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SUR DES TESTS STATISTIQUES UTILES
POUR LA RECONNAISSANCE DES FORMES

PAR

Franz STREIT*

ABSTRACT

On some statistical tests useful for the recognition of forms. - This article continues the study
started in (STREIT, 1996) of statistical tests for the recognition of the original form of planar objects
which have been subjected to a random deformation.

First a test is described for the case where the stochastic model proposed in STOYAN & STOYAN
(1992) is applicable and where the random variables representing the deformations follow up to a sign
change the law of the absolute value of a standard normal random variable.

Then a test is introduced which is based on an alternative stochastic model of multiplicative type
with an underlying exponential distribution. It is explained how one can incorporate in the analysis
stochastic dependencies between the experimental measures taken from the same object.

The practical implementation of some of these techniques applied to the classification of the form
of sand grains is briefly discussed.

Key-words: Pattern recognition, statistical tests. models for stochastically deformed contours,
incorporating stochastic dependence relations between measurements.

INTRODUCTION. UN EXEMPLE DE L’APPLICATION DU
MODELE ADDITIF POUR DEFORMATIONS

En sciences expérimentales on observe fréquemment des systemes d’objets plans et
on constate que ces objets ont une forme similaire mais pas identique. Souvent il est
raisonnable de supposer que lors de sa genese chaque objet ou grain est réalisé par une
déformation aléatoire de son contour a partir d’une forme commune originale. Typique-
ment dans une telle situation on ne connait pas concretement cette forme originale mais
on observe des objets individuels déformés. Le but de ce travail est de montrer que 1’on
peut utiliser des techniques statistiques simples pour déterminer aussi bien que possible
la forme originale des objets.

Bien sir il existe différentes manieres concevables de décrire mathématiquement
I'influence du hasard dans ce contexte. Pour expliquer le principe de base je vais
d’abord me restreindre a utiliser un modele proposé dans STOYAN & SToYAN (1992): On
suppose que les formes K, . . ., K, des objets plans O, . . ., O, forment un échantillon
aléatoire et que la forme K; admet la description par la formule
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Ri(p) =r(p)+ Zi(p) [0<p<2mi=1,...,n]. (1)

Ici R; (¢) désigne le rayon vecteur de la forme K; a I'angle ¢ mesuré a partir d’un
point de référence P;, par exemple du centre de gravité de O; et a partir d’un point de
référence sur le contour qui caractérise la direction a I’angle ¢ = 0. r(¢) désigne le
rayon vecteur de la forme originale commune non-déformée et Z(¢) la déformation
dans la direction ¢ de I’objet O;. K; est obtenue de O, en translatant I’objet de telle fagon
que P; coincide avec l'origine du systtme des coordonnées du plan. Pour des
explications plus détaillées du modele et des suppositions faites concernant les O; voir
STREIT (1996).

Nous allons considérer le cas ol on admet comme formes originales une classe
d’ellipses. En orientation standard r(¢) satisfait aux relations

r(g) = (cos(¢)?/a’ +sin(p)*/6°) 72 [0< @ < /2 (2)

o) =rlr—v) [rf2<p<n] re)=rle—m) [r<e<2n]

L’étude de K, . . . , K, se fait concrétement en mesurant le rayon vecteur de la
forme 2 des angles prescrits, par exemple aux angles ¢ = 09, 900, 1800 et 2700.
En supposant que les déformations Z,(/7/2) [i=1,...,n;1=0,1, 2, 3] forment un

échantillon aléatoire de taille 4n d’une population a fonction de densité

fz(z) = (2/m)?exp[—22/2] [ <0]  fz(z2)=0 [z>0], (3)

la situation expérimentale est complétement spécifiée.

Considérons le cas ol on voudrait savoir si I’on a effectivement besoin d’admettre
la classe des ellipses ou s1l suffit de travailler avec la classe plus restreinte des cercles:
c’est-a-dire on veut tester les hypotheses

H() a=>b
contre
Hl A F b.

ol les demi-axes a et b ne sont pas connus et sont positifs.

Dans un tel cas la méthodologie statistique recommande (WITTING & MUELLER-
FUNK, 1995, section 6.2.1) de baser la décision sur le test du rapport des vraisemblances
généralisé. On obtient la statistique de ce test en calculant d’abord la fonction de
vraisemblance L associée a R = (R;(Ir/2) [i=1,...,n;l=0, 1,2,3])

[ou “désigne le transposé d'un vecteur] selon

L(a,b: R) = (2/m)™ exp[= Licoz Lisy (RilIm/2)—a)? /2= Timy s Tisy (Ri(I7/2) — b)2 /2]
et en posant

Agen = [50Pgps0(L(a,b: R)I [sup,o(L(r,7 : R))]

ce qui résulte en Agen = [L(A, B:R)]™* [L(R,R: R)].

Il est facile a vérifier que les estimateurs du maximum de vraisemblance de r, a et b
sont données par
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R - |=1....].T!l:?_—i(0.1,2$3( Ri(lﬁ/z)) (4)
et
_: — L/ @ = 4 2 ‘ -~
A i:lf‘].],i‘:)[(:flﬁ(RE(IT/Z)) B i:l.TS;)ll'(:l,li(Rl(lﬁ/ )) (S)

Asymptotiquement pour n grand la statistique modifiée —21In(A,,,) suit une distri-
bution de y? de K. Pearson a un degré de liberté. Le test de niveau de signification «

s’effectue donc en comparant la valeur réalisée de la statistique du test asymptotique

~21In(A.,) ZZ (U /2)-RP = 3 S (Riln/2)-A)= 3 S (Ri(ln/2)- (6)

=0 1=1 (=0,2 i=1 1=1,31=1
a la valeur critique x{(1 — a) définie par P(x} < xj(1 — @)) =1 — a, (que I'on trouve
tabulée dans beaucoup de livres statistiques) et en rejetant H, si et seulement si

—2In(Agen) > x1(1 — @). (7)

UN MODELE STOCHASTIQUE DU TYPE MULTIPLICATIF

Le modele additif pour les déformations n’est peut-€tre pas le seul modele a
considérer. On peut aussi s’imaginer que les rayons vecteurs observés sont multiplica-
tivement liés aux rayons vecteurs de la forme originale selon la formule

Ri(p) = Zi(o)r(p) [i=1,...,n;0 < < 2nm). (8)

Du point de vue mathématique ce modele est plus facile a manier. En principe
toutes les distributions a valeurs exclusivement non-négatives sont admises et on n'a
pas besoin de limiter les supports des distributions pour respecter les restrictions
R; > 0 et r > 0.Un choix judicieux va souvent étre la distribution exponentielle de
parametre | spécifiée par la fonction de densité

fz(z)=¢€e* [z2>0] fz(z)=0 [2<0]. 9)

Regardons le procédé que 1’on obtient, quand on résout notre probleéme de tester
les hypothéses Hy : a = bet H, : a # b pour la classe des ellipses spécifiées par (1)
en observant R;(Ir/2) [i = 1,...,n;l = 0,1,2,3] dans le cadre de ce nouveau modele
défini par (8). On suppose que les variables aléatoires
Ri(ln/2)/a [i = 1,...,n;l = 0,2] et R;(Ix/2)/b [i = 1,...,n;l = 1,3] formentun
échantillon de taille 4n de (9).

On trouve donc pour la fonction de vraisemblance associée a
R = (R, (Ix/2),...,R.(Ix/2) [l=0,1,2,3])
L(a,b: R)=a™"b" o, exp[— Y=o Lizy Ri(lm/2)/a—% 10y 3 Ticy Ri(lm/2)/b]
et pour la statistique du test du rapport généralisé des vralsemblances
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Agen = [sup, , L(a,b: R)]™* sup, L(r,r : R) = [L(A,B: R)]"* L(R,R: R).
Il est simple a vérifier que les estimateurs du maximum de vraisemblance sont donnés
par

3 n
R=TRo123=7_ > Ri(ln/2)/(4n), (10)
=0 =1
et

n

A=TRos= 3 3 Ri(ln/2)/(2n), B

1=0,2 i=1

Fia= ¥ S Rn/2)/2n. (1)
1=1,31=1
On constate alors que

Agen = ((‘]?0,1,2,3)_zﬁvi).’.ZTi;l,:})lzrl = [4V‘(l - Vn)]?n’

ot V* = [2Ry1.23] ' Ro, suit sous Hy la loi béta a fonction de densité

fr+(v7) = [D(20)]*T(dn)(v")"~ (1 — v*) 7L,
Donc le test au niveau de signification a possede la région critique
{vx < B(2n,2n)(a/2)} U{vx > B(2n,2n)(1 — a/2)},
ou B désigne la distribution béta et la formulation précédente fait intervenir des valeurs
critiques bilatérales.
Asymptotiquement, pour n grand, on a que la statistique transformée —21n(Age,)
suit une loi de y# ,
ce qui nous conduit a utiliser comme région critique du test asymptotique 1’ensemble
caractérisé par I'inégalité

—2(In(Agen)) > x3(1 — a). (12)

UN EXEMPLE ILLUSTRATIF

Nous allons appliquer les considérations du paragraphe précédent a la classification
de la forme de grains de sable. On trouve dans STOYAN & STOYAN (1992, page 187) la
reproduction des contours de 72 grains de sable. Les premiers 24 contours représentent
des grains de sable trouvés a la cOte de la mer baltique proche a Tressenheide, les 24
contours suivants proviennent de grains de sable collectionnés a la riviere Selencuk en
Caucase et les derniers 24 contours montrent des grains de sable trouvés dans le désert
Gobi; les grains sont d’habitude couchés sur leur cOté large. Les contours ont été
produits a la base de photos qui donnent une image bi-dimensionelle des grains par
projection.

On a effectué le test de circularité basé sur le modele multiplicatif a distribution
exponentielle a ces données. Cependant, pour faciliter la prise des mesures, on a basé
les calculs sur la somme des deux rayons vecteurs en direction horizontale et les deux
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o
o

rayons vecteurs en direction verticale plutdt que les quatre rayons vecteurs individuels
et on a supposé€ que ce sont les sommes réduites

D;(0)/(2a)= [R;(0) + Ri(7)]/(2a) et

Di(m/2)(2b)= [Ri(7[2) + R:(37/2)]/(2b) [i=1,...,n]

qui forment un échantillon aléatoire de taille 2n de la distribution exponentielle de
parametre |.

On a trouvé pour les valeurs de la statistique du test asymptotique ainsi que pour
les probabilités a,;,, d’observer une valeur au moins aussi €levée que celle qui a été
réalisée (évaluée sous I'hypotheése que Hy est vraie et que n est grand)
pour les grains de la riviere: —2In(Ag.n) = 1,11 ags = 0,29
pour les grains du désert Gobi: —21In(Agen) = 0,76 agns = 0,38
pour les grains de la mer baltique: —21In(A;e,) = 0,35  ags = 0,56.

Donc on se décide dans les trois cas pour la forme originale sphérique des grains.
On note que la déviation de la forme sphérique s’avere la plus marquée pour les grains
de sable provenant de la riviere et la plus faible pour les grains de sable provenant de la
mer. Cela est en bon accord avec les résultats d’autres analyses statistiques de ces
données.

MODELES A DEPENDANCES STOCHASTIQUES ENTRE LES MESURES
PRISES DU MEME OBJET

Décrivons maintenant a I'aide d’un exemple élaboré en détail comment (si cela
s’avere nécessaire) on peut tenir compte de 1’existence de relations d’interdépendance
entre les mesures expérimentales prises du méme objet.

L’idée de base consiste a remplacer la supposition que les Z -variables forment un
€chantillon aléatoire par une condition alternative.

Nous voulons décrire une situation, ou des valeurs larges obtenues pour les me-
sures horizontales entrainent d’habitude qu’également les mesures en direction verticale
sont grandes. Un modele multiplicatif a dépendance Markovien entre les mesures prises
de la méme unité basée sur la somme des rayons vecteurs horizontaux D;(0) et la somme
des rayons vecteurs verticaux Dy(m/2) [i =1, ..., n] est engendré par les hypotheses
suivantes: On suppose que D{(0)/(2a) = Z(0) et D{(7/2)/(2b) = Z(w/2) [i=1,..., n]et
que les variables aléatoires
Z4(0), . ... Z,0) forment un échantillon aléatoire d’une distribution exponentielle de
parametre | et que la variable aléatoire conditionnelle
Z(m2)IZ,(0) suit une distribution exponentielle de parametre [Zi(0)]'! et cela indépen-
damment de Z,(m/2), Z/(0) avec [ # i. Au lieu de former un échantillon aléatoire de taille
2n, la loi composée des Z-variables posséde donc dans ce modele une structure plus
complexe.

Nous obtenons pour la fonction de vraisemblance associée a
D= (Di(ir/2);[i= 1,...,n;1 = 0,1]) :
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L(a,b: D) = (2a)™" exp[—(2a)~' iz, Di(0)] T, {(D:(0)) ="' }(2a/C20))"
exp[—(2a/(2b)) i=, (Di((0)) ™" Di(7/2))] et donc
In(L(a,b: D)) = —nIn(2) — nDo/(2a) -1, In(D;(0)) — nln(b) — naDyjo/b,
ou on définit Do = =, Di(0)/n et Dyjo = S0, ((Di(0))~1 Di(7/2))/n.
L’estimation selon la méthode du maximum de vraisemblance de a et b donne a
partir de I’équation @1n(L(a,b,D))/da =0 A= (BDy/(2Dy))"/? et a partir de

I’équation Jln(L(a,b : D))/db = 0 B = AD,,, ce qui conduit finalement a

A=TD,/2 (13)

et )
B = DoDiyjo/2 (14)

Pour estimer a = b = r dans le cas o H est correcte on trouve a partir de I’équation
Aln(L(r,r : D))/dr =0 que
R =Do/2. o (15)
En se servant de ces résultats on arrive a partir de
Agen = [L(A, B : D" [L(R,R:D)] &
Agen = (Dy)0)" exp[n(1 — Dyjo)). (16)
Pour n on peut utiliser la région critique asymptotique

—QIH(Agen) = —Zn(ln(ﬁuo) - 5”0 + ].) > )Qf(l - C()
pour tester H versus H,.

RESUME

Ce travail poursuit I'étude de I'utilisation de tests statistiques pour la reconnais-
sance de la forme originale d’objets plans aléatoirement déformés qui a été commencée
dans STREIT (1996).

On décrit d’abord un test pour le cas ou le modele stochastique proposé dans
StovyaNn & Stovan (1992) est applicable et ou les variables aléatoires décrivant les
déformations suivent & un changement de signe pres la loi du montant absolu d’une
variable aléatoire normale centrée réduite.

On introduit ensuite un test basé sur un modele alternatif du type multiplicatif a
distribution exponentielle. On explique comment on peut incorporer dans 1’analyse des
dépendances stochastiques entre les mesures expérimentales prises du méme objet.

On montre |’application pratique de certaines de ces techniques a la classification
de la forme de grains de sable.

Mots-clés: Reconnaissance de formes, tests statistiques, modeles pour des contours
déformés aléatoirement, modeles a dépendances stochastiques entre mesures expéri-
mentales.
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