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ORIGIN OF LIFE. I. RECURRENT RIDDLES ABOUT
ITS GENETIC CODING

BV

Gilbert TURIAN*

(Ms ret, ii le 5 12 1998. at ceple It- 23 12 1998)

Abstract

Origin of Life. I. Recurrent riddles about its genetic coding. - Between the two extremes and
exclusive views ol a prehiotic world of peptidic "chicken-first" and a "RNA world" of ribozymic "egg-
first". there was time lor a pre-RNA world in which peptides-protoproteins and riboseless. prenucleic
polybasephosphate infopolymers could have coevoluted as peptide-elolhed protogenes or "chicken and

egg" Thereby, amino acids of the poorly informational, pnmeval peptides would had been encoded by
deterministic, stereochemically specific "fro/en interactions" with the polybasephosphates visualized as

primordial replicators

Key-words: Primal genetic coding: anticodon doublets, peptides-protoproteins. prenucleic
polybasephosphates: protogenes

INTRODUCTION

The idea of some kind of genetic molecule at the origin of life has been a recurring
one since the «naked gene» has been described in 1929 by the great geneticist H.J.

Muller. The same year, J.B.S Haldane endorsed this genetic view in his famous

hypothesis about first life while his alter ego Oparin (1938. 1957) rejected this idea of life
originating from a fortuitously formed genetic molecule and rather took a more
«metabolic» view of the nature and origin of life. It was not until 1944 that the physicist
Erwin Schrodinger in his reknown question book «What is Life?» presciently materialized

the original naked gene as an aperiodic crystal endowed with template-replicating
properties. A decade later, these could be ascribed to the newly described helical structure
of DNA (Watson & Crick, 1953) opening the question «Is the order assembled in a

DNA aperiodic crystal, e.g. a «naked gene», sufficient for life's emergence?». More

recently, with the discovery of ribozymes (Cech. 1986), the question moved to an RNA
molecule which would function as a polymerase and therefore able to copy itself also as

«naked gene». Cairns-Smith (1982) still endorsed this expression but he safely and

imagedly commented that «a naked gene would be mismatched on our Earth as a

spaceman without his space suit would be mismatched on Mars». We will see in Part 1

that the suit could well be more or less random polypeptides inside which the gene would
be confined to «clothe its nudity» and thereby become genotype plus phenotype. This
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312 ORIGIN OF LIFE I RECURRENT RIDDLES ABOUT

makes relevance to consider in Part 2 the other riddle of «protein or nucleic acid first»?

Finally, concern about information storage will raise in Part 3 the fundamental riddle of
«randomness or determinism» at the primal process of genetic coding, including the

subsidiary questions of «codons or anticodons first»9 and «nucleobase doublets or
triplets»? from the start of amino acids encoding.

«NAKED» OR «CLOTHED» PRIMAL GENES 9

The simplest kinds of organisms could have been hardly more than pieces of
unencumbered information-printing machinery or «naked genes» Cairns-Smith (1982)
who took this genetic view saw the origin of life from crystals of clay considered as geo-
chemical genes secondarily taken over by organic «naked genes» However, he already
conceded that this idea was somewhat out of favor because «a naked gene would not be -
could not be - pure genotype»

There are chemical obstacles to the direct life emergence from «naked or nude»

template-replicating RNA molecules - among which prebiotic synthesis and assembly of
nucleotides. The problems which arise from theses difficulties have been carried out by
the theory of hypercycles proposed in 1977-79 by Eigen & Schuster (1979). This

concept designates an integrated set of autocatalytic cycles composed by a set of random

polynucleotide information carriers, the genes, and by the polypeptide catalytic molecules,

enzymes The latter are encoded by polynucleotides which, in their turn, accelerate

replication of polynucleotides as well as their own synthesis.

Recently, Eigen (1995) reemphasized that "evolutionary optimization requires self-

reproducing information storage and we only know nucleic acids to be capable of this
role" So. RNA or precursors - such as prenucleic polymers (see below) - would have

been necessary to set the merry-go-round of evolution in motion" However, the problem
always arises when starting with nude replicating single-stranded RNA sequences

(Orgel, 1987, Joyce. 1989) Such difficulties were already carried out by Eigen &
ScHUSTr R (1979) when they argued that complex genetic information cannot be built up
in single RNA replicating strands However, Kauffman (1993, 1995) tempered this

theory when he stressed that evolution of a protein or ribozyme polymerase might well

occur in an autocatalytic peptide-RNA system in which peptides serve as specific repli-
cases for RNA sequences, while the latter serve as more or less specific catalysts for the

peptides He thus grafted a going metabolic concern to a coevolving set of template-

rephcating RNA polymers Such a coevolution has recently been further endorsed by
Delarue (1995) who envisaged a possible molecular mechanism accounting for the

evolution of a genetic code through the coupled synthesis of nucleic acids and genetically
encoded proteins

Another critical step in the evolution of the genetic code must have been the onset

of cohnearity, first proposed by Bedian (1982) in his astucious model asserting that

«given a population of random peptides synthesized by fairly random and noncoded
colinear polymerization via something like tRNA molecules, and given that these peptides
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can charge amino acids to the tRNA molecules, selective coevolution of the peptides and

underlying coding mRNA to a consistent coded state can occur» (Kauefman, 1993)

Consequently, origin and further evolution of natural life could only emerge from such

ordered properties among the primeval complex systems of infopolymers
In the «naked gene» hypothesis, any self-templating RNA such as Cech's (1986)

ribozyme molecule could specify its base pair complement and thus might reproduce
itself and, secondarily, these simplest replicating molecules would have built up around

themselves the complex set of protein molecules constituting a self-reproducing system

coordinating a metabolic flow and capable of evolving However, this dominant view has

been vigorously contradicted by Kauffman (1993) who rather suggested «autocatalytic
sets of polymers made of catalytic peptides and catalytic RNA sequences coupled with
the subsequent evolution of peptide or ribozyme polymerases and hence template-
replicating RNA or DNA» It is from this statement that he further imagined the dual

existence - by coevolution and symbiosis (Dyson, 1985) - of those two collectively
autocatalytic and template replicating systems Remains the question of how did a pro-
teinaceous metabolic web managed to evolve to «clothe the nudity» of primal genes9 The

answer would be that primeval peptidic clothes were available just before their
complementary coding by the first lineaments of prenucleic polymers (see below) and that

subsequent complexification of the protoprotein clothing was insured by energy-producing
protometabolic processes In these processes, cyclic redox reactions via iron-sulfur
compounds (Wachtershauser, 1988) could have been coupled to the synthesis of
energy-rich pyrophosphates (Fox, 1988) and such coupling of exergonic and endergonic
reactions would help drive the stochastic synthesis of peptides into an autocatalytic,
polymer system

In the above evolutive perspective, the prebiotic synthesis of the amino acid

precursors of peptides was easier than that of the precursors of ribonucleic acid such as

nucleobases (Öro, 1995) and, especially, nbose (Shapiro, 1988) In such a nboseless

prenucleic phase of the pre-RNA world, autocatalytic sets of randomly produced primeval
peptides could have been coupled to - and coded by - template-replicating prenucleic

sequences (Turian, 1996b, 1997) Only such «clothed protogenes» associating protopro-
teins and prenucleic polymers could have insured a collective reflexive catalysis and a

coordinated web of metabolism to achieve complexification of the first life forms

PROTEIN OR NUCLEIC ACID FIRST 9

The search for compounds that could have initiated the origin of life elicited

various hypotheses which fall roughly into two classes According to Lifson (1997),
one class assumes the primacy of metabolism and cellular organization, the other class

assumes the primacy of reproduction and genetic information Therefore the question,
"Which came first, metabolism (proteins) or reproduction (nucleic acids)9" is
metaphorically the question «Which came first, the chicken or the egg9» or "l'ceuf et la

poule"9 (Danchin, 1983)
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Many authors favor the "chicken-first" hypothesis (Orarin, 1938; Cairns-Smith,
1982; Kauffman. 1993; Fox, 1988; Wachtershauser, 1992; De Duve, 1991) from
polypeptides autocatalyzed either with clays (Cairns-Smith, 1982). with thioesters (De
Duve, 1991) or with pyrites (Wachtershauser, 1992). Others favor the "egg-first"
hypothesis (Crick, 1968; Eigen, 1971, 1992; Orgel, 1992, 1995) with template-replicating

polymers such as Eigen (1995) who commented «From an historical perspective,
proteins should have come first, but historical precedence is not necessarily identical with
causal precedence. Evolutionary optimization requires self-reproducing information
storage by nucleic acids only». Kauffman (1993) rather stated that «Autocatalytic sets of
peptides and catalytic RNA could coexist and then couple to arbitrary template replicating
RNA sequences». In such «RNA world» (Gesteland & Atkins, 1993), it would thus no

longer be necessary to solve the chicken-egg problem which would arise with the nude

template-replicating RNA molecule or with selectively chosen, useful peptidic proto-
proteins. However, peptides could have first existed and possibly coded for themselves, as

already shown in 1969 by Calvin and, recently, by others with cyclic peptides (Lee et al.,
1996; Turian, 1996a). It could then be imagined such peptides gathering around
themselves a connected protometabohsm, their production thereby replacing the nude
RNA (ribozymic or "egg") gene with a «naked protoprotein» (Kauffman. 1993) and thus

by the chicken. Nevertheless, it should be pointed out that peptides have the difficulty to

specify their linear structure by a template-like mechanism because they lack the local

point-point homology links of complementary positive and negative strands provided by
nucleobase pair rules. Therefore, the loose sequential specificity of the first randomly
formed peptides or protoproteins - the «chicken meat» - would soon have to be taken-

over by "archaic" nucleobase doublets (before transition to triplets (Hartman, 1975;
Jimenez-Sänchez. 1995). necessarily stabilized or «frozen» on polyphosphates (Turian,
1997; Turian & Schonf.nberger-Sola, 1997) like "eggs" tor the evolutive conservation
of the information first acquired by such prenucleic, riboseless infopolymers or primal
"eggs". A 2nd take-over leading from the prenucleic polymers to ribonucleic acid would
have further stabilized this self-replicating information by nbose insertion, possibly
anticipated by glycolaldehyde (Wachtershauser. 1988; Esciienmostr, 1994) or glycerol
(Schwartz & Orgel. 1985). Such genetic take-oveis open the next alternative riddle
«were primal codings guided by a chemical reason or were they chemically arbitrary»?

«RANDOMNESS OR DETERMINISM» AT PRIMAL CODING

Modern knowledge of the genetic code tells us little about the reason this particular
code, viewed as a correspondence between nucleotides and ammo acids coding units,
exists rather than some other. At one extreme of the speculations about its origin is the

theory of randomness, namely that the assignment of ammo acids to codons is a chance

event. Such a stochastic theory (Hoffmann, 1975) which envisages a code selected by
circumstance and by virtue of its «workability» to be the best code corresponds to
Crick's (1968) proposal of the «frozen accident». At the other extreme, lies the
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deterministic theory advocated by Woese since 1966 (Woesf et al, 1966. Woese. 1972)

and others (Porschke, 1985, etc that codons - or anticodons - select the corresponding
amino acids through the specific stereochemical interactions of free amino acids with
nucleotides Since the 60ties. the search for a stereochemical affinity between the amino
acids and their codons has been a recurrent theme in many reports on the genetic code as

pioneered in 1966 by Peic & Welton tor codons and by Dunnill (1966) for the specific
interaction between the anticodon dinucleotides and their cognate amino acids. In 1968.

Ralph concluded that there is still little convincing evidence tor either the stochastic or
the specific interaction hypothesized, and that «no sensible stereochemical or other

interaction between ammo acids and codons or polynucleotides have been discerned to
date» However, he left open the possibility that an earlier imprecise code resulting from
amino acid-polynucleotide interaction later developed greater specificity by purely
stochastic processes Later, in 1972 Nelsestuen argued that the very nature of the

«frozen accident» theory makes it untestable and presented a new concept about the

origin of life in which he postulated that L-amino and ribonucleic acid stiuctures were
interwined from a time preceding even nucleotide foimation and that copolymerization of
these structures is the basis of code's origin In 1975, Wong stated that since neithei

theory has given a systematic solution to the riddle of the «cracking of the code», he

proposed as 3rd hypothesis a co-evolution theory from which he concluded that «the

structure of the code begins to appear less haphazard in the light of the likely events of
prebiotic evolution». Among other original proposals was that by Dillon in 1973 of a

metabolic correspondence between certain amino acids - distilbuted in 4 groups - and

mono-, di- and trinucleotides and, in 1979, by Egami who further considered this metabolic

correspondence as a simultaneity of primitive synthesis of amino acids (from C2 to
C6 subgroups) and nucleobases In a different system, concerned with the distribution of
doublets of the first two codon bases among amino acids, Sukhodolets in 1989 proposed
that a definite order in the relative distribution of the Ist and the 2nd codon bases

coincided with a definite order among the common amino acids and their distribution for the

number of hydrogen atoms per molecule, an unexpected parameter
According to Hendry et al (1981) there is a structural similarity in the amino acid

radicals and the second bases of their codons, and almost all amino acids fit «cavities»
formed by their second codon bases in the b-DNA helix This concept of pamng amino
acids and nucleotide bases proposed by many previous authors (45 references cited in
1981 by Hendry et al) and the relative importance attached to the role of the 2nd base

position in the triplet code was supported by the established correlation of physico-
chemical properties of amino acids with nucleotide bases, in particular with the 2nd

anticodon base

In 1966, Dunhill had already suggested a primordial role tor anticodons,
mediated by dinucleotide-doublets or by tnnucleotide-triplets, a trend followed in 1978 by
Hopfield. The same year, Jungck concluded experimentally that almost all properties
of amino acids showed a greater correlation to anticodons than to codonic dinucleotides.
He further demonstrated that the polarity and bulkiness of amino acid chains could be
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used to predict the anticodon with considerable confidence, and concluded that the

physical parameters of amino acids and nucleotides limit the stochastic possibilities for
the genetic code In 1981, Dounce also assumed that there are "fits" between the residues

groups of the amino acids and specific nucleobase pairs which would have meaningful
structural relationship to the Jukes (1965) dyads ascribed in a landmark paper (1983) to
16 anticodons - including stop doublet - to code for 15 amino acids

This primal coupling base doublets-anticodons was further endorsed in 1983 by
Davydov in his proposal for a "reverse genetic code" More recently, and also drawing
on Hendry's (Hendry et al, 1981) molecular models, Otroshchenko & Kritsky (1995)
have hypothesized that the stereochemical constraints imposed by a specific proto-tRNA
interaction with an amino acid may have come not from a modern version of anticodon

triplet, but from a chemically degraded set of nucleotides composing the anticodon

According to these results, elimination of the 2nd base from a coding triplet also produces
a «cavity» in the double helical molecule The stereochemical properties of a side chain of
the encoded amino acid would allow its specific entering into the cavity

Concerning the deterministic approach, and as recently commented by Alberti
(1997), there are still difficulties to accept the stereochemical theory in its original
formulation, since there is little evidence for a selective binding of amino acids to isolated
nucleotidic codons or anticodons (Dillon, 1978, Schuster, 1981, Szathmary, 1993,

Cedergren & Miramontes, 1996) if only considering (Alberti, 1997) the sheer
difference in size between the two structures In our proposed model (see below), this

difficulty has been largely overcome by the reduced bulkiness of free pyrimidine
(especially) and purine nucleobases compared to their selectively "caged" amino acids thereby
making easier the primary coding processes

In his 1994 updating review of the onset of genetic coding, Maddox commented
«there is no obvious way in which the amino acid molecules that small tRNAs carry can

interact with their signatures, the anticodons" and from that image, we have inferred
(Turian. 1996b) that if, evolutionary, anticodons moved far from their specifically
assigned amino acids, originally they would have been in intimate contact Because of
steric hindrance at this molecular level, anticodons would still have been reduced to two
tree bases (Juke's "archaic doublets") deprived of the d-nbose which, as widely admitted
(Joyce, 1989, Shapiro, 1988, Turian, 1997) could not yet have been abiotically
synthesized Such doublets of relatively lean, free nucleobases could have "caged" amino
acids, presumably lined up on randomly formed peptides and weak bonded them by
stereochemical specific affinities (Turian, 1998)

INTEGRATIVE MODELLING

The products of amino acids dehydrating condensations, linear or cyclic peptides
(Turian. 1996a). were the easier and presumably the first made polymers but were still
only endowed with a low degree of sequence specificity Those spontaneously and

randomly formed peptides which could have "survived" to the forces of natural selection
would soon have been retrotranslated (reverse genetic coding) and thereby encoded by the



ITS GENETIC CODING 317

more sequentially-specific doublets of nucleobases of prenucleic infopolymers, by a

primary genetic take-over, to what could be considered as "clothed" protogenes. However,

to be endorsed as primal codings, the stereospecifically constituted couples of nucleobases

should have to be "frozen" on polyphosphates into prenucleic polybasephosphates

(Fig. 1).

G A

Fig. 1.

Molecular modelling of progressive retrotranslation and thereby primeval coding of two peptidic amino
acids (glycine G, alanine A) stereospecifically recognized and weakly bonded (van der Waals *, H —>)

by doublets of anticodomc nucleobases (cytosines CC, cytosine + guanine G), themselves "frozen" by
phosphoramidic bondings (N-P) on the opened rings of trimetaphosphates catalytically produced from
linear triphosphates.
The first formed base triphosphate would ligate with the next by anhydrizing bonding of its terminal
OH" group (energized by the rupture of a P-O-P bond) in a polymerizing process from tnbase-
hexaphosphate to polybasepolyphosphates. The rigidity of the thereby formed "strands" could provoke
a tensional rupture of the weak bondings amino acids bases enforcing a reversed positioning of the

lined bases propicious both to their anterotranslation to the original peptide sequence and to their use as

templates for base complementarity self-replication.

This model of an "interactive freezing" role of polymerizing trimetaphosphates at

the onset of coding of amino acids by nucleobases was recently probed by 3IP-NMR

(Turian et ai, 1998). It extends Kulaev's (1979) and Kornberg's (1995) proposals for
a prebiological role of polyphosphates in the limits of their geochemical availability (see
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Keefe & Miller, 1995; Lazcano & Miller, 1996) and would merge with the "prenu-
cleotide world", driven by the other energy-rich pyrophosphates as suggested by the

Baltscheffskys (1993).
After their presumed self-replication on complementary base pairs chains, the

original nucleobase doublets would, in return, be anterotranslated into more of the selected,

primeval peptidic sequences. These considerations thus provide an integrated answer to
riddles 1 and 2 by envisaging the onset of genetic coding in a pre-RNA world of peptide-
clothed protogenes. They are also a deterministic answer to the 3rd riddle because such

onset could not result of a random or stochastic "frozen accident" but of a "frozen
interaction", i.e. freezing on polyphosphate chains of the nucleobase doublets having first
specifically recognized and stereochemically bonded amino acids of the primeval
peptides.

The information of the protogenes would have been secondarily taken over by true
nucleic genes according to the following sequential scheme:

Naked peptidic (proteinoid) Peptide-clothed prenucleic Naked ribonucleic (ribozymic)
polymers infopolymers or protogenes genes secondarily clothed

"chicken" "chicken-egg" "egg-chicken"

Is1 take-over 2nd lake-over

Prebiotic - Prenucleic world RNA world

The 2nd genetic take-over produced by some type of ribosylation of the prenucleic
protogenes would have led to naked RNA genes which could have assumed, in their
catalytic and replicative, self-sufficient ribozymic form, the primary functions of storing
and passing on the evolutionarily cumulated information of the RNA world. However, it
can be expected that such naked genes would soon have gathered around themselves

protoprotein clothes in an "early RNA peptide world" (Di Giui.io, 1997) coupled with
the energy producing protometabolism required for the structuro-functional complexifi-
cation of the first life torms.

EPILOGUE

The tacts presented as tentative answer to the 3rd riddle, endowed with a

philosophical connotation, are mostly in favor of a shaping ot the genetic code by basic-

chemical forces and not by chance. Interestingly, this opinion was parallely emphasized at

the last meeting of the Society for the Study of Evolution (Gretchen Vogel's report,
1998) by most scientists who also speculated about interactions of affinity forces between

specific base sequences and amino acids rather than for a random accident "frozen" in

time. This still theoretical scenario has been comforted by preliminary experimental
evidence obtained by Landweber-Knight of a significant increase of arginine binding to its

possible codons in randomly produced RNA strands which demonstrates that it is no
accident that these codons specify arginine. As further commented by G. Vogel, expen-
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mental probings ot specific interactions such as of alanine with GC(U), considered by
Trieonov (1998) as the original codon (we rather favor GG —> CC-glycine (see Turian,
1998). should convince deterministic doubters among which the evolutionist Nile
Lehman

Anothei dominant research theme today is the ability of infopolymers to self-

replicate as primordial replicators However, as commented by Szathmary (1997) the

origin of non-enzymatic replication is still an unsolved problem, although artificial
replicators have been grown without a replication enzyme in a test tube (Von Kiedrowski,
1986) and analogs ot RNA molecules just two nucleotide long were able to act as

template for their own replication (Tjivikua et al, 1990). Other experimental models of
RNA replication, considered as a key step in the emergence of life on Earth, have been

developed by Joyce & Orgel (1986), Schwartz et al (1987), Orgel (1995) and self-

rephcatory chemical systems further designed by Sievers & Von Kiedrowski (1994) and

Li & Nicolaou (1994) Ferris et al. (1996) have then catalytically induced the formation
of RNA molecules by surface-bond template polymerization on a clay, successful up to a

length 55 nucleotides More lecently, an ingenious procedure described by Luther et al
(1998) combines the advantages of solid phase chemistry with chemical replication of
DNA oligonucleotides and could be further developed for the non-enzymatic and

enzymatic amplification of RNA, peptides and other templates
The first replicators with limited heredity might have been much smaller molecules,

with analogue rather than digital replication (Wachterschauser, 1997). However, how
far the analogue replicators which proceed piecemeal could have evolved before the

advent ot digital replicators which act as a modular process remains an open problem
(Maynard Smith & Szathmary, 1995).

The power ot selection conjuncted with the use of ribozymic aptamers has been

exploited by several groups (Wilson & Szostak, 1995, Jiang et al, 1996; Williamson,
1996). However, the search with such short RNA sequences appears less relevant for a

primordial role of RNA in the primal origin ot life because of the "modernity" of their
bonded ATP We prefer to rejoin others (see in Cohen. 1996, Horgan, 1996) with the

opinion that a molecule as complex as RNA could not arise from scratch but evolved
from simpler self-replicating molecules. These could have been peptide-nucleic acids

(PNAs) which also have the ability to replicate themselves and catalyze reactions

(Bohler et al, 1995) However, with their unusual polyethylglycine backbone, these

polymers might not have existed under plausible conditions on the early Earth So, why
rather not prenucleic polybasephosphate phosphoramide-bonded polymers, simpler than

the phosphodiester-bonded polybasenbosephosphates of RNA-nbozymes, as primordial,
prebiotic replicators'7
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RESUME

ORIGINE DE LA VIE I ENIGMES RECURRENTES CONCERNANT SON

CODAGE GENETIQUE

L'alternative interrogative "l'oeuf ou la poule9" ä l'ongine du monde prebiotique
perd sa pertinence si on lui substitue la convolution originelle de peptides-protoproteines
et d'infopolymeres polybasephosphates prenucleiques en assurant le codage stereo-

chimique et la reproduction
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