,343
CERN L 135	1981	135	489,910/125,694
CERN SLHC 20	1996	120,2	493,278/121,432
CERN SPL 2/1	1981	60,5	490,534/121,588
CERN SPL 2/2		66,5	
	1981		490,544/121,652
CERN SPL 2/3	1981	66	490,692/123,276
CERN SPL 2/5	1982	37	491,399/122,319
CERN SPL 2/6	1982	32,7	491,490/122,200
CERN SPL 2/7	1982	23	489,998/124,734
CERN SPL 4/1	1982	164	491,880/129,106
CERN SPL 4/3	1982	218,2	491,382/128,699
CERN SPL 4/5	1982	54	493,680/129,750
CERN SPL 4/7	1982	62,2	491,880/129,060
CERN SPL 4/9	1982	55	491,972/129,013
CERN SPL 4/10	1982	125	491,324/128,622
CERN SPL 4/11	1982	151	491,290/128,640
CERN SPL 5/1	1982	120,5	492,725/129,230
CERN SPL 5/4	1982	88	495,111/129,627
CERN SPL 5/6	1982	34	495,268/129,595
CERN SPL 5/7	1982	49,2	494,961/129,658
CERN SPL 5/8	1982	55,2	495,032/129,643
CERN SPL 5/9	1982	45,3	494,065/129,777
CERN SPL 5/10	1982	31,6	495,463/129,557
CERN SPL 6/1	1981	100,6	494,085/129,150
CERN SPL 6/2	1982	101,2	494,115/129,200
CERN SPL 6/5	1982	23,1	497,063/128,698
CERN SPL 6/7	1982	23,5	496,445/129,137
CERN SPL 7/2	1982	90	497,923/124,752
CERN SPL 7/3	1982	2,6	498,287/124,601
CERN SPL 8/2	1982	121,2	496,477/121,934
CERN SPL 8/5	1982	80	497,001/122,359
CERN SPL 8/7	1982	91	496,548/122,044
CERN SPL 8/8	1982	94,3	496,726/122,159
CERN SPL 8/9	1982	84	497,124/122,525
CERN SPL 8/13	1982	88	496,865/122,257
CERN SPM 1	1981	205,5	488,375/124,589
	1301	200,0	100,075/121,005

Nom	Année I	Profondeur	Coordonnées
		[[m]	[CH ou F]
CERN SPM 3	1981	198,1	488,230/124,330
CERN SPM 4	1981	100	488,147/124,569
CERN SPM 5	1981	165,6	488,301/124,080
CERN SPM 6	1982	180,1	490,750/128,080
CERN SPM 7	1982	170,2	490,315/127,827
CERN SPM 8	1982	151,2	490,186/127,000
CERN SPM 9	1982	150,0	491,210/128,570
CERN SPM 10	1982	180,5	490,485/127,630
CERN SPM 11	1981-1982	119,7	490,036/126,099
CERN SPM 15	1982	130	490,146/126,732
CERN SPM 16	1982	102	489,936/125,389
Challex-1	1887	225	env. 487,82/115,05
Challex-2	1918-1920	273,5	487,750/115,000
Choully S 3	2006	30	491,945/119,573
Collonges	1884	225	env. 877/133
Founex PAC	2007	200	503,160/132,300
Gex CD 01	1983	290,5	494,600/123,750
Gex CD 02	1983	403,2	490,240/123,170
Gex CD 03	1982	294	880,600/138,500
Gex CD 04	1982	291,7	881,650/137,975
Gex CD 05	1983	560	880,550/135,050
Gex CD 06	1983	422	884,700/132,950
Gex CD 07	1983	256	494,280/123,830
Humilly-1	1960	905	883,878/128,036
Humilly-2	1968-1969	3051	885,020/130,535
La Plaine (Gardy)	1889	124,5	env. 489,4/114,9
Messery-1	1958	737,7	904,732/157,523
Mont de Boisy-1	1959	1954,5	908,360/152,670
Mont Sion SC 11	1996	55,2	889,495/124,686
Mont Sion SC 12	1996	115,1	889,496/124,929
Mont Sion SC 14	1996	134,1	889,657/126,113
Mont Sion SC 19	1996	121,6	889,941/127,055
Mont Sion SC 20	1996	110	889,950/127,089
Mont Sion SC 21	1996	133,4	889,927/127,019
Mont Sion SC 22	1996	98,7	889,861/127,124
Peissy-1	1944-1945	293,6	489,975/119,050
Pont des Granges	1889	135	env. 488,9/119,5
Pregny	1831-1833	221,5	env. 499/121
SCG 6481	1985	89	496,238/119,055
Thônex	1993	2530	505,270/117,450
Vernier PAC	2006	200	495,869/119,503
Veyrier stand	1966	86,5	501,985/114,080

Arch.Sci. (2007) 60: 59-174

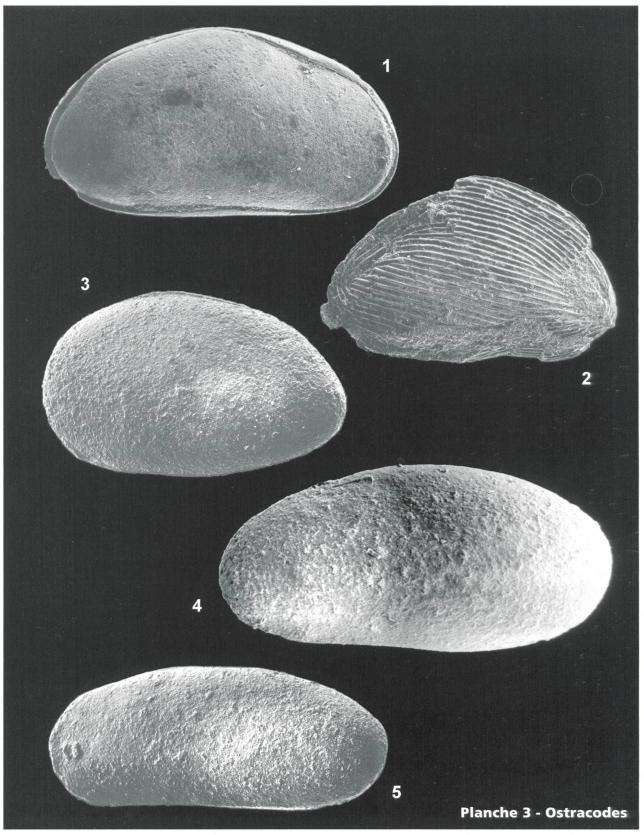


C = carapace, G = valve gauche, D = valve droite. Entre parenthèses: dimension en mm.

Figs. 1-2: Metacypris cf. danubialis Straub 1952 - Sondage SPM 11, 23,5 m. 1: C (0,41) vue de dessus / 2: C (0,35) vue de dessus. Fig. 3: Metacypris cf. helvetica Schäfer 2002 - Sondage SPM 11, 23,5 m. C (0,38) vue de dessus.

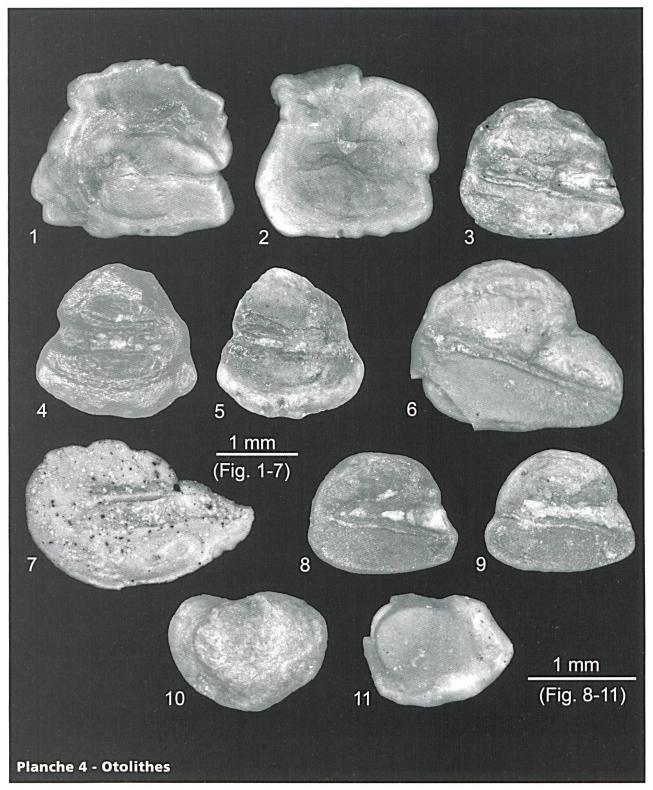
Figs. 4-7: $Hemicyprideis\ rhenana\ (Lienenklaus\ 1905)$. 4: C (0,85) vue de dessus. - Sondage de Thônex, 222-228 m / 5: G (0,85) vue latérale. - Sondage de Thônex, 276-282 m / 7: C (0,79) vue latérale. - Sondage de Thônex, 276-282 m.

Fig. 8: Cytheromorphasp. - Sondage de Thônex, 276-282 m. C $(0{,}53)$ vue gauche.



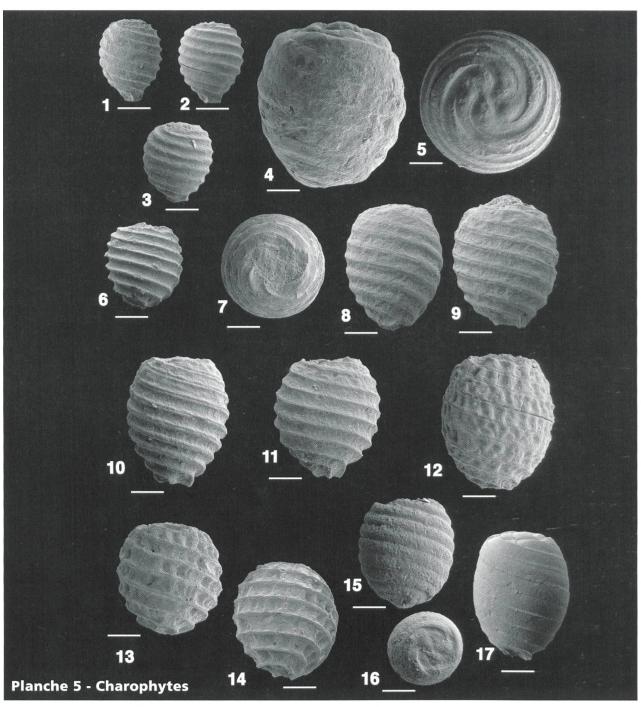
 $\mathbf{C}=\mathbf{carapace},\,\mathbf{G}=\mathbf{valve}$ gauche, $\mathbf{D}=\mathbf{valve}$ droite. Entre parenthèses: dimension en mm.

Figs. 1-3: Cypridopsis sp. - Sondage Gex CD 07, 175,4-175,6 m. 1: C (0,50) vue de dessus / 2: C (0,50) vue gauche / 3: C (0,48) vue de dessus.

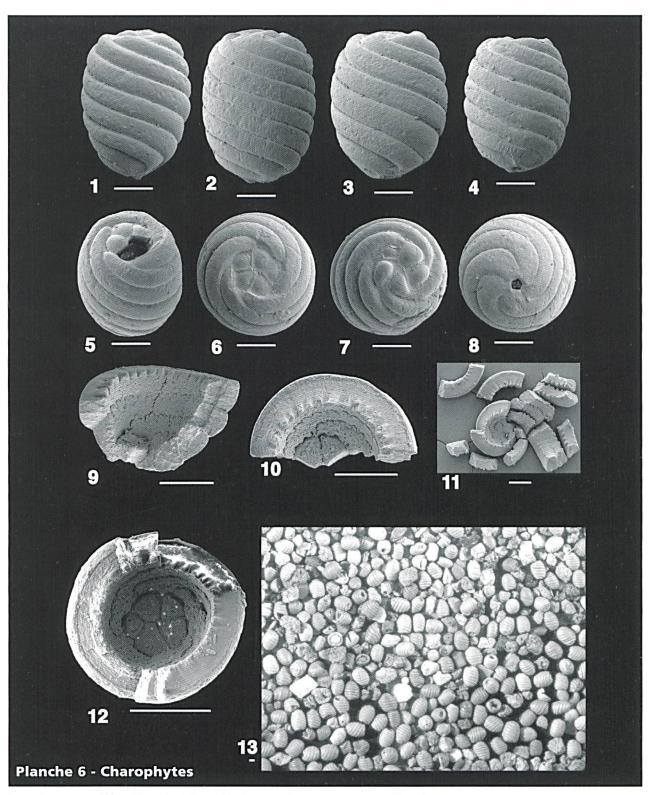

Figs. 4-5: $\mathit{Ilyocypris}$ essertinesensis Carbonnel 1985 - Sondage de Peissy-1, 75,9-76,1 m. 4: D (0,81) vue latérale / 5: D (0,88) vue latérale.

 $Figs.\ 6-7: Pseudocandona\ sp.\ -\ Sondage\ SPL\ 5/4,\ 68.5\ m.\ 6:\ C\ (0,96)\ vue\ gauche\ /\ 7:\ C\ forme\ juv\'enile\ (0,58)\ vue\ gauche\ .$

 $\mathbf{C}=\mathbf{carapace},\,\mathbf{G}=\mathbf{valve}$ gauche, $\mathbf{D}=\mathbf{valve}$ droite. Entre parenthèses: dimension en mm.


- Fig. 1: Heterocypris sp. Sondage SPM 11, 47,5 m. C (0,74) vue droite.
- Fig. 2: Virgatocypris sp. Sondage SPM 11, 47,5 m. C écrasé (0,99) vue gauche.
- Fig. 3: Strandesia sp. Sondage de Peissy-1, 32,0-32,1 m. C (0,96) vue gauche.
- Fig. 4: Moenocypris cf. ingelheimensis Triebel 1959. Sondage SPL 5/4, 68,5 m. C (1,38) vue gauche.
- Fig. 5: ? Stenocypris sp. - Sondage SPL 5/4, 68,5 m. C (1,39) vue gauche.

Figs. 1-9: Otolithes sacculaires gauches, côté interne (médian). Figs. 10-11: Otolithes utriculaires, côté dorsal.


Figs. 1-2: Genre Eleotridarum martinii Reichenbacher & Uhlig 2002 1: otolithe droit (image inversée pour une meilleure comparaison), sondage L 135, 27,5 m; 2: otolithe gauche, sondage Gex CD 04, 175,7-176,1 m.

- Fig. 3: Palaeoesox oligocenicus Reichenbacher & Philippe 1997; otolithe gauche, sondage L 133, 60,5 m.
- $Figs.\ 4-5: \textit{Palaeolebias symmetricus}\ (Weller\ 1963);\ 4:\ otolithe\ droit,\ sondage\ L\ 133,\ 85,\ 3\ m;\ 5:\ otolithe\ droit,\ sondage\ SPL\ 8/7,\ 79,\ 7\ m.$
- Fig. 6: Palaeoesox oligocenicus Reichenbacher & Philippe 1997; otolithe gauche, sondage Gex CD 01, 265,6-266,1 m.
- Fig. 7: Enoplophthalmus sp. / cf. schlumbergeri; otolithe gauche, sondage Gex CD 07, 175,4-175,6 m.
- Figs. 8-9: Palaeoesox oligocenicus Reichenbacher & Philippe 1997; otolithes gauches, sondage Gex CD 01, 263,5-263,9 m.
- Fig. 10: Genus Cyprinidarum sp.; otolithe droit, vue dorsale, sondage Gex CD 01, 248,3-248,5 m.
- Fig. 11: Tarsichthys sp.; otolithe droit, vue dorsale, sondage Gex CD 04, 99,7 m.

Barre de mesure = 200 m.

- Figs. 1-3: Hornichara groupe lagenalis profils, sondage SPL 8/5, 79,9 m.
- Fig. 4: Nitellopsis (Tectochara) groupe meriani profil, sondage L 135, 32,1 m.
- Fig. 5: Nitellopsis (Tectochara) groupe meriani apex, sondage L 135, 32,1 m.
- Fig. 6: Rhabdochara groupe stockmansi-major profil, sondage L 135, 32,1 m.
- $Fig.~7: Rhabdochara~groupe~praelangeri-major,~forme~tr\`es~proche~de~Rhabdochara~major~Gramb.~\&~Paul~-apex,~sondage~Peissy-1,~292~m.$
- Figs. 8-9: Rhabdochara groupe praelangeri-major; formes très proches de Rhabdochara major Gramb. & Paul profils, sondage Peissy-1, 292 m.
- Figs. 10-11: Rhabdochara groupe praelangeri-major, forme très proche de Rhabdochara major Gramb. & Paul profils, sondage Gex CD 07, 244 m.
- Fig. 12: Rhabdochara groupe langeri profil, sondage SPL 4/3, 198,5 m.
- Figs. 13-14: Rhabdochara groupe langeri profils, Mont Sion A41, éch. PK9683.
- Fig. 15: Stephanochara groupe ungeri profil, sondage SPL 8/7, 88,4 m.
- Fig. 16: Stephanochara groupe ungeri apex, sondage SPL 8/7, 88,4 m.
- Fig. 17: Stephanochara groupe ungeri profils, sondage SPL 8/7, 88,4 m.

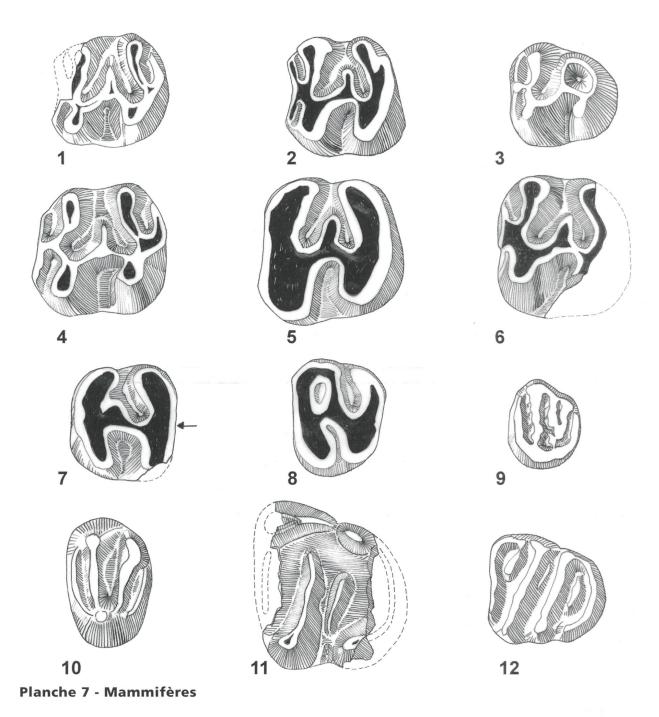
Barre de mesure = 200 m / Rantzieniella nitida Grambast, Portail Avanchet, éch. VA 220.

Figs. 1-4: Profils.

Fig. 5: Vue apicale, avec trois cellules apicales sur cinq encore présentes.

Figs. 6-7: Vue apicale, avec cinq cellules apicales planes (Fig. 6) ou en nodules (Fig.7).

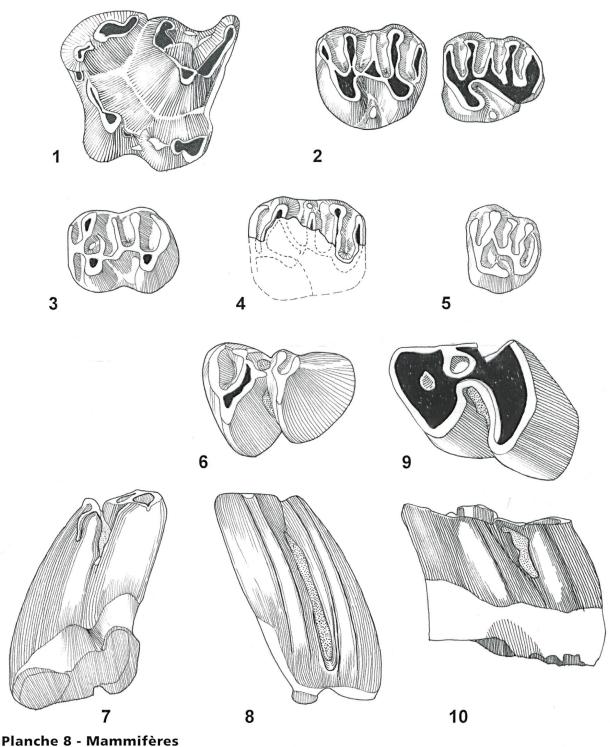
Fig. 8: Vue basale, avec pore basal ouvert.


Fig. 9: Vue intérieure de la base avec plaque basale pentagonale et sutures ondulées.

 $Fig.\ 10: Vue\ intérieure\ de\ l'apex\ avec\ deux\ cellules\ apicales\ encore\ présentes\ et\ sutures\ ondulées.$

Fig. 11: Divers fragments montrant bien les sutures ondulées.

Fig. 12: Vue intérieure de l'apex avec les cinq cellules apicales nettement séparées des cinq autres cellules.


Fig. 13: Population de $Rantzieniella\ nitida$ de l'éch. VA 220.

Dents d'Eomyidés (Figs 1-9) et de Gliridés (Figs 10-12).

- Fig. 1: Eomys molassicus Engesser; M₁ dext. (inversé), BdG 1, sondage L 112, 99,25-99,5 m; 1,20x1,04 mm.
- $\label{eq:fig.2} \textit{Fig. 2: } \textit{Eomys molassicus} \; \textit{Engesser}; \; \textit{M}_{1} \; \textit{dext.} \; (\textit{invers\'e}), \; \textit{BdG 2, sondage L 112, 99,8-99,9 m; 1,20x1,12mm.}$
- Fig. 3: Eomys ebnatensis Engesser; M_3 sin., BdG 3, sondage SPM 15, 36,5 m; 1,01x0,93 mm.
- Fig. 4: $Eomys\ major\ Freudenberg;\ M_1\ dext.\ (inversé),\ BdG\ 4,\ sondage\ SPM\ 15,\ 36,5\ m;\ 1,32x1,24\ mm.$
- Fig. 5: Eomys major Freudenberg; M_2 sin., BdG 5, sondage SPM 15, 36,5 m; 1,36x1,34 mm.
- $\label{eq:control_problem} \textit{Fig. 6: } Rhodanomys\ hugueneyae\ \texttt{Engesser}; \\ \textit{M}_{1}\ \text{dext.}\ (\textit{invers\'e}), \\ \textit{V}\ 5197\ (\textit{Mus\'eum}\ \text{de}\ \textit{Gen\`eve}), \\ \textit{Le}\ \textit{Vengeron}\ (\textit{autoroute})$
- Fig. 7: *Rhodanomys schlosseri* Depéret & Douxam; P⁴ sin., BdG 6, Tunnel du Mont Sion, sondage SC 12, 76,6-76,7 m; 0,96x1,04 mm. Bien que les racines manquent à cette dent, on peut tout de même supposer qu'il s'agit d'une P⁴ gauche, parce qu'on voit une facette de contact du coté postérieur (flèche).
- Fig. 8: Rhodanomys schlosseri Depéret & Douxami; M² sin., BdG 7, Tunnel du Mont Sion, sondage SC 12, 86,80-87,0 m; 0,82x1,04 mm.
- Fig. 9: Pseudotheridomys bernensis Engesser; M³ dext. (inversé), BdG 8, Tunnel du Mont Sion, sondage SC 19, 86,10-86,30m; 0,65x0,81 mm.
- Fig. 10: Gliravus nov. sp.; P^4 sin., BdG 9, sondage Gex CD 07, 215,0-215,4 m; 0,80x1,20 mm.
- Fig. 11: Gliravus cf. bravoi Hugueney, Adrover & Moissenet; M_3 sin., BdG 10, sondage L 112, 90,3-90,7 m.
- Fig. 12: Glirudinus sp.; M3 sin., BdG 16, Tunnel du Mont Sion, sondage SC 20, 75,9-76,0 m; 1,05x1,02 mm.

Toutes les dents sont conservées au Muséum d'Histoire naturelle de Bâle, sauf indication différente.

rianche o - Manimireres

Dents de Dimylidé (Fig. 1), Zapodidés (Figs 2-5) et Théridomyidés (Figs 6-10).

- Fig. 1: $Dimyloides\ stehlini\ H$ ürzeler ou $Pseudocordylodon\ rigassii\ Engesser;\ M^1\ dext.\ (inversé),\ U.M.7134,\ Nant\ Trouble-Andilly;\ 3,04x2,56\ mm.$
- $\label{eq:continuous} Fig.~2: \textit{Plesios minthus schaubi}~Viret;~M^1-M^2~sin.,~V~5195~(Mus\'eum~de~Gen\`eve),~Le~Vengeron~(ruisseau).$
- Fig. 3: Plesiosminthus promyarion Schaub; M2 sin., BdG 11, sondage SPL 8/13, 83,0 m; 1,04x0,80 mm.
- Fig. 4: Plesiosminthus myarion Schauß; M² sin., BdG 12, Tunnel du Mont Sion, sondage SC 11, 25,7-25,8 m.
- Fig. 5: Plesiosminthus myarion Schaub; M^3 dext. (inversé), BdG 13, Tunnel du Mont Sion, sondage SC 11, 19,3-19,5 m; 0,72x0,82 mm. Figs 6-8: Issiodoromys quercyi Schlosser; M_3 dext. (inversé), MHNG, Vieille Bâtie; 6) vue occlusale, 7) vue linguale, 8) vue labiale;
- Figs 6-8: Issiodoromys quercyi Schlosser; M₃ dext. (inverse), MHNG, vieille Batie; 6) vue occlusale, 7) vue iniguale, 8) vue iablale; pointillé = cément.

 Figs 9-10: Issiodoromys quercyi Schlosser; P₄ dext. (inversé), BdG 15, sondage SPM 11, 48,0 m; 9) vue occlusale, 10) vue labiale;
- pointillé = cément.

Toutes les dents sont conservées au Muséum d'Histoire naturelle de Bâle, sauf indication différente.