

Zeitschrift: Archives des sciences [2004-ff.]
Herausgeber: Société de Physique et d'histoire Naturelle de Genève
Band: 57 (2004)
Heft: 2-3

Artikel: An overview of methods potentially suitable for pond biodiversity assessment
Autor: Indermühle, Nicola / Oertli, Beat / Menetrey, Nathalie
DOI: <https://doi.org/10.5169/seals-738444>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 11.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

An overview of methods potentially suitable for pond biodiversity assessment

Nicola INDERMUEHLE¹, Beat OERTLI¹, Nathalie MENETREY² and Lionel SAGER²

Manuscript received November 3, 2004, accepted December 20, 2004

I Abstract

This study provides a general overview of existing methods potentially suitable for assessing pond biodiversity. A bibliographic review allowed to evaluate the number of papers and consequently the interest of scientific investigation allocated (i) to different freshwater assessment objectives such as biodiversity, water quality or hydrological functions, and (ii) to biodiversity assessment for each of four waterbody types (ponds, wetlands, rivers & streams, lakes). The review was conducted using ISI Web of Science and browsing grey literature (reports from environment agencies and research institutes). Both methods designed for fundamental research and site management were taken into account.

The results emphasize that biological assessment methods for routine monitoring have been developed mostly for streams and rivers during the last two decades, and that lentic freshwater habitats have been rather neglected. Ponds, in particular, have been widely ignored despite of their significant contribution to regional biodiversity. Freshwater assessment methods mainly focus on water quality and hydrological aspects, while biodiversity is underrepresented.

Keywords: small waterbodies, wetlands, species richness, monitoring, management

I Résumé

Revue de méthodes potentiellement utilisables pour l'évaluation de la biodiversité des étangs

L'objectif de cet article est de présenter une vue d'ensemble des méthodes potentiellement utilisables pour l'évaluation de la biodiversité des étangs. Une recherche bibliographique a été réalisée afin d'estimer le nombre de publications et, par conséquent, l'intérêt porté (i) aux objectifs poursuivis par les différentes méthodes d'évaluation, tels que la qualité de l'eau, les fonctions hydrologiques et la biodiversité, et (ii) à l'évaluation de la biodiversité de quatre types de milieux aquatiques (étangs, zones humides, eaux courantes, lacs). Des rapports d'études provenant d'agences environnementales et d'instituts de recherche (littérature grise) ont également été pris en considération. Nous nous sommes intéressés autant aux méthodes destinées à la recherche fondamentale qu'à celles destinées aux gestionnaires des sites.

Les résultats montrent, que des méthodes consacrées à l'évaluation routinière de la qualité biologique ont été principalement développées pour les eaux courantes, et que les eaux stagnantes n'ont pas bénéficié d'autant d'intérêt. Plus particulièrement les mares et étangs ont été largement ignorés en dépit de leur contribution significative à la biodiversité régionale. Les méthodes d'évaluation s'intéressent principalement à la qualité de l'eau et aux aspects hydrologiques; à l'inverse elles se préoccupent moins de la biodiversité.

Mots-clés: petits plans d'eau, mares, zones humides, richesse spécifique, monitoring, gestion

I Introduction

Until recent years, freshwater ecosystem assessment has focused primarily on pollution control (Resh and Jackson 1993; Verdonschot 2000). The EC Water Framework Directive (WFD: European Commission 2000) and its concept of *good ecological status* calls now for a shift from a classical bio-

geochemical approach to an ecological approach and requires advanced assessment techniques (Wasson et al. 2003). In addition, independently of the WFD, and according to the goals of the U. N. Convention on Biological Diversity (1992), the EC Environmental Action Programme (European Commission 2002) aims to stop the loss of biodiversity by 2010. Given this framework, and in order to prioritize areas for

¹ University of Applied Sciences of Western Switzerland, EIL, HES de Lullier-Geneva, Dpt. of Nature Management, 150 route de Presinge, CH – 1254 Jussy, Switzerland, E-mail: nicola.indermuhle@etat.ge.ch

² University of Geneva, Laboratoire d'Ecologie et de Biologie Aquatique, CH-1206 Geneva, Switzerland

conservation, biologists and managers need accurate information on species diversity. It has been shown (Oertli et al. 2000; Williams et al. 2003) that ponds, compared to rivers and streams, contribute most to regional biodiversity. Yet methods to evaluate pond biodiversity are rare. As a matter of fact, the attention during the last decades has mainly been focused on rivers and streams, illustrated for example by a considerable number of biological assessment methods (e.g. AFNOR 1992; Wright 1995; Boon et al. 1997; Wright et al. 1998; Karr and Chu 2000; Oberdorff et al. 2002; AFNOR 2003; Hering et al. 2003). Regarding these facts, it seems that ponds have been rather ignored, even in the recent WFD they are not explicitly mentioned. The aim of this paper is therefore to provide a general overview of freshwater biodiversity assessment methods potentially suitable to ponds in order to summarize useful information for the development of future pond assessment programs.

Methods of the bibliographic study

To begin with, a quantitative search using Science Citation Index Expanded (ISI Web of Science, Institute for Scientific Information) was carried out in March 2004 to evaluate the number of papers on the subject of biodiversity assessment of four different waterbody types: *ponds*, *wetlands*, *rivers & streams* and *lakes*.

Secondly, to gather potentially suitable methods for pond biodiversity assessment, an extensive literature survey was conducted on SCI Expanded searching with the following keywords individually and in combinations: *pond*, *wetland*, *river*, *stream*, *lake*, *bio-*

diversity, *assessment*, *evaluation*, *health* and *method*. Additional papers were obtained by examining cited references and from browsing the web for relevant reports by environment agencies and research institutes (*grey literature*). Only documents relating to freshwater ecosystems (with particular emphasis on ponds and wetlands) were retained. For this overview, methods for fundamental research have been equally considered as those designed for site management.

Objectives of freshwater ecosystem assessment

An assessment is an integrated statement about a current situation and the factors that contribute to that situation (Innis et al. 2000). It can be focused on different objectives, such as water quality, ecosystem function, biodiversity or integrity. Our literature survey reflects the effort allocated to different assessment goals for several types of aquatic habitat (Fig. 1): only 12% of the papers focus on biodiversity, whereas 17% deal with functional aspects (e.g. sediment and nutrient retention, flood storage, water purification) and 71% with water quality.

Among the reviewed studies, the terms used to define the assessment objectives are diverse and sometimes confusing (ecosystem health, bioassessment, biological status, ecological status, biological integrity etc). Bioassessment, for example, does not necessarily equate with biodiversity assessment, but refers to a method using bioindicators. It is therefore important to clearly define the type of information a method provides. To facilitate the comprehension it might be convenient to use the terminology defined

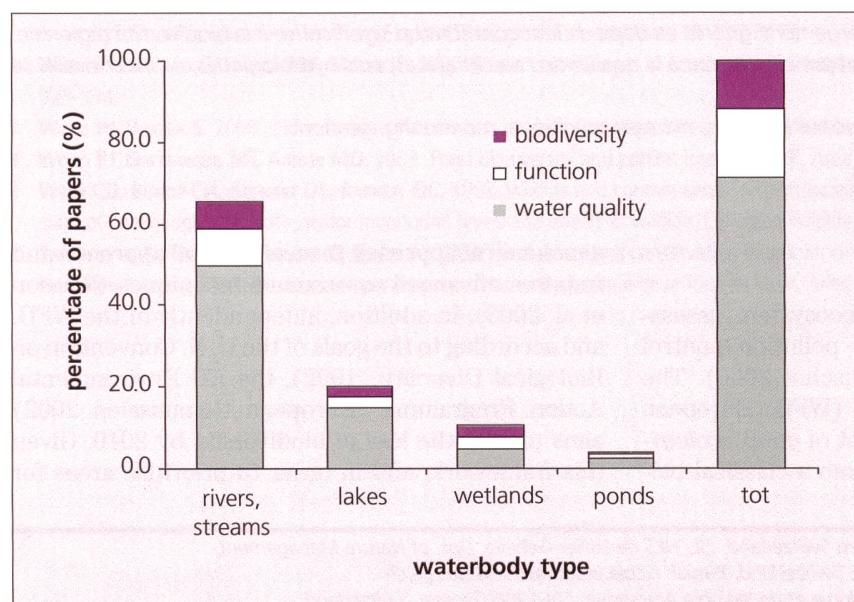


Fig. 1: Number of papers accorded to different assessment objectives (water quality, function, biodiversity) for four waterbody types ($n = 1277$). Browsed database: SCI Expanded (ISI Web of Science, March 2004).

in the WFD: "Ecological status" is an expression of the quality of the structure and functioning of aquatic ecosystems associated with surface waters, classified in accordance with Annex V of the Water Framework Directive (European Commission 2000).

Regarding the different waterbody types being assessed, it can easily be seen (Fig. 1) that running waters receive the most attention and that ponds, at the opposite, are poorly documented.

■ Measurement of biodiversity

According to the Convention on Biological Diversity (1992), biological diversity means "the variability among living organisms from all sources including, *inter alia*, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems". For the present overview, biodiversity is expressed in terms of species richness, which has become the common currency of much of the study of biodiversity assessment (Gaston and Spicer 2004). Two types of species richness metrics can be distinguished among the reviewed methods that focused on pond biodiversity: (i) the observed species richness (measured value), and (ii) the "real" species richness (estimated from the measured value). The observed species richness is the number of species observed during field investigations. As far as sampling is concerned, some authors highlight the fact that species richness recorded is vulnerable to variation in sampling effort (Lande et al. 2000; Magurran 2003) and to effects of abundance (Gotelli and Colwell 2001). To overcome these problems, *i.e.* to compensate for sampling bias, the use of "real" richness is recommended. To estimate "real" species richness from observed species richness, three main approaches are commonly used (see Magurran 2003): (i) extrapolations of species accumulation curves, (ii) fitting of species-abundance distributions and (iii) the use of non-parametric estimators. Non-parametric estimators, such as Chao (Chao 1984) and Jackknife (Burnham and Overton 1979), represent undoubtedly one of the most powerful tools (Colwell 1997; Foggo et al. 2003), as they are not based on a species abundance model that has been previously fitted to the data (Magurran 2003). To compute species accumulation curves or richness estimators, software packages can be used (e.g. EstimateS: Colwell 1997; Ws2m.exe: Turner et al. 2000).

To assess the collected data, different methods are used in the reviewed papers. Once the species richness has been measured, it can be assessed by a comparison either with the richness of a set of other sites, or with the richness for an unimpaired reference site.

The richness of this reference site can be calculated by means of predictive models based on the relation between species richness and environmental variables. This approach is also suggested in the WFD (European Commission 2000), as an alternative of hindcasting methods. For building those predictive models, the influence of environmental variables on species richness has to be evaluated. This can be achieved by a classical regression analysis (Gee et al. 1997; Biggs et al. 2000). A non-parametric alternative to this technique is provided by Generalized Linear Models (McCullagh and Nelder 1997) or Generalized Additive Models (Hastie and Tibshirani 1990), which are used in the PLOCH method (Oertli et al. 2005). The strength of the GAM models is their flexibility: the relationship between two variables can take any curved form and does not depend on the implicit shape of a standard parametric regression. Finally, a promising nonlinear approach, not yet applied to still waters, is the use of artificial neural networks (Lek and Guegan 1999; Giraudel and Lek 2001; Céréghino et al. 2003). All these analyses enable the baseline prediction of the species richness of a site that is to be assessed and the comparison of predicted values with observed ones.

■ Methods suitable to ponds

A list of methods used in still waters and potentially suitable for assessing pond biodiversity is given in Table 1. The reviewed papers measure diversity at one (or more) of three different spatial scales: (i) regional diversity, *i.e.* the overall diversity within a large region (landscape or biogeographic province), (ii) local diversity, *i.e.* the diversity in one ecosystem (e.g. pond or wetland), and (iii) point diversity (sample diversity), *i.e.* the diversity in a sample. It appears that all the methods in Table 1 measure local diversity, 22 % assess also point diversity, but only one method addresses regional diversity.

Concerning the selection of taxonomic groups, only a third of the methods use more than two groups (Table 1). Most of the methods use invertebrates because of their qualities as indicators, such as being representative of the assessed habitat, and having well understood taxonomy, life history and ecology (see New 1995). Nevertheless, besides their quality as bioindicators, the use of invertebrates as surrogate for the diversity of other taxonomic groups is questionable. Indeed, the relationship between the richness of invertebrates and the richness of the whole biotic community is not clearly established (Gee et al. 1997; Heino et al. 2003).

The choice of the taxonomic level is a trade-off between an increased information content and the cost of obtaining it. Even though family or genus level data could be effective for assessing overall quality

Table 1: Selected stillwater assessment methods potentially suitable to ponds. Only methods including measurement of biodiversity have been retained.

Author (method)	Target habitat	Country	Objectives	Studied taxa	Taxonomic level	Sampler type	Nb of sites	Scale of diversity
Macan 1977	ponds	UK	Species monitoring	Macroinvertebrates	species	Pond net, 1mm mesh, artificial substrate	1	point, local
Foster et al. 1990	Arable fenland	UK (Wash)	Conservation value	Crustacea	species	Pond net, 1mm mesh, artificial substrate	157	local
Jeffries et al. 1991	Forestry ponds	UK (Scotland)	Conservation value	Amphibia	species	Pond net, 1mm mesh	42	local
Gee et al. 1997	Ponds	UK (Wales)	Biodiversity	Coleoptera	species	Pond net	51	local
Williams et al. 1998 (PSYM)	Ponds, canals	UK (England & Wales)	Ecological integrity	Macroinvertebrates	species*	Pond net	142	local
U. S. EPA 1998, 2002 (IBI)	Wetlands, running waters	USA	Water quality Ecosystem health	Macroinvertebrates	species	Pond net	-	-
Painter 1999	Ditches	UK (Wicken Fen)	Biodiversity	Macrophytes	species*	Pond net, 300 µm mesh	19	local
Biggs et al. 2000 (PSYM)	Ponds, small lakes	UK (England & Wales)	Ecological quality	Macrophytes	species	Pond net, 0.5 mm mesh	96	point, local
BIOMAN 2000	Shallow lakes	B, DK, NL, E	Biodiversity	Coleoptera	species	Pond net, 0.5 mm mesh	313	local
Jeppesen et al. 2000	Shallow lakes	DK	Biodiversity	Mollusca	species	Pond net, 0.5 mm mesh	313	local
Linton and Goulder 2000	Ponds	UK (East Yorkshire)	Conservation value	Odonata	species	Pond net, 0.5 mm mesh	71	local
Oertli et al. 2000, 2005 (PLOCHE)	Ponds, small lakes	CH	Biodiversity	Macroinvertebrates	species	Pond net, 0.5 mm mesh	80	point, local
Hawkins et al. 2001	Wetlands, mountain lakes	USA (Utah)	Biological integrity	Gasteropoda	species	Pond net, 0.5 mm mesh	47	local
				Coleoptera	species	Pond net, 0.5 mm mesh		
				Amphibia	species	Pond net, 0.5 mm mesh		
				Macrophytes	species	Hess-type sampler, 0.5 mm mesh		
					genus	Eckan dredge		

Gernes and Helgen 2002	Wetlands	USA (Minnesota)	Wetland health	Macroinvertebrates Macrophytes	genus species	Pond net, 600 µm mesh, activity traps	44	local
Merritt et al. 2002	River oxbows	USA (Florida)	Bioassessment	Macroinvertebrates	subfamily / tribe	Pond net, 0.5 mm mesh	10	local
Vinson et al. 2002	Wetlands	USA (Utah)	Bioassessment	Macroinvertebrates	genus	Kicknet, 0.5 mm mesh	38	local
Wilcox et al. 2002	Wetlands	USA (Great Lakes)	Water quality Biological integrity	Macroinvertebrates Fish	genus species	Funnel traps, blacklight traps 18 Fyke nets	18	local
Briers and Biggs 2003	Ponds	UK (Oxfordshire)	Biodiversity	Macroinvertebrates (except Diptera)	species	Pond net	130	local
Cottenie and De Meester 2003	Shallow ponds	B (De Maten)	Biodiversity	Cladocera	species	64 µm mesh net	35	local
Foggo et al. 2003	Ponds	UK (SW England)	Biodiversity	Macroinvertebrates (except Diptera)	species	Pond net, 1 mm mesh	3	point, local
Moss et al. 2003	Shallow lakes	EU	Ecological status	Macroinvertebrates Fish Plancton	species species species	Stem tube, soft bottom corer 66 Nylon nets, fyke nets 50 µm mesh net	66	local
Williams et al. 2003	Rivers, streams, ditches, ponds	UK (Oxfordshire)	Biodiversity	Macroinvertebrates Macrophytes	species**	Pond net, 1 mm mesh	80	point, local, regional
Angélbert et al. 2004	Ponds	F (Causses du Quercy)	Biodiversity	Macroinvertebrates Macrophytes	species species	Pond net, 250 µm mesh 10 µm mesh net	3	point, local
Boix and Quintana 2004 (QAEIS)	Ponds	E	Water quality	Zooplankton Macrophytes	genus*** genus	Pond net, 250 µm mesh	-	
Chovanec et al. 2004	Floodplain areas	A (Danube floodplain)	Ecological status	Microcrustacea Insecta	genus*** genus	Pond net, 250 µm mesh	-	
Hoffmann et al. 2004	Mountain ponds and lakes	USA	Monitoring	Odonata	species	Pond net, 250 µm mesh	408	local
Grillas et al. 2004	Temporary ponds	F	Conservation	Macroinvertebrates Macrophytes	species species	Pond net Various nets	-	
Karaus 2004	Parafloodplain ponds	CH, I	Biodiversity	Macrocrustacea Amphibia	species species	Kicknet, 0.25 mm mesh	119	point, local
Nicolet 2004	Temporary ponds	UK (England & Wales)	Biodiversity	EPT Taxa Macroinvertebrates Macrophytes	species species species	Pond net, 1 mm mesh	71	local

#genus for Chironomidae, small Arthropoda, juvenile Hemiptera & juvenile Coleoptera

##except Rotifera: mainly genus

* family for Diptera

** genus for Diptera and Oligochaeta

*** species for Daphnia and Moina

(e.g. Balmford et al. 1996), species level datasets are more relevant and are used in most of the methods dealing with biodiversity.

Besides species richness, some methods also assess the *conservation value*, an important criterion for taking into account the degree of threat faced by the species (Eyre and Rushton 1989; Foster et al. 1989; Painter 1999; Linton and Goulder 2000; Oertli et al. 2002; Nicolet et al. 2004).

Regarding the range of existing sampling methods and sampler types, various techniques are used, including net sampling, core sampling or use of artificial substrate (Table 1). Mesh size for macroinvertebrate sampling, for example, varies from 0.25 to 1.5 mm; as differences in mesh size generate different retention probabilities of the invertebrates (see Bachelet 1990, Schlacher and Wooldridge 1996, Morin et al. 2004), standardization of the mesh size would be useful. The diversity of sampling methods indicates the importance of using standardized protocols and acknowledging the sampling biases (e.g. Muzzaffar and Colbo 2001). Some recent methods include standardized sampling (pond net sweeping for a given time): Williams et al. (1998), Biggs et al. (2000), Nicolet et al. (2004) and Oertli et al. (2005).

Methods used in wetlands

In addition to the methods potentially suitable to ponds (listed in Table 1), there are a certain number of assessment procedures available for wetlands, which have been developed for purposes such as hydrogeomorphic (Brinson et al. 1995) or biological assessment (U.S. EPA. 2002). Some of these procedures could also be suitable to ponds, as large wetlands often include one or more small lentic waterbodies. Many of these methods, mostly rapid assessments, rely on the use of metrics and provide a single score as an overall estimation of the ecological status of a site (e.g. Resh and Jackson 1993; Barbour et al. 1999; Miller and Gunsalus 1999; Mack 2001; Collins et al. 2003; Stapanian et al. 2004). Instead of standardized sampling they are often based on expert field investigations. Nevertheless, if rapid assessment methods are useful and attractive economic tools to

assess anthropogenic impacts on aquatic ecosystems, they are not in all cases a substitute for biodiversity studies. Consequently, there is growing interest, illustrated for example by Alonso et al. (2002), in improving the accuracy of the rapid methods and adapting them for biodiversity assessment.

Conclusions

Ecological assessment methods for ponds are rare compared to methods designed for running waters. Even though a certain number of procedures are now available for measuring pond biodiversity, there is a need to strengthen the development of pond-specific methods for fundamental research on one hand, and for site managers on the other hand (rapid assessments). Concerning the estimation of species richness, the use of non-parametric techniques might be a powerful tool in reducing sampling bias.

Often a restricted number of taxonomic groups is used as a surrogate for diversity of the whole biotic community. Nevertheless, further studies need to be carried out in this field of species richness indicator taxa and flagship species to validate this approach (see for example Andelman and Fagan 2000). Taxa richness is often the unique metric used for the assessment of biodiversity; however, future methods should also take into account the species's degree of rarity (conservation value). Regarding the scale of measured biodiversity, most methods specifically address local or point biodiversity; it should now be evaluated how these methods could be designed to assess also regional biodiversity. Finally, according to Magurran's textbook on measuring biodiversity (2003), standardization should be recognized as a main element of any assessment method.

Acknowledgements

We would like to thank Anita Weatherby and Jane O'Rourke for linguistic corrections on a previous draft of the manuscript and two anonymous referees for helpful comments.

References

- **AFNOR 1992.** Détermination de l'Indice Biologique Global Normalisé (IBGN). NF T90-350 AFNOR, Paris.
- **AFNOR 2003.** Détermination de l'Indice Biologique Macrophytique en rivière (IBMR) NFT 90 395 La Plaine St Denis.
- **ALONSO LE, ANDERSON C, CASNER K, RYLANDS A.** 2002. Guidelines for the rapid assessment of biodiversity in inland water ecosystems. Report UNEP/CBD/EM-RAIW/1/2.
- **ANDELMAN SJ, FAGAN W.** 2000. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes? *Proceedings of the National Academy of Sciences of the United States of America* 97:5954-5959.
- **ANGÉLIBERT S, MARTY P, CÉRÉGHINO R, GIANI N.** 2004. Seasonal variations in the physical and chemical characteristics of ponds: implications for biodiversity conservation. *Aquatic Conservation: Marine and Freshwater Ecosystems* 14:439-456.
- **BACHELET G.** 1990. The choice of a sieving mesh size in the quantitative assessment of marine macrobenthos: a necessary compromise between aims and constraints. *Marine Environmental Research* 30:21-35.
- **BALMFORD A, JAYASURIYA AHM, GREEN MJB.** 1996. Using higher-taxon richness as a surrogate for species richness: II. Local applications. *Proceedings of the Royal Society of London. Series B* 263:1571-1575.
- **BARBOUR MT, GERRITSEN J, SNYDER BD, STRIBLING JB.** 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd ed. Report EPA 841-B-99-002.
- **BIGGS J, WILLIAMS PJ, WHITFIELD M, FOX G, NICOLET P, HOWARD S.** 2000. A new biological method for assessing the ecological quality of lentic waterbodies. In: Wicher S (ed.). *L'eau, de la cellule au paysage*. Elsevier: Paris, pp 235-250.
- **BIOMAN 2000.** Biodiversity and human impacts in shallow lakes. EC Project EVK2-CT-1999-00046 <http://www.kuleuven.ac.be/bio/eco/bioman/>. (17/12/2004).
- **BOIX D, QUINTANA X.** 2004. QUAELS: Index de Qualitat de l'aigua d'ecosistemes lenitics soms. unpublished manuscript.
- **BOON PJ, HOLMES N, MAITLAND P, ROWELL T, DAVIES J.** 1997. A system for evaluating rivers for conservation (SERCON): development, structure and function. In: Boon PJ, Howell DL (eds). *Freshwater Quality: defining the indefinable*. SNH: Edinburgh, pp 299-326.
- **BRIERS RA, BIGGS J.** 2003. Indicator taxa for the conservation of pond invertebrate diversity. *Aquatic Conservation-Marine and Freshwater Ecosystems* 13: 323-330.
- **BRINSON MM, HAUER FR, LEE LC, NUTTER WB, RHEINHARDT RD, SMITH RD, WHIGHAM DF.** 1995. Guidebook for application of hydrogeomorphic assessments to riverine wetlands. Technical Report WRP-DE-11 US Army Corps of Engineers Waterways Experiment Station: Vicksburg, Mississippi.
- **BURNHAM KP, OVERTON WS.** 1979. Robust estimation of population size when capture probabilities vary among animals. *Ecology* 60: 927-936.
- **CÉRÉGHINO R, PARK YS, COMPIN A, LEK S.** 2003. Predicting the species richness of aquatic insects in streams using a limited number of environmental variables. *Journal of the North American Benthological Society* 22: 442-456.
- **CHAO A.** 1984. Nonparametric estimation of the number of classes in a population. *Scandinavian Journal of Statistics* 11: 265-270.
- **CHOVANEC A, WARINGER J, RAAB R, LAISTER G.** 2004. Lateral connectivity of a fragmented large river system: assessment on a macroscale by dragonfly surveys .*Insecta : Odonata.. Aquatic Conservation-Marine and Freshwater Ecosystems* 14: 163-178.
- **COLLINS JN, STEIN E, SUTULA M.** 2004. California Rapid Assessment Method for Wetlands v. 2.0 - User's Manual and Scoring Forms. Report, California.
- **COLWELL RK.** 1997. EstimateS: Statistical estimation of species richness and shared species for samples. Version 5. User's Guide and application published at: <http://viceroy.eeb.uconn.edu/estimates>.
- **COTTENIE K, DE MEESTER L.** 2003. Connectivity and cladoceran species richness in a metacommunity of shallow lakes. *Freshwater Biology* 48: 823-832.
- **EUROPEAN COMMISSION 2000.** Directive No 2000/60/EC of the European Parliament and of the Council. Official Journal of the European Community L 327.
- **EUROPEAN COMMISSION 2002.** Decision No 1600/2002/EC of the European Parliament and of the Council. Official Journal of the European Community L 242.
- **EYRE MD, RUSHTON SP.** 1989. Quantification of conservation criteria using invertebrates. *The Journal of Applied Ecology* 26:159-172.
- **FOGG A, RUNDLE SD, BILTON DT.** 2003. The net result: evaluating species richness extrapolation techniques for littoral pond invertebrates. *Freshwater Biology* 48: 1756-1764.
- **FOSTER GN, FOSTER AP, EYRE MD, BILTON DT.** 1989. Classification of water beetle assemblages in arable fenland and ranking of sites in relation to conservation value. *Freshwater Biology* 22: 343-354.
- **GASTON KJ, SPICER JI.** 2004. Biodiversity: an Introduction. Blackwell Publishing.
- **GEE JHR, SMITH BD, LEE KM, GRIFFITHS SW.** 1997. The ecological basis of freshwater pond management for biodiversity. *Aquatic Conservation-Marine and Freshwater Ecosystems* 7: 91-104.
- **GERNES MC, HELGEN JC.** 2002. Index of biological integrity (IBI) for large depressional wetlands in Minnesota. Report USEPA, CD-995525-01.
- **GIRAUDEL JL, LEK S.** 2001. A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. *Ecological Modelling* 146: 329-339.
- **GOTELLI NJ, COLWELL RK.** 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. *Ecology Letters* 4: 379-391.

- **GRILLAS P, GAUTHIER P, YAVERCOVSKI N, PERENNOM C.** 2004. Les mares temporaires méditerranéennes, Volume 1, enjeux de conservation, fonctionnement et gestion. Tour du Valat, France.
- **HASTIE T, TIBSHIRANI R.** 1990. Generalized Additive Models. Chapman and Hall, London.
- **HAWKINS CP, CARLISLE DM.** 2001. Use of predictive models for assessing the biological integrity of wetlands and other aquatic habitats. In: Rader RB, Batzer DP, Wissinger SA (eds). Bioassessment and management of North-American freshwater wetlands. Wiley & Sons, pp 59 - 83.
- **HEINO J, MUOTKA T, PAAVOLA R, PAASIVIRTA L.** 2003. Among-taxon congruence in biodiversity patterns: can stream insect diversity be predicted using single taxonomic groups? Canadian Journal of Fisheries and Aquatic Sciences 60: 1039-1049.
- **HERING D, BUFFAGNI A, MOOG O, SANDIN L, SOMMERHAUSER M, STUBAUER I, FELD C, JOHNSON R, PINTO P, SKOULIKIDIS N, VERDONSCHOT P, ZAHRADKOVA S.** 2003. The development of a system to assess the ecological quality of streams based on macroinvertebrates - Design of the sampling programme within the AQEM project. International Review of Hydrobiolgy 88: 345-361.
- **HOFFMANN RL, TORREY TJ, LARSON GL, ADAMS MJ, WENTE W, GALVAN S.** 2004. Sampling protocols for monitoring abiotic and biotic characteristics of mountain pond and lakes. Report North Coast and Cascade Network National Park Service, Oregon.
- **INNIS SA, NAIMAN RJ, ELLIOTT SR.** 2000. Indicators and assessment methods for measuring the ecological integrity of semi-aquatic terrestrial environments. Hydrobiologia 422: 111-131.
- **JEFFRIES M.** 1991. The Ecology and Conservation Value of Forestry Ponds in Scotland, United-Kingdom. Biological Conservation 58: 191-211.
- **JEPPESSEN E, PEDER JENSEN J, SØNDERGAARD M, LAURIDSEN T, LANDKILDEHUS F.** 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201-218.
- **KARAUS, U.** 2004. The ecology of lateral aquatic habitats along river corridors. PhD thesis N° 15841. Swiss Federal Institute of Technology Zurich.
- **KARR JR, CHU EW.** 2000. Sustaining living rivers. Hydrobiologia 422: 1-14.
- **LANDE R, DEVRIES PJ, WALLA TR.** 2000. When species accumulation curves intersect: implications for ranking diversity using small samples. Oikos 89: 601-605.
- **LEK S, GUEGAN JF.** 1999. Artificial neural networks as a tool in ecological modelling, an introduction. Ecological Modelling 120: 65-73.
- **LINTON S, GOULDER R.** 2000. Botanical conservation value related to origin and management of ponds. Aquatic Conservation-Marine and Freshwater Ecosystems 10: 77-91.
- **MACK JJ.** 2001. Ohio rapid assessment method for wetlands, manual for using version 5.0. Report, Ohio EPA, Columbus, Ohio.
- **MAGURRAN AE.** 2003. Measuring biological diversity. Blackwell Publishing.
- **McCULLAGH P, NELDER JA.** 1997. *Generalized Additive Models*. Monographs on Statistics and Applied Probability. Chapman & Hall, London.
- **MERRITT RW, CUMMINS KW, BERG MB, NOVAK JA, HIGGINS MJ, WESSELL KJ, LESSARD JL.** 2002. Development and application of a macroinvertebrate functional- group approach in the bioassessment of remnant river oxbows in southwest Florida. Journal of the North American Benthological Society 21: 290-310.
- **MILLER RE, GUNSAULUS BE.** 1999. Wetland rapid assessment procedure (WRAP). Report, South Florida Water Management District.
- **MORIN A, STEPHENSON J, STRIKE J, SOLIMINI AG.** 2004. Sieve retention probabilities of stream benthic invertebrates. Journal of the North American Benthological Society 23(2):383-391.
- **Moss D, WRIGHT JF, FURSE MT, CLARKE RT.** 1999. A comparison of alternative techniques for prediction of the fauna of running-water sites in Great Britain. Freshwater Biology 41: 167-181.
- **MUZAFFAR SB, COLBO MH.** 2002. The effects of sampling technique on the ecological characterization of shallow, benthic macroinvertebrate communities in two Newfoundland ponds. Hydrobiologia 477: 31-39.
- **NEW TR.** 1995. Introduction to invertebrate conservation biology. Oxford University Press, New York.
- **NICOLET P, BIGGS J, FOX G, HODSON MJ, REYNOLDS C, WHITFIELD M, WILLIAMS P.** 2004. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biological Conservation 120: 261-278.
- **OBERDORFF T, PONT D, HUGUENY B, PORCHER JP.** 2002. Development and validation of a fish-based index for the assessment of 'river health' in France. Freshwater Biology 47: 1720-1734.
- **OERTLI B, AUDERSET JOYE D, CASTELLA E, JUGE R, CAMBIN D, LACHAVANNE JB.** 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59-70.
- **OERTLI B, AUDERSET JOYE D, CASTELLA E, JUGE R, LACHAVANNE JB.** 2000. Diversité biologique et typologie écologique des étangs et petits lacs de Suisse. Report OFEFP, LEBA, Université de Genève, Genève.
- **OERTLI B, AUDERSET JOYE D, CASTELLA E, JUGE R, LEHMANN A, LACHAVANNE JB.** 2005. PLOCH: a standardised method for sampling and assessing the biodiversity in ponds. Aquatic Conservation 15: 665-679.
- **PAINTER D.** 1999. Macroinvertebrate distributions and the conservation value of aquatic Coleoptera, Mollusca and Odonata in the ditches of traditionally managed and grazing fen at Wicken Fen, UK. Journal of Applied Ecology 36: 33-48.
- **RESH VH, JACKSON JK.** 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: Rosenberg DM, Resh VH (eds.) Freshwater biomonitoring and benthic macroinvertebrates, Chapman & Hall, London, pp 195-223.
- **SCHLACHER TA, WOOLDRIDGE TH.** 1996. How sieve mesh size affects sample estimates of estuarine benthic macrofauna. Journal of Experimental Marine Biology and Ecology 201:159-171.

- **SAHLEN G, EKESTUBBE K.** 2001. Identification of dragonflies .Odonata. as indicators of general species richness in boreal forest lakes. *Biodiversity and Conservation* 10: 673-690.
- **STAPANIAN MA, WAITE TA, KRZYS G, MACK JJ, MICACCHION M.** 2004. Rapid assessment indicator of wetland integrity as an unintended predictor of avian diversity. *Hydrobiologia* 520: 119-126.
- **TURNER W, LEITNER WA, ROSENZWEIG ML.** 2000. Ws2m.exe. Software for the measurement and analysis of species diversity. URL: <http://turner.biosci.arizona.edu/ws2m>.
- **U. S. EPA** 1998. Wetland Bioassessment Fact Sheets. EPA843-F-98-001. U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Wetlands Division, Washington DC.
- **U. S. EPA** 2002. Methods for Evaluating Wetland Condition: Developing Metrics and Indexes of Biological Integrity. EPA-822-R-02-016. U.S. Environmental Protection Agency, Office of Water, Washington DC.
- **VERDONSCHOT PFM.** 2000. Integrated ecological assessment methods as a basis for sustainable catchment management. *Hydrobiologia* 422/423: 389-412.
- **VINSON M.** 2002. A preliminary assessment of wetland invertebrate assemblages in northern Utah. Report, Utah State University.
- **WASSON JG, TUSSEAU-VUILLEMEN MH, ANDRÉASSIAN V, PERRIN C, FAURE JB, BARRETAU O, BOUSQUET M, CHASTAN B.** 2003. What kind of water models are needed for the implementation of the European Water Framework Directive? Examples from France. *International Journal of River Basin Management* 1: 125-135.
- **WILCOX DA, MEEKER JE, HUDSON PL, ARMITAGE BJ, BLACK MG, UZARSKI DG.** 2002. Hydrologic variability and the application of index of biotic integrity metrics to wetlands: A Great Lakes evaluation. *Wetlands* 22: 588-615.
- **WILLIAMS P, BIGGS J, WHITFIELD M, CORFIELD A, FOX G, ADARE K.** 1998. Biological techniques of still water quality assessment 2: method development. Environmental Agency R&D Technical Report E56, Environmental Agency, Bristol.
- **WILLIAMS P, WHITFIELD M, BIGGS J, BRAY S, FOX G, NICOLET P, SEAR D.** 2003. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. *Biological Conservation* 115: 329-341.
- **WOOD PJ, GREENWOOD MT, BARKER SA, GUNN J.** 2001. The effects of amenity management for angling on the conservation value of aquatic invertebrate communities in old industrial ponds. *Biological Conservation* 102: 17-29.
- **WRIGHT JF.** 1995. Development and Use of a System for Predicting the Macroinvertebrate Fauna in Flowing Waters. *Australian Journal of Ecology* 20: 181-197.
- **WRIGHT JF, FURSE MT, MOSS D.** 1998. River classification using invertebrates: RIVPACS applications. *Aquatic Conservation-Marine and Freshwater Ecosystems* 8: 617-631.

